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Abstract

The class of elliptical structures includes a vast field of known symmetric distributions and copulas. This article in-

vestigates the properties of the copula underlying a stochastic elliptical process in conditional context. Specifically

we characterize the conditional high dimensional copulas of the elliptical process both in non-spatial framework

and for space-varying models. A spatial conditional measure is constructed to model the joint dependence of these

copulas and distributions with applications to the three most known elliptical structures.
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1. Introduction

Modelling multivariate dependence, finance analysts, macroeconomists and econometricians often know a great

deal about marginal distributions of individual variables but little about their joint behaviour. Consider, for ex-

ample, the analysis of a portfolio consisting of a vector of stocks, one may be interested in the behaviour of the

portfolio when the values of each component portfolio X1, ..., Xn falls short of a certain high threshold. In par-

ticular, in bivariate case when data allow asymptotic interpolation, the coefficients of tail or extremal dependence

quantify the magnitude of the occurence that one component be large, assuming that the other component is also

extremely large at its tail.

In multivariate analysis when the marginal distributions are known with certainty, the copula function enables

to capture and to piece together the joint distribution via Sklar’s Theorem (Sklar, 1959). Therefore, every n-

dimensional continuous distribution H can be canonically parameterized by its univariate marginal H1, ....,Hn

using a copula C defined on the unit cube [0, 1]n, such as

C(u1, ..., un) = H
(
H−1

1 (u1), ...,H−1
n (un)

)
for all (u1, ..., un) ∈ [0, 1]n ; (1)

where H−1
i is the quantile function of Hi; that is, H−1

i (u) = inf {x ∈ R,Hi (x) ≥ u}. Standard references for copulas

analysis are Joe (1997) or Nelsen (2007) which provide detailed and readable introductions to copulas and their

statistical and mathematical foundations while Bouyé et al. (2000) or Cherubini et al. (2004) deal with applications

of copulas to different levels of financial issues and derivatives pricing. Differentiating the formula (1) shows that

the density function of the copula is equal to the ratio of the joint density h of H to the product of marginal densities

hi such as, for all (u1, ..., un) ∈ [0, 1]n ,

c(u1, ..., un) =
∂nC (u1, ..., un)

∂u1...∂um
=

h
[
H−1

1 (u1), ...,H−1
n (un)

]
h1

[
H−1

1
(u1)

]
× ... × hn

[
H−1

n (un)
] . (2)

Elliptical copulas form a very important class of copulas that has been receiving attention in financial applications

this last years. From a practical point of view elliptical copulas and distributions are attractive particularly while

modelling of financial data (see Tangho, 2007). For example, the modern theory of portfolio risk management relies

Gaussian distributions hypothesis and it quintessence is that portfolio diversification effect depends essentially on

covariance matrix (Embrechts et al., 2001).
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Elliptical copulas are generally defined as the copulas of elliptical distributions. In particular, ifΨΣ is a multivariate

elliptical distribution with common marginal Ψ and with dispersion matrix Σ, then the elliptical copula is derived

from the relation (1) by

CΣθ (u1, ..., un) = ΨΣ
(
Ψ−1

1 (u1), ...,Ψ−1
n (un)

)
=

1√
detΣ

exp
{
− 1

2
ŨT

(
Σ−1

)
Ũ

}
; (3)

where Ũ =
(
Ψ−1(u1), ...,Ψ−1(un )

)
is the quantile-vector of marginal distribution. Despite they cannot be expressed

by an explicit form, elliptical structures allow instead different degrees of correlation and provide a rich source

of distributions with many tractable properties of the multivariate normal distributions. Moreover, they inherit to

multivariate extreme dependence and a lot of Gaussian properties. Two most known families of elliptical structures

(distributions and copulas) are the Gaussian family and the Student-t family.

The main contribution of this article is to investigate the properties of a conditional copula of a stochastic elliptical

process both in non-spatial context and in space varying field. We model a conditional time dependent measure

with applications to the three usual elliptical families of copulas.

2. Preliminaries

In this section we collect important definitions and properties on conditional extremal copulas and stochastic

elliptical modelling, that turn out to be necessary for our approach. We refer the reader to Joe (1997) or to Nelsen

(2007) for a general introduction to multivariate copulas theory and to Cambanis et al. (1981) or to Embrechts et

al. (2004) for stochastic elliptical analysis and its applications to different degrees of financial issues.

2.1 Results on Stochastic Elliptical Analysis

Let S n be the unit n-dimensional hypersphere given, for some arbitrary norm ‖ · ‖ in R
n by

S n = {t = (t1, ..., tn) ∈ Rn; ‖t‖ = 1} ⊂ R
n.

Further, let Ωn−1 denote the restriction of Sn to the unit cube [0, 1]n−1of Rn−1 for the 1-norm, that is:

Ωn−1 =

{
(t1, ..., tn−1) ∈ [0, 1]n−1 ;

∑n−1

1
ti ≤ 1

}
.

A complete definiton of elliptical distributions provides to be usefull for a better understanding of our results.

Definition 1 (Cambanis et al., 1981) Let X = (X1, ..., Xn) be an n-dimensional random vector. X is said to be

elliptically distributed (or simply elliptical) if for some vector μ ∈ R
n, some n × n positive definite symmetric

matrix Σ and some function φ : R+ −→ R, the characteristic function ϕX−μ of X − μ is the form ϕX−μ (t) = φ
(
tTΣt

)
and we writte X � En (μ,Σ, φ) .

More specifically, the density function ϕ of an n-dimensional elliptical random vector X with expectation μ =
(μ1, ..., μn) ∈ Rn and with dispersion matrix Σ, is written (if it exists) as

ϕ (x) =
cn√

det (Σ)
gn

{
1

2
(x − μ)t Σ−1 (x − μ)

}
for all x = (x1, ..., x) ∈ Rn; (4)

for some function gn called the density generator, cn being a normalizing constant such as

cn =
Γ
(

n
2

)
(2π)

n
2

[∫ +∞

0

x
n
2
−1gn (x) dx

]−1

; (5)

verifying the constraint
∫ +∞

0
x

n
2
−1gn (x) dx < +∞. The form of the generator gives commonly the multivariate nor-

mal family or the Student-t family. The particular case where n = 1 provides the class of symmetric distributions.

The following result provides a stochastic representation of elliptical random vectors when the dispersion matrix

has full rank.

Theorem 2 (Frahm et al., 2003) A random vector X � En (μ,Σ, φ) with r (Σ) = k if and only if

X d
= μ + RAU(k); (6)
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where U(k) is a k-dimensional random vector uniformly distributed on Sk−1, R is a non-negative random variable
being stochastically independent of U(k), where μ ∈ Rn. Further, A ∈ Rn×k with r(A) = k and satisfies the Cholesky
decomposition Σ = AT A.

2.2 Results on Multivariate Extreme Values Modelling

Copulas form a natural way to construct multivariate distributions with uniform margins. Particularly a 2-dimensional

copula can be simply defined as follows.

Definition 3 A bivariate function: C : [0, 1]2 −→ [0, 1] is an 2-copula if, for all (u, v) ∈ [0, 1]2:

i) C(u, 0) = C(0, v) = 0

ii) C(u, 1) = u ; C(1, v) = v

iii) C is 2-increasing i.e. C(u2, v2)−C(u2, v1)−C(u1, v2)+C(u1, v1) ≥ 0 for all (u1, v1) , (u2, v2) ∈ [0, 1]2 such as

u1 ≤ u2 and v1 ≤ v2 (positiveness of the volume of any rectangle in R
2).

Particularly, if an n-dimensional copula C satisfies the following max-stability property

C(u1, ..., un) = C
(
u1/k

1
, ..., u1/k

n

)k
for all (u1, ..., un) ∈ [0, 1]n and k > 0, (7)

then, C is an extremal copula. For such a copula the associated distribution H via the canonical parameterization

(1) is a multivariate extreme values (MEV) distribution (see Joe, 2007). In addition, the distribution H or its

random vector X have to satisfy the regularly varying property: there exist an index α > 0 and a random vector S

distributed on S n such that, for any t > 0 and any Borel-set B ⊂ S n−1

P
(
‖X‖ > tx, X

‖X‖ ∈ B
)

P (‖X‖ > x)

v−→
x−→+∞ P (S ∈ B) t−α; (8)

where υ symbolizes vague convergence. That is written as X ∈ RV (α) see (Resnick, 1987).

Otherwise, the univariate marginal distribution of any MEV distribution is the real parametric model Hξ given by

Hξi (xi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp

{
−

[
1 + ξi

(
xi−μi
σi

)] −1
ξi

}
if ξi � 0

exp
{
− exp

(
− xi−μi
σi

)}
if ξi = 0

for 1 ≤ i ≤ n. (9)

defined on the domain Dξi = {xi ∈ R;σi + ξi (xi − μi) > 0} where {μi ∈ R}, {σi > 0} and {ξi ∈ R} are respectively

the parameters of location, scale and shape of the margin law Xi.

Furthermore, any given distribution F belongs to the maximum domain of attraction of Hξ, denoted F ∈ MDA
(
Hξ

)
,

if there exist normalising sequences
{
σn,i > 0

}
and

{
μn,i ∈ R}

such that

lim
n→+∞Fn

i
(
σn,i xi + μn,i

)
= Hξi (xi) for all 1 ≤ i ≤ n. (10)

In classical MEV analysis however, there exists no parametric family summarizing all types of asymptotic be-

haviours like Hξ of (7) in univariate case. Nonetheless, number of structures have been constructed to model the

joint dependences. One of these structures is the extremal dependence function V , defined on the unit simplex Ωn

by

V(x1, ..., xn) =

∫
Ωn

max

(
w1

x1

, ...,
wn

xn

)
dH

(
w1,...,wn

)
;

where H is a finite non-negative measure of probability, arbitrary except for the moments constraint∫
Ωn

widH (w1, ...,wn) = 1 for each 1 ≤ i ≤ n, see (Joe, 1997) or (Resnick, 1987). An extension of V to S n−1,

referred to as Pickands dependence function and has been developed, related to V , by

V (x1, ..., xn) =
∑n

1 xiA (t1, ..., tn−1) where ti =
xi∑n
1 xi
. (11)

Then, for all ui ∈ [0, 1]; ũi = log ui; 1 ≤ i ≤ n, the extremal copula C is described via V and A by

C(u) = exp{−V(− (ũ1)−1 , ...,− (ũn)−1)} = exp

⎧⎪⎪⎨⎪⎪⎩−
⎡⎢⎢⎢⎢⎢⎣

n∑
i=1

ũiA
(

ũ1∑n
i=1 ũi
, ..., ũn−1∑n

i=1 ũi

)⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ . (12)
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3. A Characterization of Conditional Elliptical Copulas

In this section X = (X1; ...; Xn) denotes an elliptical random vector with joint distribution function H = (H1; ...; Hn)

with copula C. We are interested to investigate properties of a conditional copula given a conditioning set W.

Proposition 4 Let X = (X1..., Xn) be an elliptical vector with distribution H and dispersion matrix Σ. Assume that
there exists a real number α > 0 such that X ∈ RV (α) . Then there exists a convex conditional measure DΣ mapping(
R̄

)n ×
(
R̄

)n
to [0, 1] such that, for all vectors x, u ∈

(
R̄

)n
with xi ∈ [0, ui], the conditional elliptical distribution is

given by
HC ((x1, ...xn) / (u1, ..., un)) = exp

{−DΣt (x, u)
}

(13)

where (x, u) = ((x1, u1) ; ..., (xn, un)) ∈
(
R̄

)n ×
(
R̄

)n
.

Proving Proposition 4 requires the following result given in (Frahm et al., 2003).

Theorem 5 (Frahm et al., 2003) Let X d
= μ + RAU(k) ∼ En(μ,Σ, ϕ) where Σ = AT A is positive definite. Further, let

ΨΣ be the generating distribution function of X. Then ΨΣ ∈MDA(Hξ) if and only if X is regularly varying with tail
index α = 1

ξ
> 0.

Proof. (of Proposition 4) Let’s extend to higher dimensional case the conditional copula considered by Patton

(2006). For all realization x = (x1; ...; xn) ∈
(
R̄

)n
and u = (u1; ...; un) ∈

(
R̄

)n
of the process X such as, for all

xi ∈ [0, ui], then the conditional distribution HC of (13) is given by:

HC((x) |u ) = P

⎛⎜⎜⎜⎜⎜⎝
n⋂

i=1

(Hi (Xi) ≤ xi)

∣∣∣∣∣∣∣
n⋂

i=1

(Hi (Xi) ≤ ui)

⎞⎟⎟⎟⎟⎟⎠ .

Moreover, since Ui are the probability integral transformation, Ui ∼ Hi (Xi), it follows that

HC((x) |u ) = P

⎛⎜⎜⎜⎜⎜⎝
n⋂

i=1

(Ui ≤ xi)

∣∣∣∣∣∣∣
n⋂

i=1

(Ui ≤ ui)

⎞⎟⎟⎟⎟⎟⎠ =
P
(

n⋂
i=1

(Ui≤xi);
n⋂

i=1
(Ui≤ui)

)

P
(

n⋂
i=1

(Ui≤ui)

) .

Then, since xi ∈ [0, ui] and every copula C is the distribution function of uniform vector (U1, ...,Un) even Ui ∼
Hi (Xi) regardless of the original distribution H, it results that

HC((xt) |ut ) =
P (U1 ≤ x1, ...,Un ≤ xn)

P (U1 ≤ u1, ...,Un ≤ un)
=

C (x1; ...; xn)

C (u1; ...; un)
. (14)

Otherwise, by assumption there exists an index α > 0 such that X ∈ RV (α). Therefore, from Theorem 5 it yields

that H ∈ MDA
(
Hξ

)
. That means both that every margin Hi of H satisfies the relation (10) and particularly H

is a MEV distribution. Therefore, the copula C is an extremal copula since associated to a MEV distribution by

formula (1).

Let VΣ denote the convex extremal dependence function of C. Then, it follows from (12) that,

C(u1, ..., un) = exp{−VΣ(− (ū1)−1 , ..., (−ũn)−1)} for all (u1, ..., un) ∈ [0, 1]n ;

It follows, from the relation (14) that

HC ((xt) |ut ) = exp{−VΣ(− (x̃1)−1 , ..., (−x̃n)−1) + VΣ(− (ū1)−1 , ..., (−ũn)−1)}
Finally, it follows a convex measure DΣ, mapping

[
(R ∪ {±∞})n]2

to [0, 1] such as

DΣ (x, u) = VΣ(− (x̃11)−1 , ..., (−x̃n)−1) − VΣ(− (ū1)−1 , ..., (−ũn)−1) (15)

for all (xt, ut) ∈ [
(R ∪ {±∞})n]2

. So, (13) is proved as disserted. �
4. Conditional Copulas in Elliptical Spatial Framework

In this section we consider a spatial elliptical process
{
Yt =

(
Yt,i

)
, 1 ≤ i ≤ n; t ∈ T

}
observed on a set of locations

D = {x, ..., xn} where the date t of the realizations yt,i = yt (xi) is assumed to be the same (see, e.g., Smith &
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Stephenson, 2009). Let Ht =
(
Ht,1; ...; Ht,n

)
and Ct be respectively the joint distribution function and the copula

associated to the process. Hence, it follows from relation (1) that

Ht
(
yt,1, ..; yt,n

)
= P

(
Yt (x1) ≤ y t,1, ..., Yt (xn) ≤ yt,n

)
= Ct

(
Ht,i

(
yt,i

)
; ..; Ht,n

(
yt,n

))
.

Dealing with bivariate copulas Fantazzini (2004) defined a conditional copula concept given a conditioning set W.

Aiming to extend this concept both to high dimensional case and to time-varying framework, let’s have to deal

with areal data on Dt (see Ribatet, 2010). Indeed, such a kind of geostatistical dataset allows to be partitioned into

a finite number of zones D1; ...; Dk as Fereira et al. (2011) partitioned their random vector into two blocks while

modelling conditional tail dependence. Then, it follows that

D =
k⋃

i=1
Di with k < n where Di ∩ Dj � ∅ if i � j.

Let’s consider zones Wi as the conditioning subsets, that is Wi = Di. The following result gives the spatial high

dimensional conditional distributions where, for simplicity purpose, the conditioning zone Wi includes a single

site wt.

Proposition 6 Let Ht,wt denotes the joint distribution of (Ỹt,n−1,Wt), t ∈ T with Ỹt,n−1 = (Yt,1, ..., Yt,n−1), then the

conditional spatial distribution of (Ỹt,n−1,Wt) is given, for all ỹt ∈
(
R̄

)n−1
by

Ht,wt (ỹt/wt) = f −1
w (wt)

∂Ht,wt

(
yt,1; ...; yt,n−1,wt

)
∂wt

; (16)

where fw is the spatial density of the law of Wt.Moreover, the following properties are satisfied

1) Ht,wt

(
yt,1; ...,−∞; ...; yt,n−1,wt

)
= 0 for all ỹt ∈

(
R̄

)n−1
.

2) H (∞, ...,∞/wt) = 1 for all ỹt ∈
(
R̄

)n−1
.

3) For all ỹt
(1) =

(
y(1)

t,1 , ..., y
(1)
t,n−1

)
∈

(
R̄

)n−1
and ỹt

(2) =
(
y(2)

t,1 , ..., y
(2)
t,n−1

)
∈

(
R̄

)n−1
such as y(1)

t, j ≤ y(2)
t, j then

∑
(i1,...,in)∈{1,2}n

(−1)

n∑
i j

j=1 Hn−1,wt

(
y(i1)

t,1 , ..., y
(in−1)
t,n−1
,wt

)
≥ 0. (17)

Proof. By extending the proposition 1.3 in Patton (2002) both to space-varying case and to higher dimensional

framework, we obtain the three properties above since the cumulative distribution Ht,n−1 must satisfy the positive-

ness of the volume of any hyperrectangle of
(
R̄

)n
. �

The following result provides a key property of conditional space-varying copula.

Theorem 7 For a given conditioning set Wi, t he conditional copula CWi of Yt |Wi where
{
Yt,i|Wi ∼ Ht,i; 1 ≤ i ≤ k

}
exists and it coincides with the joint distribution function of Ui ≡ Ht,i(Yt |Wi); 1 ≤ i ≤ k given Wi. Moreover, if the
elliptical process Yt is regularly varying, then CWi is a spatial extremal copula.

Proof. It suffice to prove that the spatial conditional copula CW satisfies the n-dimensional properties i), ii) and iii)

of Definition 3. By using simultaneously Definition 5 and Proposition 6, it follows that, for all (ut,1, ...ut,i−1, ut,i+1,

ut,n) ∈ [0, 1]n−1

CWi (ut,1, ...ut,i−1, 0, ut,i+1..., ut,n/wt)

= Ct(Ht,1(yt,1|wt), ...,Ht,i−1(yt,i−1|wt),Ht,i(−∞|wt),Ht,1+1(yt,i+1|wt), ...,Ht,n(yt,n|wt)/wt)

Then,

CWi (ut,1, ...ut,i−1, 0, ut,i+1..., ut,n/wt) = Ht,wt

(
yt,1; ...,−∞; ...; xt,n−1,wt

)
= 0

Hence, the copula CWi is grounded, that is, it satisfies the generalization of the property i).

Moreover, notice that for every margin Yt,i the generalized inverse function H−1
i,t exists since an elliptical law is

continuous. Then, for all ut,i ∈ [0, 1] with 1 ≤ i ≤ n,

CWi (1, .., 1, ut,i, 1, ..., 1/wt) = C(Ht,1(+∞|wt), ...,Ht,i−1(+∞|wt), ut,i,Ht,i+1(+∞|wt), ...,Ht,n(+∞|wt)/wt)

= Ht,wt

(
+∞; .. +∞,H−1

t,i (ut,i

)
,+∞, ... +∞)

= lim
y→+∞Ht,wt

(
y; ..x,H−1

t,i (ut,i

)
, y, ..., x) = Hi,t

[
H−1

i,t (ui)
]
= ui
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Hence, the margins of the copula CWi are uniform (the generalization of the property ii).

Otherwise, for proving iii) notice that there is no loss of generality by restricting it to 2-dimensional case since a

systematic extension of the latter yields the high dimensional settings.

Then, for all t ∈ T, consider
(
ut,1, vt,1

)
;
(
ut,2, vt,2

) ∈ [0, 1]2 such that ut,1 ≤ ut,2 and vt,1 ≤ vt,2,

CWi (ut,2, vt,2/wt) −CWi (ut,1, vt,2/wt) −CWi (ut,2, vt,1/wt) −CWi(ut,1, ut,1/wt) =

Ht,wt

(
yt,2, zt,2/wt

) − Ht,wt

(
yt,1, zt,2/wt

) − Ht,wt

(
yt,2, zt,1/wt

) − Ht,wt

(
yt,1, zt,1

) ≥ 0

The positiveness here is provided by that Ht,wt satisfies the relation (17). Hence, we conclude that CWi is a n-

dimensional spatial copula.

Furthermore, the process Yt is assumed to be regularly varying, so from Barro et al. (2012), the spatial distribution

Ht lies also in the MDA of a spatial MEV distribution. Particularly, the copula Ct is a spatial extremal copulas and

therefore satisfies the max-stability property (7) which equivalently written gives

Ct(uk
t,1, ..., u

k
t,n) = Ck

t
(
ut,1, ..., ut,n

)
for all

(
ut,1, ..., ut,n

) ∈ [0, 1]n ; t ∈ T and k > 0.

Then, whatever the varible Yt,i the integral transformation Ht,i
(
Yt,i

) ∼ Ui regardless Ht,i.

Then, for all
(
ut,1, ..., ut,n

) ∈ [0, 1]n and k > 0.

CWi (u
k
t,1, ..., u

k
t,n/w) = P

(
Ht,1(Yt,1, |Wi) ≤ uk

t,1, ...,Hi,t(Yt |Wi) ≤ uk
t,n

)
= P

(
Yt |Wi) ≤ H−1

(
uk

t,1

)
, ..., Yt |Wi) ≤ H−1

(
uk

t,1

))
= P

(
Ui ≤ H−1

(
uk

t,1

)
, ...,Ui ≤ H−1

(
uk

t,1

))
= Ct(uk

t,1, ..., u
k
t,n/wt)

Therefore, for all
(
ut,1, ..., ut,n

) ∈ [0, 1]n and k > 0.

CWi(uk
1, ..., u

k
n/w) = Ct(uk

1, ..., u
k
n) = Ck

t (u1, ..., un) = Ck
t (u1, ..., un/w)

So, the copula CWi is max-stable and so, is a spatial extremal copula. �
Remark 8 Notice that the conditioning realization of process Wt have to be the same for each of marginal distri-

butions and the copula.

5. Applications to Bivariate Usual Elliptical Families

In geostatistical analysis the separating distance hi j =
∥∥∥xi − x j

∥∥∥ between pairs of localities xi and x j is provides

to be very important while modelling spatial variability. Let h denote the mean value of the separating distance

between the sites.

5.1 A Spatial Conditional Measure for Bivariate Gaussian Process

Gaussian process is one of the most used elliptical processes even in the spatial context.

Corollary 9 For an elliptical vector X, if the density generator is given by g (u) = e
−u
2 then, X is the multivariate

normal process

X d
= μ +

√
χ2

k AU(k) ∼ Nn(μ,Σ) with R ∼
√
χ2

k .

Moreover, in bivariate case with correlation ρ, the spatial conditional measure is given for t ∈ Ω2 by

Dρ (t) =
t

1 + t

[
1

t
Φ

(
2 − ρ2 log t

2ρ

)
− Φ

(
−2 + ρ2 log t

2ρ

)]
; (18)

where Φ is the standard univariate Gaussian distribution.

Proof. By replacing the density generator in (4) by g (u) = e
−u
2 and by calculating cn in (5), it follows that the

density function of the process yields the density of the multivariate normal family (see Zinoviy et al., 2003), that

is

ϕ (x1, ..., xn) =
1

(2π)
n
2

√
detΣ

exp

{
−1

2
(x − μ)t Σ−1 (x − μ)

}
.
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Particularly, the bivariate normal copula with correlation ρ is derived from the relation (1) by

Cρ (u1, u2) =
1

2π
√

1 − ρ2

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞
exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩−
(
r2 − 2ρrs + s2

)
2(1 − ρ2)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ drds,

where Φ−1 is the quantile function of the standard normal distribution.

Furthermore, in a bivariate study, Hüsler and Réı̈ss (see Joe 1997) showed that the corresponding Pickands depen-

dence function is given by

Aρ(t) = tΦ
[
1

ρ
+
ρ

2
log

( t
1 − t

)]
+ (1 − t)Φ

(
1

ρ
− ρ

2
log

( t
1 − t

))
;

where ρ is the correlation parameter.

Otherwise, for two-dimensional case, the dependence measure is obtained by using simultaneously the relation

(12) and (16), by

D (t) = A
(

1
1+t

)
− t

1+t . (19)

Finaly and spatially, we obtain easily (18). �

Figure 1. Graphic of bivariate normal copula, density and contour

5.2 A Spatial Conditional Measure for Bivariate Student t-Process

While modelling spatial storm profiles (Ribatet et al., 2010) noticed that the Gaussian structures do not model

appropriately than the t-family.

Corollary 10 If the density generator is given by gn (t) =
(
1 + t

v

)− 1+ν
2 , then, the elliptical vector X is the multivariate

Student t-process with the number ν of degrees of freedom

X d
= μ +

√
nTn,vAU(k) ∼ TΣ,n(μ,Σ, ν) with R ∼ √

nTn,v.

Then, for the bivariate case with correlation ρ, the spatial conditional measure Dρ is given by

(1 + t) Dρ (t) = Tn,v

⎡⎢⎢⎢⎢⎢⎢⎣t −1
v

(
1 − ρ (h)

1 + v

) −1
2

⎤⎥⎥⎥⎥⎥⎥⎦ + t

⎛⎜⎜⎜⎜⎜⎜⎝Tn,v

⎡⎢⎢⎢⎢⎢⎢⎣t 1
v

(
1 − ρ (h)

1 + v

) −1
2

⎤⎥⎥⎥⎥⎥⎥⎦ − 1

⎞⎟⎟⎟⎟⎟⎟⎠ (20)

where Tn,v is the standard t-random normal distribution.

Proof. By replacing the density generator in (4) by gn (t) =
(
1 + t

v

)− 1+ν
2

and by calculating cn in (5), it follows that

the density function of the process is the traditional function of the t-density

ϕ (x1, ..., xn) =
Γ

⎛⎜⎜⎜⎜⎜⎝
n + ν

2

⎞⎟⎟⎟⎟⎟⎠
(π)

n
2 Γ

( ν
2

)√
detΣ

(
1 +

(x − μ)t Σ−1 (x − μ)
v

)− v+n
2

;
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Particularly, for the bivariate t-copula with correlation ρ Ribatet et al. (2010) showed that the multivariate corre-

sponding Pickands dependence function is given by,

Aθ(h) (t) = tTν+1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
{t/1 − t}1/ν{

1−ρ(h)

ν+1

} 1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + (1 − t) Tν+1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
{(1 − t) /t}1/ν{

1−ρ(h)

ν+1

} 1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (21)

Then, by replacing the relation (21) in the formula (19), it follows (20) as disserted. �

Figure 2. Two examples of graphic of a bivariate t-copula

5.3 A Spatial Conditional Measure for Bivariate Logistic Process

In MEV analysis, many high dimensional models derive from a symmetrical or non symmetrical extension of

logistic model.

Corollary 11 If the density generator is given by g (t) = e−t

(1+e−t)2 , then, the elliptical vector X is the multivariate
logistic. In particular, for the bivariate case with common parameter θ, the spatial conditional measure Dθ is given
by

Dθ (t) = Dθ(t) =
t

1 + t

[(
1 + t−θ

) 1
θ − 1

]
with θ > 0. (22)

Proof. By replacing the density generator in (4) by g (t) = e−t

(1+e−t)2 it follows that the density fonction of the process

is logistical density

ϕ (x1, ..., xn) = cn√
detΣ

exp
[−1

2
(x − μ)t Σ−1 (x − μ)

]
(
1 + exp

[−1
2

(x − μ)t Σ−1 (x − μ)
])2

;

where the normalizing cn calculated in (5) gives cn = (2π)−n/2
[∑

(−1) j−1 j1−n/2
]−1

(see Zinoviy et al., 2003). The

multivariate Pickands dependence function is

Aθ (t1, ...tm−1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
m−1∑
i=1

tθi +

⎛⎜⎜⎜⎜⎜⎜⎝1 −
m−1∑
i=1

ti

⎞⎟⎟⎟⎟⎟⎟⎠
θ⎤⎥⎥⎥⎥⎥⎥⎥⎦

1
θ

; (t1, ...tm−1) ∈ S m (23)

Particularly in bivariate case, we easily obtain the formula (22) by replacing the relation (23) in (19). �
6. Conclusion and Discussion

In this study, we have investigated about properties of multivariate copulas associated to stochastic elliptical pro-

cesses. Specifically, we have constructed a dependence measure to piece together the dependence of stochastic

elliptical margins in a non-spatial case. Then, the time parametric conditional copula has also been shown to be a

spatial extremal copula under the assumption of regularly varying of the process. Applications have been made by

calculating the main expressions of the spatial measure for the three main families of elliptical family.

These results differ from the previous characterizations of elliptical copulas because they focus both on spatial and

non-spatial analysis and also with extension to high dimensional settings. They characterize each of the three most
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known models of elliptical families by making the relation between the generator, the pickands measure and the

spatial measure.
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