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Abstract

This report discusses high phase order (HPO) technology, i.e. the use of more than the conven-
tional 3 phases for transmission of electric power, its use in the compaction of lines, and power
density maximization over existing servitudes. It is structured in four parts. The first part
introduces the concepts, establishes the need, and lists the advantages of HPO. The second
part deals with the technology itself and shows that it is possible to analyze HPO systems using
symmetrical component analysis, lists common transformer configurations, covers protection,
and so on. The third part analyses 5 case studies, the first 3 being analytical, and the last 2
being the first experimental test line, and the world’s first utility application of HPO lines.

The final section is a South African case study and compares an HPO line to an existing 400
kV 3-phase line and shows that the former is 87.5% more expensive to implement than the
latter. Comparing the 3-phase and 6-phase lines on a more even basis, yielded a breakeven
distance of 225.86 km, above which the 6-phase option becomes more economical. These
results are then explained and discussed in the conclusions section.
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1. Introduction

High phase order transmission (HPO) is defined as the use of more than the conventional 3-phases for the
transmission of electric power, and was initially proposed in 1973 by Barnes and Barthold!'! as a means of
compacting transmission lines, maximizing the power density in a given right-of-way (ROW), and gene-
rally employing existing transmission corridors as efficiently as possible. Subsequently, a great deal of
work in this field has been performed by researchers such as Stewart and Guyker (see numerous references
at the back of this report) who have taken the concept of HPO from a concept, to the implementation stage
and the first utility demonstration project in Binghamton NY.

More recently, ESKOM (South Africa’s sole electric energy provider) has commissioned an extensive
literature survey into the current status of HPO technology worldwide, any recent developments in the field,
and the applicability of HPO transmission in the South African context. This report is summary of the
literature survey, and extends the current knowledge of this technology in South Africa by investigating a
complete case study of a HPO line built in South Affica, at the present economic climate, compared to the
most advanced.(and cheapest) 3-phase technology currently available.

The report is structured in four parts: principles behind HPO technology, the technology itself, a survey of
case studies, and the first South African case study. The first part asks whether there is indeed a need for a
new technology, and what are the criteria for such a technology. The basic principles are then introduced
and it is shown how switching to 6-phases leads to line compaction. HPO technology offers a number of
other advantages such as minimal current unbalances, ability to perform single pole switching, field
mitigation, minimization of corona related effects, aesthetic appeal, complete compatibility with existing 3-
phase systems, and in some cases a distinct economic benefit. These are listed and briefly discussed.

The second section deals with the technology of HPO transmission itself, and answers questions such as:
How does one analyze faults on HPO systems? How does one interface this system to a 3-phase lines? Are
transformers available and how can they be connected to achieve 6-phases (if at all)? Is protection expected
to be a problem? and so on. Other aspects of the technology are also covered, such as switching and
lightning surge performance, load flow studies, insulator and spacer designs, available software and
analysis using existing software, and definitions regarding HPO technology such as a convention for
system voltage, and potential coefficients.

The third section analyses 5 case studies which have been performed worldwide to date. The first 3 are
analytical case studies and demonstrate where the economic strength offered by this system lies, whereas
the last 2 case studies discuss the first test line constructed in Malta, NY, and finally the first utility
demonstration which is a joint project between PTI, ESEERCO, and NYSEG.

The last section discusses the author’s work in studying an existing South African line, and the economics
of converting this line to 6-phase transmission. In addition, a general case is considered where a 3-phase
line and 6-phase line are compared and a breakeven distance is obtained beyond which 6-phase transmi-
ssion becomes the more economic option. This analysis is rather involved and a full discussion follows of
the results obtained, as well as additional factors which have not been taken into account and the reasons
for this decision.

The report ends with a comprehensive conclusion which places the document into perspective, discusses the
most relevant conclusions, and provided reasons and explanations for the various results obtained. A
general comment from the author is included which gives suggestions about the implementation and status
of HPO transmission in South Africa at present, and its potential role in the future.
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Now, E and H are related by the impedance of free space Z, (377€), and the electric field intensity E has
a natural limit at the electric breakdown strength of air, approximately 3MV/m. This implies that H is also
limited, and thus there is only a limited amount of power that can be sustained by the air medium, under
standard conditions.

This is:
S| =E x H| = E.E/Z = (3x10°)*/ 377 = 9x 10"/ 377

=24 GW/m*  peak
=12GW/m* RMS

Theoretically, the entire width of the ROW should have a power density at, or very near this limit to make
optimal use of the available transmission corridor. In practice, however, densities of this magnitude are
only approached very close to the conductor’s surface.

Barnes and Barthold!" go on to give a qualitative estimate of the efficiency of space utilization, by saying:

“Densities of this magnitude are approached only very close to the surface of conductors
in traditional transmission line construction. It is estimated that on typical 3 phase
lines, over 95% of the energy stored in the field surrounding a conductor is contained
within a radius equal to 5% of the phase-phase spacing.”

This being the case, it seems that to increase the power transferred in a given servitude, it would be logical
to fill that space with as many conductors - placed as closely together - as possible. This is precisely what
the above authors proposed and until this day forms the logical basis for HPO transmission.

2.2 Concept of HPO Transmission

2.2.1 Three Phase Transmission

Traditionally, electricity has been transmitted in 3-phase, AC mode. This means that both the voltage’s
and current’s instantancous magnitude varied with time in the shape of a sinusoidal wave - commonly
referred to as one phase. To complete the circuit, 2 other phases are added whose voltages and currents are
displaced from each other by 120 electrical degrees. This is known as a 3 phase circuit, and the waveforms
along with the associated phasor diagram are shown in fig. 2.2.1.a.
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Figure 2.2.1.a: 3-Phase Waveform and Associated Phasor Diagram
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This scheme had several advantages over other existing systems. Firstly, AC transmission is superior to
DC because of simpler and cheaper generation, transformation, and ease of switching. Single phase
transmission has the disadvantage of pulsating power which has undesirable effects on electrical generator
prime movers, requiring them to likewise deliver energy at a non-uniform rate. Two phase transmission
moves away from this problem, and actually achieves a steady power flow, however, it is a naturally
unbalanced system and requires the neutral conductor to carry V2 times the phase current. A 3-phase
system delivers constant power to the load and is completely balanced, meaning that the neutral conductor
can be of lighter construction than a phase conductor, as it carries no current under normal (balanced)
operating conditions. A 3-phase system also has superior material utilization compared to the lower phase
order systems, and is the lowest and simplest of the N-phase, N+1 wire systems (where N>3) to achieve the
above advantages”” . It has thus been the scheme of choice for transmission line designers worldwide.

2.2.2 High Phase Order Transmission

High phase order transmission (HPO) requires the number of phases to be extended from the original 3, to
6, 12 or above (these being multiples of 3 to accommodate integration into an existing 3 phase network).
The waveforms for a 6-phase system along with the associated phasor diagram are shown below.
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Figure 2.2.2.a Six-Phase Waveform and Associated Phasor Diagram

Gross"?”! shows that material utilization remains constant for an N-phase system (N>3), so where do the
benefits lie? The key to this question lies in the phase-phase voltage of the two systems. It can be
geometrically shown that the phase-phase voltage in the 3-phase system is V3 times the phase-ground
voltage. In a 6-phase system, the phase-phase voltage reduces to (equalling) the phase-ground voltage, and
in a 12-phase system, this voltage is reduced to 2.Sin(15°) times the phase-ground voltage (approximately a
half).

The benefits of an increasing phase order are thus readily apparent. The higher the number of phases, the
smaller is the phase-phase voltage (assuming constant phase-ground voltage), and thus, the smaller is the
phase-phase spacing. That means that it is possible to squeeze an ever increasing number of conductors
into a servitude comparable to that of an existing 3-phase system, with a resultant dramatic increase in
power density.

This is precisely what Barnes and Barthold!" had in mind when they first suggested the use of HPO
technology in line compaction. In addition, by arranging the conductors in a circular array, they achieved

the most natural and compact HPO configuration that would utilize corridor space optimally.

Figure 2.2.2.b., reproduced from Reference [2] shows a size comparison of a 3 and 6 phase tower.
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Conventinal 6-Phase Conventinal 12-Phase
130 kV L-L 80kVig 5S0kV L-L 80kVL-g

Figure 2.2.2.b Comparison of Conventional 3-Phase and Conceptual HPO Structures (Ref]2 ])

2.3 Generic Advantages of HPO Transmission

Clearly, the first and foremost advantage of HPO transmission is, as stated above, the maximization of
power density and line compaction. This has formed the basis of many studies!™*®"! 13161 “and has been
shown to be the most efficient method of electric power transmission in the air diclectric at low frequencies
(50-60 Hz)™" Besides compaction, HPO transmission offers several other benefits, which are gaining
importance due to tightening environmental controls, and public outcry. Some of these are listed below.

2.3.1 Current Unbalance

A simple system consisting of generator, transformers, 80 mile transmission line, and a load was studied to
gain insight into the degree of current unbalance on the line, as well as negative sequence currents occurr-
ing in the generator for both 3 and 6 phase systems™. It was found that for both 3 and 6 phase systems,
negligible generator negative sequence currents were produced. The line current unbalance, however, was
nearly 4% when energized as 3 phase, but fell to below 0.5% for 6 phase. With 6 shield wires, the HPO
array had a 0.02% unbalance. Without shield wires, the unbalance was still below 0.05 %, but with 2
shield wires (representing the most unbalanced situation), the figure rose to 0.35%. With a full “roll trans-
position”, the unbalance reduced to 0.1% for the 2 shield wire case, and under 0.01% for the other 2 cases.

2.3.2 Single Pole Switching

The 6 phase array can be switched as either a 6-phase circuit, two 3-phase circuits, or one phase at a
time!”. The latter has a tremendous benefit in that only 1 phase can be taken out during a fault, while
keeping all the others energized. The remaining 5 phases are able to carry 83% of the load for a period of
hours™”, due to low unbalances (discussed in section 2.3, 1). This provides a high degree of reliability
through resistance to transient faults™. In addition, electric field profiles of the line were obtained, when a
single phase was de-energized in various positions, and with the de-energized conductor either floating or
grounded” . This showed that electric fields on the ground were highest when the topmost conductor was
de-energized and lowest when the bottom conductor was de-energized, whether the conductor was grounded
or left floating made little difference on the profile.

Voltage levels developed on the open phase due to interphase coupling with shunt reactance™ were also
investigated, and showed a resonance at 105% compensation of positive sequence capacitive reactance.
However, it is maintained that reactor configurations could be designed to alleviate this potential problem,
and that single phase switching is both achievable and very beneficial.
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2.3.3 Field Mitigation

The circular geometry of HPO lines promotes a large degree of field cancellation. This has been studied in
numerous papers where 3 phase and HPO were designed to the same SIL capacity and electric field profiles
were plotted using standard analytic software (such as EMTP), to reveal significantly improved profiles
from the HPO lines!>>!1216].

Magnetic field profiles are also significantly reduced and are dealt with in a separate paper on the topic!™!.
This can be explained by the fact that as one increases the number of phases, the array begins to look more
and more like a cylinder, with net zero current flow, and hence zero magnetic field.

2.3.4 Corona Related effects

Perhaps the most dramatic effect of switching to a circular HPO array, is the sharp decrease in surface
electric field gradient, and related effects. An 80kV (phase-ground) circular array was studied first for a 3,
and then 6 phase energization without changing the physical structure. In changing from 3 to 6 phases,
radio noise decreased by 8.6 dB, audible noise decreased by 12.1 dB, and peak surface electric field
gradient changed from 14.04 to 10.51 kVrus/cm. A more meaningful comparison for HPO was to shrink
the phase-phase spacing by a factor of V3, and this again yielded improvements of 6.2 dB for radio noise,
4.8 dB for audible noise, and 11.7 kV/cm electric field gradient™™ . Another practical study™ shows that a
change in energization for a 6 conductor array from a double circuit 3 phase, to a single circuit 6 phase,
reduced total corona loss on that line from 2046W to 338W per conductor.

2.3.5 Aesthetics

The smaller more compact bundle is reported to be far more attractive in appearance, and poses far less of
: p P pp p
a visual intrusion than conventional lines®™'®'¥ .

2.3.6 Compatibility

High phase order lines are perfectly compatible with the existing 3 phase network. This has been not only
theoretically predicted, but shown in practice at the test lines in Malta and Binghamton, NY{*6816171819.201

2.3.7 Economic Benefit

Due to the smaller, lighter structures of high phase order lines, the line cost itself is below that of a
conventional 3-phase line, however, the added phases require additional transformers and circuit breakers.
Previous economic studies™*>'*'" have attempted to balance these 2 effects in a given economic climate,
and derive a break-even distance for which 3 and 6 phase lines cost equal amounts. While the break-even
distances are generally very favourable (6-35 miles depending on the operating voltage and loading levels)
it is surprising to note that ROW costs (which are the prime motivators for HPO, or any compaction
technology) have been excluded from the economic analysis due to their highly variable values.

2.3.8 Other Benefits

There are several other benefits which have not been included above, but nevertheless are noteworthy.
The whole system is more stable, and gives a more damped response to transient events on the network
as well as a greater angular margin to instability’®. Then, HPO lines operate at a lower voltage than their 3
phase counterparts, and give better matched ampacities to existing equipment. This is extremely beneficial
in countries that do not have the technology to design and manufacture their own EHV equipment.

{16]

Having established a basis for HPO transmission, it becomes necessary to ask some practical questions
regarding actual equipment, transformers, protection, analytic techniques, etc. applicable to HPO lines;
whether these exist or can be developed. This forms the topic of the next section.
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3. High Phase Order Technology

The development of any new technology brings with it many practical questions, and high phase order is no
exception. It is necessary to establish definitions and nomenclature, then develop analytical tools and
methodologies for line design. Finally, it is necessary to examine how a HPO line is practically
implemented within a 3-phase network, including elements of protection and sub-station layout.

This section aims to do precisely that. It develops the technology gradually, starting from a “pen and
paper” - type approach and proceeds right through to the “nuts and bolts”. Where applicable, appropriate
theory and design procedures will be given, however, since it is not the explicit aim of this project to
develop a design guide, this will be briefly covered and not elaborated upon further, with references given
for the interested reader.

3.1 Definitions and Analytical Tools

3.1.1 System Voltage Definition

To begin with, it is necessary to establish a system voltage for HPO lines (in order to obtain an intuitive
feeling for capacities, insulation levels, and so on.) but this is not as trivial a matter as with 3-phase lines.
Classically, the 3-phase system voltage is given as the phase-phase voltage of the line, but if this is applied
to HPO lines, several problems arise. Firstly, the phase-phase voltage between any 2 phases in a 3-phase
system is constant (V3 times the phase-ground voltage) whereas in a 6-phase systems for example, this can
be 1, V3, or 2 times the phase-ground voltage. The number of possible combinations obviously increases
with increasing phase order. If the phase-phase voltage is restricted to adjacent phases only, then the
problem arises that the phase-phase voltage decreases relative to the phase-ground voltage with increasing
phase order, and does not properly reflect the necessary insulation levels - especially at the higher phase
orders.

Another alternative is to define the system voltage as the voltage of the constituent 3 phase sets. While this
is a more familiar nomenclature to transmission line engineers, it again lacks significance with respect to
spacing and insulation requirements, particularly beyond six phases.

A third option is to use the phase-ground voltage as the system voltage. This strikes a comfortable balance
between insulation requirements and power capacity. It has thus been the chosen nomenclature for high
phase order researchers, and is the definition used throughout this document.

3.1.2 Potential Coefficients and Line Constants

Potential Coefficients in a transmission system give a very
important measure of the geometry of the system, and directly
influence capacitance, inductance, and surge impedance of the line.

If a circular array of conductors is considered, each conductor
being of radius r, and spaced equally around a circle of radius R,
with the reference conductor at the bottom (as shown in figure
3.1.2.a), then the voltage on conductor A (V,) due to the charge on
conductor n (Q,) is:

Ph.ase A

Figure 3.1.2.a Circular Array of N-
Conductors
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V(0,)= Q"g ln( R) (3.1.21)

Dan
Where:
D.. = Distance from conductor a to conductor n [m]
€ = Permittivity of the medium, in this case air ~ 8.85pF.m"
Further,
N 0(1’1

D, =2RSin 5 ..(3.12-2)
where
Oun = Angle between phase a and phase n

0,=0,Cosé,, .(3.1.2-3)

Substituting (3.1.2-2) and (3.1.2-3) into (3.1.2-1) gives:

=0, x E;I;{ln( ) + Z}C —————) ln(2 Co sec(%))} -(3.1.2-4)

or, 14 :-QL[PG] ..(3.1.2-5)

Where
N-1
= ln(«r}i) + nZ:] Co:(%\—/ﬂz) ln(% Co sec(%)) ..(3.1.2-6)

Equation (3.1.2-6) represents the positive sequence potential coefficient of the N-phase array. It consists of
a “self term” and a “mutual term”, the former depending only on its own geometry, and the latter depending
only on the number of phases. Thus, at higher phase orders (>9) P, increases almost linearly with increas-
ing phase number as the mutual term becomes dominant (the opposite being true for lower phase orders).

‘S“

The calculation of capacitance and inductance follows directly,

C= 27 (3.1.2-7)
Pa

=4 (.12-8)
2

and the surge impedance (i.e. the effective impedance experienced by an infinitely high frequency or step
with infinitely fast rise-time) is:

o= M = \/—Z— for large values of
G+ joC C
uP

..(3.1.2-9)

Thus, surge impedance is directly proportional to the potential cocfficient, and consequently the number of
phases for a HPO system (n>9)
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In the same manner, the electric field at the surface of the conductor can be calculated from standard
electrostatic theory as:

E, :g’— ..(3.1.2-10)
2ner
but
2mel
0,=C,V, =" ..(3.1.2-11)
Pn
therefore
1
E = ..(3.1.2-12
" P.r ( )
Where:
E, = Electric field gradient at the surface of conductor n [V/m]
On = Electric charge on conductor n [C]
P, = Potential coefficient of conductor n [m/F ]
€ = Permittivitty of the medium - free space in this case = 8.85pF/m

Thus, for the same conductor radius, surface gradient diminishes for increasing phase order. The actual

characteristic (of surface gradient plotted against phase number) is hyperbolic and is due to the fact that P,

is proportional to phase number (for n>9), and consequently E, is inversely proportional to n. The lowered

surface gradient leads directly to lower corona levels, and hence lowered corona related effects (such as
radio interference, audible noise, and corona loss) discussed in section 2.3 4.

Finally, the surge inpedance loading of the line is given as:

NV? NV?
P = =
s ZS /l
Vi

(3.1.2-13)

Where:

A" = Phase -ground voltage [V]

N = Number of phases

TR = Permeability and Permittivity of the medium [H/m],[F/m]

This shows that the SIL power is directly proportional to the number of phases. However, since P, also
becomes proportional to the number of phases at high phase orders (N>9), the SIL tends to gradually
flatten off as N increases. This shows a practical concern, and indicates that the most beneficial HPO
systems are in the lower range, i.e. either 6 or 12.

3.1.3 Fault Analysis of HPO Systems

The subject of fault analysis on HPO networks is very large, and forms the topic of numerous papers and
reports!®71516:1922.23.2425.26.3031.3233.35.36.39.40] - It has the potential to quite comfortably fill several MSc
theses, and it is for this reason that this topic will be presented only briefly, with references to the various
subjects given for the interested reader.

3.1.3.1 Fault Types

To begin with, the number of fault combinations rises very quickly with the number of phases. Table
3.1.3-a compares the number of fault combinations for a 6-phase system as opposed to a conventional 3-
phase system!'**¢,

Page
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Six-Phase Fault Combinations

a

a-B-c;d-c;f-n

Three-Phase Fault Combinations

Table 3.1.3-a: Fault Combinations on 3 and 6 Phase Networks

As can be seen, the table is differentiated into a “total number of combinations”, and “significant number of
combinations”. This distinction comes about due to the fact that faults fall neatly into several “types”
based on the phase angle between faulted phases. For example, consider a two-phase fault that does not
involve the neutral; there are 15 possible fault combinations, but these are grouped into: a short between
adjacent phases, a short between alternate phases, and one between opposing phases - corresponding to
angular separations of 60°, 120°, and 180° between faulted phases. Whether the actual faulted phases are
a-b, b-c, c-d, etc. is irrelevant since the analysis and protection all proceed in exactly the same way!**,

Another level of complexity is added, though, when several faults occur simultaneously on the network.
This can take the form of several phase-phase faults, in any combination with several phase-phase-ground
faults. This requires a far greater amount of analysis, and is a topic which typically does not present itself
as a serious problem in 3 phase networks. Although moving slightly beyond the scope of this work, it
should just be said in passing that this problem has been extensively analyzed by Bhat and Sharma®®!, who
have devised a very elegant “method of attack™ involving only two matrices labelled the “phase fault
coefficient matrix”, o, and the “ground fault coefficient matrix”, D, . These two matrices are used in a
single equation developed by the authors to analyze any type of fault. Further, the sequence currents, when
written in the format suggested in the above work, indicate the method of connecting sequence networks for
the simulation of the given fault.
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3.1.3.2 Component Transformations and Eigenvalue Analysis

Having obtained the information pertinent to HPO system faults, one must ask the question - how does one
analyze the complete profile of current flow, and voltage levels in all phases of the system, simultaneously,
for a given fault condition?”

This is a question which plagued power engineers since the advent of transmission lines, and has only been
satisfactorily answered in 1918, when C.L. Fortescue™! published his classic paper on the subject. The
key to this problem was to be found in the mathematical world, rather than the physical one, and in making
the transition, one was able to once again analyze a set of balanced 3 phase systems. The approach has
been generalized and is briefly presented below in a mathematical context, after which we will come back
to Fortescue’s work, it’s physical significance, and application to fault analysis.

The most important technique in the analysis of polyphase systems is to utilize a transformation which will
decouple the phases. What exactly does that mean?

Let us examine a typical problem:

The voltages and currents at the ports of an n-phase, lossless transmission line satisfy the first order system
of partial differential equations:

P P
_E, L_d ..(3.1.3.2-1)
4 C P

Where E, and I, represent an n-dimensional column vector, and C and L represent an nxn dimensional,
capacitance and inductance matrix respectively. Differentiating (3.1.3.2-1) and (3.1.3.2-2) with respect to
x and t respectively, and making the appropriate cross substitutions, the system of second order partial
differential equations below is obtained:

FE, FE,

= 10—; (3.13.2:3)
&1, I,

= CL— (3.1.3.2-4)

Now, to solve this problem a technique called “the method of characteristics™ is applied, but requires that
the matrix on the right hand side of the above equations be diagonal. We thus seek some transformation
matrix Q, for voltage and current, so that E, = QE” andI, =QI. Substituting into equation (3.1.3.2-3)
gives:

orr
aZ

JE'

2 Q7 LCQ

..(3.1.3.2-5)

21t should just be noted that this analysis applies strictly to system frequency faults. Lightning and switching surges will be
dealt with in a subsequent section
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For a balanced, transposed, three phase line (say), the inductance matrix L, the capacitance matrix C, as
well as their product LC, have a special form which is written symbolically as:

E] [a b b]1I,
E,=\E,|=|b a b|I,|=al, (3.1.3.2:6)
E| |b b all

Using the transformation to diagonalise o, we write:

A, 0 0
E=0"E,=Q"d,=Q0"a.0I'=| 0 4, 0| (1327
0 0 4,

The mathematical treatment proceeds from this point on and is beyond the scope of this text. Suffice it to
say though, that the problem has been reduced to a standard eigenvalue problem, with the matrix o
composed of the eigenvectors, corresponding to the diagonal matrix of eigenvalues A as shown below:

o, =, .(3.1.3.2-8)

Setting the determinant of a-A equal to zero (i.e. |a-A| = 0 ) gives a set of 3 meaningful (non-trivial)
solutions. This treatment however, imposes several constraints on the structure and nature of the
transformation matrix QP

Nevertheless, these restrictions do not uniquely define Q, which leads to the application of several
transformations, namely Clarke’s transformation, Park’s transformation, and the symmetrical component
approach. In 1943, Edith Clarke proposed the additional constraint of setting element (3,2) = -1x(3,3),
which leads to a symmetric Q, unitary transformation and hence, Q=Q™' and Q=Q". A closely allied trans-
formation was developed by R. H. Park, which relied on the rotation of stator quantities to align them with
rotor co-ordinates, d and q, allowing the third current to be interpreted as a “stationary” current, which is
proportional to - and conceptually not unlike the zero sequence current of Fortescue’s approach. Finally,
there is the symmetrical component method. This is the oldest, and most well known of the transformation,
and lends itself comfortably to an n-phase network extension. This is the topic of the next section.

3.1.3.3 Symmetrical Component Analysis of HPO Systems
In 1918, C.L. Fortescue'™! proposed a theorem which stated that an n-phase, unbalanced system of voltage
or current phasors could be completely represented by a set of n balanced systems of phasors, where each

i sequence component (i= 0,...,n-1) would consist of a set of n phasors displaced from each other by ix60°
in phase.

. ) . Figure 3.1.3.a: System of Six Voltage
To apply this theorem to a six-phase system, let the six phases Phasors

of the original system be a, b, ¢, d, ¢, and f, and with a phase
rotation of abcdef. The six voltage phasors associated with this V. Vi
systemare V., Vy , V., V4, V., V¢, as shown in figure 3.1.3.a
(which are arbitrarily unbalanced).

=
r'
v

Figure 3.1.3.b shows the phasor system resolved into its sets of
symmetrical components, where the zero sequence set is
equivalent to 6 single phase systems, second and fourth
sequences equivalent to 2 three phase systems, and so on.
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components
VC2 > VQ
Va, Vg
Vb2 b ve2
Second-Sequence
components
Vs, Va
Vb4 >
Ve
VC4 9 Vf4

Zero-Sequence

Fourth-Sequence
components

\/b3a \ﬂB, \GB

=
»
v

Va Vb

First - (or positive)
Sequence components

>

>

Va3 bl VC3 » Vc3

Third-Sequence

components
Ve A\
¢ > Va
Va Vi

Fifth - (or negative)
Sequence components

The original unbalanced phasors can be represented in terms of their symmetrical components as:
V. =

Vi
Ve
Vq
vC
Ve

\/al
= Vy
\/d
Va
Vcl

i

i

= \Jﬂ

Figure 3.1.3.b: Six balanced sets of Symmetrical Components

+ V.,
+ Vi,
+ \/02
+ Vg
+ VeZ
+ Vp

+ Vg
+ Vi3

+

+ Vg
+ Vg
+ Vg

+ Vu
+ Vi
Vea
Va
Ve
Vi

+ o+ o+ +

+ Vs
+ Vis
+ \/ES
+ Vs
+ VcS
+ Vg

+ \/aé
+ Vi
+ Vg
+ Vg
+ Vg
+ Vg

..(3.1.3.3-1)
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In order to express the above set of sums as a transformation, we note that the phasors of each symmetrical
set of components are not independent of each other, but are evenly spaced. We thus define the operator b,
as:

b =e"=0.5+j0.866 ..(3.13.322)

and note that the various phasors making up each sequence component, can all be related to each other
using muitiples of the operator b, and hence the set of sums of eq. (3.1.3.3-1) can be written in matrix form
as a transformation:

AN T U I T
Vo| |1 & b* B° b* b |V,
Vel 11 6* 82 1 8 bV,
v =l e e v ..(3.1.3.3-3)
Vol |1 6% b* 1 b b |V,
Vel L1 b b B bt b,
or
v, =[T6]Z .(3.1.3.34)

From section 3.1.3.2, it is readily apparent that [Ts] = Q, and we have found the transformation matrix.
An added benefit however, is that each of the symmetrical components is a balanced system, and can be
analyzed as such, regardless of the original set of phasors which can be arbitrarily unbalanced. To do this,
however, there is still one piece of the puzzle which must be put into place - the source impedance of each
symmetrical component.

A typical 6-phase line will have some impedance along each conductor, as well as some impedance between
conductors which will allow currents and voltages to couple between phases, as shown by the typical
impedance matrix below:

rZaa Zab Zac Zad Zae Zaf
Zba be Zbc Zbd Zbe be
an Zcb Zce ch Zce Zcf
Z,|= (3.13.3-5
22 7 7 7 7 7 (31339)
Zea Zeb Zec Zed Zee Zef
_Zfa Zﬁ’ ch Zfd Zfe Z.ti"J
and
[Vil = [Z,][1,] ..(3.1.3.3-6)

In general it can be said that impedance is non-directional and thus Zyj = Z; forij=1,..,6. Further, if the
line is completely transposed®, then there are only two impedances in the whole matrix - the series
impedance of the line which forms all the diagonal elements and remains the same because all phase
conductors are assumed to be identical, and the mutual impedance which forms all the off-diagonal
elements of the matrix, and will be the same between any two conductors in the whole array due to the full
transposition. These two elements are denoted as Z, and Z,, respectively. It is interesting, and instructive
at this point to return to equation (3.1.3.2-6) and observe that [Z;] = a, and the structure is symmetrical as
originally assumed.

? We will return to this assumption in due time, and establish why full transposition is impractical in HPO lines and what can
be done to circumvent this difficulty.
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Further, we are now in a position to find the eigenvalues of the system using equation (3.1.3.2-7), which
will relate E” and I’ (i.e. the sequence components E, and I,). This equation is rewritten in the present
context for clarity:

E=[L]"E, =[1]"[2,]1,=[1]" [2,][7)7, = [4,) ],

or
Vo] [246 0 0 0 o oT7,]
Vil |0 4 0 0 o o]y
V| |0 0 4, 0 0 o]y,
= (3.1.3.3-7)
il fo 0 o0 4, o o],
Vol ]O 0 0o o0 4, o]l
Vs Lo 0 0 0o 0 a,)r]

Thus we have achieved what we set out to do - we have diagonalised the impedance matrix [Z,] into its
eigenvalues by the sheer merit of our transformation; mathematically, all is sound. But let’s examine the
powerful implications of this operation. Each of the sequence voltages, V, ... Vs, is only dependent on its
own, respective sequence current and the impedance which relates them. V, for instance, will not be
influenced at all by any of the sequence current values (aside from I, of course), regardless of their

magnitude, phase, and so on. V, and I, form a complete and independent network, as do V,; and I, , and so
on. The phase quantities of the original, arbitrarily unbalanced system, have thus been “decoupled” into 6

balanced, independent systems.

The six sequence networks are shown schematica-
lly in figure 3.1.3.c. As was already mentioned,
the first or positive sequence network represents
the phase voltages under normal, balanced
operating conditions. It was thus assumed that the
electric generator is completely balanced and
contains only positive sequence currents, and is

shown on the positive sequence network only as E,.

Returning to the cigenvalue problem above, it can
be shown by standard matrix methods that for an
N-phase network there are only 2 distinct diagonal
values, namely Z, = Z; + (N-1).Z,, and Z, = Z=
Zi= . =2y=2Z,-7Z,

The values for a six phase system are thus:

Zo=27Z,+5Z,
Z] =Zs-Zm
2, =2,-7,
Z3=ZS'Zm
Z4=ZS-Zm
Zs=7Z.-27,

Figure 3.1.3.c: Sequence Networks of Six -Phase Lines

Neutral _ _
— E
- \%
Zy Vi + :
Al “ N
IO 11,
Zero sequence First (or positive)
network sequence network
22 V? 23 V‘{
A ) *
Iz I3
Second sequence Third sequence
network network
Z4 V4 ZS Vi
+ +
L Is
Fourth sequence Fifth sequence
network network
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Fault analysis proceeds directly from the above treatment. It is assumed that the six-phase line is balanced
and unloaded during the pre-fault stage. Then, as soon as the type of fault occurring on the system is
established, certain boundary conditions prevail which force various voltages and currents to take on
certain values (for example, a bolted short to earth will force voltage on that phase to zero). Using these
boundary conditions, the matrix equation can be solved directly (which is often tedious and unnecessary),
or the various interconnections of the sequence networks for the specific type of fault can be deduced, and
the problem solved using standard network analysis tools. This exercise has been carried out in full, and
the equations for all 23 significant fault types are given in references [36] and [39)].

While the analysis given above is valid and true for simple faults, a complexity arises due to an assumption
made earlier on. In three phase systems, the conductors can be transposed in any sequence while retaining
constant magnitudes of line-line voltage between adjacent conductors. In high phase order lines, however,
full transposition cannot be made since voltage levels between various conductors vary, and adjacent
conductors need to maintain their spatial relationship with each other. The closest we can come to a full
transposition is a “barrel” or “rol]” transposition, where the entire array of conductors undergoes six, 60°
rotations, as opposed to the original 15 step transposition originally proposed by Bhatt et al®®*! which would
destroy the favourably low line-line voltages.

This type of transposition also results in four unique sequence impedances, and 3 different mutual
impedances between phases (corresponding to the 3 different types of displacement between conductors,
60°, 120°, and 180°). It quickly becomes apparent that for line to line faults not involving ground, there
are three distinct possibilities (i.e. a can fault to b,c, or d while e and f are repetitions of the previous 2),
each having its own interconnection of sequence networks ranging from simple to quite complex. This
however, is beyond the scope of this document, and well into the realm of system protection theory.

3.1.3.4 Clarke Transformation

While the theory and derivation of the Clarke transformation will not be entered into, it nevertheless is ano-
ther analytical tool and is included for completeness. Of course, all diagonalization procedures on the
impedance matrix yield the same sequence impedances since the eigenvalues for any square matrix are
unique. However, the final condition of Edith Clarke’s transformation matrix is different to Fortescue’s,
resulting in a different set of defining column vectors. For a six-phase line this transformation is given as:

1 0 0 0

1

Sl-5l-5l-5l-5-5

[7.:]= ..(3.1.3.4-1)

0
1

V2

-1

20 V12 V2

While this transformation lacks the apparent physical significance of the symmetrical component approach,
it nevertheless is a real transformation as opposed to Fortescue’s complex transformation where sinusoidal

steady state is implicit. This leads to a potential application of the Clarke transformation to transient event

analysis on HPO networks.

0
3
Jiz
-1
Jiz
-1
Jiz
-1
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3.1.4 Load Flow Studies on HPO Lines

To facilitate HPO transmission line planning, or conversion thereto, it is necessary to observe the behaviour
of the whole system once the modification has been put into effect. An added challenge is that HPO lines
will need to be integrated (at least initially) into an existing 3 phase network, and analyzed as such.

To investigate this topic and develop techniques for load flow analysis, Venkata et al.**! examined a part of
Alleghany Power System (APS) which was still in the planning stages and consisted of 110 busses and 162
three-phase lines and transformers. In this system, there were 8 lines which were identified as potential
candidates for HPO upgrading, that were currently configured as 138 kV three-phase double-circuit lines
(80 kV phase-ground), and would be modified to operate as 138 kV (phase-ground, or phase-phase), single
circuit, six-phase lines, consequently allowing the passage of 73.2% additional power through the existing
transmission corridor.

One such candidate line (Charleroi - Lake Lynn) was isolated, and consisted of a point to point link, with
one tee-off from each of the two 3-phase circuits comprising the line. This was modelled using two
methods. The first, modelled the line as a complete, single, six-phase line using the nominal n-representa-
tion, which resulted in 2 busses along the line (representing the tee-off’s), 3 line segments (each having its
own 7-representation), and two additional busses to accommodate the two-terminal three-phase/six-phase
interface transformers, with attendant phase shifting networks. This represented the biggest disadvantage
of this type of modelling, since the modelling of the phase shifting network will itself introduce additional
busses into the system. In addition, the modifications of the existing line data are relatively complex, and
imply major changes and much preparation in the line and bus data before conducting load-flow studies.

To circumvent this problem, the 138 kV six phase line was modelled as two, interleaved 230 kV three
phase lines, one operating as the “a-c-¢” conductors and the other as the “b-d-f” conductors. If need be,
one should keep in mind the 60° phase shift between circuits and build that into the model. The lines were
modelled using the nominal n-representation, as though they were independent 3 phase lines. The advan-
tage of this technique over the previous one, is that it is:

1. simpler, straight-forward, and requires only minimal changes in the line data, and

2. allows the use of existing load-flow software, since all the busses are still treated as 3-phase busses.

The second model is thus the preferred method for modelling HPO lines for load-flow studies, in integrated
3-phase systems. In order to preserve the mutual impedance between the conductors in the array, Venkata
et al.’™ assumed that each component 3-phase circuit will have an impedance of 2Z; on a per mile, per
phase basis, thus avoiding the need for any mutual impedance, although in reality such impedance could be
significant since full transposition is impractical in HPO lines.

3.1.5 Computational Aids

Perhaps the most powerful and flexible of all the analytical tools discussed so far is the use of computer
simulation. Between the years 1976-79, Alleghany Power Systems (APS) conducted a joint study with
West-Virginia University, which produced as one of its outputs, a program entitled “Electrical Parameters
and Performance Characteristics” (EPPC). This program has subsequently been used in many studies, by
many researchers, and thus warrants a closer examination.

The EPPC program has been developed in the FORTRAN language, and consists of approximately 2300
lines of code, which make up one main program and nineteen subprograms which are called from the main
program and sometimes from another sub-program. The program expects the following data on starting;
Number of:- phases, circuits, subconductors per phase, and ground wires, then earth resistivity, system
frequency, base power (MVA), base voltage and system voltage. In addition, conductor data is required
such as horizontal distance, tower height, mid-span height, conductor outside diameter, geometric mean
radius, conductor AC resistance, as well as conductor identification.
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Once the information has been entered, the program runs through its subprograms in a particular sequence
which is summarized in the table below:

Subprogram Function

1. UNTRNP Calculates line parameters in all forms for the untransposed case, then calls subroutines
2, 3, and 4.

2. SYMUTR | Obtains the sequence components of the line constants

3. TRANSPS | Obtains the parameters for the transposed case

4. CHARAC | Calculates simple, steady-state performance measures

5. UBF Calculates all sequence unbalance factors for an untransposed three phase, or six-phase
line, '

6. GRADNT | This subprogram evaluates electric and magnetic field gradients around each phase
conductor’s surface, and at any point in the transmission corridor including the points
along the edge of the tower. It is also called from 1. In turn, it calls 7, 8, 9, 10, and 11.

7. CORONA | Evaluates corona loss along the line

8. ANL Obtains audible noise profiles

9. YZLINE Obtains line parameters at a stipulated radio frequency (for HF analysis)

10. ATTENU_ | Obtains attenuation constants at the above frequency and calls 12

11. RADIO Computes radio noise profiles

12. MODAL This sub-program finds the modal propagation constants using a built-in real
transformation matrix.

13. FAULT This is one of the most important subroutines in EPPC, and calculates fault currents and
voltages for all 23 significant fault types. It also requires the source impedance behind
the two end busses.

14. CMAT Calculates all forms of the capacitance matrix from the corresponding potential
coefficient matrix found in 1

15. RP Performs rectangular to polar conversions and vice versa

16. EQUI Reduces the size of a given matrix

17. INVERS Inverts real matrices

18. INVERC | Inverts complex matrices

19. WRITE Gives the user an output in the desired form, providing either all the information
contained above, or part thereof, thus expediating the analysis

Table 3.1.5-a: EPPC Sub-program Description and Sequence of Execution

In broad terms, the program consists of 2 parts: given the information listed above, the program computes
the electrostatic and electromagnetic line parameters of the line using generalised Carson’s formulae with
the ground wires and earth return effect included. These parameters can be obtained in both actual, and
per-unit values, under transposed and untransposed conditions. The second part of the program develops
several performance measures such as surge impedance loading (SIL), thermal limit, voltage regulation,

corona and copper losses, efficiency and stability limit. In addition, it computes more complex phenomena
such as electromagnetic unbalance factors under a given load, conductor surface gradients and gradients at
any point in the transmission corridor (including points along the tower edge), audible noise and radio noise
profiles, as well as fault currents and voltages for all 23 significant fault types.

The algorithms used in the above sub-routines are in general relatively simple, but do tend to become rather

lengthy, and thus will not be listed. The interested reader is advised to consult references [28], as well as
[45] and [46] which are the EPPC manual, and HPO design manual respectively.
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3.2 Line Spacing

The question of how to space the phases of a transmission line is inevitably a complex one which involves
many factors, however, there are only 2 basic elements which play an almost exclusive role in determining
line spacing, and simplify the analysis greatly while giving an intuitive “feel” to the line designer of the
space required and width of ROW needed.

The first element is the steady state voltage of the system. Having this knowledge, and taking into account
the pollution levels of the environment one is able to determine the necessary creepage distance, choose the
type of insulator to be used, and hence determine the number of units required per string (if ceramic insula-
tors are chosen). The second element is the type, frequency, and severity of transient events on the system.
This section begins by examining techniques that have evolved in dealing with such transient events, and
their effect on HPO systems, before proceeding to an actual line design example which demonstrates how
the two elements combine in producing a line design.

3.2.1 Switching Surges

A switching surge is a transient event in which a high voltage impinges on a circuit for a period of 100’s to
1000’s of microseconds. This occurs due to a sudden release of previously stored energy by a switching
action and can arise from within the circuit or be injected or coupled into the circuit from an outside source.
Further, these may be repeatable such as commutation voltage spikes, inductive load switching, transfor-
mer energization or de-energization, switch arcing, etc. or random. Whatever the case, these must be
considered and their harmfulness on HPO lines assessed.

Consider the example below: if a 2.0 p.u. (of phase to ground voltage) surge occurs on phase A of a 3- |
phase transmission line, as shown in the diagram below

Figure 3.2.1.a: Effect of Surge With Increasing Phase Order
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then the phase-phase voltage A’B will be 2.65 p.u. of the phase-ground voltage but only 1.53 times the
normal phase-phase voltage. Thus, the highest stress is imposed on the phase-ground insulation (which is
proportional to the steady state voltage) in a 3-phase system, which is traditionally the case.
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If however, a 2.0 p.u. surge occurred on phase A of a 6-phase or a 12-phase system (as shown in figure
3.2.1.a), then the phase-phase voltage will be 1.73 times the normal phase-phase voltage for a 6-phase
system, and similarly 2.39 times for a 12-phase system.

From this simple analysis it becomes clear that as the number of phases increases, the phase-phase surges
become increasingly important relative to the phase-ground values. This is further complicated by the fact
that it is a HPO objective to reduce clearances as much as possible between phases, and in addition to
setting a limit on clearances, phase-phase surges may also set an upper limit to the phase order practically

achievablel’!.

An extensive switching surge study was conducted on a 6-phase system™”! to quantify the above effects

and provide a pool of data for further switching surge applications. This required defining the parameters
for such a test, as well as the variables.

In a 6-phase system, there are 6 phase-ground voltages, and 15
phase-phase voltages (this rises to 12 phase-ground voltages
and 66 phase-phase voltages for a 12-phase system), however,
it is possible to group the phase-phase voltages into 3 generic
types.

Group I: Consists of all adjacent phases, i.c. AB, BC, CD, etc.
with a base voltage = phase-ground voltage

Group II: Consists of all alternate phases, i.e. AC, BD, CE, etc. ,;"
with a base voltage = V3 x phase-ground voltage

Group III: Consists of all opposing phases i.e. AD, BE, CF, etc. Figure 3.2.1.b: Phase Grouping ina 6-
with a base voltage = 2 x phase-ground voltage phase System

The following parameters were varied for the study:

e the number of phases (either 6 or 12)

e system voltage (83.7 kV or 462 kV phase-ground)

» line length 16-160 km (for 83.7 kV case) and 40-241 km (for 462 kV case)

s source impedance: 2000-10 000 MVA short circuit for 83.8 kV case, and 10 000 - 50 000 MVA short
circuit for 462 kV case

* operation: energizing or reclosing, 6 and 3 pole switching

e circuit breaker pre-insertion resistors (0-1500Q)

The results of this study revealed that on a per-unit basis of the respective groups’ steady state voltage, the
maximum surge magnitudes with 500Q resistor pre-insertion were:

Group I =224 pu.
Group II = 1.71 p.u.
GroupHI =172p.u.

Thus, group I surge magnitudes seem to be the limiting factor in phase-phase spacing. In addition, group I
surges were compared to switching surges on a standard 3-phase line!”) to show that with resistor pre-
insertion (except for one very unlikely case), switching surges on a 6-phase and 3-phase lines were
comparable. Thus, since alternate phases can be spaced in the same manner as the original 3-phase
system, interleaving another 3-phase circuit into this system to give a 6-phase system would dramatically
increase the capacity of the line, and result in significantly increased power density and line compaction.
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3.2.2 Lightning Surges

A lightning surge is a transient event very similar to that of a switching surge, except that it is much shorter
in duration (typically a few, to tens of microseconds), and has a very wide range of values, and wave-
shapes. More importantly though, due to the fact that the surge is generated by lightning, it can be
protected against, and the number of strikes to a particular line can be predicted (if only statistically).

Lightning tripout rates are dependent upon the number of strokes to the line, the ratio of strokes terminating
on the tower or shield wire (causing a rise in potential and possible flashover to the line), to the strokes
terminating on an actual phase conductor, the number of strokes which are self-extinguishing (i.e. don’t
sustain a follow-through current) and stroke characteristics.

The number of strokes to the line can be estimated by'*”

N =1 x (0.0189xh + 0.0047xb) ..(3.2.2-1)
where:
N = Strokes/year/100 miles of line
| = Isokeraunic level in thunderdays/year for the given location
h = Average height of shield wire (including sag)
b = Structure width

For a typical line, the reduced dimensions of the 6-phase line result in a 20% reduction in the number of
strokes to the line, as opposed to a similarly rated double circuit 3-phase line.

The voltage across the phase-ground insulation is given by
Vins = waer - (k X Vinield + Vs ) (322-2)
where
Vins = Instantaneous voltage across the insulator
Viwer = instantaneous tower potential, given as the sum of the incident voltage on the shield wire, the
reflected voltage back on that span, the transmitted voltage to the next span, the forward wave down the
tower, and the reflected wave from the tower ground, i.e. the sum of all travelling waves
k = Coupling constant between shield wire and phase conductor
Vene = Instantaneous shield-wire potential, given as the forward voltage wave coming in from the
lightning hit (it is this voltage that couples onto the phase conductor via the coupling constant k).
Vso = Instantaneous value of 50Hz phase voltage

The tower surge impedance and travel time will be slightly less for the 6-phase tower, shield wire
impedance will be slightly higher due to the closer spacing, Vs, will remain approximately the same in both
cases as will k. Thus, the backflash performance will be very similar.

If a shielding failure does occur, the higher surge Figure 3.2.2.a: Shielding Failure Model
impedance of the 6-phase line will cause a higher voltage
for the same stroke current, and a resultant greater
incidence of insulation flashover. Thus, shielding is crucial
and it is recommended that the line be shielded for zero
failures.

“ Phase conductor

N

This can be done using the shielding failure model X Do ~

. L . . D - N
proposed in ref. [47], which is repeated for convenience in Lo S~o
the diagram on the right: " carth
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where:

B =1.0
S = critical distance = 29.53 I’® in feet , and
I = return stroke’s peak current in kA

This model includes a safety margin to ensure that shielding failure does not occur.

It should be noted that when shielding failure does occur, 50% of faults will be to an adjacent phase
conductor rather than the structure, so the probability of phase-phase flashover is much higher on a 6-
phase line. ‘

The overall performance of a HPO line, assuming effective shielding, is thus comparable or better than an
equivalent double circuit 3-phase line. For unshielded lines, more multiphase failures will occur resulting
in a higher tripout rate, however, in some instances this is not considered a significant problem since the
single phase tripping scheme will temporarily disconnect only the faulted phases, allowing the remainder of

the 6-phases to carry the load.

A computer simulated lightning analysis was performed on the Goudey-Oakdale line!'®! (which included a
voltage uprating), which resulted in the total flashovers per year for the 2.4 km line decreasing from 0.155
for the 115 kV (phase-phase) 3-phase line, to 0.127 for the 93 kV (phase-ground) 6-phase line.

Using the above procedures, fault voltages as a function of phase order™ "3 as well as a range of
protective levels from the ANSI “Guide for Application of Valve-Type Lightning Arrestors for Alternating
Current Systems”, Stewart and Wilson were able to compile the table of basic lightning insulation levels
which is listed below:

450
6 450 450
12 450 450
24 450 450
3 650 750
6 750 900
12 750 900
24 650 750
3 900 1050
6 1050 1050
12 1050 1050
24 1050 1050
3 1425 1425
6 1550 1675
12 1425 1550
24 1425 1425
3 1925 2050
6 2050 2175
12 1925 2175
24 1925 2175

Table 3.2.2-a: Basic Lightning Insulation Levels as a Function of Phase Order
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3.2.3 Line Spacing Example

When spacing a line from a switching surge point of view, surge magnitudes, distribution, and insulation
strengths all need to be known. Then, spacing for an appropriate probability of withstand can be computed
given the line length and pertinent meteorological conditions!”,

For a 6-phase, 462 kV line:
Energizing surge distribution
Case 50, line receiving end (i.e. location 3 in the table), Table 1 of ref [24] gives:
2%=171pu, 50%=145p.u., max=179 p.u.
Reclosing surge distribution
Case 55, line recciving end, Table 1 of ref [24] gives:
2%=2.19pu., 50%=162p.u., max=2.62 p.u.

These distributions are for a 100 mile line, 25 000 MVA source impedance, and 4002 resistor pre-
insertion. The assumed weather conditions were:

Relative air density =1.018
Absolute humidity =7.0 gm/m’
Relative humidity = 60%

Spacing is then calculated using the algorithms given in reference [48] to yield the following®:

Phase-phase Switching Surge: Air Gap
Number Voltage Energizing distribution Reclosing distribution Insulators
of phases no damper damper | no damper damper Energizing | Reclosing
6 462 8.4 9.3’ 11.7° 13.0° 8.8 12.2°
12 462 72 8.0’ 14.6° - 8.8 16.4°

Table 3.2.3-a: Phase-Phase Spacing Requirements for Example HPO Line

Insulators have the effect of introducing a floating object into the air gap and thus reducing the gap’s
insulation strength. If the average span length was 500ft (giving a total of 1057 towers), with 6 phase-
phase insulators per tower, there would be 6342 insulators in total between the phases. If the maximum
switching surge occurred on one third of the line, there will only be 2114 gaps to consider. Choosing a
probability of flashover (PFO) of 0.001, the calculation can proceed as in ref 22 (chapter 15, p157). Once
again this procedure will not be entered into, but the values obtained were compared with NCI catalogue
data and results listed in table 3.2.3-a above.

While it is beyond the scope of this section to go into further detail about line design, mention should just
be made that there are many other factors that need to be evaluated before a final spacing can be agreed
upon. Some of these are:

* Ice loading: Static displacement of conductors can take place due to unequal ice loading, and dynamic
Jumps occur when ice buildup is suddenly released from a span.

® Wind: This can cause various effects; differential blowout puts a strain on insulation, and total blowout
may necessitate a wider ROW - this is especially prevalent during gusting winds. Aeolian vibrations
are sct up along the length of the span in a similar way to the 3-phase case. Wake induced oscillations
(especially in bundled conductors) could be a problem due to the proximity of compact array struc-
tures, and finally galloping could prove a problem due to the large number of conductors in the array.

* Please note that the spacings given for air do not take into account phase-phase insulators
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e Fault currents: These are notorious for producing differential motion in conductors, and happens as a
result of magnetic interaction due to the large zero sequence currents, and “through faults” (a fault on a
different line)

*  Floating objects: As mentioned above, electrically floating objects that are introduced into the gap tend
to decrease the insulating strength of that gap. Unfortunately, these objects are often vital from a
mechanical point of view (such as motion dampers or insulators), or from an insulation perspective.
This forms the subject of our next topic.

3.2.4 Insulator and Spacer Design

In order to compact the conductor array, it is necessary at times to limit differential conductor motion as
much as possible. For this reason, various insulating midspan spacer designs were produced as shown
below: '

Asterisk Hexagon Swastika Triol
design design design rpte
triangle

Figure 3.2.4.a: Insulating Mid-Span Spacer Designs

The asterisk is the simplest of the designs, and has the advantage of no phase-phase members. A disad-
vantage however, is that some insulators are loaded in bending, and adequate rigidity can only be achieved
at a significant weight penalty. The next design is the hexagon which has the clear disadvantage of phase-
phase components, however, all the insulators in this design are loaded in compression, the structure is
more rigid and lighter. The swastika design attempts to blend the advantages of its 2 predecessors, but
unfortunately tended do the opposite in practice. The final design was the triple triangle or “civil defense”
shape, and while this gave a very rigid structure, it nevertheless contained 3 additional struts and was
overly heavy for practical use.

Thus, it seems that the overall best design is the hexagon, which does lower the insulation strength of the
air due to its phase-phase members, but is the most economical and lightest of all designs. It should also be
noted that non-ceramic insulators have been used throughout the design process due to their light-weight,
high strength, good resistance to damage, ease of erection, and pleasing appearance.

Using the above designs and NCI data, Stewart et al'®’ were able to derive a table which gave spacer length
and creepage distance for heavy and moderate contamination, based on the system voltage, which is an
invaluable tool for HPO line designers. It should also be noted, as before, that this type of arrangement
prohibits full transposition of the line, as phase relationships need to be maintained. What results is a type
of transposition coined “roll” or “barrel” transposition where the entire array is revolved as a whole leading
to 4 different elements in the impedance matrix (related to the 4 different phase separations, phase-ground,
60°, 120°, and 180°). This topic was discussed in greater detail in section 3.1.3.3.
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3.3 The Protection of HPO Systems

Fault analysis on HPO lines has been extensively discussed in section 3.1.3 and methods presented for
evaluating fault voltages and currents for all 23 significant fault types that could occur on the line. Further-
more, various combinations of simultaneous faults have been analyzed by Bhat and Sharma®" to provide
an elegant yet powerful method for dealing with such faults. This section aims to present the actual protec-
tion schemes used on HPO lines, and uses the analytical methods discussed previously in the setting of fault
current and voltage levels.

We begin by examining the criteria for the protection of HPO systems, how many schemes to apply and the
benefits of each option. Then, the question arises of which types of schemes to choose, and especially,
which schemes will work best when combines to offer the widest coverage of faults. After deciding how
the lines will actually be tripped, i.e. as single phases, two groups of 3 phases each, or one 6-phase circuit,
the criteria for tripping are developed, and a full trip logic diagram is presented. The section concludes
with a few of the limitations facing today’s equipment and how this could be overcome in the future.

It should finally be noted that this section is based on the collaborative work of PTI, NYSEG, and Ebasco
Services Inc. for the 2.4km, 6-phase demonstration line running from Goudey to Oakdale, in Binghamton,
New York!"”). The trip logic diagram is copied with permission of Dr. J.R. Stewart of PTI, NY.

3.3.1 Protection Criteria

The role of protection in power systems is to detect any faults or abnormalities and initiate action as
quickly as possible so that the faulted phase can be isolated and saved from damage. In choosing an
arrangement, there is an inherent tradeoff between security and dependability. Dependability refers to the
responsiveness of the protection to a fault - it must hence be depended upon to isolate the line if a fault
occurs. Security refers to the protection system’s ability to discern between a genuine fault which would
require immediate and decisive action, and some non-critical event on the line (such as branches of a tree
which have been blown too close to the line) which will clear itself in several cycles and requires no action.

Protection arrangements which were investigated for the Goudey-Oakdale line were:
® one out of two arrangement

® two out of two arrangement

® two out of three arrangement

A one out of two arrangement consists of two independent protection systems where the operation of either
one will initiate the tripping of circuit breakers. This type of system is very dependable, but decreases the
security slightly, in that any small, non-critical faults could initiate a trip. A two out of two arrangement is
similar to the above, except that both protection systems must operate before a trip is initiated. While this
effectively reduces erroneous trips, it somewhat desensitizes the system and decreases dependability. A
two out of three arrangement achieves a very high reliability as both security and dependability are
increased. The next task is to choose the 3 types of protection schemes to provide optimum coverage and
reliability against faults.

3.3.2 Selection of Protection Systems

Based on the protection criteria laid out above, 3 protection systems were chosen. The primary and backup
systems were relay-type, and used a fibre optic communication channel, whereas the third was a non-
communication based system, and relied on the apparent impedance of the line to detect faults.

The primary protection scheme employed a pilot-based, current differential relay which has the advantage

that it is commercially available, can be used as is, and is invariant to the vectorial displacement of
adjacent phases. The scheme uses two current transformers (CT’s) at the ends of the line, whose
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secondaries are connected to the relaying scheme and a communication channel. Normal load flow, or
through faults will present CT secondary voltages of opposite polarity and hence will not operate. Internal
faults, on the other hand, will cause secondary voltages of similar polarity at the two terminal CT’s and
hence actuation of the tripping coils - this will isolate the line from both ends, and will work whether the
fault is being fed from either end of the line, or both.

The pilot circuits selected are fiber optic based, and will be phase wrapped on one of the six conductors of
the six-phase line. This is preferred to the 2-wire pilot scheme due to the latter’s susceptibility to induced
EMI.

Back-up (or secondary) protection was chosen to be a fibre optic based segregated phase comparison
protection, as above, and utilizing the same physical optic fibre. This scheme compares the phase angle of
each phase current, at the beginning and end of the line, and is very similar to the current differential
protection scheme above except that it uses phase angle as its measurement parameter. This scheme is
connected on the 6-phase side of the CTs at both ends of the line and encompasses its own back-up
protection comprised of direct tripping relays in the form of high-set instantaneous overcurrent relays.

The third protection system chosen, was non-communication based and commonly known as a “distance
protection”. This senses the apparent impedance of the line, that is, the voltage/current ratio and in this
way can detect a fault (if the impedance takes on some unstandard value). The art of distance relaying is
very complicated and involves a large number of parameters, however, the availability of microprocessor
based protection developed for double circuit, 3-phase lines, offers an excellent opportunity for their
application to 6-phase lines. This requires the development of a series of algorithms for proper operation,
while the actual signals will be supplied from the VT’s and CT’s located on the 6-phase side of the line.

Although slightly beyond the scope of this project, it should nevertheless be briefly mentioned that
transformers will be protected using differential relays with inrush restraint, and distance relays at remote
terminals of the line, while busses will be protected as before but with the addition of a back-up ground
detection relay.

3.3.3 Fault Types

While the topic of fault combinations has been covered in section 3.1.3.1 and different generic fault types
given in Table 3.1.3.a, it should be reiterated that the possible number of significant fault combinations
rises from 5 to 23 for a 6-phase line. In addition, the 6 phase-ground voltages, and 15 phase-phase
voltages of a 6-phase line will require a total of 21 relays at each end of the line. This is considered to be
an excessive number of relay modules, and so it is almost inevitable that micro-processor based systems
will be used.

3.3.4 Tripping Options for a 6-Phase Line

Due to the increased number of phases, the line can be tripped out in one of several ways:
¢ Switching all 6 phases simultaneously

*  Switching as two sets of 3-phase lines

*  Switching one phase at a time

The first option is the simplest and easiest to achieve, but has the disadvantage of generating the largest
magnitude surges, and is somewhat unfavourable since only one phase could be temporarily faulted and
there would not be any need to isolate the healthy 5 phases. The second option is also easy and economical
and has the advantage of retaining symmetrical sets of 3 phasors, however, it too imposes relatively large
stresses on insulation and is only cautiously considered. Single phase tripping has the double disadvantage
of necessitating processing and decision making for correct operation, as well as generating unbalance
currents.
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It is the favoured system though, because it allows the remaining 5 healthy phases to carry the load, and
imposes far less stress on insulation than the previous 2 methods. It also adds a tremendous element of
flexibility for protection engineers which simply cannot be achieved in 3 phase lines; the Goudey-Oakdale
line has as one of its main objectives the demonstration of single phase tripping, and transient studies
conclude that transient overvoltages thus generated are well with equipment design range.

3.3.5 Ciriteria for Single Phase Tripping

The trip logic for the 6-phase Goudey-Oakdale line proceeds in the same manner as two independent 3~
phase circuits, phases A-C-E, and B-D-F. The diagram below presents the logical flow chart for one of the
3-phase circuits, and is identical for the other, if A,C, and E are replaced by B,D, and F.

Figure 3.3.5.a: Trip Logic Diagram for Current Differential and Segregated Phase Comparison

CT Measurement Relay Logic -
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______________________________ léf ,Cs , E¢ - fault on phase A,C, or E.j

The logic proceeds as follows: for a single phase-ground fault, the appropriate line shall be tripped out
(corresponding to the condition A AND (NOT C) AND (NOT E) = TRUE) and automatically reclosed
after a suitable dead time. If the fault is cleared, all protection shall be reset. If the fault is still on the line
when the breaker pole closes, then all three phases shall be tripped, and locked out.

For a phase-phase fault on any adjacent phases, the respective poles will be tripped out and reclosed
automatically after a suitable dead time (as though they were two single phase-ground faults). If the fault
has cleared, all protection shall be reset, and if the fault is still on the line then all 6 phases will be tripped
out and no more reclosing will take place.

Single phase tripping will not be attempted on faulted phases that are 120° apart (as indicated on the flow
chart), or 180° apart (something which has not been shown in the figure above). If the fault has been
contained to the phases of only one of the 3-phase circuits, then only that circuit will be tripped out, leaving
the other fully operational, otherwise, all 6 phases will be tripped and not reclosed.

The trip logic diagram for the distance protection has been omitted due to a need for brevity, but follows
very much the same logic as the above diagram with only a few minor additions!'”.
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3.3.6 Limitations of Available Equipment for 6-Phase Protection

While the protection aspect of HPO transmission seems viable, it is nevertheless important to be aware of
some crucial differences and take them into account when setting protection levels. Firstly, consideration
should be given to the case where one phase is de-energized and the other 5 phases are carrying the load;
often, the voltage on the isolated phase will have some non-zero value depending on the load flow in the
other 5 phases, and this should not be mistaken for a persistent fault.

Next, the existing double circuit, 3 phase protection does not include many of the fault combinations
associated with 6-phase lines, and this can be overcome by modelling the entire line on a phase basis
(including neutral shift), to determine all possible fault levels.

Finally, a potential problem is that when a ground fault occurs on one of the 3-phase circuits, it induces
zero sequence currents in the parallel healthy circuit which can cause zero sequence directional elements to
make incorrect directional decisions. The above is a well documented problem, and a proposed solution is
to use negative sequence quantities in making directional decisions, and zero sequence currents only to
verify the presence of a ground fault before allowing tripping.

3.4 Transformer Configuration

3.4.1 Preliminaries

Primary Secondary

Y Y -invertedY /k

Figure 3.4.1.a: 3-Phase to 6-Phase
Transformation

Arguably, one of the most common questions asked with regard
to high phase order transmission is to do with transformer con-
nections, i.e. how can transformers be wired to produce 6 phases
from 37 As it happens, these connections are simple, implement-
able in a variety of different ways, and rely on only one principle
which is described next.

It has already been mentioned earlier in this document, that a 6
phase set can be thought of as 2 separate 3 phase sets, and
further, it can be implemented as such. Ifa 3 phase set is
connected to a Y-Y transformer as shown in the figure on the left,
then the resulting secondary voltages will be in phase with the
original set. If a parallel transformer is connected to the original
3 phase set, but is wired as a Y-inverted Y, then the resulting
secondary voltages will be inverted with respect to the original.
All that remains is to combine the two secondary sets to achieve a
resultant 6 phase set.

At a first pass, this can be practically achieved as follows: ifa 3
phase transformer is wound with 1 primary, and 2 secondary
coils on each of its legs, and the two secondaries are wound in
opposite senses with respect to one another, then a single primary
voltage (or current), will be transformed into 2 secondary

voltages (or currents) which are phase displaced by 180° from one another. Again, by combining the
secondary voltages, a complete and balanced 6 phase set can be achieved.

In essence, this principle lies at the heart of all 3 to 6 phase transformation, but having obtained the
required number of phases, one is left with a variety of choices regarding their implementation and the
possible applications of each connection. This forms the topic of the following sub-section.
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3.4.2 Transformer Winding Interconnections

Four principle winding interconnection possibilities have been studies by Guyker et al***) which are
depicted in figure 3.4.2.a below:

The star-star, and delta star connections are ideally suited

for converting 3-phase generation voltages up to the
138kV (or South African 132kV) transmission voltages,
\l/‘ * A >K but the latter has a distinct advantage over the former in
that the delta breaks the zero sequence network, and
Star-Star Delta-Star provides a well defined shunt path in the zero sequence
R network without a tertiary winding (as opposed to flux
— linking through the transformer tank)!'”.
\r' O ; l i The star-hexagon could be used for transforming the 6-

phase transmission voltages to 3-phase primary distribu-

Star-Hexagon Star connected tion voltages. The star connected autotransformer is the
Auto-transformer preferred connection due to its low short-circuit impe-

dance and greatly reduced cost®**?,

Figure 3.4.2.a: Transformer Interconnections

Of course, these interconnections do not dictate any
transformer arrangement (besides the auto-transformer) and can be physically achieved in a variety of
ways.

3.4.3 Physical Implementation

Both Stewart''” and Guyker™* have broached the subject of practical transformer implementation with
regards to cost, space requirements, and viability. Four different methods have been identified to
implement the above interconnections:

e 6 single phase units

e two 3-phase units - three leg core form

e two 3-phase units - five leg core form

e asingle, 6 phase unit.

Using 6 single phase units gives a great degree of flexibility and has been implemented at PTI’s 6-phase
test line in Maltal®. It allows single pole switching from the primary side (for a star-star connection) since
there is no magnetic interaction between phases in the transformer. From an analytical point of view, the
positive, negative and zero sequence models are all a simple series leakage reactance of the same value in
all 3 phases. Further, single phase units provide the clearest demonstration of single pole tripping using the
transformer’s impedance to simulate longer line, and primary and secondary currents are clearly related
and in phase.

Unfortunately, single phase units cost more, and take up significantly more space than the other options.
This is particularly a problem since 6-phase transmission lines will be an upgrade onto existing 3-phase
lines. which means that substation space is very limited and often cannot house the additional units.

Using two 3-phase units reduces both the cost and space requirements relative to the first option. However,
since one of the two transformers will be wound as a Y-inverted Y, there are definite insulation probiems
which arise between the primary and secondary windings and necessitate an increase in clearances. In
addition, no winding arrangement of three leg core form transformers will allow single pole switching from
the primary side. In each case, there is a voltage introduced onto the isolated phase through magnetic
coupling in the transformer.
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The five-leg core form transformer attempts to combine the advantages of the previous two options, by
retaining the reduced cost and space requirements of the 3-phase units, and addressing the magnetic
coupling problems. However, since the 2 outer legs of this transformer do not have infinite permeance,
there is still a degree of magnetic coupling to the open phase, and both the cost and space necessary are
increased over the 3 leg core form option.

In addition, there is a likelihood of ferroresonnance between the lowered magnetizing impedance of the
transformer and the capacitance of the line. While studies have shown that the transformer source
impedance is below that of the line capacitance, and decreases with saturation, it should be remembered
that saturation is a non-linear phenomenon with significant harmonic generation, which leads to a
possibility of ferroresonance in any of the higher harmonics.

While a single, 6-phase unit connected as an auto-transformer would seem like the ideal choice from a cost,
and space requirements point of view, such a unit was designed by a transformer company™ and found to
be excessively large for any kind of transportation or shipping. This option was thus disregarded
completely.

Taking all factors into consideration, the option which was finally selected as the winner was the 2 unit, 3-
phase, three leg core form design, wound in a delta-star fashion. This gave the best cost, and was small
enough to fit into most existing substation yards. It had no problems with transportation or shipping, and
the delta-star connection provided additional benefits by breaking the zero-sequence network without the
usual tertiary winding.

3.5 Sub-Station Modifications

Before closing the section on high phase order technology, mention should briefly be made about the
modifications necessary at the sending and receiving end substations. Of course, many of these are quite
involved, and specific to the sub-station under consideration, however, some modifications are generic and
will be briefly listed below.

As noted carlier, to provide proper phase transformation, two three phase transformers will be necessary at
cach substations, while the existing transformer can be removed (unless it can be reused). In any case,
there is a net addition of one transformer to the substation.

This introduces another challenge in that the conductors leaving the H2 bushing from each transformer
must be transposed at the first transmission line tower exiting the substation. This is necessary to provide a
symmetrical conductor configuration with 60° between adjacent phases. A similar transposition must
obviously be made at the opposite end of the line.

The line will be switched with line side circuit breakers (i.e. on the 6-phase side of the transformers) in
order to achieve single pole switching. Retrofitting an existing substation with this gear requires the use of
compact design due to space limitations. For this purpose, SFs gas insulated dead tank circuit breakers are
recommended (and have been used on the Goudey-Oakdale demonstration line!'®%"! ).
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4. Survey of Case Studies

4.1 Background

Ever since their inception in 1973!") HPO lines were continuously pitted against the more established 3-
phase system of transmission. Typically, a 6 or 12 phase line would be compared to a 3-phase line of
equivalent power carrying capacity in categories such as magnetic or electric field emissions, size, cost,
aesthetics, corona related effects, upgradeability, compatibility, stability, and so on. This has been done for
various lengths of line, for varying voltages and power carrying capacity, using standard software packages
such as EMTP, as well as tailor written software such as EPPC (discussed in section 3.1.5 “Computational
Aids”).

As a result, there has been a generation of a plethora of information which is very beneficial on the one
hand, but on the other is sometimes contradictory and inconclusive. Thus, there is a formidable challenge
in compiling a survey of case studies, and careful thought must be given to the selection of cases and their
applicability.

For this section, 5 case studies were chosen, each contributing to the overall feasibility of HPO lines. The
first 3 case studies are purely “pen and paper”, and even within this classification the various cases move
from purely hypothetical, to an actual study of a particular line and then an all important cost comparison.
The fourth case describes the initial attempts to construct a 6 and 12-phase test line in Malta, NY and the
results obtained from that exercise, and finally, the fifth and final case describes the first utility demonstra-
tion of a 6-phase line, its operation, and discussion about the lessons learned.

4.2 Double Circuit 3-Phase Line Upgrading to 6-Phase Operation

It is most likely that 6-phase lines will (at least initially) be implemented only as upgrades of existing
double circuit 3-phase lines, and in anticipation of this fact, Guyker and Stewart each wrote a paper on the
subject in 1981. The investigations of both authors have been included because while they both address the
same problem, they do so in very different ways which makes for a very interesting comparison of the
methods and consequent results.

4.2.1 Case Study 1: “Uprating Without Reconductoring”

Figure 4.2.1.a: Generic Representation of Double In this case study, Stewart et. al ] considered the
circuit 3-Phase Line . > . N . .
uprating of 5 hypothetical transmission lines - with
C: details given in the table below - from 115kV (or 161kV

O i O as in case 5) to either 230kV double circuit 3-phase, or
: 138kV single circuit 6-phase. The reason for this
: i Do A comparison is that a 138kV 6-phase line is equivalent to
® : ® ...V . two interleaved (and phase shifted) 230kV 3-phase

systems, and so the comparison becomes very direct,
with exact power transfer, loading, etc.
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Table 4.2.1-a: Sample Line Configurations

This study begins by examining the radio noise emitted by the two upgrade options since this is believed to
be dominant as the limiting factor. This is then compared to the CSA standard which states that maximum
fair weather radio noise at a lateral distance of 15m from the outermost phase of the power line, should be
50 dB above 1puV/m for lines of nominal phase-phase voltage of 200-300 kV. Of the 5 lines, only choice 2
is suitable for a double circuit 3-phase upgrade, whereas for the 6-phase upgrade, choices 2,4, and 5 meet
the above criterion.

Next, the remaining 3 choices were examined for audible noise compliance. The regulations stated that wet
conductor audible noise 15m laterally from the outermost conductor should not exceed 50 dBA, and it was
found that all 3 lines passed this test for both upgrading options. This once again demonstrated that radio
noise was the limiting factor in line selection.

The lines were then tested for their ground level electric fields, insulation requirements, mechanical motion
considerations, and ground clearance to show that all choices passed comfortably, the only modification
being the number of disks in the insulator string which was raised to 10 in both cases.

Finally, the economics of the lines were examined. This was done by outlining the economic conditions in
1981, inflation rates, transmission costs, etc., and defining the economic life for payback as 30 years,

Now, the cost examination could take 2 routes: either uprating with no load growth in which case savings
would be made simply on the cost of losses in running the line, or uprating with a corresponding increase in
load to a maximum of the conductor thermal limit in which case the economic benefit would come from an
increase in line capacity. It was decided to pursue the first option for the purposes of this study.

For each of the remaining lines, the savings/km were computed by calculating the saving made per kilo-
metre each year for its lifespan of 30 years, bringing this saving to a “present worth” value, and summing
all these values together. Terminal costs were assumed to be dominated by transformer costs, and to make
the results more meaningful, Stewart gave breakeven distances where terminal costs would equal the
savings made on the line. For options 2 and 4 the breakeven distances were 22km and for option 5 this
distance was 42km since the voltage of this line was nominally 161kV as opposed to 115kV.
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4.2.2 Case Study 2: “138 kV Uprating of a 138 kV Double Circuit Line”

In this case study, Guyker et. al.*¥ selected a candidate line for upgrading to 6-phase and performed a

complete feasibility study on this line from a utility perspective. The line spanned 15 miles, consisted of

two 3-phase circuits suspended from APS 22 type towers as shown in figure 4.2.2.a below, and connected
sub-stations at Charleroi and Yukon, with a connection off one

<_>.<_> of the 3-phase circuits to Westraver substation approximately 4
0 [0 NI T miles away from Yukon.
: : 4.55 3.7 The existing line is nominally 138 kV (phase-phase) which is
® : ® | slightly larger than the lines examined in the previous case study
5 ' (which were 115 kV) with subsequent increase in tower
: ! 535 : 4.4 dimensions, however, the final voltage will be the same as
.4_——“_‘—'. _______________ ' above, i.e. two 3-phase circuits rated 230 kV phase-phase, or a
: 4 single 6-phase circuit which consists of the interleaving of the
L 4ss Al above two circuits rated 138 kV (phase-ground). The line was
- ' assumed capable of being uprated to the thermal limit of the
® @ Y. conductors which corresponds to 1074 MVA (winter) and 807

: MVA (summer).
Figure 4.2.2.a: APS 22 138-kV Double Circuit
Tower (Dimensions in m) The paper begins by examining the existing line, and showing
that from an insulation point of view (lightning, switching, and
power frequency) the line can be uprated to either option with only a slight increase in outages due to
lightning, but no structural modifications to towers, insulators, and so on.

The radio noise, audible noise, and ground gradient lateral profiles are obtained and it is concluded that
even though both upgrade options result in increased field and noise levels, the 6-phase option will have
lower levels than the double circuit 3-phase option. The former will however, have slightly higher
electrostatically induced voltages on objects under the line, and this effect must be evaluated further on a
site-specific manner for the entire length of the line. The above results are consistent with the observations
made in the previous paper, and could be very useful in crowded or congested areas where audible noise,
radio interference, and field levels are a major concern.

Guyker then continues by examining in detail the sub-station insulation co-ordination, and defines surge
arrestor protective levels. These studies show that MOV’s with maximum continuous operating voltages
(MCOV’s) of 180 kV will protect a transformer and its bushing with BIL of 550 kV for both upgrade
options if applied at the transformer terminals. However, BIL of such low value are seldom used on 230
kV transmission systems, and final values decided upon were transformer BIL of 825 kV and bushing BIL
of 900 kV.

Relay protection and circuit breakers were examined next and it was decided to use segregated phase
comparison relay scheme, with tripping achieved as two sets of 3-phase circuits. For the 138 kV 6-phase
and 230 kV 3-phase options, it was determined that standard 242 kV oil circuit breakers could be used for
either option with standrard BIL of 900 kV.

Finally, the cost of both upgrade options is examined. This was done by designing 15 different transfor-
mers, 7 for use at Yukon, and 8 for use at Charleroi, of different types such as 3-phase (to be used as 2
units), autotransformers, single unit (two secondary windings), single phase - two phase, and so on, and
submitted to an electrical manufacturer for preliminary design information. An evaluation of total costs
showed that the 6-phase uprating option costs approximately $2.25 Million more than the double circuit 3-
phase option, which is due mainly to the steep differential in transformer costs where lower cost autotrans-
formers with balanced phase impedances may be used for the 3-phase option, but 2-winding transformers
must be used for the 6-phase option to obtain balanced phase impedances.
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While the 3-phase option is cheaper for this particular line, Guyker concludes that this is only because on
the APS system the 500 kV and 138 kV systems are in phase, and autotransformers may be used at Yukon.
Other systems having a 30° phase shift between voltage levels would need to use 2-winding transformers
for both options. This would result in a minimal cost differential, with 6-phase systems having an advan-
tage in lower radio and audible noise emissions from conductors.

4.2.3 Discussion

As can be seen, the above 2 studies tackled essentially the same problem, examined virtually the same
factors, and came to fundamentally the same conclusions. However, they did this with some subtle
differences, which is very typical in studies addressing the same issue but performed by different organi-
sations. These studies were both included with the aim of highlighting these differences in approach and
methodology. Please note furthermore, that the discussion below is to a degree subjective, and represents
solely the author’s judgment.

To begin with, we examine the general approach of the paper. Stewart’s approach is to take a broad
sample of “limiting” cases, that is, cases which just barely pass or fail, in order to establish some kind of
boundary conditions. He concentrates primarily on aspects such as field emissions, radio and audible
noise, etc. and eventually calculates returns/km and finds theoretical breakeven distances. Guyker on the
other hand, concentrates on transformers, BIL’s, surge protection, insulation levels, circuit breakers, and
only to a very small degree environmental effects. He chooses a line which is designed well away from any
problem areas (unlike Stewart), and performs a complete cost study on that specific line. This is, in the
author’s opinion, directly relates to the purpose of the research, and the organizations backing it. Stewart
is a researcher, working for PTI ( Power Technologies Inc.) which is a research based company, and hence
their approach is naturally more theoretical, and aims to derive general results which can serve as a quick
guide to evaluate the feasibility of any line’s conversion to HPO. Guyker on the other hand, is a design
engineer, who works for a power utility (Alleghany Power Service), he has at his disposal any number of
lines to choose from, and is interested in specific results, concerning a specific line. With this in mind, it
may be that Stewart’s work tends to slightly favour 6-phase lines, simply as a path of research, whereas
Guyker could be more objective, and more ready to accept a negative conclusion if that is what the research
indicated (as it did in this case).

Directly stemming from the above point is the way in which the economic analysis was carried out by the 2
authors. Stewart considered the present worth of the savings in transmission losses for the next 30 years,
whereas Guyker concentrated on only the direct costs at the present time for the 2 upgrade options. Again,
this may indicate a difference in philosophy, in essence, it is certainly better to consider all the returns for
the life span of the line, but practically, it may be possible that utilities place far more emphasis on the
present expenditure of money than is expressed by the “present worth of required revenue” mathematics.

In addition, the focus of the economic analysis was completely different. Stewart, in fact, did not perform
an economic comparison between the 6-phase line and the double circuit 3-phase, but between the 6-phase
line, and the existing (non-upgraded) 3 phase line. He has demonstrated that if we were to modify the
existing line to 6-phase with nothing else changing, then over the next 30 years, this upgrade would
actually be cheaper than keeping the line as it is, if the existing line were longer than a given length. He did
not answer the question though, of whether it would be cheaper to upgrade the existing line to 230 kV
double circuit 3-phase or single circuit 6-phase over the next 30 years, and so in that respect, the economic
analysis (though definitely adding insight) did not give a satisfactory answer to this critical question.

Stewart also treated the question of transformer cost differentials quite glibly by simply stating that the
difference between 3- and 6-phase transformers is that the 6-phase option utilises 2 transformers instead of
one, each rated to half the required capacity for the necessary phase shift. There is nothing more in this
regard, and it is shown that in fact, it was the transformers themselves which were the limiting factor in
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Guyker’s research. The significant saving that could be made by using an autotransformer as opposed to a
2 winding transformer is crucial, but as mentioned before, this was not the focus of Stewart’s paper.

Guyker on the other hand, is very focused in his work. He has addressed the subject of cost viability very
well, but did not even mention that savings could be made simply by minimization of losses, and for certain
lengths of line, this alone could justify the upgrade.

Finally, let’s examine the conclusions of both studies. Guyker’s conclusion is essentially negative. The
cheaper option turned out to be the 230 kV 3-phase upgrade due to the lower cost and feasibility of using
autotransformers, so in this case, the HPO line would not be implemented even though Guyker mentions
that where both voltage systems are not in phase (which would exclude the use of autotransformers for the
3-phase case) cost differentials would be minimal. Stewart’s conclusion is essentially positive. He says
that at the present moment, a large number of lines fitting his description could be running more economi-
cally and costing less to upgrade in the long run, than the total savings made.

In the author’s view, both of these researchers have made significant steps to better understand the
applicability of HPO lines. Certainly, they have both demonstrated that 6-phase lines are not the ultimate
solution to power transmission, and certainly cannot be applied indiscriminately to any double circuit 3-
phase line. However, when lines are sufficiently long, and transformer costs are comparable for both
upgrade options, 6-phase lines can have a definite cost advantage, as well as go a long way in minimizing
radio interference, audible noise, and ground level electric fields.

4.3 HPO as an Alternative to UHV Bulk Transmission

4.3.1 Background

As electrical loads continue to grow throughout the world, so the need for bulk transmission steadily
increases, and to address this growing need research has been conducted into UHV transmission levels.
The problems with this high voltage level is the increased public opposition, radio interference, audible
noise, increases ground level electric fields, increased cost, and the significantly increased need for top
notch expertise and innovative technology. It is precisely with these problems in mind that HPO
transmission was proposed as an alternative solution to UHV bulk transmission.

The following case study deals purely with the economics of UHV 3-phase versus EHV 6- or 12-phase
transmission’”’, but before this can be presented, some background which is discussed in previous papers™
must be covered. The base case for comparison is 1200 kV test line constructed at Lyons, Oregon, as part
of the BPA UHYV research program, and for comparison, 6 HPO lines have been designed to give the same
power transfer capacity. These are:

Table 4.3.1-a: HPO Design Choices for Comparison with 1200 kV 3-Phase line

5 Dimensioned drawings of the above towers can be found in reference 9]
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These lines have all been designed to give the same maximum ground level electric field strengths, wet
conductor audible noise, fair weather radio noise, and power transfer capability®. Mechanically, the towers
have been planned for NESC heavy loading, high wind, and heavy ice accretion. The loading in various
planes has been assessed, and finally base tower weights have been calculated. Furthermore, after this was
done, it was found that scheme 4 was structurally indeterminate and was thus not considered further.
Having this information, it is possible to proceed directly to the economic analysis.

4.3.2 Case Study 3: “Economics of EHV High Phase Order Transmission”!""

The comparison begins by defining two different electrical loading levels:

1. 3000 MW: the initial load was assumed to be 1339 MW with a load growth of 6.5% per year, reaching
3000 MW at year 13.

2. 6000 MW: the initial load was assumed to be 2670 MW with a load growth of 6.5% per year, reaching
6000 MW at year 13.

The economic “climate”, or terms upon which the comparison will be carried out are then defined and
include factors such as generation charges, transmission charges, maximum demand and energy charges,
economic payback period, and so on. Furthermore, all material and labour costs are based on 1982 US
dollars with inflation rate and generation reserves also taken from that period.

Having set the scene, it was necessary to make several selections. The first of these was the conductor
type, and several factors play a role in this choice, such as diameter, conductor purchase price, strength to
weight ratio (since a stronger conductor can be strung tighter and thus needs fewer support structures) and
EMI criteria (which sometimes require a larger conductor than is economically feasible). Ten different
ACSR conductor types were compared and optimum selections made.

Next, it was necessary to select ROW (right of way) requirements. These requirements are based on such
varied factors as switching surges, maximum conductor blow-out, EMI, line voltage, etc. While there is a
certain minimum ROW requirement for each line, there is no guarantee that utilities will necessarily use
this minimum requirement, and furthermore, since land costs vary quite dramatically, it becomes difficult to
assign some meaningful value to land. Thus, ROW requirements were ignored for the purposes of this
study, but it should nevertheless be mentioned that HPO lines are significantly more compact and require
less land area than the UHYV line, and thus this decision favours the UHV option.

Performing an optimization procedure on the various candidate HPO lines with respect to conductor
selection, span lengths, tower heights, base weights, etc. it was found that choices 5 and 2 were the most
economic selections for the 3000 MW and 6000 MW loading cases respectively.

In order to determine how the various cost components affected the ranking of the most economic options, a
sensitivity analysis was performed. This was done by selecting 8 of the most important cost components:
conductor cost

stringing and sagging cost

tower steel cost

tower erection cost

generation demand charge

generation demand escalation factor

generation energy charge

generation energy escalation factor

and applying a 50% adder to each of the chosen values. This showed that the rankings did not change, and
schemes 5 and 2 were still the most economic for the loading of 3000 MW and 6000 MW respectively.

e N

® The basis of power transfer comparison is addressed in section 4.3.3
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The next section of the comparison dealt with terminal costs. Naturally, the economic analysis of
substations is far more complex than transmission lines due to the large number of combinations of bus
arrangements, protection schemes, other lines that may terminate at the same substation, ground mats,
utility specifications regarding switching and reliability, and EMC requirements. Thus a detailed study
was not undertaken, but the terminal costs were estimated by considering transformer costs (which
typically take 60-80% of the total sub-station cost), and circuit breaker costs. Other costs such as
shipping, installation, protective relaying, etc. were included as a multiplier on the circuit breaker costs.

Naturally, terminal costs for HPO lines were greater than the UHV line as expected. This is because more
transformer units are necessary for the phase and voltage transformation of the HPO line than for the
voltage transformation of the 120 kV 3-phase line. That is, only one 3-phase transformer is necessary to
terminate a 3000 MVA 3-phase line, whereas four 750 MVA 3-phase transformers are necessary for the 12
phase alternative. In time however, it is likely that dedicated 3 to 6 or 3 to 12 phase transformers will be
built that will slightly reduce the value of this cost differential. Also, HPO lines need more circuit breakers
(CB’s) and associated hardware. As above, a single 3-phase CB is required for the 3-phase line, whereas 4
3-phase units are required for the 12-phase line. Each of the latter units will be rated lower than the former
CB, and hence cost less, but the total cost will be higher.

Now, since line costs for HPO are less than UHV, and terminal costs are greater, we can use a method
commonly used for comparison of HVDC with AC alternatives in which a breakeven distance is calculated
where savings from the DC transmission line balance the additional cost of the DC terminals. The results
of this study are tabulated below: (note the addition of scheme 3A, which is similar to choice 3 but uses a 2
conductor bundle which was shown to be slightly more economical than the the existing scheme 3)

Loading option | UHV Scheme 1 Scheme 2 Scheme 3 Scheme 3A Scheme 5
12¢ 462 kV | 60 462kV | 12¢ 317kV | as3,2cond. | 12¢ 317 kV

3000 MW - 33 miles 6 8 7 6

6000 MW - 35 0 never 5 never

Table 4.3.2-a: Breakeven distances (in miles) using UHV as base, for various loading options

As can be seen, the longest breakeven distance for the 3000 MW loading option is 33 miles. It is also
reasonable to assume that a 1200 kV, 3000 MVA line will never be built for distances as short as 33 miles
and so it can be concluded that all HPO options are cheaper than the UHV option for 3000 MW loading. It
is interesting to note the trend that the various HPO options follow when the load is brought to 6000 MW.
As can be seen, schemes 3 and 5 are always more expensive than the UHV option, but scheme 2 becomes
cheaper for any distance. As before, the remaining options offer a definite economic incentive at this
loading level.

4.3.3 Discussion

Of all the economic comparisons given in the literature, this is by far the most extensive. It covers a wide
range of tower designs that have been meticulously planned, taken to civil engineering firms and tested for
various mechanical environmental loads, producing base tower weights, and limiting conditions for vertical,
longitudinal and transverse loads. The conductor selection, phasing, and arrangement has also been
comprehensive, and while it is understood that reviewing each permutation of conductors is a near-
impossible task, the authors must be congratulated for the large amount of work performed and the
excellent quality of this work..

Before covering the general conclusions which can be derived from this paper, it is necessary to bring to the

reader’s mind several criticisms (and please bear in mind that these criticisms are solely the opinions of the
author) which can be made about the paper and which contextualise the results somewhat.
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The base case for this comparison is a 1200 kV 3-phase line, which means that the peak voltage between
phases is V2x1200= 1.7 MV! This voltage level is incredibly high, and presents tremendous problems in
insulating everything in the system from transformers, to circuit breakers, to the line itself. It will require
very specialized (and hence very expensive) terminal equipment and its associated topology, actual line
design, and manufacture.

The obvious question then springs to mind: is this line a valid example to use as a base case? Perhaps, this
line is several times more expansive than a more established technology, such as running two lines on the
same ROW to transmit the same amount of power. If that is the case, then using a more expensive base
case, would put HPO in a very favourable light, being cheaper than the UHV 1200 kV line (but saying
absolutely nothing about the standing of HPO versus more conventional technology). The author of the
paper (Stewart et al) makes no reference to the economic standing of the 1200 kV line versus the present,
more conventional technology, and certainly from the author’s point of view, this kind of information would
have helped to contextualise the economic comparison.

Next, is the comparison of the lines themselves. Stewart et. al.'” claims to compare the lines on the basis
of capacity, but this is somewhat of a controversial issue. For short lines, where the line does not
significantly affect the performance of the system, the capacity of the line is taken simply as the thermal
MVA rating of the line. For the opposite case, where the line is very long, the rating of the line is taken as
the SIL (surge impedance loading) of the line. Stewart has chosen a somewhat unconventional measure
where the circuit breaker limits the line current to 6000 Amps, and this is then taken as the maximum
power of the line. The table below shows the various loading comparisons:

. Line description
3¢ 1200 kV (¢-9) 6300 23900 12500
6¢ 462 kV (¢-g) 4800 17900 16600
12¢ 462 kV (¢-g) 5600 17900 33300
124 317 kV (¢-g) 2800 13400 22800

Table 4.3.3-a: Comparison of HPO and UHV loading for various conventions

As can be clearly seen, the HPO lines seem to have been grossly underdesigned when SIL and thermal
loading are considered. As mentioned before, line capacity comparisons are always a very controversial
subject, but with such widely varying results, it is belicved that a great deal of justification must be given to
the selection of “breaker limitation” as the convention for capacity comparisons (for example, comparing
the 12 phase, 317 kV line to the UHV case shows that the 12 phase line has only 44% of the SIL of the
latter, but 82% more power when it is breaker limited). This selection seems to once again, favour the
comparison towards HPO lines.

The final criticism is that, as in Stewart’s previous paper (considered above), the subject of terminal
equipment cost was not given sufficient attention. It is very probable that the 3-phase line could use a
cheaper technology such as autotransformers and thus become significantly more feasible than the HPO
option. Again, this is speculation, and requires a deeper examination.

Despite the above comments, the study is nevertheless extremely useful, and gives rise to a number of

general conclusions:

e the terminal equipment costs for a HPO line are invariably higher than those for a 3-phase line. This is
because 2 or 4 transformers are needed for HPO as opposed to 1 for 3-phase, and even though the
former are rated to a half or quarter of the 3-phase transformer rating and are individually cheaper,
their total cost is higher. The same analysis applies directly to circuit breakers.

e The cost of the transmission line itself is less than the cost of the 3-phase line. This is due to smaller,
lighter conductor arrays which require smaller, lighter towers to support them.
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o Due to a greater degree of field cancellation, HPO lines have lower line losses and other corona related
effects, and are thus (in general) cheaper to run than their equivalent 3-phase counterparts.

Before concluding, one last comment must be made. The premise behind HPO lines is not so much
economic superiority as line compaction. The object is to use the ROW as effectively as possible by
squeezing into it as much power as possible while keeping the environmental criteria at the edge of ROW
(such as E and H field, audible noise, etc.) the same. This comparison did not take into consideration the
cost effect of the land savings - for reasons which have been discussed above - but in essence this is what
this technology is primarily geared for. It is thus in the author’s view that a more meaningful study would
be to make some kind of breakeven point of the land costs, i.e. if HPO technology is slightly more
expensive than 3-phase (which unfortunately it seems to be) but saves on land, how expensive does the land
need to be in order to make compaction economically worthwhile?

4.4 The First Test Line

4.4.1 Background

In 1978 the United States Department of Energy sponsored a project for the construction and testing of a
six, and twelve phase line in Malta, NY. While analytical information was abundant, nowhere in the world
had anyone constructed such a line before, and as such, this represented a great leap forward in the
evolution of this concept.

4.4.2 Line Description

The line itself was to be 366 m long, with a phase-ground voltage of 80 kV, representing two 138 kV 3-
phase circuits appropriately phase shifted and interleaved. The conductors for both lines were chosen to be
336 kemil’ ACSR (18.3 mm diameter) which is considered small for this voltage level, but was done to
give sufficient noise to be measurable, and quickly detect any problems if they were to occur. The conduc-
tors themselves were arranged into a circular array with a phase-phase spacing of 1 m, resulting in a tower
window of 4 m for the 6-phase line, and 6 m for the 12-phase line.

4.4.3 Power Supply Sub-station

Electrically, the power was generated at 4800 V 3-phase and was stepped down to 208 V in a 150 kVA 3-
phase pad mount transformer. This intermediate voltage was used in order to simplify switching and
measurement, and a matrix of links allowed rapid shifting of the energization between 6-phase, double
circuit 3-phase, and single circuit 3-phase with alternate conductors floating or earthed. This was
especially important to radio and audible noise testing where rapid changes in energization allow
comparative measurements to be taken without concern over shifts in weather. The line was then passed
through a bank of 6, single phase, 50 kVA, 208/80500 V transformers connected in a delta-star
configuration. At the high voltage side of the transformers, the line was fed through radio noise filters
which served the dual purpose of isolating the line into a known length for short line radio noise
measurements, and ensuring that the measured noise was actually generated by the line and not conducted
from the power source. Incidentally, conductor hardware also needed minor treatment to eliminate
hardware corona.

7 kemil is a US standard for specifying the cross sectional area of the aluminium in a an ACSR conductor. It is an abbreviation
for kilo-circular mil, a circular mil having the area of a circle with diameter of one thousandth of an inch.
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4.4.4 Support Structures

The towers and their associated insulator designs had several simultaneous requirements to fulfill: the
structures needed to be flexible enough to allow a variety of electrical and mechanical experiments, there
had to be an evaluation of the most promising tower and insulator design concepts, and practical construc-
tion techniques and hardware needed to be developed and demonstrated. To expediate the process, several
different types of towers and insulators were placed on the line simultaneously, to generate as much data as
quickly as possible.

Initially, the towers were envisioned as having circular tops with radial post insulators, thus offering
simplicity, standard hardware, and no phase to phase insulators, but this design was abandoned since each
post insulator needed an individual support point making the tower unnecessarily comphcated The three
designs which were put into service on the line were:

1. aportal type, simple wood pole and crossarm structure for the twelve phase line

2. aportal type, laminated wood with laminated crossarm structure for the six-phase line

3. asteel lattice, tennis racquet design for the six-phase line, mounted on screw anchor foundations

All 3 towers were proven to be feasible, and in addition, Stewart’™ comments that:

“The savings in space and right of way together with the visual advantages of the
smaller structures have been frequently remarked by visitors to the test site.”

4.4.5 Insulator Design

The design of insulators followed 2 different routes: using all suspension elements loaded in tension, which
could be achieved with conventional suspension components, and using rigid insulators which permit
cantilever loading.

The first option concentrated primarily on non-ceramic insulators due to their optimum appearance, light
weight, high strength, resistance to damage and ease of erection. Two assemblies were made for 6-phase
and an additional two for 12-phase, and this design proved to be universally very satisfactory.

The second option saw two designs being manufactured for 6-phase. The first suffered from installation
difficulties as the support hardware design required simultaneous assembly of the insulators and the
conductor clamp. The second design permitted preassembly in the normal way, but in general rigid
insulators were found to be heavier and longer than the all tension assemblies. In conclusion then, it seems
that tension assemblies give superior performance characteristics than their rigid counterparts and are most
likely to be used in future implementations of HPO lines.

4.4.6 Insulating Midspan Spacers

To make optimum use of compaction technology, the differential motion of the conductors in the HPO
array can be limited by using insulating midspan spacers. These include the “star”, “hexagon”, “Swastika”
and triple triangle “civil defense” shapes which are discussed in greater detail in section 3.2.4. As
mentioned previously, while the hexagon shape makes use of phase-phase members, it is lighter, more rigid,
and is loaded completely in compression which makes it the design of choice for this type of application.

4.4.7 Lightning Performance

Although not strictly part of the practical testing, theoretical lightning predictions show that the HPO line
can expect a marginally higher tripout rate than a similar 3-phase line, but that this variation is considerab-
ly less than typical annual performance variations caused by year to year differences in lightning activity or
soil (grounding) conditions.
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4.4.8 Electrical Testing

The success of HPO lines relies directly on its ability to mitigate various harmful electrical environmental
effects, and as such, this is perhaps the most crucial aspect of the test program. As mentioned previously,
the line was built with an excessively small conductor (1.83 cm diameter, 336 kemil ACSR Linnet) so that
conductor surface gradients will be at their maximum, and noise levels will be measurable. Four parameter
were then examined: radio noise, audible noise, corona loss, and ground level electric fields, and each of
these are discussed in turn below.

4.4.8.1 Fair Weather Radio Noise

The conductor array was energized in 6-phase mode, and double circuit 3-phase mode producing similar
modal excitations but different in magnitude. The radio noise was then calculated using an empirical gene-
ration function, and modal propagation analysis to show that the lateral profiles for these two alternatives
should be similar in shape but offset from each other in magnitude. The measured profile shapes were
identical to the predicted shapes (within the accuracy of measurement), but the 6-phase profile was appro-
ximately 15 dB below the double circuit 3-phase mode. It can thus be said that both theoretical and
empirical methods for radio noise prediction are valid for 6-phase lines.

4.4.8.2 Wet Conductor Audible Noise

A similar behaviour is observed for audible noise, where double circuit 3-phase, and 6-phase configura-
tions result in similar curves but offset by a constant magnitude. Again, measured and theoretical results
agree very well, but measured curves tend to attenuate quicker with increasing distance from the centre line
than calculated profiles due to trees and other obstructions preventing a clear view of the entire line from
greater lateral distances.

4.4.8.3 Corona Loss

The most direct measurement of excessive conductor surface gradients is arguably the amount of power
lost to corona (while audible noise and radio noise are secondary corona related effects). This is a
continuously varying quantity and requires a statistical analysis for a more accurate description.

By measuring the current and voltage put into the line and calculating the real power input, corona loss for
the 366m line was calculated to be 2046 W per phase for the double circuit 3-phase case, and an astonish-
ing 338 W per phase for the 6-phase case. This result is consistent with reduced conductor surface
gradients, and lowered audible noise and radio noise levels.

4.4.8.4 Ground Level Electric and Magnetic Fields

Measured ground level electric fields directly below the conductor showed that 6-phase energization gave
0.52 kV/m, while double circuit 3-phase gave a significantly reduced 0.065 kV/m which is also in good
agreement with calculated values. Although the present values are of no concern, ground level electric
fields could assume greater significance at higher voltage levels. The magnetic field magnitudes at the
centre of the array at ground level were 0.047 A/m for the 6-phase case, and 0.042 A/m when the line was
encrgised as a 3-phase line with alternate phases left floating, which is in agreement with predicted values.

4.4.9 Mechanical Testing

The test line was also subjected to a series of mechanical tests, to determine the behaviour under wind and
ice loading since this aspect can be critical in the spacing of a compact HPO array. Simulated ice loading
was abruptly released using the blasting fuse technique and resulting conductor motions confirmed
analytical predictions of jump magnitude and insulating spacer performance.
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4.4.10 Switching Surges

An extensive Transient Network Analyzer (TNA) study was conducted on the line and while the details of
this study are far too intricate, it is sufficient to note that surges behaved as expected, with phase-phase
surges on phases separated by 60 electrical degrees were the most severe on a per unit basis of normal
operating voltage, and thus ultimately determine the amount of compaction achievable.

4.4.11 Discussion

While there are no criticisms of this paper per se, it is necessary to appreciate that this work showed that
HPO lines can physically be implemented, put into service and operated. The analytical techniques
currently used are valid and can be used with confidence for future design of HPO lines.

The main lessons leamed from this study are that towers are cheap and easy to make for 6- and 12-phase
lines, standard insulator and hardware components can provide simple and attractive support systems, as
well as optional midspan spacers for increased compaction. While corona related effects are dramatically
reduced, the strength of ground levels electric fields is higher for HPO lines than for the same array
energized as a double circuit 3-phase line. However, when compared to a similar thermal capacity
standard 500 kV 3-phase line, the field strength of the HPO array are actually lower.

Having constructed and tested a physical HPO line, it seems at this stage that there is nothing preventing a
utility from taking the initiative, and marching forward with the implementation of the first HPO trans-
mission line to be put into service. In fact, this was precisely the case, and forms the topic of the next, and
final case study.

4.5 First Utility Application: The Goudey-Oakdale Line

4.5.1 Background and Goals

The work described above had taken place over a period of almost 20 years and had reached a state where
almost all technical issues had been addressed, accurate line models have been developed, and a short
section of 6 and 12 phase line was physically constructed and

: L 305 tested. At this stage, the industry seemed poised for the next
® § @ s phase of the research, and in 1988 a project designed to demon-
' strate the commercial feasibility of HPO transmission was under-
, L 365 . 3.1 taken by the Empire State Electric Energy Research Corporation
T (ESEERCQ), in collaboration with New York State Electric and
o A Gas Corporation (NYSEG), and Power Technologies Incorpora-
ted (PTI)[B.IS,I6,17,18,19,20,26] )
: : 3.05 3.1
® @ After an exhaustive search of all double circuit lines within the
I New York area, with due consideration to line length, outage
Figure 4.5.1.a: Goudey-Oakdale Line potential, extent of modifications necessary, and accessibility to
Dimensions conduct tests, the 2.4 km line linking Goudey and Oakdale

substations just outside Binghamton, NY was selected. This line
was operated as a 115 kV double circuit 3-phase line, owned and operated by NYSEG, and was to be
reconfigured to run as a single circuit 6-phase line with phase to ground voltage of 93 kV (which, incident-
ly is equivalent to two, 161 kV 3-phase circuits appropriately interleaved and phase shifted). This represen-
ted an increase in power of 38% and involved not only a re-phasing, but also a voltage uprating, which
would require a complete insulation co-ordination study.
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From the very outset, it was necessary to define precisely what this project was aiming to demonstrate, and
this was formalized into the following set of objectives!™:

e to operate on a commercial basis, as a 6-phase system integrated into an existing 3-phase network

e to design and configure substation equipment at both ends of the existing line double circuit 3-phase
line, to give 6-phase operation

identify and resolve technical problems arising from the conversion

develop guidelines and tools/techniques in building and converting existing lmes to 6-phase

identify environmental benefits arising from the conversion

determine the economic break-even point of how 6-phase compares to other options

utilize advanced equipment as much as possible

demonstrate that existing double circuit 3-phase towers can be utilized or modified to accommodate 6-
phase systems

These goals will serve both to guide the research, and focus attention on what needs to be done, philosophy

of the design, and key questions that need to be answered. The entire program will be carried out in four

phases:

Phase 1: Analytical studies, development of design criteria, detailed cost estimates and schedules for
phases 2 and 3 (May 1989 - May 1990)

Phase 2 : Design engineering, procurement and construction (May 1990 - April 1992)

Phase 3 : Testing, operation and maintenance (May 1992 - April 1994)

Phase 4 : Decommissioning (May 1994 - March 1995)

While these phases will be discussed in the following sections, the descriptions are deliberately kept very
brief with the aim of the giving the reader a clear picture of the line, but not to involve him in the laborious
details of design and planning. Instead, the focus has been placed on the outcomes of the project, and
important lessons leamnt.

4.5.2 Phase 1: Approach and Results

This phase of the project was completed in June 1990, and showed that it was possible to locate the
115kV/161kV transformers and their associated switchgear at both Goudey and Oakdale with
modifications to the existing substations. A survey of the line confirmed that the line could be operated at
the proposed 93 kV phase- ground (97.6 max) if the number of insulators per string is increased to 8. With
these clearances insulation is sufficient for both power frequency, and switching surge stresses, with
lightning performance essentially unchanged by the conversion. Candidate structures have also been
identified for retrofitting with 6-phase, compact-structure tower tops.

Simulation has shown that radio, audible, and television noise will be within acceptable limits after the
conversion, and a plot of ground level electric field strength indicates that the 6-phase line meets New York
State edge-of-right-of-way limits. It is interesting to note however, that while all the above magnitudes
remain comparable to the existing double circuit 3-phase line, the ground level magnetic field strength
experiences a dramatic drop after the conversion for predicted loading levels.

Two A-Y 3-phase transformers will be installed at each substation, with the secondary of the one transfor-
mer reverse wound for the 180° phase shift. The increased impedances of these transformers cause a
decrease in the loading of the line after conversion, as well as lowered fault MVA levels for 3-phase, and
single line-to-ground faults near either end of the line. Transient stability remains essentially unchanged.

Protection will test the newly developed single phase tripping option, using live tank circuit breakers on the
6-phase side of the transformers. Single phase trip, reclose, and block logic will be implemented with the
aid of a microprocessor controlled system, utilizing current differential relaying and segregated phase com-
parison relaying as the primary protection, and stand alone digital distance relaying as the back-up
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protection. The primary protection will use multi-mode fibre optic cable, phase wrapped into one of the
conductors. CT’s and PT’s will be linked to steady-state/ transient event recording instruments for analysis
of the performance of the line. Other instruments necessary for field tests as well as measurements of the
operating, reliability and maintenance of the line were identified.

4.5.3 Phase 2: Activities of the HPO project

This phase commenced in June 1990 and included detailed design activities of the project, including the
development of substation design modifications, and procurement of equipment. This was done to support
construction scheduled to begin in April 1991, and a target completion date of February 1992.

A complete list of equipment necessary for the upgrading of both substations was generated and included
transformers, circuit breakers of the single pole, live tank design to demonstrate the substation compaction
concept, switches, surge protection, and an extensive relaying and metering/monitoring system. Protection
will be as discussed above, and the trip logic diagram is given in figure 3.3.5.a.

Exiting the transformers, the six phase conductors will connect to a horizontal lattice, and from there are
rolled vertically to a structure where the phases wiil be transposed to achieve the required physical
displacement between phases. From then on, the line continues through a series of towers composed of
conventional double circuit 3-phase towers, and compact structures of the round-top “tennis racquet”
design in order to demonstrate line compaction concepts associated with 6-phase technology.

4.5.4 Phase 3: Testing

Testing is scheduled for a two-year period over which measurements will be carried using the same basic
procedure as the Malta test lines, with a view to extend the results of the previous experimental work. The
testing is grouped into several categories:

e Power frequency parameters

Switching measurements

Corona loss

Transient parameters

Staged fault tests

e Electrical environmental parameters

The magnitude and angle of both voltage and current will be measured to determine line operation, the
degree of unbalance, and provide data for other tests. The capacitance matrix of the line will be determined
by measuring line charging current. By staging low voltage fault tests, the line sequence components and
shield wire current will be measured.

To determine the effectiveness of single pole switching, measurements will need to be taken of open circuit
voltage, and short circuit current induced onto the switched phase , as well as the degree of unbalance on
energized phases in order to determine the feasibility of extended operation with only 5 working phases.

A tremendous benefit of selecting this line is that it can be taken out of service for testing, which allows a
variety of measurements to be made to verify predictive methods. Two examples of this are corona loss,
and switching surge measurements.

4.5.5 Conclusions and Discussion

Unfortunately, there have not been any recent publications describing the outcomes of the Goudey-Oakdale
line, or in fact anything in the literature past phase 3 of the project. For this reason, the head of the
research team at PTIL, Dr. James Stewart, was contacted personally by the author and asked to report on the
results of the project.
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Initially, Dr. Stewart was asked whether the line performed better or worse than he had anticipated. He
answered that perhaps the most important single result of the project was that the line worked as expected.
Line loading, electric and magnetic fields, radio and audible noise, single pole switching, coupling to
switched phases and relaying all worked as anticipated, and correlated well with predicted values. Single
pole switching was also tested to assess the line’s performance with one or two phases out of service and
the line operated for a period of time in the above state with no problems.

Another major result was that the relaying worked well. A series of staged fault tests, and two naturally
occurring faults showed that the relaying operated as predicted from tests on a relay simulator based on
EMTP calculations. The conclusion was that it was possible to protect 6-phase lines using commercially
available relays.

The next question posed to Dr. Stewart was whether this technology was still feasible and economically
justifiable, and if so under what conditions. He replied that the project definitely showed that the
technology is not only feasibly but ready for application. It is economically justifiable for uprating of
double circuit 3-phase lines, and for new construction in locations where right of way is constrained. If
space is no object, then there is no reason to go to 6-phases, but if it is an issue, 6-phase may not only be
technically advantageous but economically superior t0o.

Asked whether there were any problems on the line, Dr. Stewart replied that when the line was originally
energized, fibre optic cable was placed on the lower two phases for relaying communication, and went into
corona in the section where compact towers were used causing excessive radio noise. The optical fibre
cable jacket had deteriorated after only a few months of operation. The phase wrap optical fibre was
changed to an all dielectric self supporting fibre (ADSS) in the compact section which solved the problem.
This, however, was not a function of 6-phase per se, but the actual compaction process, and could happen
on any compact 3-phase line.

When the line was first energized, the line currents were not as balanced as expected. This was later found
to be a problem with negative sequence current flow from the generator and not the 6-phase line. For
magnetic field testing, some switching was done at Oakdale substation which balanced the line currents.
Also, the first design of in-span insulating spacers in the compact section had mechanical and electrical
problems, but the second design worked well.

Asked for any last comments, Dr. Stewart concluded by saying that simulated (power off) live line
maintenance replacing of insulators and spacers had been performed in compact section to show that live
line maintenance is possible. The transformers worked, but it was believed that a less expensive option
should be possible for phase conversion.

In addition, William Guyker (another leading researcher in HPO working for Alleghany Power Systems)
was also approached and asked for comments on the Goudey-Oakdale project. His view was that this
project was very valuable in bringing attention to the prospect of HPO, this line was rather short (2.4km)
and so could not act as an important system element, also the transformer was simplified and could not
show value over simple voltage uprating.

4.6 General Conclusion Regarding Case Studies

Having examined a small sample of the available case studies in the literature, several conclusions can be
made about 6-phase lines, and it is felt that these should be summarized below.

Throughout the literature, it is generally agreed that the cost of the actual high phase order line per unit
distance is less than the power equivalent 3-phase line. This is due to the fact that HPO lines are more
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compact and can generally run at a lower phase-ground voltage than their 3-phase counterpart, resulting in
smaller, shorter, and subsequently lighter towers. It has been suggested that HPO lines require more
conductors than 3-phase lines due to the increased phase number, but this is also generally not true, since
3-phase lines employ multi-conductor bundles whereas HPO typically uses one or two conductors per
bundle, with conductors generally being smaller and lighter.

On the other hand, terminal equipment is more costly for HPO lines. This is inevitable due to the fact that
more transformers are necessary to achieve the required phase shift, and more circuit breakers are necessa-
ry simply due to the increased number of phases. An added issue that arose on the first case study compa-
rison (section 4.2) was that a 3-phase network could use an autotransformer to achieve its transformation,
whereas the HPO network could not do this due to its inherent phase shift. This, in itself, is an issue which
could reasonably exclude HPO from economic viability (unless there was an added factor such as land
cost).

The third case study examined HPO technology used for bulk transmission and compared a 1200 kV
experimental system with a similar capacity HPO system. While breakeven distances were generally low,
the study has shown that it is important to carefully consider the choice of base case, in order to have a
non-biased, valid comparison.

The fourth and fifth case studies were basically reports on practical lines that have been constructed and
tested, and the feedback from these experimental test lines has been invariably positive indicating that the
technology is viable, feasible and ready for application.

In general then, from the literature surveyed it is the conclusion of the author that while HPO lines offer
many unique advantages, they invariably suffer from a cost disadvantage. Some work on economic
comparisons of HPO and 3-phase lines has shown HPO to be economically superior, but it is believed that
some key issues have been side-stepped, and practical comparisons in a given location for a given line will
once again demonstrate that HPO lines do suffer from slightly higher costs.

This point was raised during an email consultation with William Guyker of Alleghany Power Systems, and
the question was asked why work into HPO had stopped in the mid 80’s. His reply was simple and
straightforward:

“As 1o Alleghany Power; everything we do is based on engineering economics and need.
HPO did not pass these tests. Today with the start of ISO’s and open markets, a most
severe market value assessment will replace engineering analysis i.e. will it pay back for
itself in say 5 years as a vital, reliable, market asset.”

However, HPO technology is unarguably a very powerful method to maximize power transfer through a
given right of way, and in the foreseeable future it is probable that land costs, and demand for electric
power, will rise to such a degree that current technology will simply become economically inferior to more
efficient methods of power transmission, such as HPO. In essence, the added cost of obtaining that
efficiency will be offset by the added cost of the land, and from that perspective it is vitally important to be
aware of this technology as a possible key player in future transmission (it should also be borne in mind
that the massive transmission system which is currently operating will eventually reach the end of its
normal service life, and will need replacing at approximately the time when land costs will become
sufficiently high, again placing HPO in a very favourable light.)

Having examined the current position of HPO worldwide, it is necessary to turn our attention to an actual

South African case study, and assess the viability of this technology for a local line, at the present
economic climate,
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5. HPO in the South African Context: A Case Study

5.1 Introduction

High phase order lines have been extensively studied for the past 25 years, generating the knowledge and
experience necessary to successfully design, implement, and run such a line. While several case studies
have been produced to ascertain the economic viability of HPO lines, these were all performed in the early
to mid 80’s and geographically limited to the United States only (and only 2 regions within the US to add to
that.). It was thus felt that to truly gauge the economic standing of this new technology, a unique South
African study would need to be carried out, and it is this endeavour which forms the subject of this last
chapter.

The study proceeds in 2 parts: the first part is a comparison of a HPO line to an existing 3-phase line which
is currently operating in South Africa, and takes the specific economics of this line into account. The
second part examines a theoretical point-to-point link, comparing 3-phase and 6-phase transmission costs
to determine a breakeven distance beyond which a 6-phase line becomes the more economic option.

As mentioned in previous sections, there are certain types of 3-phase lines which lend themselves more
directly to comparison with 6-phase, and these must be borne in mind when selecting a 3-phase base case
for comparison. Firstly, since terminal equipment costs more for 6-phase than for 3-phase, but the actual
transmission line costs less, it is favourable (for the HPO case) to have as much transmission line as
possible relative to the amount of terminal equipment, that is, make the line as long as possible and
minimize the number of “T-offs” which would require additional substations.

Next, it has been shown that with increasing voltage levels, the breakeven distances tend to become
smaller!”. so the candidate line must have a high enough voltage in order for the 6-phase line to be
comparable.

Finally, the greatest advantage of HPO technology is its ability to maximize the power density within a
given right-of-way, or conversely, to minimize the ROW necessary for a given power transfer. To take
advantage of this attribute, it is necessary to choose a 3-phase line which runs through an area having a
relatively high land value.

Other considerations were to build a 6-phase line where audio, television, and radio noise were a problem
since HPO transmission can dramatically improve on these. This was eventually discarded, however, since
such lines were considered an atypical case rather than a typical one, and corona related problems can be
addressed more easily by the installation of larger diameter conductors, and corona-free design.

Having delineated the necessary attributes of the 3-phase base transmission line, a search was initiated in
collaboration with ESKOM transmission line design section through all the existing and planned trans-
mission lines fitting the above description. The search yielded 3 candidate lines, of which one was selected
and is discussed subsequently.

5.2 The Camden-Duvha Line

5.2.1 Spacing

The line chosen to be the base case for comparison was a single circuit, 400 kV, 3-phase interconnector
running between Camden and Duvha power stations, and spanning approximately 100 km. This line thus
satisfies all of the requirements outlined above (i.e. length, voltage level, minimal tap offs) and has
dimensions as shown in fig. 5.2.1..a. A further characteristic which has made this line an interesting base
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case is that it was built using the very latest technology by ESKOM, which makes it by far the cheapest
line in its category. It utilises a “cross rope suspension tower” which is a slightly hybridized “guyed V”
tower, having only a cable running across its top, from which the three phases are suspended with “I” type
insulator strings.

3-Conductor

T T { bundle

82 m 82m \l

Bersfort
conductor
$=35.56 mm

. 3-Conductor
) bundle

Figure 5.2.1.a: Dimensions and Layout of the 400 kV 3-Phase Camden-Duvha Line

Using only the dimensions of the line, and voltage level, it is possible to determine certain electrical
characteristics which will form the criteria of the 6-phase line design.

5.2.2 Electrical Characteristics

The inductance and capacitance of a 3-phase transmission line of arbitrary symmetry is given by the
following standard equations:

L=2x10" ln(&) (5.2.2-1)
D

s

C=—"_ ..(5.2.2-2)

L = inductance per metre [H/m]

C = Capacitance per metre [F/m]

g = Permittivity of free space [8.85x10™" F/m]
D

D

m= Geometric mean distance between phases = {/D]2 xDy; xD,, [m]

s =  Geometric mean distance between the conductors of one phase =
w/(D,\D,,...D,,) x(DyDy,...D,, ). x(D,,D,,...D,,)  [m]
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Substituting the line spacing into the above equations, and remembering to correct the radius of individual
conductors by a factor of e due to internal flux linkages, the following values of inductance and
capacitance are obtained for the Camden-Duvha line:

L = 0.84 pH/m
C=13.25 pF/m

Now, power transfer capacities of transmission lines can be compared in several different ways, and the
means of comparison depends primarily on the characteristics of the line itself. For short lines that do not
impact on the stability of the transmission system itself, the thermal limit applies; this is defined as the
maximum current that can be carried, before thermal losses cause excessive sag on the line, or annealing of
the actual material. Because of stability considerations, longer lines are limited to lower power transfer
than shorter lines, and while short lines can be loaded to the thermal limit which can be several times the
surge impedance loading (SIL), longer lines are limited to SIL!*"!,

SIL is defined as the power transferred by a transmission line, when that line is terminated by a star
arrangement of resistors each having a value equal to the surge impedance of the line. When the line is
loaded thus, the reactive power generated by the line capacitance approximately equals the reactive power

used in the line inductance. For this case study, it was decided to design the 6-phase line to have
comparable SIL to the existing line due to its length.

The surge impedance of a lossless 3-phase line is given by the following formula:

L
Z, = \E (5.2.2-3)

and substituting the above values yields:
Z,=251.75Q

Surge impedance loading is calculated using the standard formula

32
SIL = Zp ...(5.2.2-4)
3
giving SIL = 635.6 MVA

It is now possible to proceed with a design for the power-equivalent 6-phase line.

5.3 Power-Equivalent 6-Phase Line

5.3.1 Transmission Line Design
The formula for surge impedance loading power transfer for a 6-phase line is given by:

NV}
SIL, = —*- (3.3-1)
Z6
where
N = number of phases in the system (6 in this case)

V = the phase to ground voltage [V]
Zs surge impedance of the 6-phase line [Q2]
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In order to achieve an equivalent power transfer from the 6-phase line, it was necessary to choose some
standard voltage level (thus taking advantage of existing equipment), and then manipulate the geometry of
the line until a suitable surge impedance was achieved.

The existing Camden-Duvha line had an operating voltage of 400 kV (phase-phase) and the nearest
standard level below this was 275 kV. Thus, the first batch of designs was produced for this voltage level,
but it was invariably found that 275 kV was just slightly too low to achieve the same SIL. Returning to 400
kV made the SIL far too large, and so an intermediate (and unfortunately non-standard) operating voltage
of 300 kV was decided upon (note also that 300 kV is the phase-phase voltage of the 2 constituent 3-phase
sets, which corresponds to 173.2 kV phase-ground).

Having set an operating voltage, and knowing the number of phases to be used, the only remaining factor

was to determine the required surge impedance using equation (5.3-1). The spacing of the line follows
directly from the surge impedance and is described by the equations below:

Z, L \/Z x P, .(5.32)
2T &

where:
12 N-1
P, = ln(——) +> Cor(ziln—) ln(l Co sec(—m—)) .(5.3-3)
r/o5 N 2 N
and:
R = Radius of the entire 6-phase array, when arranged in a circle {m]
r = Radius of one phase conductor, or effective radius of one conductor bundle [m]
N = Number of phases in the array

Again, an iterative process was used to dimension the line, sizing, calculating the surge impedance, resizing
and so on. It was found that the surge impedance (SI) was very sensitive to the R/r ratio, which needed to
be very low for the correct SI value, this meant that either the radius of the whole phase array was to be
made extremely small, or the radius of the individual conductors was to be made extremely large. The
solution finally adopted was to switch to a 2-conductor bundle for each of the phases, thus increasing the
effective radius of each conductor dramatically, while saving on cost, and lowering the R/r ratio.

The conductor originally used for the 3-phase line was a 35.56 mm diameter Bersfort, but since there were
originally 9 conductors in total (3 phases with 3 conductors per bundle), and the new number of conductors
was increased to 12 (6 phases with 2 conductors per bundle), it was decided to use a smaller diameter
conductor. A Tern conductor having a diameter of 27 mm was the next conductor in the range, and was
the final choice for the 6-phase line.

There were several aspects which were not considered in the design of the HPO line, which were electric
and magnetic fields, corona loss, radio, audible and television noise, as well as switching surge and
lightning surge performance. This was done (or not done) for the following reason: it was felt by the
author that the main focus of the project was an economic analysis of HPO lines, and for this reason a
candidate line had to be designed so that an accurate costing could be done. Thus, the aspects described
above do not need to be quantified per se, but only assured that they fall within acceptable limits.
Referring to the literature, 3 cases of 6-phase lines were found'® with a nominal voltage of 138 kV phase-
ground, and R values of 1.8m, 2.44m, and 2.13m. These lines were completely analyzed with regard to the
above parameters and performed satisfactorily under NY state regulations which is among the most severe
in the US. Scaling the above distances to 173.2 kV phase to ground, the values of 2.26m, 3.06m and
2.67m are obtained respectively, and thus the chosen radius of 3m for the present line will perform
satisfactorily with respect to E and H fields, corona loss and related effects, as well as switching and
lightning surge performance.

Page 50



o X

The final dimensions of the line are shown on the diagram below:
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Figure 5.3.1.a: Geometry and Dimensions of the Candidate 6-Phase Circuit

5.3.2 Tower Design

The tower designed for the 6-phase line is based on the designs produced for the economic analysis of
reference [8]. The final tower chosen was scheme 5, which was a guyed portal tower and was shown to be

the cheapest of all the other designs. This tower is illustrated in figure 5.3.2.a.

As can be seen, this tower was originally designed for a 12-
phase, 317 kV (phase-ground), single conductor per bundle
system and needed minor modifications. Since the 6-phase
design uses 2 conductors per bundle, the total number of
conductors remains the same, and thus that component of the
vertical loading remains unchanged. The voltage of the 6-
phase system is much lower, and there are only 6-phases in
total, so the win-dow of the portal tower can be made much
smaller, and the clearance reduced.

It was decided to retain the span lengths originally used for the
Camden Duvha line, implying that the total number of towers
will remain the same. The ratio of strain towers to suspension

towers was also kept constant for purposes of comparison, as Figure 5.3.2.a: Schematic Representation

well as the height of the towers. of a 12-Phase, 317 kV Tower

It should be mentioned in closing, that the towers chosen for

the 6-phase design require a much narrower ROW than do the existing cross rope suspension towers. This
is because the latter towers have structural elements surrounding the outer conductors, and guys projecting

from the top of the structural members outwards. While the 6-phase tower has a structural frame

surrounding the 6-phase array, the guys project towards the centre of the tower, and not outwards, thus

dramatically reducing the width necessary for the transmission corridor.
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5.4 Costing Comparison

5.4.1 Overview

Admittedly, any costing comparison is a complicated and highly intricate exercise, and invariably must take
into account the specific economics of the case at hand. However, if certain assumptions are made the
costing comparison can be dramatically simplified with only a minor loss in accuracy. The latter route has
been followed in this project because it would have been extremely costly (and to a large extent unnecessa-
ry) to hire out ESKOM’’s line design team for a comprehensive economic analysis of the line, towers and
designated route, hire out substation designers for converting substations to HPO, and transformer
manufacturers for the required 6-phase transformers. The assumptions made are simple, and can give a
very good idea of the costs involved and breakeven distances necessary.

The first assumption was to ignore the cost of land. Now, since the 6-phase line requires a much narrower
ROW than does the conventional 3-phase line, it would have saved a great deal of money on land costs, so
effectively it’s advantage is taken away by this assumption. This has been done because consultation with
line designers revealed that transmission corridor width in South Africa is determined by the voltage level
and configuration (eg. double circuit 3-phase) rather than edge-of-right-of-way field and noise levels.
When told about the lowered voltage, it was again stressed by ESKOM that legislation for ROW of 6-
phase lines was not in place, and as such would most likely be allocated the same ROW as the original
Camden-Duvha line. Since this area was ill defined and land costs are extremely variable, it was decided to
forego the advantages of a narrower ROW and disregard this part of the economic analysis.

The second assumption made was to consider that substation upgrading costs consist only of transformers,
transformer bays, and line feeder bays. This assumption is very similar to the one made by Stewart where
he considered®'” terminal costs to be dominated by transformers and circuits breakers, except that in this
assumption, the substations for the 3-phase and 6-phase case are identical throughout, except for the very
last stage where the 3-phase line is either fed into a single 3-phase transformer (which requires a single
transformer bay) and out through a single line feeder bay, or is fed into 2 smaller 3-phase transformers
(requiring 2 transformer bays) and then out via 2 line feeder bays. Thus, only the difference between the 2
substations is considered, and there is no attempt to obtain complete substation costs. Incidentally, the line
feeder bays include a complete 3-phase circuit breaker, so having 2 line feeder bays for the 6-phase line
automatically gives the correct number of circuit breakers.

Using the above 2 assumptions left only 3 components to be costed: the transmission line itself, line feeder
bays and transformer bays, and the actual transformers. Each of these elements is discussed in turn below.

5.4.2 Transmission Line Costing

This element was by far the most difficult to assess, not only in terms of the actual costing itself, but
finding the right utility, section, division, and so on. The final costing was done through a series of
consultations with Frans Ritky"* of ESKOM’s line design section.

The costing proceeded as follows: first, the original scheme 3 design®'” was entirely cost assessed. The
reason that this particular design was chosen was because it was the cheapest of the 6 designs considered in
the paper, and most importantly, all vertical, longitudinal and transverse loading values as well as limiting
conditions were given, in addition to computed base tower weights. Thus, all the necessary information
was given and the costing could be done easily and precisely. The next step was to scale the tower to the
specified size (because the original tower was designed for a 317 kV phase-ground, 12 phase system), and
scale the various costs accordingly to obtain the final tower costs.
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In scaling the towers (and costs), certain assumptions were made and are listed below:

1. Tower base weights are smaller because the mass of conductors is dramatically reduced which reduced
the loading, towers are shorter due to a lower nominal voltage, and towers are narrower because there
are only 6 phases as opposed to the original 12, operating at 173 kV as opposed to 317 kV. Taking all
the above factors into consideration, the new tower costs are reduced to approximately 60% of the
original tower costs.

2. Insulator costs are halved because there are only 6-phases as opposed to 12, requiring only 12
insulators as opposed to 24. In addition, the insulators are shorter and lighter due to the reduced
system voltage, and are modelled as 6 “V” strings to be compatible with the costing program.

3. Itis assumed that the line is a straight point to point link, and thus 280 of the 303 towers were made to
be suspension towers, 15 were light strain towers, and 8 were heavy strain towers.

4. Conductor diameter was also reduced. The original scheme 5 tower used 12 conductors of 35 mm
diameter, but this was considered to be too much, and so the next conductor in the range, a 27mm
diameter conductor was used instead.

Appendix A contains printouts of 3 cases that were analyzed on the transmission line costing program.
The first case is the original Camden-Duvha line which is the base case for comparison. The next is the 6-
phase line designed with light, 27mm diameter conductors (Tern), and is the HPO representative case. The
final case is a similar 6-phase design but using the original 35.5mm diameter conductors (Bersfort) to
illustrate the effect of conductor diameter on cost.

The respective costs were:

1. Camden-Duvha 3-phase base case: 578 557,59 R/km
2. 6-Phase line, light conductor (Temn) 468 480,14 R/km
3. 6-Phase line, heavy conductor (Bersfort) 610 360,45 R/km

As can be seen, simply changing the conductor diameter - without modifying tower base weights, etc. - to
the next value in the range has resulted in a sharp rise in costs, which is consistent with the observation that
conductor costs are by far the dominant factor in line design (for this line, at least). Thus, to optimize the
6-phase line further, it is suggested that steps be taken to minimize conductor mass as much as possible, by
cither considering alternative configurations and bundling schemes, or raising the system voltage.

5.4.3 Bay Costing

Transformer and line feeder bays were priced with the help of Lawrence Ryan®” of ESKOM’s substation
design section. As mentioned above, the only additional substation equipment necessary aside from the
transformers themselves, are the bays in which they are housed, as well as line feeder bays which consist of
the mechanical support structures and a complete 3-phase circuit breaker.

Another point which must be mentioned is that there is no bay equipment rated to a nominal 300 kV (which
is the phase-phase voltage of the two, 3-phase circuits comprising the 6-phase line), and thus the approach
taken was to price equipment for 400 kV systems, price similar equipment for 275 kV systems, and linearly
interpolate the prices to obtain a 300 kV system. The results are given in the table below:

Table 5.4.3-a: Transformer and Line Feeder Bay Costs
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5.4.4 Transformer Costs

Transformer costs were obtained with the help of Keith Plowden® U, chief executive of ABB PowerTech
Power transformers. For this project, two types of transformers were necessary: a two winding transformer
- two of which were to be used for the 6-phase transformation, and a standard autotransformer which was
to be used for the conventional 3-phase line.

As was discussed earlier, the 300 kV nominal voltage level which was to be used for the double wound
transformers was a non-standard one and so there were no “off the shelf” models which could be priced.
However, ABB PowerTech stated that such a transformer could easily be built up, as could any other
transformer in this voltage and power range, and priced according to the standard formula given below:.

A 0.62
Price = (W) x 15 (544-1)

This formula uses an 800 MVA transformer - costing 15 million rand - as a base. To obtain the price of
the new transformer, its MVA rating is substituted into the formula, and the ratio of the new MVA rating
over the 800 MVA base, raised to a constant power, gives a scale factor for the 15 million rand base and
subsequently the new price.

A similar formula was obtained for the autotransformer price. Again, the formula used an 800 MVA
transformer as the base for the calculation, but costing 11.2 million rand. The new formula is given below:

0.56
Price = (———) x 112 ...(56.44-2)
800

Finally, the question remained of how to rate the transformers. Reference [13] shows a graph of
transmission-line loading versus distance, using SIL as a base. This graph shows that the line is loaded to
1.0 SIL only at 300 miles, so rating the transformers to 600 MVA - the line’s SIL would be too low. Also,
the line’s thermal MVA rating was approximately 2000 MVA, which is 3.3 SIL and this type of loading is
only achieved with lines below 60 miles. The key was to establish a range of preliminary breakeven
distances for the line in order to know the loading and hence transformer rating.

This exercise yielded distances of the order of magnitude of 200 - 250 km, and over this distance, loading
was approximately 1.6 SIL. Thus, the total capacity of the line was set at 1000 MVA which is 1.67 SIL.

Another approach was to consider the original Camden-Duvha line and its rating. This line has a thermal
limit of 2000 MVA, and a length of 100 km. If the length is doubled, the series impedance of the line is
also doubled and stability-power limit is halved. If the thermal MVA is kept at a certain ratio to the
stability-power-limit, then it is also halved and for a 200 km line the loading will be 1000 MVA (or less if
the length is increased further.). Rating the transformers at 1000 MVA is thus considered accurate for this
length of line. The table below shows transformer costs after equations (5.4.4-1) and (5.4.4-2) have been
applied to the above data.

Line Transformer rating Number of Cost per Total cost of
transformers transformer transformation
3-Phase 1000 MVA (Auto) 1 R12.7mil R 12.7mil
6-Phase 500 MVA (2 winding) 2 R 11.2 mil R 224 mil

Table 5.4.4-a: Transformation Costs of 3- and 6-Phase Lines Loaded to 1000 MVA
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5.4.5 The Camden-Duvha Comparison

The Camden-Duvha line has been discussed in detail in section 5.2, and after defining the specific elements
to be evaluated, and their respective costs, an economic analysis can be carried out.

The line itself is an interconnector between the Camden and Duvha power stations, and directly links two
400 kV busses. Thus, to implement a 6-phase system, two sets of transformers, transformer bays, and line
feeder bays will need to be installed on both ends of the line, as well as 100 km of actual line itself. The
line will thus cost;

Table 5.4.5-a: Total Costs of 6-Phase Camden-Duvha Line

The Camden-Duvha, being nominally rated to 400 kV does not need any terminal equipment at all, and its
cost is comprised solely of the line cost itself. Its cost is then:
3 Phase Cost = R578 558/km x 100 km = R 57 855 800

Comparing the prices of the two lines, it is immediately apparent that the HPO line costs very much more
than the existing line. The difference in cost is approximately R50,7 million and represents an 87.5%
increase in cost over the original line. Clearly, HPO is not the economic option in this case, and a detailed
analysis will be given in section 5.5.

5.4.6 Breakeven Distance

To make the comparison more meaningful, a hypothetical situation is created where a point-to-point
transmission line must be built, linking two 132 kV systems, and a breakeven distance is established where
both options will cost the same amount - and above which, the 6-phase line will be the more economic
option. Note too, that the two systems to be linked are of a different voltage level to the line, and thus
terminal equipment will have to be taken into account for both 3- and 6-phase options.

As above, the 6-phase line requires two transformers, two transformer bays, and two line feeder bays at
each end of the line, as well as the line itself, whereas the 3-phase line requires one transformer, one
transformer bay, and one line feeder bay at each end of the line, as well as the 3-phase line itself. These
two requirements can thus be written as two linear equations, with the independent variable x, being the
line length.

Table 5.4.6-a: Line Cost Equation for 6-Phase Line
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Table 5.4.6-b: Line Cost Equation for 3-Phase Line

To obtain the breakeven distance of the line, the line equation of the 3-phase line is set equal to the line
equation for the 6-phase line, and the resulting equation is solved for x. This gives a breakeven distance of
225.86 km.

Breakeven Distance of 3- and 6- Phase Lines

250000000

6-Phase

Cost of Line (R)

SN

...............................
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Line Length (km)
Figure 5.4.6.a: Breakeven distance

These equations are shown in graphical form in fig. 5.4.6.a and are seen to intersect at the breakeven
distance. It is important at this stage to return to the assumption originally made about the breakeven
distance being between 200 and 250 km, and to note that the actual value is 225.86 which falls exactly
within the given limits, thus making the assumption true, and the analysis valid.

5.5 Discussion

The first case dealt with a specific economic comparison between an existing 400 kV 3-phase line
connecting Camden and Duvha power stations, and an equivalent power 6-phase line. The study showed
that for the same stretch of line, the 3-phase option would cost R57 855 800 and the 6-phase option would
cost R108 540 000. This makes the latter line R50 684 200 or 87.6% more expensive than the former.

The reason for this dramatic difference in prices lies in the fact that the original 400 kV 3-phase line
directly connects two 400 kV 3-phase systems, and thus does not need any voltage transformation or phase
conversion, and consequently does not require any terminal equipment. The 6-phase line on the other hand,
must have costly terminal equipment installed at both ends of the line for both voltage transformation, and
phase shifting. Line feeder bays must be installed for the line side breakers.
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Furthermore, the transformation capacity on both ends of the line was planned for a much longer line (200
-250 km) and thus is considered to be underrated for the 100 km Camden-Duvha stretch. To be more
realistic, the transformation capacity should be brought closer to 2000 MVA, adding R24.1 million rand
to the cost of transformation (this figure is the sum of all four transformers).

As can be clearly seen, this line is entirely unsuitable for upgrading to 6-phase transmission. The cost of
terminal equipment far outweighs any cost advantage offered by the line, and unless the cost of the land
saved - which has not been taken into account - can offset the additional terminal costs (which is practically
impossible), it is the view of the author that the existing 400 kV 3-phase line is the better choice for this
application.

The second case dealt with an economic breakeven point between a 173 kV, 6-phase line and a 400 kV, 3-
phase line similar to the Camden-Duvha line but not restricted in length. To make the comparison more
even, this line was assumed to connect two 132 kV 3-phase systems, which would necessitate transfor-
mation for both options, and associated terminal equipment.

Since the substations are essentially similar except for the transformers, transformer bays, and line feeder
bays, the other costs were assumed equal and only the above elements were taken into account when
considering terminal costs.

Performing the analysis showed a breakeven distance of 225.86 km and the question must now be asked: is
this distance feasible? To answer this, there is a well known “rule of thumb” which states that the system
voltage increases approximately 100 kV for every 100 km, and thus a 400 kV line should be approximately
400 km long. In light of this fact, a breakeven distance of 225.86 km is well within the line length of a
typical 400 kV line, and would represent a saving of R19.17 million. If one considers further that the
cross-rope suspension towers used for the Camden-Duvha line are the cheapest ones used by ESKOM, and
represent the state of the art in tower design, the fact that the 6-phase line was able to save almost R20
million over a typical stretch becomes a significant achievement.

An anomaly to this rule is seen in the Camden-Duvha line which is rated to 400 kV but is only 100 km
long. A discussion on this matter with ESKOM line design team revealed that this line is one of the most
heavily loaded 400 kV lines in operation, and its voltage was deliberately made higher to account for this
fact. This again, goes to explain the peculiarly high cost differential seen in the previous case.

An additional factor which goes to influence cost is the transformer type. So far this has not been
mentioned, but the 3-phase line uses autotransformers exclusively for its transformation, which are by far
cheaper than the 2-winding transformers used for the HPO line. This is permitted by the fact that both 132
kV systems were assumed to be in phase. If this were not the case, the 3-phase line would also need 2-
winding transformers which would further reduce the breakeven distance.

A factor which was previously neglected was the effect of land savings. As mentioned previously, the HPO
towers were designed specifically with reduction of ROW in mind, having outer phase distance of 6m, com-
pared to 16.4m for the 3-phase line. The former also had an internal guy-rope system allowing for maxi-
mum compaction, whereas the latter had external guys. To assess the impact of land savings, Frans Ritky
of ESKOM’s transmission line planning division was consulted and asked for typical values. The Camden-
Duvha line currently uses a servitude of 55m width, whereas if the 6-phase alternative line were to be built,
it would most likely be assigned the same servitude as a 132 kV line, namely 35m. The existing line thus
uses an additional 20m of land or 57% more then the 6-phase line. Looking further into the problem, the
typical cost of land for the Camden-Duvha line is approximately R4000/hectare, which means that a saving
of R8000 is achieved per kilometer of 6-phase line, or R800 000 for the 100 km stretch. Calculating a new
breakeven distance with the inclusion of land costs, yields a slightly improved value of 214.2 km.
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Although the above results do not show a dramatic difference, it is nevertheless believed by the author that
land-value is the single most important factor in HPO line economics. The cost of land in this project
forms approximately 2.2% of the total cost (for 100km, including substations) of the project, and is thus
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confounded by other cost factors. As soon as
this factor takes on a more dominant role, the
cost of HPO lines will become very
competitive in relation to existing lines.

An aspect which is steadily gaining attention
is that of magnetic fields, and their mitigation.
To study this, a short routine (which is listed
in Appendix B) has been written, and com-
putes the B-field magnitude at the centre line,
ground level, for a half period of the power

N frequency. The variation of magnetic field at
the given point with the angle of the current is
plotted in figure 5.4.6.b.

0 50 100 150 200
Initial Phase Angle of Reference Current [Degreas]
Figure 5.4.6.b: Magnetic Field at Ground Level at the Centre Line As can be seen the maximum value of B-field
for the 3-phase case is 10.48 uT whereas the

value of the B-field for the 6-phase case is 5.33 T, under maximum loading conditions, i.e. 1000 MVA.
The value of the field itself is not only significantly reduced for the 6-phase case, but has a far smaller
variation than its 3-phase counterpart showing a significant degree of natural field cancellation. This has a
very important implication: the most damaging aspect of magnetic fields is considered to be their rate of
change™ since this induces an EMF (and hence current) into nearby objects. Comparing the rate of
change of the 3-phase and 6-phase B-fields from fig. 5.4.6.b, it can be seen that the latter’s derivative with
respect to time is approximately zero, and its resultant damaging effect is negligible, whereas the former
has a large derivative with the traditional damaging effects. Both options’ field values were found to be
well within stringent US limitst™9

Brief mention should just be made of thermal loading calculations. While the calculations themselves are
long and laborious, a rough guide to check proper operation is the value of current density. At full load i.c.
1000 MVA, the current density of the 3-phase line is 0.70 A/mm? and 1.19 A/mm? for the 6-phase case.

A consultation with Rob Stevens of ESKOM!™ revealed that while the current density for the HPO line is
slightly on the high side, the conductor is smaller and permits more effective cooling. Although it is
preferred to keep the current density slightly lower than 1.0 a/mm? , this value is still acceptable and will
work well. Mr. Stevens also commented that some lines are sometimes operated at 2.0 A/mm? for short
periods, and the line under consideration will only be operating at full load for a small portion of the time.

It should be noted, in closing, that compacting the lines leads to a reduction in series impedance, and so it is
believed that switching to HPO compaction technology could do away with expensive and clumsy series
line compensation, which introduces another cost advantage. In addition, it has been mentioned previously
that HPO lines are naturally very well balanced, and as such could eliminate the common - and costly -
practice of line transposition.
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6. Conclusions

This project has dealt with the novel means of compacting transmission lines, and maximizing the power
density through transmission corridors using the technology of high phase order transmission. The report
was divided and presented in four parts, namely: principles of HPO technology, HPO technology itself, a
brief survey of case studies performed elsewhere in the world, and a unique South African case study
performed by the author.

The first section sketched the brief principles underlying HPO technology. It was shown how Barnes and
Barthold’s!"! original analysis showed that 95% of the power carried by a transmission line could be found
within a radius of 5% of the phase-phase distance, implying that transmission corridors were being utilized
very inefficiently. The next subsection went on to introduce HPO using a 6-phase phasor diagram, and its
associated sine waves, and finally the section established that besides the obvious compaction, HPO had
many other advantages which could make it attractive as a design alternative, including minimal current
unbalances, ability to perform single pole switching, electric and magnetic field mitigation, dramatic reduc-
tion in corona and corona related effects, aesthetic appeal (although this has not been scientifically estab-
lished), total compatibility with existing 3-phase systems, and in some cases, a distinct economic benefit

The second section of the report discussed the actual technology of HPO systems. Initially, a means of
defining system voltage was established, using the phase-ground voltage as the least ambiguous. Then,
various technical aspects were discussed, potential coefficients were calculated, which allowed computa-
tion of inductance, capacitance and surge impedance. Then, the all important subject of fault analysis was
developed and it was shown that symmetrical component transformations (using eigenvalue analysis as a
base) could successfully be applied to fully transposed HPO lines. However, by their nature, HPO lines
could not be fully transposed, but only “roll transposed”, and this was taken into account in the impedance
matrix by having 4 unique elements, as opposed to 2. Load flow analysis was then covered and it was
shown that this could be easily performed using existing 3-phase packages, by simply treating the line as
two interleaved 3-phase lines with appropriate compensation built into the line parameters.

In the same section it was shown that switching surge analysis could be divided into 3 groups of surges:
those occurring between adjacent phases, those occurring between alternate phases, and those occurring
between opposing phases (this is for a 6-phase system only). On a per-unit basis it was shown that surges
occurring between adjacent phases were the most severe, and thus would limit the degree of compaction
achievable, but compared to 3-phase switching surge data these results were comparable. Lightning surge
performance remained approximately similar to 3-phase performance. The implementation of protection
systems was then covered and appropriate criteria established. Finally, the vital element of transformer
configuration was discussed. As it happens, transformer secondary interconnections which would achieve
6-phase operation were very simple, requiring only 2 sets of 3-phase phasors, the one shifted 180 electrical
degrees with respect to the other, and then the two systems superimposed onto one another. Actual
implementations of this using various types of transformers were numerous, but it was generally agreed
that from a cost and space saving point of view, two 3-phase transformers connected as delta-star, and
delta-inverted star, were the best option.

The third section of the report analyzed 5 case studies in HPO economics and technology. The first 2 cases
both dealt with upgrading of double circuit 3-phase lines to 6-phase operation, but were written by different
researchers (Stewart® and Guyker®), and approached the subject in different ways. Stewart considered 5
limiting cases and analyses them all for possible uprating to a higher voltage level, or 6-phase operation.

He then calculated the operating savings per kilometer if the line was modified to 6-phase operation and
established a breakeven distance where these saving would offset the added cost of terminal equipment.
Guyker, on the other hand, considered uprating of an existing transmission line (the Charleroi-Yukon line)
to either a higher voltage or 6-phase operation.
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It was generally felt that Stewart did not compare 3- and 6-phase lines, but only 6-phase line performance
and its savings. Guyker compared the 2 lines and found that the 6-phase option was the more costly, but
only because the 3-phase lines used the much cheaper autotransformers, as opposed to 2 double-wound
transformer sets. The next case study compared UHV transmission between a newly developed 1200 kV 3-
phase system, and 5 different HPO designs having both 6- and 12-phase transmission and different voltage
levels. While the HPO lines performed very well at this voltage and loading level several criticism were
made about this comparison: firstly, is a 1200 kV line a valid base case for comparison, and how does it
compare to existing methods of transmitting this amount of power? Is the capacity of the 3-phase line
evenly matched with the capacities of the candidate HPO lines? (and there is some speculation about this
question) And finally, was terminal equipment thoroughly considered in terms of the necessary ratings and
availability?

The fourth case study described the first test line in Malta. This was a 366 m stretch of line, having both
6- and 12-phase lines running parallel each other, and along its way having many different types of towers,
insulator configurations, mid-span spacers, and so on. The most important outcome of this test line was
that it performed precisely as predicted by the computer simulations and thus these simulations could be
trusted in the designs of further lines.

The fifth and final case study described the first utility application of a 6-phase line between Goudey and
Oakdale substations, a 2.4 km stretch of line in Binghamton NY operated under the joint supervision of
NYSEG, ESEERCO, and PTI. A discussion with the project supervisor revealed that the line’s most
important contribution to the field of HPO was in that it performed as expected, with fields, corona effects,
and loading correlating well with predicted values. The line is also economically justifiable where ROW is
constrained. Minor problems on the line included slight corona emanating from the optical fibre coat, and
excessive unbalances which were later found to be a generator problems rather than a characteristic of the
line itself. Finally, a series of simulated live maintenance operations were performed on the line and shown
that this is technically viable, and safe.

The fourth and final section of the report discussed a South African case study. Here, the 400 kV, 3-phase,
100 km Camden-Duvha line was compared to an equivalent power 6-phase line and it was found that the
latter line was at least R50.7 million, or 87.5% more expensive than the former. This can be attributed to
the fact that the original line connected two 400 kV busses directly and did not use any additional terminal
equipment, whereas the 6-phase line needed all the transformation and switching equipment added to its
cost, on both ends of the line. This line was also unusual in that it was rather short for its voltage level,
and very heavily loaded thus confounding the savings of the actual line itself

To correct this discrepancy, a second comparison was carried out where a breakeven distance was
established between 2 lines similar to the above, but connecting two 132 kV systems, which would require
both options to have terminal equipment. The results of this study showed the breakeven distance to be
225.86 km, and taking into account the rule of thumb that line voltage is increased by approximately 100
kV for every 100 km, these line would typically be 400 km long, and thus this breakeven distance is
considered a very positive result. In this comparison, several other factors need to be borne in mind, in
order to contextualise the results:

® The type of line used as base case is a cross rope suspension tower which represents the cheapest, and
most advanced technology used by ESKOM at the present time and the fact that for typical stretches a
6-phase line is cheaper than this technology, becomes a very significant discovery.

* The type of terminal equipment used is very important. For the 3-phase line, typical autotransformers
were used as is standard practice at ESKOM for this voltage level. For the 6-phase line, two separate
transformers were used, each a double wound transformer (which is far more expensive than an auto-
transformer), rated to half the value of the original. This was done to make the comparison more
realistic, but simultaneously imposed a severe cost penalty on the HPO line. If the two 132 kV systems
were out of phase, the 3-phase line would also need to employ double wound transformers, which
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would increase the cost of its terminal equipment, reduce the terminal equipment cost differential
between the two options, and significantly shorten the breakeven distance. In addition, it is believed
that if 6-phase lines became more common, dedicated transformers would be designed for this type of
operation which would decrease their cost substantially.

*  An important factor which has been excluded from the breakeven calculations was the cost of land. As
has been previously mentioned, HPO technology works best when land is very expensive or
constrained. In this case, the distance between outer conductors has been reduced from 16 4mto6m
and special towers with internal guy ropes were used as opposed to the external guys used for the cross
rope suspension tower thus further reducing the ROW necessary. If the savings on land costs had been
taken into account, the 6-phase option would present a far stronger case and breakeven distances would
decrease. Land value has presently not been considered to make the comparison more realistic
(following ESKOM’s land allocation practices). ,

e Finally, the 6-phase option with its circular conductor configuration gives a far more balanced system
than its 3-phase counterpart, and does not need transposition. In addition, bringing the respective
phases closer together reduced the series inductance of the line, obliviating the need for series capacitor
compensation. This represents another potential cost saving of HPO lines.

In conclusion, it has been demonstrated in this report that there is a vast body of knowledge that exists in
the literature dealing with all aspects of HPO lines, from analytic techniques, to protection, to dedicated
computer programs dealing specifically with HPO lines, to various studies showing the technical benefits of
HPO lines. There is also a number of case studies which attempt to quantify the economic benefits of this
technology using aspects such as reduced corona loss, lighter towers, and smaller conductor diameters for
its costs saving mechanism. Finally, there is the first utility application of a 6-phase line, which has gone a
long way in showing the feasibility of this technology and building confidence in its ability to performs as
well as, if not better than, current lines.

Focusing specifically on South Africa, the following points can be made: land value, and current land
allocation practices are not yet stringent enough to cause an overwhelming demand for any type of
compaction technology. There is, however, evidence that the population is quickly increasing in numbers,
as well as demand for electric power, so it is not too difficult to imagine that in the near future a situation
will be created where land is expensive, very hard to attain, and there is a demand for large amounts of
electric power - a scenario suited perfectly to high phase order technology.

Nevertheless, it was shown that even in the present times, 6-phase transmission can be cheaper than even

the most advanced (and cheapest) technology, given that certain criteria are fulfilled. These are:

1. that the line be sufficiently long to allow savings on the actual transmission line to dominate over the
added expense of HPO terminal costs

2. that there be as little terminal equipment as possible, that is, few tee-offs and only point to point
applications.

3. that the voltage be sufficiently high to allow the reduction of field levels, land savings and corona
related effects to become apparent. These can subsequently offer economic benefits.

In closing, it should just be said that this technology is available, and ready for application. While the
present economic climate does not particularly favour its implementation, it is easy to envisage a time
where such a technology will be widely used, and as such must not be forgotten as an invaluable future
design alternative.
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Appendix A: Costing Printouts

This appendix contains printouts of the original EXCEL worksheets used to cost the transmission lines, and
is broken down into very specific cost components.

The three worksheets are:
1. Costing of the original Camden-Duvha line

2. Costing of the final 6-phase

3. Costing of the 6-phase line using a heavier conductor (for comparison purposes)
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Appendix B: MATLAB Code

B.1. Magnetic Field Plotting Program

function mag_fld2(h,current3,current6)

%

% this m-file will calculate the maximum magnetic field given by

% either a 3- or 6-phase line, as a function of the starting angle

% of the current, and plots a graph of it.

% ,

% enter the parameters as such:

% mag_fld(Height_above_ground, current_of 3phase, current_of 6phase)
%

forj=1:181

angle(j) = (j-1);
angle_rad = angle(j)/180*pi;

fld_3(j) = field_3a(current3, h, angle_rad)*4*pi*0.1;
fld_6(j) = field_6a(current6, h, angle rad)*4*pi*0.1;

% I have multiplied H-field values by 4.Pi.e-7 but then multiplied back by
% e+6 to get values in microtesla. Hence the 0.1 factor

end;

plot(angle,fld_3,angle,fld_6)
xlabel('Initial Phase Angle of Reference Current [Degrees]’);
ylabel('Magnetic-Field [micro-Tesla)')

end

B.2. 3-Phase Calculation Routine

function [total_H, angle] = field_3(current, height, phase)

%

% this function will calculate the value of magnetic field anywhere

% along the centre line of the Camden-Duvha line. It uses the geometric
% equivalent value of the 2 conductor bundle.

%

% inputs are given in the order:

% field_3(current_magnitude, height_above _ground, initial_phase_angle)
%

% outputs are total magnetic field magnitude, and angle above horizontal

% initialise all the beginning variables
%
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total x =0.0;

total_y = 0.0;
total H=10.0;
angle = 0.0;

% initialise the currents in the conductors:
%

I(1) = current*sin(phase);

I(2) = current*sin(phase+2*pi/3);

I(3) = current*sin(phase+4*pi/3);

% initialise all the conductor angles to the centre line
%

theta(1) = 0.0;

theta(2) = atan( 8.2 / height );

theta(3) = -theta(2);

% initialise all the conductor distances to the point of interest
%

dist(1) = height;

dist(2) = sqrt(height"2 + 8.2/2);

dist(3) = dist(2);

% "for" loop to add elements of x and y fields together
%

forj=1:3

field()) = 1(j) / (2*pi*dist(j));

total_x = total_x + field(j)*cos( theta(j) );
total_y = total_y + field(j)*sin( theta(j) );

end;

total_H = sqrt( total x"2 + total _y"2);
angle = atan( total_y / total_x );

end

B.3. 6-Phase Calculation Routine

function [total_H, angle] = field_6(current, height, phase)

%

% this function will calculate the value of magnetic field anywhere
% along the centre line of my 6 phase array. It uses the geometric
% equivalent value of the 2 conductor bundle.

%

% inputs are given in the order:
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% field_6(current_magnitude, height_above ground, initial phase angle)
%
% outputs are total magnetic field magnitude, and angle above horizontal

% initialise all the beginning variables
%

total_x =0.0;

total_y =0.0;

total H=10.0;

angle = 0.0;

yl = 1.5*sqrt(3);

% initialise the currents in the conductors:
%

I(1) = current*sin(phase);

1(2) = current*sin(phase+pi/3);

I(3) = current*sin(phase+2*pi/3);

I(4) = current*sin(phase+pi);

I(5) = current*sin(phase+4*pi/3);

1(6) = current*sin(phase+5*pi/3);

% itialise all the conductor angles to the centre line
%

theta(1) = 0.0,

theta(2) = atan( y1 / (height-1.5) );

theta(3) = atan( y1 / (height+1.5) );

theta(4) = 0.0;

theta(5) = -theta(3);

theta(6) = -theta(2);

% initialise all the conductor distances to the point of interest
%

dist(1) = height-3;

dist(2) = (height-1.5)/cos(theta(2));

dist(3) = (height+1.5)/cos(theta(3));

dist(4) = height+3;

dist(5) = dist(3);

dist(6) = dist(2);

% "for" loop to add elements of x and y fields together
%

forj=1:6

field(j) = 1(j) / (2*pi*dist(j));

total_x = total_x + field(j)*cos( theta(j) );

total_y = total_y + field(j)*sin( theta(j) );

end;

total_H = sqrt( total_x"2 + total y~2);

angle = atan( total_y / total x);

end
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