
1

PROGO

A Beginning Language for Programming

 Autonomous Mobile Robots
by

Keith L. Doty* and Scott Jantz**

*Professor (Emeritus) University of Florida **Machine Intelligence Laboratory, University of Florida
 C.E.O. Mekatronix, Inc

Abstract
To alleviate the stress of program development for young students and beginning programmers of all ages
who face the challenge of coding behaviors for intelligent autonomous mobile robots, the author has
developed the PROGO™ language. PROGO™, defined completely by C Macros (#defines), establishes a
set of standard functions for each type of Mekatronix robot and eliminates almost all the (painful!) details
in programming robot behaviors in the C Language. PROGO™ offers a non-cryptic syntax that has an
English-like flow. While PROGO™ does not implement all the functionality of C, the user can seamlessly
integrate correct C language statements anywhere within a PROGO™ function without generating
compiler errors. PROGO™ is easy to learn and use, six graders have learned the language in several work
sessions.

Introduction
Students of the Machine Intelligence Laboratory
at the University of Florida, typically program
intelligent, autonomous mobile robots in the C
programming language [Kernighan and Richie,
1978]. They do not possess a standard set of
shared functions and must repeatedly reinvent
the wheel. Non-standard Include files and macro
definitions proliferate, making code sharing even
more difficult and often forcing the students to
focus on programming issues rather than robotic
ones. While this is not all bad from a
pedagogical standpoint, after all, students do
learn from reinvention, such a development
process does slow progress and limit the extent
and sophistication of implemented behavior
programs and robot control.

While many computer engineers enthusiastically
engage in C programming, many roboticists do
not share that enthusiasm. The cryptic syntax of
C often irritates initiates to a high level of
frustration. Even experienced C programmers
often apply “=” in a conditional statement when
“= =” is what they meant.

The problem of introducing students to robotics
carries with it the burden of also introducing a
computer language. If the student is not already

familiar with the computer language chosen, the
potential barrier to success can be overwhelming.
To lower this barrier and alleviate the stress of
code development for Mekatronix robots, the
author has developed the PROGO™ language.
PROGO™, defined completely by C Macros
(#defines), establishes a set of standard kernel of
robot functions for each of its robots and
eliminates all C programming details [Qaiyumi,
1999]. The PROGO™ solution has broad
applicability and is not confined to any particular
company’s robots.

PROGO™ offers a non-cryptic syntax that has
an English-like flow, allowing the programmer
to focus on robot behavior and not programming
syntax and semantics. While PROGO™ does not
implement all of the functionality of C, the user
can seamlessly integrate any C language
statements anywhere within a PROGO™
program as required. For example, PROGO™
only supports int data types. If the programmer
requires floating point, a C declaration of float
can be used within the PROGO™ code without
error.

PROGO™ was designed so middle school
children and beginning programmers could
quickly learn it. This constraint had a powerful
influence on the language design, to wit,

2

PROGO™ statements were designed to read like
a type of formal English. This makes it easy for
initiates who speak English to understand and
absorb the syntax and semantics quickly.
Further, C macros and functions absorb all the C
syntactic support structures such as include files
and robot functions such as go(). PROGO™
code is typically much shorter and easier to read
than an equivalent C program, even though the
language is more verbose.

As the student becomes proficient in PROGO™,
we expect their transition to C will be much
easier, but this has not been verified.

A Brief Description of
PROGO™
To illustrate the simplicity of PROGO™, this
paper provides a complete, ostensible definition
of the language with some sample programs for
the TJ PRO™ robot.

Structure of a PROGO™ Program
Every PROGO™ program (Figure 1) optionally
begins with a User Function List of user defined
functions, a Dictionary declaration of user
defined integer variables followed by
Program_begin. The program, consisting of
PROGO™ (or C) statements, corresponds to
main()in C and must be terminated by
Program_end.

PROGO™ Functions
User defined Functions must appear in a list
before Program_begin, the User Function List.
This requirement maintains compatibility with
the C language and makes for good
programming practice as well. The User
Function List syntax is:

Function <function_name1> used
 ...
Function <function_nameK> used

The keyword used must be present after each
function named.

Anywhere after Program_end the user may
define a function with the following syntax.

 Function <function_name>
 Function_begin
 <block>

 Function_end

To call a function in a program or another
function, use the function’s name followed by
the keyword call.

<function_name> call

PROGO™ functions do not have parameters and
cannot return a value except through global
variables. While extremely limited, functionality
does not suffer too much, although clarity might.
Remember the language was defined with
inexperienced programmers in mind.
Experienced programmers can type PROGO™
functions just like C functions, although not
technically defined in the PROGO™ kernel. For
example, to make a function return a floating
point number just type float before the word
function and a return statement somewhere in
<block>,

 float Function <function_name>
 Function_begin
 <block>
 Function_end

To write functions with parameters in
PROGO™, one must resort to C syntax.

PROGO Statements
An Appendix provides a brief synopsis of
PROGO™ syntax, including the syntax for the
robot specific motion and sensing commands.
All PROGO™ statements begin with a capital
letter. The only exception is a user-defined
function where the user has chosen to begin a
function name with a lower case letter.

Any C integer expression is valid in PROGO™,
an extremely powerful feature. PROGO™
expressions utilizing arrays and structures can
also be constructed, but programmers will first
have to understand these data constructs and
learn to declare the variables. Perhaps at that
level of complexity, the user should learn C,
although mixing statements causes no problem to
the compiler, it might be confusing to the reader
of the code!

Even if a student is not acquainted with a
programming language, the readability and
almost self-documenting aspects of PROGO™
statements makes learning it easy, after a brief

3

preliminary session explaining its syntax and
semantics.

To convey what is involved with programming
the TJ PRO™ robot, the next section illustrate a
PROGO™ and C solution to the problem of
making the robot trace out a 20inch square. With
coaching and program examples, computer
literate middle school students can begin
modifying example programs and composing
their own robot programs within 15 to 30
minutes.

Geometry Made Fun: Make
the Robot Trace Out a Square
We have discovered that programming the robot
to trace out simple geometric figures generates
interest and excitement for middle and high
school students and does not overwhelm
beginners. We tape large pieces of white paper
on the floor and attach pens with washable ink
onto the robot. As the robot moves, the robot
plots the geometric pattern. The robot becomes a
movable plotter [Qaiyumi et. al. 1998]. From
geometric figures we have noticed that
participants of all ages branch into free form and
artistic figures, ones pleasing to the eye.

While the triangle is the simplest polygon,
beginners with little understanding of geometry
may find programming a square easier. Right
angles of the square can be taught as right turns,
avoiding the introduction of unknown concepts.
A turn of 120 degrees, the turning angle required
to generate an equilateral triangle, is not intuitive
and difficult to explain to one with no
understanding of angles. Before continuing with
drawing the square, I will digress some on the
concept of angle and turning directions.

After a few “geometric” sessions on the robot,
many young children pick up the abstract
concept of angle quickly. We introduce them to
clockwise turns (negative rotations),
counterclockwise turns (positive rotations), a full
circle, 360 degrees, a half circle, 180 degrees,
and left (right) turns, 90(-90) degrees. After
introducing these concepts, we ask middle
schoolers to program the TJ PRO™ to go
straight-ahead 36 inches, turn around and return
to the same spot. A correct PROGO™ program
to do this is:

Program_begin
 Forward 36 inches
 Turn_right 180 degrees
 Forward 36 inches
 Program_end

Middle schoolers often use 360 for 180 in the
Turn_right function. When the program
executes and the robot spins 360 and continues
onward, they understand their error immediately
and correct it. Students also discover that another
PROGO™ function Turn_left 180
degrees will work, illustrating that –180
degrees is the same as +180 degrees, a difficult
concept indeed for young children!

We now return to the square-drawing problem.
What should the algorithm be? Most children
come up with the idea of drawing four sides and
make four right turns,

Program_begin

 Forward 20 inches
 Turn_right 90 degrees
 Forward 20 inches
 Turn_right 90 degrees
 Forward 20 inches
 Turn_right 90 degrees
 Forward 20 inches
 Turn_right 90 degrees

Program_end

The above solution opens up the introduction of
the Repeat statement. Instead of writing the
sequence

Forward 20 inches
Turn_right 90 degrees

four times, the student learns to iterate with the
Repeat statement,

Repeat 4 times
 Forward 20 inches
 Turn_right 90 degrees
Repeat_end

At this point, although the utility is not clear in
this case, you can suggest the student write a
function,

Function square_side
 Function_begin

4

 Turn_right 90 degrees
 Forward 20 inches
 Function_end

and have the program call the function four times
with the Repeat statement.

The resulting program, written in PROGO™ and
C, appears in Figure 2 and Figure 3,
respectively.

Examination of the C program should convince a
novice programmer that C is not the language of
choice when just beginning. After some
experience with PROGO™, however, the student
should be ready to take on C. The migration
should be fairly smooth.

An Aside
If the robot traces out its trajectory on white
paper, you will probably get a plot like one of
the patterns shown in Figure 4. Because the
robot does not turn 90 degrees precisely, it will
not draw a true square. The drawings, produced
graphically, illustrate what to expect if the angle
is off by 10% in either direction. When I did the
experiment, the angle error was under 10%.

 Can the robot be programmed to perform a truer
square? Sure, just play with the turn angle until
you get the best results. Because of the
limitations of the motors and their control
circuits you will still not get a perfect square.
These results provide a strong dose of reality
therapy for young students not accustomed to
thinking in terms of engineering tolerances. By
the way, I programmed a $30,000 robot (not to
be named!) to do the same thing. It did not draw
a true square either. Ok, so it was a lot better
(about 1% error), but the TJ PRO™ costs under
$300!

Conclusion
Syntax rules in programming languages demand
strict adherence. As the expressive power of a
programming language increases, the complexity
of its syntax typically increases. Novice
programmers find complex syntax a barrier to
learning and an obstacle to making the robot
perform. The teaching language PROGO™,
developed at Mekatronix, works around the steep

learning curve of other languages and provides a
tool suitable for beginners. A C language
preprocessor converts PROGO™ programs
directly into C. This C piggy-back feature
insures the portability and wide spread
applicability of PROGO™ as well as functional
usefulness. The PROGO™ design offers a
“reasonable” tradeoff between expressiveness
and simplicity, but yet retains the important
language features of conditionals, iteration,
recursion, logic, arithmetic and so on. An
example program in PROGO™ and C
demonstrates that even beginners can learn
quickly to program the robot to do something
interesting using only PROGO™. As a by-
product of all the fun, the student learns
important programming concepts and principles.

Intelligent autonomous mobile robots offer a
vehicle for technical training of young students
in behavior-based robotics. Experience with
bright middle school children demonstrates the
claims of PROGO™’s ease of use and utility as a
beginning robot programming language.
Development of a working program suggests
how the robots might be used to teach children
basic geometric concepts as well. Bonus!

Finally, simply watching a robot execute a
program and behave as you planned produces
tremendous satisfaction…a satisfaction that
tends to encourage further investigation,
exploration and learning by young children.

References
1. [Doty, 1997] Doty, Keith L. Autonomous Mobile

Robots in Engineering Education: An Intelligent
Machines Design Laboratory Course. Florida
Conference on Recent Advances in Robotics,
Florida International University, Miami, FL,
April 10-11 1997.

2. [Kernighan and Richie, 1978] Brian W.
Kernighan and Dennis M. Ritchie 1978. The C
Programming Language. Prentice Hall Software
Series.

3. [Qaiyumi, 1999] Mekatronix Homepage,
http://www.mekatronix.com

4. [Qaiyumi et. al. 1998] Aamir Qaiyumi, Scott D.
Jantz, A. Antonio Arroyo, J. Andrew Bagnell and
Patrick O’Malley Robots in the Classroom: Using
Mobile Autonomous Agents to Stimulate Interest
in Science and Engineering. Florida Conference
on Recent Advances in Robotics Florida Institute
of Technology.

5

Figure 1. A schematic view of a PROGO™ program.

/*User Function List*/
 Function <function_name1> used
 ...
 Function <function_nameK> used

/*Declare integer variables*/
 Dictionary
 <variable>,
 <variable>,
 ...
 <variable>
 ok

/*Program Brackets*/
 Program_begin
 <block of PROGO™ statements>
 Program_end

/*Function Defintions*/
 Function <function_name1>
 Function_begin
 <block of PROGO™ statements>
 Function_end

 …
 …
 Function <function_nameK>
 Function_begin
 <block of PROGO™ statements>
 Function_end

6

Figure 2. This PROGO™ program also commands the TJ PRO™ robot to trace out a square 20 inches to
the side.

/*
 Make the robot trace a square.
*/

Function square_side used

Program_begin

 Repeat 4 times
 Repeat_begin

 square_side call

 Repeat_end

Program_end

Function square_side
 Function_begin

 Turn_right 90 degrees

 Forward 20 inches

 Function_end

7

Figure 3. A C program to command the robot to trace a 20 inch square.

/***
 * MEKATRONIX Copyright 1998 *
 * Title square.c *
 * Programmer Keith L. Doty *
 * Description *
 * Make the robot trace a square. *
 **/

/*************************** includes ***************************/
#include <tjpbase.h>
#include <stdio.h>
/**/

/************************** prototypes **************************/
void square_side(void);
void turn_right(int);
void forward(int);
/*********************** end prototypes *************************/

void main(void)
/************************** main ********************************/
{ int i;
/*Initialize the resources of the robot*/
 init_analog();
 init_motortjp();
 init_clocktjp();
 init_serial();
 IRE_ON;
 START;
 for(i=0; i<4; i++) square_side();
}
/************************ end main ******************************/

void square_side(void)
{
 turn_right(90);
 forward(20);
}

void turn_right(int deg)
{. . .}
void forward(int dist)
{. . . }

8

Figure 4. When the TJ PRO™ robot traces out the square, it does not execute true right angle turns. TJ
PRO™ traces the “square” on the left when each turn is 99 degrees and the one on the right when each turn
is 81 degrees, 10 % angle error in the positive and 10% angle error in the negative direction., respectively.

20 inches

20 inches8.13 inches

9.52 inches

9

APPENDIX
PROGO™ SYNTAX

Copyright 1998 by Mekatronix, Inc.

PROGO™ LANGUAGE CONSTRUCTS

User Function List
 Function <function_name1> used
 ...
 Function <function_nameK> used

Declare integer variables
 Dictionary
 <variable>,
 <variable>,
 ...
 <variable>
 ok

Program Brackets
 Program_begin
 Program_end

Function Defintion
 Function <function_name>
 Function_begin
 <block>
 Function_end

Function Call Statement
<function_name> call

Relational Operators
 greater_than
 greater_than_or_equal_to
 less_than
 less_than_or_equal_to
 equal_to
 not_equal_to
 and
 or
 not

Bitwise Logical Operators
 bit_and
 bit_or
 bit_not
 bit_xor

Arithmetic plus, minus, times, divide and
modulus
 +, -, *, / , modulo

PROGO™ STATEMENT SYNTAX
Assignment Statement
 Set <variable> to <expression> ok

Repeat Statement
 Repeat <number> times
 <block>
 Repeat_end

While Statement
 While <test_expression>
 perform
 <block>
 end

Endless While Statement
 Do_forever
 <block>
 end

10

If Statement
 If <test_expression>
 then
 <block>
 end
 or_else
 <block>
 end

If Short Form: If without else
 If <test_expression>
 then
 <block>
 end

Function Call Statement
<function_name> call

Output from Robot to Personal Computer
 Display “<character string>” on_screen
 Clear_screen
 Home_screen
 Write <variable> on_screen

Input to the Robot from the Personal Computer
 input_number
 input_character

ROBOT MOTION FUNCTIONS

Move Robot Forward a Specified Distance
 Fwd <number> inches
 Forward <number> inches

Move Robot back a Specified Distance
 Back <number> inches
 Backward <number> inches

Turn Commands
 Pivot_right <angle> degrees
 Pivot_left <angle> degrees
 Turn_right <angle> degrees
 Turn_left <angle> degrees
 Spinccw Spin counterclockwise
 Spincw Spin clockwise

Robot wheel move commands
 Left_wheel <number> percent
 Right_wheel <number> percent

 Move <number> lws <number> rws
 (lws means left wheel speed)
 (rws means right wheel speed)

Simple Motion Commands
 Go
 Reverse
 Stop

Delay Command
 Wait <time_in_ms> ms

ROBOT SENSOR FUNCTIONS
Analog Bumper function
 BUMPER Returns bump contact reading

Logical bumper tests
 FRONT_BUMP True if a front bump
 BACK_BUMP True if a back bump

Read IR sensor values
 RIGHT_IR Read right IR sensor value
 LEFT_IR Read left IR sensor value

Control IR emitters
 IR_ON Turn on all IR emitters
 IR_OFF Turn off all IR emitters

