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Abstract  New parameters can be introduced to expand families of distributions for added flexibility or to 
construct covariate models and this could be done in various ways. In this article, we generalize the Laplace 
distribution using the quadratic rank transmutation map studied by Shaw et al. (2007) to develop a transmuted 
Laplace distribution (TLD). We provide a comprehensive description of the mathematical properties of the subject 
distribution along with its reliability behavior. To show that the TLD distribution can be a better model than one 
based on the LD distribution we use a real data set of number of million revolutions before failure for each of the 23 
ball bearings in the life tests and The usefulness of the transmuted Laplace distribution for modeling reliability data 
is illustrated. 
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1. Introduction 
This template, created in MS Word 2003 and saved as 

“Word 2003 – doc” for the PC, provides authors with 
most of the formatting specifications needed for preparing 
electronic versions of their papers. All standard paper 
components have been specified for three reasons: 1) ease 
of use when formatting individual papers, 2) automatic 
compliance to electronic requirements that facilitate the 
concurrent or later production of electronic products, and 
3) Margins, column widths, line spacing, and type styles 
are built-in; examples of the type styles are provided 
throughout this document. Some components, such as 
multi-leveled equations, graphics, and tables are not 
prescribed, although the various table text styles are 
provided. The formatter will need to create these 
components, incorporating the applicable criteria that 
follow. Use the styles, fonts and point sizes as defined in 
this template, but do not change or redefine them in any 
way as this will lead to unpredictable results. You will not 
need to remember shortcut keys. Just a mouse-click at one 
of the menu options will give you the style that you want. 
In many applied sciences such as medicine, engineering 
and finance, amongst others, modeling and analyzing 
lifetime data are crucial. Several lifetime distributions 
have been used to model such kinds of data. The quality of 
the procedures used in a statistical analysis depends 
heavily on the assumed probability model or distributions. 
Because of this, considerable effort has been expended in 
the development of large classes of standard probability 
distributions along with relevant statistical methodologies. 
However, there still remain many important problems 

where the real data does not follow any of the classical or 
standard probability models. 

The Laplace distribution is named after Pierre-Simon 
Laplace (1749-1827), who obtained the likelihood of the 
Laplace distribution is maximized when the location 
parameter is set to be the median. The Laplace distribution 
is also known as the law of the difference between two 
exponential random variables.  

In this article we present a new generalization of 
Laplace distribution called the transmuted Laplace 
distribution. 

Definition 1: A random variable X is said to have 
transmuted distribution if its cumulative distribution 
function (cdf) is given by 

 ( ) ( ) ( ) ( ) 2F x 1 λ G x λ G x , λ 1= + − ≤    (1) 

where G(x) is the cdf of the base distribution. Observe that 
at  λ = 0  we have the distribution of the base random 
variable. 

Many transmuted distributions are proposed. A new 
generalization of Weibull distribution called the transmuted 
Weibull distribution [4]. [13] proposed and studied the 
various structural properties of the transmuted Rayleigh 
distribution. [11] introduced the transmuted modified 
Weibull distribution. Transmuted Lomax distribution is 
presented by [2]. [16] introduce transmuted Pareto 
distribution. Transmuted Generalized Linear Exponential 
Distribution introduced by [9] among other. Aryal et al. 
(2009) studied the transmuted Gumbel distribution and it 
has been observed that transmuted Gumbel distribution 
can be used to model climate data. In the present study we 
will provide mathematical formulation of the transmuted 
Laplace distribution and some of its properties. 



 American Journal of Applied Mathematics and Statistics 95 

 

2. Transmuted Laplace Distribution 
The Laplace distribution, also called the double exponential 

distribution, is the differences between two independent 
variates with identical exponential distributions [1]. 
Definition 2: A random variable X is said to have the 
Laplace distribution with parameter β if its probability 
density is defined as: 

 ( ) 1 1g x Exp x β 0.
2β β

 
= − > 

 
 (2) 

The corresponding cumulative distribution function (c.d.f.) 
isc: 

 ( ) ( )1 1sgn 1 1
2

G x x Exp x
β

    = − − +   
    

 (3) 

Now using (1) and (3), we have the cdf of a transmuted 
Laplace distribution 

 
( ) ( )

( ) ( )
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2
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Hence, the pdf of transmuted Laplace distribution with 
parameter 𝜆𝜆 is: 

 
( )

( )

1 1Exp
2

11  Exp 1 .

f x x

sgn x x
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λ
β

 
= − 
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 (5) 

Note that the transmuted Laplace distribution is an 
extended model to analyze more complex data and it 
generalizes some of the widely used distributions. The 
Laplace distribution is clearly a special case for 𝜆𝜆 = 0. 
Figure 1 illustrates some of the possible shapes of the pdf 
of a transmuted Laplace distribution for selected values of 
the parameters 𝜆𝜆 and 𝛽𝛽 =  2.  

 

Using (4) and (5), the hazard rate function of 
transmuted Laplace distribution is: 
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3. Moments 

Now let us consider the different moments of the 
transmuted Laplace distribution. 

Suppose X denote the transmuted Laplace distribution 
random variable with parameter 𝜆𝜆 and 𝛽𝛽, then : 
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∫
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After simplification, the 𝑟𝑟𝑡𝑡ℎ  moment of (TLD) is: 

 ( ) ( )

( )

( )
2 2

(1 ) (1 )
2 2E 1 .

2 2

r r

r
r r

r r

X r

β λ β λ

β λ β λ
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 (6) 

Therefore putting 𝑟𝑟 = 1, we obtain the mean as 

 ( ) 3E x λ β.
4
−

=  (7) 

And putting 𝑟𝑟 = 2 we obtain the second moment as  

 ( )2 2E x .2β=  (8) 

Then the variance of (TLD) is  

 
( ) ( ) ( ){ }

222 2 9V X E X E X 2 .
16
λβ

  = − = − 
    

http://mathworld.wolfram.com/ExponentialDistribution.html
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The moment generating function of (TLD) can readily 
obtained as: 
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After simplification, the moment generating function of 
(TLD) is: 

 ( ) 2 2 2 2
1 .
1 4

X
t tM t

t t
λβ λβ
β β
−

= +
− −

 (9) 

Note That  

 ( )0 1.XM =  

Mean and variance of (TLD) can be found by using (6). 
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These results are the same results previously obtained 
in (7) and (8), and can also reach to the same value of the 
variance as the previous mentioned, can also find 
skewness and kurtosis by the calculation of moments with 
degrees higher than the second degree easily. 

4. Order Statistics 
In statistics, the kth order statistic of a statistical sample 

is equal to its kth smallest value. Together with rank 
statistics, order statistics are among the most fundamental 
tools in non-parametric statistics and inference. For a 
sample of size n, the nth order statistic (or largest order 
statistic) is the maximum, that is, 

 ( ) 1 2max(( , , , ).n nX X X X= …  

The sample range is the difference between the 
maximum and minimum. It is clearly a function of the 
order statistics: 

 1 2 ( ) (1)(( , , , ) .n nRange X X X X X… = −  

We know that if 𝑋𝑋(1),𝑋𝑋(2), … ,𝑋𝑋(𝑛𝑛)  denotes the order 
statistics of a random sample 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛  from a 
continuous population with cdf 𝐹𝐹(𝑥𝑥)  and pdf 𝑓𝑓(𝑥𝑥)  then 
the pdf of 𝑋𝑋(𝑗𝑗 )  is given by 
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For 𝑗𝑗 =  1, 2, . . . ,𝑛𝑛. The pdf of the jth order statistic for 
(TLD) is given by 
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(10) 

Therefore, the pdf of the largest order statistic 𝑋𝑋(𝑛𝑛) is 
given by 
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and the pdf of the smallest order statistic 𝑋𝑋(𝑛𝑛) is given by 
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b) At x>0 
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Therefore, the pdf of the largest order statistic X(n) is 
given by: 
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and the pdf of the smallest order statistic X(1) is given by 
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5. Maximum Likelihood Estimators 
In this section we discuss the maximum likelihood 

estimators (MLE’s) and inference for the TLD ( 𝛽𝛽, 𝜆𝜆) 
distribution. Let 𝑥𝑥1, . . . , 𝑥𝑥𝑛𝑛  be a random sample of size n 
from TLD ( 𝛽𝛽, 𝜆𝜆)  then the likelihood function can be 
written as 
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Where 𝑛𝑛1 is number of the negative observations and 𝑛𝑛2 is 
number of the positive observations. By accumulation 
taking logarithm of equation (11), and the log- likelihood 
function can be written as 
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Differentiating equation (12) with respect to βand λ 
then equating it to zero. The normal equations become 
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We can find the estimates of the unknown parameters 
by maximum likelihood method by setting these above 
nonlinear system of equations (13, 14) to zero and solve 
them simultaneously. These solutions will yield the ML 
estimators for �̂�𝛽 and�̂�𝜆. For the two parameters transmuted 
Laplace distribution TLD ( 𝛽𝛽, 𝜆𝜆) pdf, all the second order 
derivatives exist.  

Under certain regularity conditions, √𝑛𝑛�𝜃𝜃� − 𝜃𝜃�
𝑑𝑑
→ 𝑁𝑁�0, 𝐼𝐼−1(𝜃𝜃)�  (here 

𝑑𝑑
→  stands for convergence in 

distribution), where 𝐼𝐼(𝜃𝜃)  denotes the information matrix 
given by 

 ( ) ( )2
.

l
E

θ
θ

θ θ

 ∂ =
 
∂ ∂ 



 

This information matrix 𝐼𝐼(𝜃𝜃) may be approximated by the 
observed information matrix  

 ( )2
ˆ( ) .

ˆ

l
I

θ
θ

θ θ θ θ

∂
=
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Then, using the approximation √𝑛𝑛�𝜃𝜃� − 𝜃𝜃� ~ 𝑁𝑁 �0, 𝐼𝐼−1�𝜃𝜃��� 
one can carry out tests and find confidence regions for 
functions of some or all parameters in 𝜃𝜃. 

Approximate two sided 100(1 − α) % confidence 
intervals for 𝛽𝛽 and λ are, respectively, given by 

 1
11

2
ˆ ( )z Iαβ θ−±  

and 

 1
22

2
ˆ ( )z Iαλ θ−±  

where 𝑧𝑧𝛼𝛼  is the upper αth quantile of the standard normal 
distribution. Using R we can easily compute the Hessian 
matrix and its inverse and hence the standard errors and 
asymptotic confidence intervals. 

We can compute the maximized unrestricted and 
restricted log-likelihood functions to construct the 
likelihood ratio (LR) test statistic for testing on some 
transmuted LD sub-models. For example, we can use the 
LR test statistic to check whether the TLD distribution for 
a given data set is statistically superior to the LD 
distribution. In any case, hypothesis tests of the type 
𝐻𝐻0: 𝜃𝜃 =  𝜃𝜃0 versus 𝐻𝐻1: 𝜃𝜃 ≠  𝜃𝜃0 can be performed using a 
LR test. In this case, the LR test statistic for testing 𝐻𝐻0 
versus 𝐻𝐻1  is 𝜔𝜔 =  2(ℓ�𝜃𝜃�;  𝑥𝑥� −  ℓ(𝜃𝜃�0;  𝑥𝑥)),  where 𝜃𝜃�  and 
𝜃𝜃�0  are the MLEs under 𝐻𝐻1  and 𝐻𝐻0 , respectively. The 
statistic 𝜔𝜔 is asymptotically (as n → ∞) distributed as 𝜒𝜒𝑘𝑘2 
where k is the length of the parameter vector θ of interest. 
The LR test rejects 𝐻𝐻0 if 𝜔𝜔 > 𝜒𝜒𝑘𝑘 ,𝛼𝛼

2  where 𝜒𝜒𝑘𝑘 ,𝛼𝛼
2  denotes the 

upper 100𝛼𝛼% quantile of the 𝜒𝜒𝑘𝑘2 distribution. 

6. Applications 
In this section, we use a real data set to show that the 

TLD distribution can be a better model than one based on 
the LD distribution. The data set given in Table 1 taken 
from Lawless(1986) page 228. The data are the number of 
million revolutions before failure for each of the 23 ball 
bearings in the life tests and they are: 

Table 1. The number of million revolutions before failure for each of 
the 23 ball 

17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.80, 51.84, 
51.96, 54.12, 55.56, 67.80, 68.44, 68.64, 68.88, 84.12, 
93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40 

We will use these data minus the overall average for the 
experiment; this average was 68 to fit the data with both 
Laplace distribution (LD) and transmuted Laplace (TLD). 

Table 2. Estimated parameters of the Laplace and transmuted 
Laplace distributions for the data 

Model Parameter Estimate Standard Error −𝑙𝑙(. ;𝑥𝑥) 
Laplace �̂�𝛽 = 28.306 0.28 115.79 

Transmuted Laplace 
�̂�𝛽 = 28.099 0.36 

183.046 
�̂�𝜆 = 0.025 0.112 

The variance covariance matrix of the MLEs under the 
transmuted Laplace distribution is computed as 
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 ( )1 0.4 0.009ˆ .
0.009 0.013

I θ− − 
=  − 

 

Thus, the variances of the MLE of 𝛽𝛽 and λ are 𝑣𝑣𝑣𝑣𝑟𝑟(�̂�𝛽) 
= 0.41 and 𝑣𝑣𝑣𝑣𝑟𝑟(�̂�𝜆) = 0.0132,. Therefore, 95% confidence 
intervals for 𝛽𝛽 and λ are [26.895, 29.339], and [−0.198, 
0.248] respectively. 

The LR test statistic to test the hypotheses H0: λ =  0 
versus H1 ∶  λ ≠  0 is  𝜔𝜔 =  134.426 >  3.841 = 𝜒𝜒1,0.05

2 , 
so we reject the null hypothesis. 

7. Conclusion 
Here we propose a new model, the so-called the 

transmuted Laplace distribution which extends the 
Laplace distribution in the analysis of data with real 
support. An obvious reason for generalizing a standard 
distribution is because the generalized form provides 
larger flexibility in modeling real data. We derive 
expansions for moments and for the moment generating 
function. The estimation of parameters is approached by 
the method of maximum likelihood; also the information 
matrix is derived. An application of TLD distribution to 
real data shows that the new distribution can be used quite 
effectively to provide better fits than LD distribution. 
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