
A Remote Agent Prototype for Spacecraft Autonomy

Barney Pell
y

Douglas E. Bernard
x

Steve A. Chien
x

Erann Gat
x

Nicola Muscettola
z

P. Pandurang Nayak
z

Michael D. Wagner
zz

Brian C. Williams
z

ABSTRACT

NASA has recently announced the New Millennium Program (NMP) to develop \faster, better, cheaper"

spacecraft in order to establish a \virtual presence" in space. A crucial element in achieving this vision is onboard

spacecraft autonomy, requiring us to automate functions which have traditionally been achieved on ground by

humans. These include planning activities, sequencing spacecraft actions, tracking spacecraft state, ensuring

correct functioning, recovering in cases of failure and recon�guring hardware.

In response to these challenging requirements, we analyzed the spacecraft domain to determine its unique

properties and developed an architecture which provided the required functionality. This architecture integrates

traditional real-time monitoring and control with constraint-based planning and scheduling, robust multi-threaded

execution, and model-based diagnosis and recon�guration.

In a �ve month e�ort we successfully demonstrated this implemented architecture in the context of an au-

tonomous insertion of a simulated spacecraft into orbit around Saturn, trading o� science and engineering goals,

and achieving the mission goals in the face of any single point of hardware failure. This scenario turned out to

be among the most complex handled by each of the component technologies. As a result of this success, the

integrated architecture has been selected to control the �rst NMP
ight, Deep Space One, in 1998. It will be the

�rst AI system to autonomously control an actual spacecraft.

keywords: autonomous robots, agent architectures, action selection and planning, diagnosis, integration and

coordination of multiple activities, fault protection, operations, real-time systems, modeling.

1 INTRODUCTION

The future of space exploration calls for establishing a \virtual presence" in space. This will be reached with a

large number of smart, cheap spacecraft carrying on missions as ambitious as robotic rovers, balloons for extended

atmospheric explorations and robotic submarines. Several new technologies need to be demonstrate to reach this

goal, and one of the most crucial is certainly on-board spacecraft autonomy.

In the traditional approach to spacecraft operations humans carry out on the ground a large number of

zRecom Technologies, NASA Ames Research Center, MS 269/2, Mo�ett Field, CA 94035.
yCaelum Research, NASA Ames Research Center, MS 269/2, Mo�ett Field, CA 94035.
xJet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109.

zzFourth Planet, 155A Mo�ett Park Drive, Suite 104, Sunnyvale, CA 94089.

functions including planning activities, sequencing spacecraft actions, tracking the spacecraft's internal hardware

state, ensuring correct functioning, recovering in cases of failure, and subsequently working around faulty sub-

systems. This approach will not be viable anymore in the future due to (a) round trip light time communication

delays which make joysticking a deep space mission impossible and (b) a desire to limit the operations team and

deep space network (DSN) costs.

In the new model of operations, the scientists will communicate high-level science goals directly to the space-

craft. The spacecraft will then perform its own science planning and scheduling, translate those schedules into

sequences, verify that they will not damage the spacecraft, and ultimately execute them without routine human

intervention. In the case of error recovery, the spacecraft would have to understand the impact of the error on its

previously planned sequence and then reschedule in light of the new information.

This work has been carried out within NASA's New Millennium Program (NMP), a series of aggressive

technology-demonstration space missions. In order to assess and demonstrate the applicability of AI technology

to spacecraft autonomy, the NMP formed a team combining AI researchers with some of the best spacecraft en-

gineers with the objective of developing and demonstrating an architecture integrating AI tools with traditional

spacecraft control. The challenge was to demonstrate complete autonomous operations in a very challenging con-

text: simulated insertion of a Cassini-like spacecraft into orbit around Saturn, trading o� science and engineering

goals, and achieving the mission in the face of any single point of hardware failure. This Saturn Orbit Insertion

(SOI) scenario was proposed by experienced spacecraft engineers who had participated in several previous plan-

etary missions. Although simpli�ed, it still contains the most important constraints and sources of complexities

of a real mission, making it the most di�cult challenge in the context of the most complicated mission phase of

the most advanced spacecraft to date. Furthermore, the demonstration had to be accomplished in the very short

time frame of 5 months.

The unique requirements of this domain led us to the New Millennium Remote Agent (NMRA) architecture

which integrates traditional real-time monitoring and control with (a) constraint-based planning and schedul-

ing, to ensure achievement of long-term mission objectives and e�ectively manage allocation of scarce system

resources; (b) robust multi-threaded execution, to reliably execute planned sequences under conditions of uncer-

tainty, to rapidly respond to unexpected events such as component failures, and to manage concurrent real-time

activities; and (c) model-based diagnosis, to con�rm successful plan execution and to infer the health of all system

components based on inherently limited sensor information.

The New Millennium Remote Agent (NMRA) architecture was successfully demonstrated on the simulated

SOI scenario last October. This success resulted in the inclusion of NMRA in the
ight software of the �rst NMP

mission, Deep Space 1 (DS-1), which is scheduled to launch in mid-1998. This will be the �rst AI system to

autonomously control an actual spacecraft.

2 SCENARIO

2.1 Introduction

A simpli�ed Saturn Orbit Insertion (SOI) scenario was used to de�ne the requirements on the technologies and

the level of detail needed in modeling the spacecraft. It included goals and constraints and an example sequence

to satisfy the goals and constraints. The challenge to the autonomous system was not to duplicate this sequence,

but rather to plan and execute tasks in such a manner that all constraints were satis�ed.

The scenario also included failure scenarios. The failure recovery requirements are as follows:

1. Achieve the mission goals even in the event of any single point hardware failure.

2. Consider the Saturn Orbit Insertion burn a special event that, for robustness, requires that all critical

subsystems operate in their highest reliability modes.

3. Although multiple independent simultaneous failures are not considered credible, multiple sequential failures{

spaced far enough apart to allow recovery of one before considering the next{are considered credible and

must be accommodated.

2.1.1 Goals

The following goals de�ne the SOI scenario:

� Use the main engine to insert the spacecraft into Saturn Orbit

� Acquire and return science images of Saturn during approach

� Acquire and return science images of Saturn's rings near closest approach

� Assure that the camera is protected from ring particles during ring-plane crossing

2.1.2 Constraints

The models of the spacecraft as understood by the planner form the context for achieving the above goals.

These models constrain the choices that the planner may make, force certain tasks to be ordered, and force the

addition of tasks to allow the goals to be achieved. For the SOI scenario, the following constraints signi�cantly

a�ect the resulting plan:

� Available spacecraft electrical power is limited; each operating mode of each assembly requires a prede�ned

power allocation.

� Available science data storage is limited; there is not enough room to accommodate both the Saturn approach

and Saturn ring images simultaneously

� Only one spacecraft pointing direction may be commanded at a time. This couples the science imaging

activity, the orbit change activity, the Earth communication activity, and the ring safety activity since all

require some spacecraft axis to be pointed in a particular direction (e.g., antenna toward earth).

� A main engine burn requires several preparatory steps prior to engine ignition.

2.1.3 One Possible Sequence

One possible sequence of events that meets the goals and constraints is shown below. Other sequences are

possible, and changes may be made during execution such that the speci�c task order described here is not

followed, but all constraints between tasks are satis�ed.

2.1.4 Saturn Orbit Insertion Scenario Details

The scenario begins one day before initial Saturn periapsis.

A plan is then generated on-board based on current on-board information about the state of the spacecraft,

the spacecraft trajectory with respect to Saturn, the goals for the Saturn orbit insertion mission phase, and the

system constraints.

Ground controllers desire to know about the success of certain risky activities, such as the �ring of pyrotechnic

devices early enough to take action if failures occur. This forces certain activities to be scheduled early, followed

by communication of the results to the ground controllers on Earth.

Science images are desired of Saturn initial approach and of the rings during closest approach. Limited data

recorder space means that the plan should include the recorder down-load after the approach imaging and before

the ring imaging.

Power is a limited resource and engine ignition for the SOI burn occurs when power is the tightest. Non-

essential equipment (e.g., science instruments and reaction wheels) must be powered o� prior to engine ignition.

Some devices need to be warmed up prior to use. Each must be turned on early enough to assure availability

when needed.

For the critical SOI mission phase, backup units are also warmed up and ready to go.

The main engine is prepared for use by powering on its electronics, opening latch valves, and pre-aiming the

gimbaled engine. These activities are scheduled early enough that failures allow time to switch to the backup

engine.

During SOI preparation and science collection, the spacecraft crosses the Saturn ring plane and must go to

an attitude that shields the camera from ring particles.

The spacecraft turns to the burn attitude, main engine ignition occurs, and the spacecraft is inserted into

Saturn orbit.

After the burn, the spacecraft is returned to a safe state.

The orbit insertion burn is scheduled to end at periapsis so that science observations may take advantage of

the closest approach viewing.

The ring-plane images are down-linked to the Earth as soon as possible.

After transmission of science and engineering data to the ground, the scenario is complete.

The following failure scenarios also had to be handled successfully:

The main engine overheats during the burn. An overheated engine can damage the rest of the spacecraft, so

a re
ex response is needed to shut the burn down upon detection. The backup engine will then be used on the

next burn attempt. This requires re-planning with burn restart time scheduled for when all propulsion equipment

has cooled down su�ciently. The duration of the new burn must be adjusted based on the amount of burn

accomplished in the �rst attempt.

A gyroscope fails to give data. Since the backup gyroscope is on and warmed up, a simple switch is performed

while the burn continues without interruption.

3 DOMAIN AND REQUIREMENTS

The spacecraft domain places a number of requirements on the software architecture that di�erentiates it

from domains considered by other researchers. There are three major properties of the domain that drove the

architecture design.

First, a spacecraft must be able to carry on autonomous operations for long periods of time with no human

interaction. This requirement stems from (a) round trip light time communication delays which make joysticking

a deep space mission impossible and (b) a desire to limit the operations team and deep space network (DSN)

costs.

The requirement for autonomous operations over long periods is further complicated by two additional features

of the domain{tight resource constraints and hard deadlines. A spacecraft uses various resources, including

obvious ones like fuel and electrical power, and less obvious ones like the number of times a battery can be

reliably discharged and recharged. Some of these resources are renewable but most of them are not. Hence,

autonomous operations requires signi�cant emphasis on the careful utilization of non-renewable resources and on

planning for the replacement of renewable resources before they run dangerously low. Spacecraft operations are

also characterized by the presence of hard deadlines due to the fact that the e�ciency of orbit change maneuvers

is an extremely strong function of the location of the spacecraft in its orbit{which is a function of time. For

example, the time at which SOI must be achieved is constrained to lie within a two hour window. Sophisticated

planning and scheduling system should be used to ensure th previous requirement.

The second central requirement of spacecraft operation is high reliability . Since a spacecraft is very expensive

and often unique, it is essential that it achieve its mission with a very high level of reliability. Part of this high

reliability is achieved through the use of very reliable hardware. However, the harsh environment of space or

the inability to test in all
ight conditions can still cause unexpected hardware failures, so that the software

architecture is required to compensate for such contingencies. This requirement dictates the use of an executive

and elaborate system-level fault protection that can rapidly react to contingencies by retrying failed actions,

recon�guring spacecraft subsystems, or sa�ng the spacecraft to prevent further, potentially irretrievable, damage.

Of equal danger are catastrophic software bugs, often introduced through a mismatch of spacecraft models in

the heads of di�erent software engineers. This requirement dictates the need to maximize the use of a consistent

model shared between the di�erent executive functions.

The requirement of high reliability is further complicated by the fact that there is limited observability into

the spacecraft's state due to the availability of a limited number of sensors. The addition of sensors implies

added mass1, power, cabling, and up front engineering time and e�ort. Each sensor must add clear value to

the mission to be justi�ed for inclusion. Furthermore, sensors are typically no more reliable than the associated

spacecraft hardware, making it that much more di�cult to deduce the true state of the spacecraft hardware.

These requirements dictate the use of sophisticated model-based diagnosis methods for identifying the true state

of the spacecraft hardware. These methods predict unobservable state variables using a spacecraft model, and

can e�ectively handle sensor failures. In addition these diagnostic methods must be augmented with sophisticated

model-based control methods that help the executive to recon�gure hardware in view of failure knowledge and to

predict the consequences of these actions.

The third central requirement of spacecraft operation is that of concurrent activity . The spacecraft has a

number of di�erent subsystems, all of which operate concurrently. Hence, reasoning about the spacecraft needs

to re
ect its concurrent nature. In particular, the planner/scheduler needs to be able to schedule concurrent

1In a spacecraft, mass directly translates to the cost of launch and the cost of carrying extra fuel to achieve all mission maneuvers.

Planning &
Scheduling

Real-Time
Control
system

Hardware/
Dynamics
Simulator

Model-based
Mode Ident. and

Recovery
Monitors

Executive Ground
software

Figure 1: NMRA architecture

activities in di�erent parts of the spacecraft, including constraints between concurrent activities. The executive

needs to have concurrent threads active to handle concurrent commands to di�erent parts of the spacecraft. The

model-based diagnosis and recon�guration system needs to handle concurrent changes in the spacecraft state,

either due to scheduled events or due to failures.

4 ARCHITECTURE OVERVIEW

In the architecture autonomous operations is achieved through the cooperation of 5 distinct components

(Figure 1).

Continuous autonomous operation is achieved by the repetition of the following cycle.

1. Retrieve high level goals from the mission's goals database. In the actual mission, goals can be known at

the beginning of the mission, put into the database by communication from ground mission control or can

originate from the operations of spacecraft subsystems (e.g., \take more pictures of star �elds to estimate

position and velocity of the spacecraft").

2. Ask the planner/scheduler to generate a schedule. The planner receives the goals, the scheduling horizon,

i.e., the time interval that the schedule needs to cover, and an initial state, i.e., the state of all relevant

spacecraft subsystems at the beginning of the scheduling horizon. The resulting schedule is represented as

a set of tokens placed on various state variable time lines, with temporal constraints between tokens.

3. Send the new schedule generated by the planner to the executive. The executive will continue executing

its current schedule and start executing the new schedule when the clock reaches the beginning of the new

scheduling horizon. The executive translates the abstract tokens contained in the schedule into a sequence of

lower level spacecraft commands that correctly implement the tokens and the constraints between tokens. It

then executes these commands, making sure that the commands succeed and either retries failed commands

or generates an alternate low level command sequence that achieve the token. Hard command execution

failures may require the modi�cation of the schedule in which case the executive will coordinate the actions

needed to keep the spacecraft in a \safe state" and request the generation of a new schedule from the

planner.

4. Repeat the cycle from step 1 when one of the following conditions apply:

(a) Execution (real) time has reached the end of the scheduling horizon minus the estimated time needed

for the planner to generate a schedule for the following scheduling horizon;

(b) The executive has requested a new schedule as a result of a hard failure.

Schedule execution is achieved through the cooperation of the the executive and the other three architectural

layers. The executive reasons about spacecraft state in terms of a set of component modes. The mode identi-
�cation (MI) layer is responsible for providing this level of abstraction to the executive. MI takes as input the

executive command sequence and observations from sensors to identify the current mode (nominal or failed) of

each spacecraft component. The monitoring layer takes the raw sensor data stream, and discretizes it to the

abstract level required by MI. Finally, the control and real-time system layer takes commands from the executive

and provides the actual control of the low level state of the spacecraft. It is responsible for providing the low

level sensor data stream to the monitors.

The 4 lower layers are always active and in concurrent execution. This ensures the high reliability required by

the domain. The planner/scheduler is the only component that is activated as a \batch process" and dies after

a new schedule has been generated.

Monitoring and control follow traditional approaches to spacecraft software and will not be discussed here. In

the following we will concentrate on the other modules.

4.1 Planner

The goal of the planner/scheduler is to generate a set of synchronized high-level commands that once executed

will achieve mission goals.

Particularly in the spacecraft domain planning and scheduling aspects of the problem need to be tightly

integrated. Clearly the planner needs to recursively select and schedule appropriate activities to achieve mission

goals and any other subgoals generated by these activities. It also needs to synchronize activities and allocate

global resources over time (e.g., power and data storage capacity). However in this domain (but this is also true

in general) subgoals may be generated also due to limited availability of resources over time. For example, in

a mission it would be preferable to keep scienti�c instruments on as long as possible (to maximize the amount

of science gathered). However limited power availability may force a temporary instrument shut-down when

other more mission critical subsystems need to be functioning. In this case the allocation of power to critical

subsystems (the main result of a scheduling step) generates the subgoal \instrument must be o�" (which requires

the application of a planning step). Considering simultaneously the consequences of planning and scheduling steps

enables a planning algorithm to exert more control on the order in which decisions are made and to therefore

keep search complexity under control.

Besides activities, the planner must also \schedule" the occurrence states and conditions that need to be

monitored to ensure that high level spacecraft conditions are correct for goals (such as spacecraft pointing states,

spacecraft acceleration and stability requirements, etc.). These states can also consume resources and have �nite

durations.

The planner used in the NMRA architecture consists of a heuristic search engine operating on a temporal

database. The search engine posts constraints on the basis of external goals or constraint templates stored in a

model of the spacecraft. Using an iterative sampling approach, the planner also tries to heuristically improve on

certain aspects of schedule quality, although it does not guarantee even local optimality along this metric. The

temporal database and the facilities for de�ning and accessing model information during search are provided by

the HSTS system (Muscettola 1994).

The domain model contains an explicit declaration of the spacecraft subsystems on which an activity or a

state will occur. In the temporal database each subsystem has an associated timeline on which the planner inserts

activities and states and resolves resource allocation con
icts. The model also contains the declaration of duration

constraint and of templates of temporal constraints between activities and states. Such constraints have to be

satis�ed by any schedule stored in the temporal database for it to be consistent with the physics of the domain.

Temporal constraint templates absolve the role of generalized planning operators and are de�ned for any activity

or state in the domain. The temporal database also provides constraint propagation services to verify the global

consistency of the constraints posted so far.

The constraint template in Figure 2 describes the 6 conditions needed for an engine burn to initiate correctly

(activity Engine Burn Ignition scheduled on the (Engine Op State) timeline). Constraint 6 represents a request

for power that increases the level of Power Used on the timeline (NewMaap Power Mgmt Power) of an amount

returned by the Lisp function call (compute-power 'Engine Burn Ignition). Explicit declaration of function calls

in the model such as the one above provides the means for the planner to invoke \expert" modules to provide

narrow but deep levels of expertise in the computation of various parameters such as durations or temperature

and power levels.

4.2 Hybrid executive

The executive is responsible for performing runtime management of all system activities. The executive's

functions include process synchronization, process dependency management, hardware recon�guration and run-

time resource management, and the execution of fault recovery procedures. The executive invokes the planner

and mode identi�cation components to help it perform these functions. The executive also controls the low-level

control software by setting its modes and supplying parameters and by responding to monitored events. The

executive thus performs similar functions to a traditional operating system. The main di�erence is that when

unexpected contingencies occur, a traditional operating system can only issue a report and abort the o�ending

process, relying on user intervention to recover from the problem. Our executive must be able to take corrective

action automatically, for example in order to meet a tight orbital insertion window. Our approach involved the

development of a hybrid executive that shares execution responsibilities between a classical reactive execution

system, RAPS (Firby 1978) and a novel model-based recon�guration system, called Livingstone.

RAPS provides a specialized representation language for describing context-dependent contingent response

procedures, with an event-driven execution semantics. The language ensures reactivity, is natural for decomposing

tasks and corresponding methods, and makes it easy to express monitoring and contingent action schemas. Its

runtime system then manages the reactive exploration of a space of alternative actions by searching through a

space of task decompositions.

The basic runtime loop of the executive is illustrated in Figure 3. The system maintains an agenda on which

all tasks are stored. Tasks are either active or sleeping. On each pass through the loop, the executive checks the

external world to see if any new events have occured. Examples of events include model updates from the mode

inference system, announcements of commanded activity completion from external software, and requests from

external users. The executive responds to these events by updating its internal model of the world, changing the

status of a�ected tasks, and installing new tasks onto the agenda. It then selects some active task (based on

heuristics) and performs a small amount of processing on the task. Processing a high-level task involves breaking

it up into subtasks, possibly choosing among multiple methods, whereas processing a primitive task involves

sending messages to external software systems. At this point, the agenda is updated, and the basic reactive loop

repeats.

RAPS encourages a close adherence to a reactive programming principle of limiting deductions within the

sense-act loop to that of constructing task decompositions using a limited form of matching. This ensures

quick response time, which is essential to the survival of the spacecraft. Nevertheless it places a burden on

(Define Compatibility

((Engine Op State) (Engine Burn Ignition))

:compatibility spec

(AND

;; 1. The pressure in the engine tanks must be good during ignition

(contained by ((Engine Tanks Pressure) (Engine Tanks Pressure Good)))

;; 2. The Engine must have been finished late burn preparation

(met by ((Engine Op State) (Engine Burn Late Prep)))

;; 3. The Engine goes into sustained burn state next

(meets ((Engine Op State) (Engine Burn)))

;; 4. The injector temperature must be in range at start of burn

(contained by ((Engine Injector Temp) (Temperature(Ready))))

;; 5. Needs VDECU on

(contained by ((VDECU Op State) (VDECU On)))

;; 6. The following amount of Power will be consumed

(equal ((NewMaap Power Mgmt Power)

(+ (Lisp (compute-power 'Engine Burn Ignition))

Power Used)))))

(Define Duration Spec

((Engine Op State) (Engine Burn Ignition))

;; minimum duration

(Lisp (compute-duration 'Engine Burn Ignition :minimum))

;; maximum duration

(Lisp (compute-duration 'Engine Burn Ignition :maximum))

)

Figure 2: Constraints on the Engine Burn Ignition activity

Fetch
New Events

Update

Agenda

Execute
Command

Process
Events

Expand

De�nition

Process
Best Task

Update

Memory

Update

Agenda

Evaluate
Ready Tasks

Executive
Input

Executive
Output

De�ned

Primitive

-

�

�

-

�

?

?

6

6

6

-

�

Figure 3: Executive Task Expansion Flowchart

the programmer of deducing a priori the consequences of failures and contingencies. This is exacerbated by

subtle hardware interactions, multiple and unmodeled failures, the mixture of interactions between computation,

electronics and hydraulic subsystems, and limited observability due to sensor costs.

The model-based recon�guration system, Livingstone, complements these reactive capabilities by providing a

set of deductive capabilities along the sense-act loop that operate on a single, compositional model. These models

permit signi�cant on the
y deduction of system wide interactions, used to process new sensor information or to

evaluate the e�ects of alternate recovery actions. Yet Livingstone respects the intent of reactive systems, using

propositional deductive capabilities coupled to anytime algorithms that have proven exceptionally e�cient in the

model-based diagnosis of causal systems. Hence Livingstone is able to reason reactively from knowledge of failure,

through the models, to optimal actions that reestablish the planner's primitive goals while obviating the failures'

e�ects.

Nevertheless, the assurance of fast inference is achieved through strong restrictions on the representation used

for possible recovery actions and even more severe limitations on the way in which these actions are combined.

If reactivity is to be preserved, then the only alternative is for a programmer or deductive system to script

these complex actions before the fact. Hence RAPS provides a natural complement to Livingstone's deductive

capabilities. For example, with respect to recovery, Livingstone provides a service for selecting, composing

together and deducing the e�ects of basic actions, in light of failure knowledge. Meanwhile RAPS provides

powerful capabilities for elaborating and interleaving these basic actions into more complex sequences, which in

turn may be further evaluated through Livingstone's deductive capabilities.

4.3 Mode identi�cation

The mode identi�cation (MI) layer of the NMRA architecture is responsible for identifying the current operat-

ing or failure mode of each component in the spacecraft. MI is the sensing component of Livingstone's model-based

recon�guration capability, and provides a layer of abstraction to the executive: it allows the executive to reason

about the state of the spacecraft in terms of component modes, rather than in terms of low level sensor values.

(Williams & Nayak 1996) provides a detailed technical description of Livingstone.

Conflict-directed
best first

search engine

Conflict
database

Behavior
prediction

engine
Models

Monitors

Figure 4: Architecture of Livingstone's mode identi�cation capability.

MI provides a variety of functions within the overall architecture. These include:

� Mode con�rmation: Provide con�rmation to the executive that a particular spacecraft command has com-

pleted successfully.

� Anomaly detection: Identify observed spacecraft behavior that is inconsistent with its expected behavior.

� Fault isolation and diagnosis: Identify components whose failures explain detected anomalies. In cases

where models of component failure exist, identify the particular failure modes of components that explain

anomalies.

� Token tracking: Monitor the state of planner tokens, allowing the executive to monitor plan execution.

MI uses algorithms adapted frommodel-based diagnosis (de Kleer & Williams 1987; 1989) to provide the above

functions (see Figure 4). The key idea underlying model-based diagnosis is that the current state of the spacecraft

can be described by a combination of component modes only if the set of models associated with these modes

is consistent with the observed sensor values. Following de Kleer & Williams (1989), MI uses a con
ict directed

best-�rst search to �nd the most likely combination of component modes consistent with the observations. Note

that this methodology is independent of the actual set of available sensors. Furthermore, it does not require that

all aspects of the spacecraft state are directly observable, providing an elegant solution to the problem of limited

observability discussed in Section 3.

The use of model-based diagnosis algorithms immediately provides MI with a number of additional features.

First, the search algorithms are sound and complete, providing a guarantee of coverage with respect to the models

used. Second, the model building methodology is modular, which simpli�es model construction and maintenance,

and supports reuse. Third, the algorithms extend smoothly to handling multiple faults. Fourth, while the

algorithms do not require explicit fault models for each component, they can easily exploit available fault models

to �nd likely failures.

MI extends the basic ideas of model-based diagnosis by modeling each component as a �nite state machine,

and the whole spacecraft as a set of concurrent, synchronous state machines. Modeling components as �nite

state machines allows MI to e�ectively track state changes resulting from executive commands. Modeling the

spacecraft as a concurrent machine allows MI to e�ectively track concurrent state changes caused either by

executive commands or component failures.

Another important feature of MI is that it models the behavior of each component mode using abstract, or

qualitative, models (Weld & de Kleer 1990; de Kleer & Williams 1991). These abstract models are encoded as

a set of propositional clauses, allowing the use of e�cient unit propagation for behavior prediction. In addition

to supporting e�cient behavior prediction, abstract models are much easier to acquire than detailed quantitative

engineering models, and yield more robust predictions since small changes in the underlying parameters do not

a�ect the abstract behavior of the spacecraft. Spacecraft modes are a symbolic abstraction of non-discrete sensor

values and are synthesized by the monitoring module.

Finally, Livingstone uses a single model to perform all of MI's functions, also used for the executive functions

of model-based recovery and recon�guration. It also uses the kernel algorithm, generalized from diagnosis, to

perform all of these MI and executive functions. The combination of a small kernel with a single model, and

the process of exercising these through multiple uses, contributes signi�cantly to the robustness of the complete

system.

5 IMPLEMENTATION

The implemented NMRA architecture successfully demonstrated planning of a nominal scenario, concurrent

execution and monitoring, fault isolation, recovery and re-planning on a simulation of the simpli�ed Cassini SOI

scenario.

The planner modeled the domain with 22 parallel timelines and 52 distinct temporal constraint templates.

Each template included an average of 3 temporal constraints of which an average of 1.4 constraints synchronized

di�erent timelines. The resulting schedule for the nominal scenario included 200 distinct time intervals; a schedule

generated after re-planning due to engine burn interruption included 123 time intervals. The planner generated

these schedules exploring less than 500 search states in an elapsed time of less than 15 minutes on a SPARC-10.

Considering the computational resources available in the DS-1 mission and the background nature of the planning

process, this speed is acceptable with respect to the performance needed for DS-1.

The executive contained 100 raps with an average of 2.7 steps per raps. The nominal schedule was translated

into a task net with 465 steps, making it the biggest RAP to date. The executive interacted with the underlying

control loops which operated at a cycle frequency of 4 Hz. This performance level is actually higher than that

needed to meet the requirements of the DS-1 mission.

The SOI model for the mode identi�cation and recovery system included 80 spacecraft components with

an average of 3.5 modes per component. The structure and dynamics of the domain was captured by 3424

propositions and 11101 clauses. In spite of the very large size of the model, the con
ict-centered algorithms

permitted fast fault isolation and determination of recovery actions. Fault isolation took between 4 and 16 search

steps (1.1 to 5.5 seconds on a SPARC-5) with an average of 7 steps (2.2 seconds). Recovery took between 4 and

20 steps (1.6 to 6.1 seconds) with an average of 9.3 steps (3.1 seconds).

6 DISCUSSION

Many important aspects of our architecture, from the perspective of AI research, follow from our use of a

heterogeneous architecture and from the signi�cant di�erences between the spacecraft domain and the mobile

robot domain.

6.1 Heterogeneous knowledge representation

The research approach to an architecture for autonomy is usually to seek a uni�ed system based on a uniform

representational and computational framework. While this is a very important goal, often the complexity of a

real-world domain forces researchers to compromise on complete autonomy or to address simpler domains and

applications. In our case the challenge was to achieve complete autonomy for a very complex domain in a limited

amount of time. Therefore we chose from the outset to use state-of-the-art, general-purpose components that

had been applied to solving isolated problems in the domain. The main architectural challenge was therefore to

integrate these components. The main source of di�culty here was that our computational engines all require

di�erent representations. This heterogeneity has both bene�ts and di�culties.

One bene�t of having each engine look at the spacecraft from a di�erent perspective is that the heterogeneous

knowledge acquisition process aids in attaining coverage and completeness. Each new perspective on a subsystem

potentially increases the understanding, and hence improves the modeling, for each of the other components which

also represent knowledge of that subsystem. Another bene�t is redundancy, where overlapping models enable one

component to compensate for restrictions in the representation of another component. This is particularly true for

overlapping responsibility in the hybrid executive. A third bene�t is task specialization, in which each component

is optimized for solving certain kinds of tasks. This means that we can use each component to solve problems

for which it is well suited, rather than require one component to solve all problems (a similar point is made by

Bonasso et al. (1996)).

An important example of representational di�erences that we found was between the planner/scheduler and

the hybrid execution system. In NMRA the planner is concerned with activities at a high-level of abstraction

which encapsulates a detailed sequence of executive-level commands. A fundamental objective for the planner is

to allocate resources to the high-level activities so as to provide a time and resource envelope that will ensure

correctness of execution for each executive-level detailed sequence. An interval based representation is eminently

suitable for this purpose. From this perspective the planner does not really need to know if a time interval

pertains to an activity or a state. However, this knowledge is instead crucial to ensure a correct execution. The

executive is eminently interested in the occurrence of event, the transition between time intervals in the planner's

perspective. To generate the appropriate commands and set up the appropriate sensor monitors, the executive

needs to know if an event is controllable (the executive needs to send a command), observable (the executive

expects sensory information) or neither (the executive can deduce information on the state on the basis of the

domain model). Our approach localizes such distinctions to the executive's knowledge representation. This frees

the planner to reason e�ciently about intervals, and enables us to move responsibility
exibly between other

architectural components (for example, let the control tasks handle an activity which was formerly decomposed

by the executive, or vice-versa) without having to modify the planner's models.

While heterogeneous representations have a number of bene�ts, they also raise some di�culties. Most signi�-

cant of these are the possibility for models to diverge rather than converge, and the need to duplicate knowledge

representation e�orts. We have made some progress on this front by heading toward a more uni�ed representation

of some modeled properties. First, the uni�ed modeling for MI/MR in Livingstone (see Section 4.3) has proven

to be extremely useful. Second, we use code generation techniques to translate some modeled properties, such

as device power requirements, into the di�erent representations used for each computational engine. Ideally, we

would like to head toward a single representation of the spacecraft (the one true model, a holy grail of AI), but we
intend to do so always generalizing from powerful models capable of handling the complexities of our real-world

domain.

6.2 Di�erences with the mobot domain

Many of the AI autonomy architectures have been developed with respect to mobile robots (mobots). Two

di�erences in particular are the role of perception and failure handling in the two domains.

Many of the problems of perception common in mobile robot architectures were not signi�cant in our domain.

NMRA is focused on the spacecraft's state, and sensing the state of a synthetic artifact is much easier than sensing

and understanding a complex natural environment. Furthermore, only limited aspects of the relationship of the

spacecraft to its environment were sensed using sophisticated sensors, e.g., spacecraft acceleration, spacecraft

angular velocity, sun position. Results from such sensors are easy to understand and incorporate into the model

of the spacecraft's state.

Second, there are important di�erences in the structure of unexpected contingencies between the spacecraft

domain and the mobile robot domain. The major di�erence is that there are almost no serendipitous contingencies

on spacecraft. Because spacecraft are carefully designed to perform a narrow, speci�c mission, and any deviation

is considered a failure. By contrast, multiple outcomes of actions and unexpected contingencies for mobots are

often di�cult to dichotomize into success and failure; mobots can sometimes achieve their goals by performing

random actions. This distinction is manifested in the design of the RAP language, which recognizes failure of

a plan step, but does not provide a mechanism for failure recovery per se. Instead, failure recovery procedures

must be written like any other method, to be triggered on the result and context of the failure rather than the

failure itself.

Moreover, mobots are typically concerned with failures in the interaction between robot and environment.

These failures are typically intermittent. In the case of spacecraft, a permanent hardware failure will not go away

even if the system recovers this time. Having now limited capabilities, the agent must plan and execute behavior

with new constraints in mind, and make future inferences relative to the new system state. This raises a need for

a system-level approach to fault protection, which ultimately resulted in the important role of Livingstone and

in several architectural requirements to support replanning in the case of failures.

7 RELATED WORK

The New Millennium Remote Agent (NMRA) architecture is closely related to the 3T (three-tier) architecture

described in (Bonasso et al. 1996). The 3T architecture consists of a deliberative component and a real-time

control component connected by a reactive conditional sequencer. We and Bonasso both use RAPS (Firby 1978)

as our sequencer, although we are developing a new sequencer which is more closely tailored to the demands

of the spacecraft environment (Gat 1996).2 Our deliberator is a traditional AI planner based on the HSTS

temporal database (Muscettola 1994), and our control component is a traditional spacecraft attitude control

system (Hackney, Bernard, & Rasmussen 1993). We also add an architectural component explicitly dedicated to

world modeling (the mode identi�er), and distinguish between control and monitoring. In contrast to the system

described by Bonasso, the prime mover in our system is the RAP sequencer, not the planner. The planner is

viewed as a service invoked and controlled by the sequencer. This is necessary because computation is a limited

resource (due to the hard time constraints) and so the relatively expensive operation of the planner must be

carefully controlled. In this respect, our architecture follows the design of the ATLANTIS architecture (Gat

1992).

The current state of the art in spacecraft autonomy is represented by the attitude and articulation control sub-

system (AACS) on the Cassini spacecraft (Brown, Bernard, & Rasmussen 1995; Hackney, Bernard, & Rasmussen

1993) (which supplied the Saturn Orbit Insertion scenario used in our prototype). The autonomy capabilities of

Cassini include context-dependent command handling, resource management and fault protection. Planning is a

ground (rather than on-board) function and on-board replanning is limited to a couple of prede�ned contingencies.

An extensive set of fault monitors is used to �lter measurements and warn the system of both unacceptable and

o�-nominal behavior. Fault diagnosis and recovery are rule-based. That is, for every possible fault or set of faults,

the monitor states leading to a particular diagnosis are explicitly encoded into rules. Likewise, the fault responses

for each diagnosis are explicitly encoded by hand. Robustness is achieved in di�cult-to-diagnose situations by

setting the system to a simple, known state from which capabilities are added incrementally until full capability

is achieved or the fault is unambiguously identi�ed. The NMRA architecture uses a model-based fault diagnosis

system, adds an on-board planner, and greatly enhances the capabilities of the on-board sequencer, resulting in

a dramatic leap ahead in autonomy capability.

2The csl system (Gat 1996) has now replaced RAPS as the core engine for the DS-1 Executive.

Ahmed, Aljabri, & Eldred (1994) have also worked on architecture for autonomous spacecraft. Their architec-

ture integrates planning and execution, using TCA (Simmons 1990) as a sequencing mechanism. However, they

focused only on a subset of the problem, that of autonomous maneuver planning, which will be incorporated into

our work as part of the DS-1 mission.

Among the many general-purpose autonomy architectures is Guardian (Hayes-Roth 1995), a two-layer ar-

chitecture which has been used for medical monitoring of intensive care patients. Like the spacecraft domain,

intensive care has hard real-time deadlines imposed by the environment and operational criticality. One notable

feature of the Guardian architecture is its ability to dynamically change the amount of computational resources

being devoted to its various components. The NMRA architecture also has this ability, but the approaches are

quite di�erent. Guardian manages computational resources by changing the rates at which messages are sent to

the various parts of the system. The NMRA architecture manages computational resources by giving the executive

control over deliberative processes, which are managed according to the knowledge encoded in the RAPs.

SOAR (Laird, Newell, & Rosenbloom 1987) is an architecture based on a general-purpose search mechanism

and a learning mechanism that compiles the results of past searches for fast response in the future. SOAR has been

used to control
ight simulators, a domain which also has hard real-time constraints and operational criticality

(Tambe et al. 1995). CIRCA (Musliner, Durfee, & Shin 1993) is an architecture that uses a slow AI component

to provide guidance to a real-time scheduler that guarantees hard real-time response when possible within the

constraints. Noreils & Chatila (1995) describes a mobile robot control architecture that combines planning,

execution, monitoring, and contingency recovery. Cypress is an architecture which combines a planning and an

execution system (SIPE-II and PRS (George� & Lansky 1987)) using a common representation called ACTS

(Wilkins & Myers 1995). The main di�erence between Cypress and our system is our use of an interval-based

planner rather than an operator-based planner.

8 CONCLUSIONS AND FUTURE WORK

This paper has described NMRA, an implemented architecture for autonomous spacecraft. The architecture

was driven by a careful analysis of the spacecraft domain, and integrates traditional real-time monitoring and con-

trol with constraint-based planning and scheduling, robust multi-threaded execution, and model-based diagnosis

and recon�guration. The implemented architecture was successfully demonstrated on an extremely challenging

simulated spacecraft autonomy scenario. As a result, the architecture will control the �rst
ight of NASA's

New Millennium Program (NMP). The spacecraft, NMP Deep Space One (DS-1), will launch in 1998 and will

autonomously cruise to and
y-by an asteroid and a comet. This will be the �rst AI system to autonomously

control an actual spacecraft.

Our immediate work for DS-1 consists mainly in acquiring and validating models of the DS-1 spacecraft and

in eliciting and addressing mission requirements. To make this possible, we are working on developing better

tools for sharing models across the di�erent heterogeneous architectural components, and for model veri�cation

and validation.

Longer term, we see at least three major areas of research with respect to our autonomous spacecraft archi-

tecture. First, our architecture could bene�t from an increased use of simulation. Currently we use a simulator

for development and testing the software. This could be extended to facilitate interactive knowledge acquisition

and re�nement, to improve projection in the planner, or to provide a tighter integration between planning and

execution (Drummond, Bresina, & Swanson 1994; Levinson 1994). Second, our architecture leaves open issues of

machine learning, which could be used to tune parameters in the control system, for optimizing search control

in planning, or for modifying method selection priorities during execution. Third, we see substantial bene�ts in

having a single representation of the spacecraft, supporting multiple uses by processes of abstraction and trans-

lation. We believe that progress toward this goal is best made by generalizing from powerful, focused models

capable of representing the complexities of a real-world domain.

9 ACKNOWLEDGMENTS

The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute

of Technology, under contract with the National Aeronautics and Space Administration and at the National

Aeronautics and Space Administration's Ames Research Center.

The Authors would like to acknowledge the invaluable contributions of Guy K. Man and Robert D. Rasmussen

for their work in de�ning a vision model for spacecraft autonomy that evolved into this e�ort.

The Authors would also like to acknowledge the contributions of Guy K. Man and Richard Doyle of JPL and

Gregg Swietek of NASA Ames for their leadership in seeing the necessity and possibility for advances in the area

of spacecraft autonomy and their insight in recommending and supporting the approach that we took.

In addition to the authors, the NewMaap autonomy prototype was accomplished through the e�orts of Charles

Fry, Dennis DeCoste, Rob Sherwood, Kim Gostelow, Asif Ahmed, Hans Thomas, Illah Nourbakhsh, and Robert

Kanefsky.

The authors are grateful to Chris Plaunt and Ron Keesing for help with the preparation of this paper.

10 REFERENCES

[1] Ahmed, A.; Aljabri, A. S.; and Eldred, D. 1994. Demonstration of on-board maneuver planning using

autonomous s/w architecture. In 8th Annual AIAA/USU Conference on Small Satellites.

[2] Bonasso, R. P.; Kortenkamp, D.; Miller, D.; and Slack, M. 1996. Experiences with an architecture for

intelligent, reactive agents. JETAI. to appear.

[3] Brown, G.; Bernard, D.; and Rasmussen, R. 1995. Attitude and articulation control for the cassini spacecraft:

A fault tolerance overview. In 14th AIAA/IEEE Digital Avionics Systems Conference.

[4] de Kleer, J., and Williams, B. C. 1987. Diagnosing multiple faults. Arti�cial Intelligence 32(1):97{130.

Reprinted in (Hamscher, Console, & de Kleer 1992).

[5] de Kleer, J., and Williams, B. C. 1989. Diagnosis with behavioral modes. In Proceedings of IJCAI-89,
1324{1330. Reprinted in (Hamscher, Console, & de Kleer 1992).

[6] de Kleer, J., and Williams, B. C., eds. 1991. Arti�cial Intelligence, volume 51. Elsevier.

[7] Drummond, M.; Bresina, J.; and Swanson, K. 1994. Just-in-case scheduling. In Proceedings of the Twelfth
National Conference on Arti�cial Intelligence, 1098{1104. Cambridge, Mass.: AAAI.

[8] Firby, R. J. 1978. Adaptive execution in complex dynamic worlds. Ph.D. Dissertation, Yale University.

[9] Gat, E. 1992. Integrating planning and reacting in a heterogeneous asynchronous architecture for controlling

real-world mobile robots. In Proceedings of the Tenth National Conference on Arti�cial Intelligence. Cambridge,

Mass.: AAAI.

[10] Gat, E. 1996. CSL: A language for supporting robust plan execution in autonomous spacecraft. In prepara-

tion.

[11] George�, M. P., and Lansky, A. L. 1987. Procedural knowledge. Technical Report Technical Note 411,

Arti�cial Intelligence Center, SRI International.

[12] Hackney, J.; Bernard, D.; and Rasmussen, R. 1993. The cassini spacecraft: Object oriented
ight control

software. In 1993 Guidance and Control Conference.

[13] Hamscher, W.; Console, L.; and de Kleer, J. 1992. Readings in Model-Based Diagnosis. San Mateo, CA:

Morgan Kaufmann.

[14] Hayes-Roth, B. 1995. An architecture for adaptive intelligent systems. Arti�cial Intelligence 72.

[15] Laird, J. E.; Newell, A.; and Rosenbloom, P. S. 1987. Soar: An architecture for general intelligence. Arti�cial
Intelligence 33(1).

[16] Levinson, R. 1994. A general programming language for uni�ed planning and control. Arti�cial Intelligence.
Special Issue on Planning and Scheduling.

[17] Muscettola, N. 1994. HSTS: Integrating planning and scheduling. In Fox, M., and Zweben, M., eds.,

Intelligent Scheduling. Morgan Kaufmann.

[18] Musliner, D.; Durfee, E.; and Shin, K. 1993. Circa: A cooperative, intelligent, real-time control architecture.

IEEE Transactions on Systems, Man, and Cybernetics 23(6).

[19] Noreils, F., and Chatila, R. 1995. Plan execution monitoring and control architecture for mobile robots.

IEEE Transactions on Robotics and Automation.

[20] Simmons, R. 1990. An architecture for coordinating planning, sensing, and action. In Proceedings DARPA
Workshop on Innovative Approaches to Planning, Scheduling and Control, 292{297. Morgan Kaufmann: San

Mateo, CA.

[21] Tambe, M.; Johnson, W. L.; Jones, R. M.; Koss, F.; Laird, J. E.; Rosenbloom, P. S.; and Schwamb, K. 1995.

Intelligent agents for interactive simulation environments. AI Magazine 16(1):15{39.

[22] Weld, D. S., and de Kleer, J., eds. 1990. Readings in Qualitative Reasoning About Physical Systems. San

Mateo, California: Morgan Kaufmann Publishers, Inc.

[23] Wilkins, D. E., and Myers, K. L. 1995. A common knowledge representation for plan generation and reactive

execution. Journal of Logic and Computation.

[24] Williams, B. C., and Nayak, P. P. 1996. A model-based approach to reactive self-con�guring systems. In

Proceedings of AAAI-96, 971{978.

