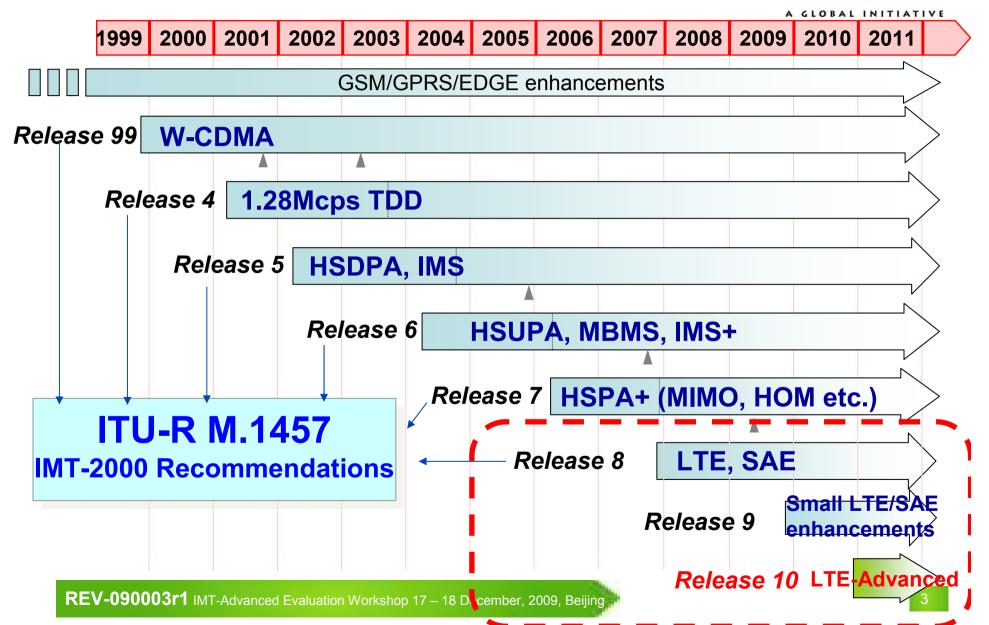
REV-090003r1

LTE-Advanced Physical Layer

Matthew Baker, Alcatel-Lucent Chairman 3GPP TSG RAN WG1

TM

A GLOBAL INITIATIVE


Contents

- **1** Introduction
- n Downlink Physical Layer Design
- Uplink Physical Layer Design
- ♠ Specific support for TDD
- Specific support for half-duplex FDD
- → UE categories in Rel-8
- Enhancements for LTE-Advanced

Releases of 3GPP specifications

Physical Layer Specifications

- → TS 36.201 E-UTRA Physical layer: General description.
- → TS 36.211 E-UTRA Physical channels and modulation .
- → TS 36.212 E-UTRA Multiplexing and channel coding.
- → TS 36.213 E-UTRA Physical layer procedures .
- TS 36.214 E-UTRA Physical layer Measurements
- The latest version of the specifications can be downloaded from:
 - http://www.3gpp.org/ftp/Specs/

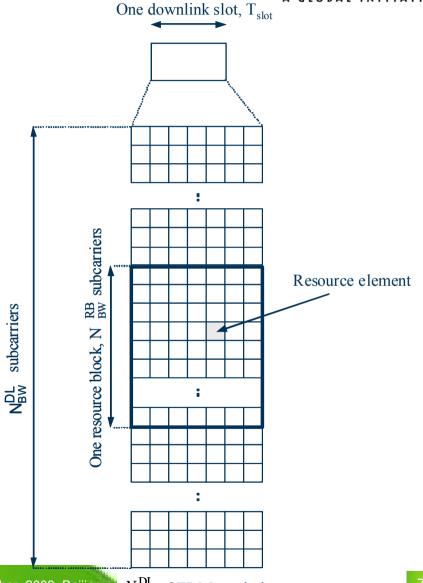
Orthogonal Multiple Access Schemes

Downlink: OFDMA

- High spectral efficiency
- Robust against frequency-selectivity / multi-path interference
 - Inter-symbol interference contained within cyclic prefix
- Supports flexible bandwidth deployment
- Facilitates frequency-domain scheduling
- Well suited to advanced MIMO techniques

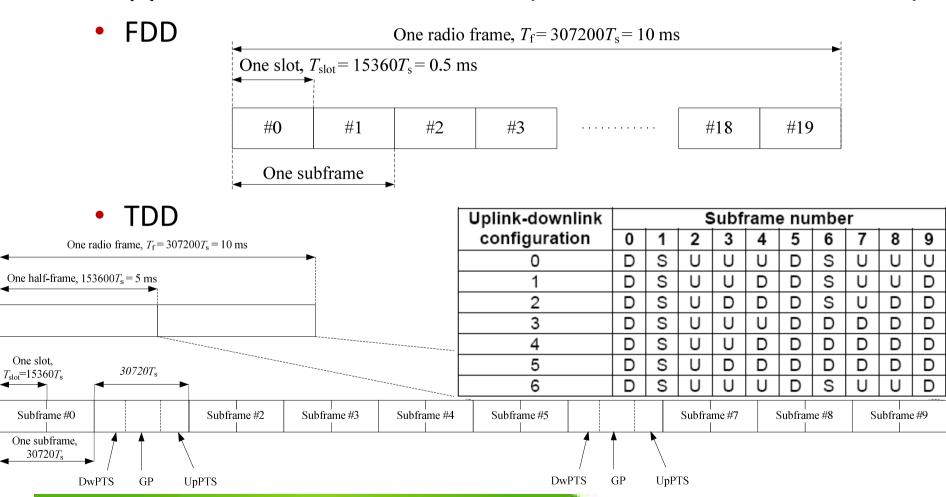
1 Uplink: SC-FDMA

- Based on OFDMA with DFT precoding
- Common structure of transmission resources compared to downlink
- Cyclic prefix supports frequency-domain equalisation
- Low Cubic Metric for efficient transmitter design


LTE Release 8 Major Parameters

Access Scheme	DL	OFDMA
	UL	SC-FDMA
Bandwidth		1.4, 3, 5, 10, 15, 20 MHz
Minimum TTI		1 ms
Sub-carrier spacing		15 kHz
Cyclic prefix length	Short	4.7 μs
	Long	16.7 μs
Modulation		QPSK, 16QAM, 64QAM
Spatial multiplexing		Single layer for UL per UE
		Up to 4 layers for DL per UE
		MU-MIMO supported for UL and DL

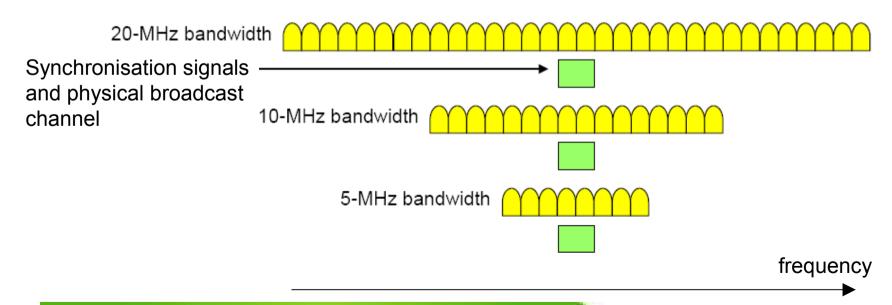
Transmission Resource structure


- Basic unit of resource is the Physical Resource Block (PRB)
- ↑ 12 sub-carriers x 0.5 ms
- Allocated in pairs (in time domain)
- ↑ 1 sub-carrier x 1 symbol = 1 resource element (RE)
- Spatial domain measured in "layers"

One radio interface, 2 frame structures

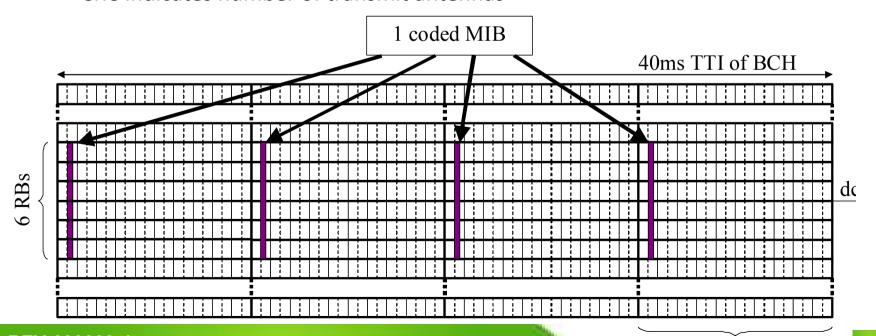
Supports both FDD and TDD (two RITs within one SRIT)

Contents

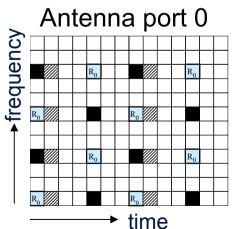


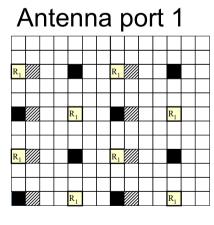
- **1** Introduction
- **a** Downlink Aspects
- **N** Uplink Aspects
- ♠ Specific support for TDD
- Specific support for half-duplex FDD
- → UE categories in Rel-8
- Enhancements for LTE-Advanced

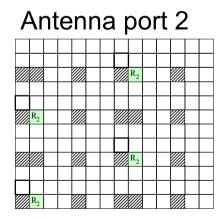
Low complexity cell acquisition

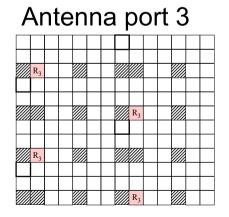

- **Synchronisation signals and broadcast channel:**
 - Fixed bandwidth
 - Centrally located
 - Allows straightforward bandwidth-agnostic cell-search

Cell acquisition signalling

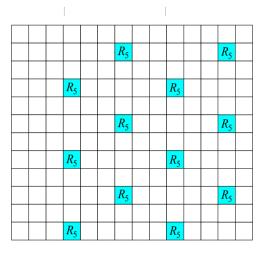

- Synchronisation signals in subframes 0 and 5 of each 10 ms radio frame
- n Physical broadcast channel (PBCH) in subframe 0 of each radio frame
 - Carries the Master Information Block (MIB)
 - Includes indication of system bandwidth
 - Robust design for cell-wide coverage:
 - Low rate, QPSK, robust channel coding (1/3-rate tail-biting convolutional code with repetition), 40 ms TTI
 - CRC indicates number of transmit antennas



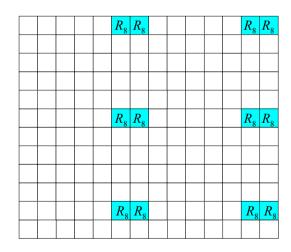

36P


Reference Signals (RS)

- In Rel-8, cell-specific RS are provided for 1, 2 or 4 antenna ports
 - Pattern designed for effective channel estimation
 - Sparse diamond pattern supports frequency-selective channels and highmobility with low overhead
 - Up to 6 cell-specific frequency shifts are configurable
 - Power-boosting may be applied on the REs used for RS
 - QPSK sequence with low PAPR




n Rel-8:


 UE-specific (precoded) RS may be provided in data transmissions to specific UEs

n Rel-9:

- UE-specific RS extended to dual-layer transmission
- CDM between RS of the two layers

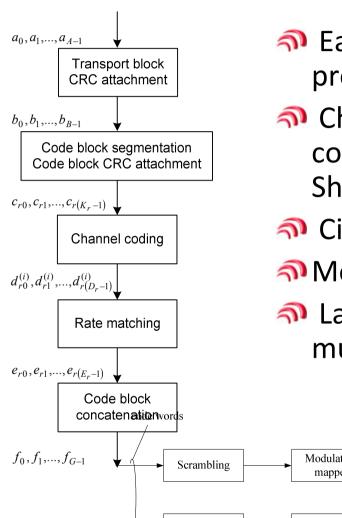
36 P

Downlink control signalling

- Flexible design to avoid unnecessary overhead
 - First 1-3 OFDM symbols in each subframe (2-4 in narrow bandwidths)
 - Control region size is dynamically variable
 - Length indicated by Physical Control Format Indicator Channel (PCFICH) in first OFDM symbol of each subframe
 - PCFICH is designed to be robust
 - 16 QPSK symbols transmitted with full frequency diversity

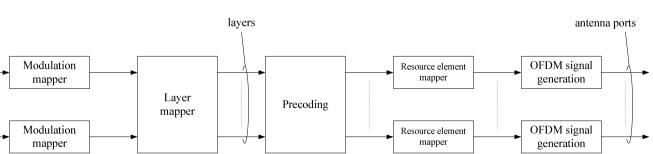
Nithin the control region:

- Physical Downlink Control Channel (PDCCH) carries Downlink Control Information (DCI) messages:
 - downlink resource assignments
 - uplink resource grants
 - uplink power control commands
- Physical Hybrid ARQ Indicator Channel (PHICH) carries ACK/NACK for UL data transmissions


Physical Downlink Shared Channel (PDSCH)

- Carries user data, broadcast system information, paging messages
- Transmission resources are assigned dynamically by PDCCH
 - Localised (suitable for frequency domain scheduling) or
 - distributed (suitable for maximising frequency diversity)

One subframe = 1 ms12 subcarriers Data for UE1: (localised) Data for UE2: (distributed) Data for UE3:


PDSCH physical layer processing

Scrambling

- ♠ Each TTI, 1 or 2 transport blocks are processed from MAC layer
- Channel coding is based on 1/3 rate turbo code with trellis termination to approach Shannon capacity
- Circular buffer rate matching
- Modulation QPSK, 16QAM, 64QAM
- Layer mapping and precoding for support of multi-antenna transmission

- n Rel-9, each UE is configured in one of 8 "transmission modes" for PDSCH reception:
 - Mode 1: Single antenna port, port 0
 - Mode 2: Transmit diversity
 - Mode 3: Large-delay CDD
 - Mode 4: Closed-loop spatial multiplexing
 - Mode 5: MU-MIMO
 - Mode 6: Closed-loop spatial multiplexing, single layer
 - Mode 7: Single antenna port, UE-specific RS (port 5)
 - Mode 8 (new in Rel-9): Single or dual-layer transmission with UEspecific RS (ports 7 and/or 8)
- (in each case, transmit diversity is also available as a fallback)

Details of PDSCH transmission modes (1)

↑ Mode 2:

- SFBC for 2 antenna ports
- SFBC / FSTD for 4 antenna ports

Mode 3:

- Large delay CDD increases frequency selectivity
- Allows open-loop spatial multiplexing
- Up to rank 2 without closed loop precoding feedback from UE

Mode 4:

- Precoding using specified codebook for the relevant number of antenna ports
- Supports up to 4 layers
 - Max 2 codewords to limit signalling overhead
- Closed-loop precoding feedback from UE
- Used precoding matrix is indicated to UE on PDCCH

Details of PDSCH transmission modes (2)

♦ Mode 5:

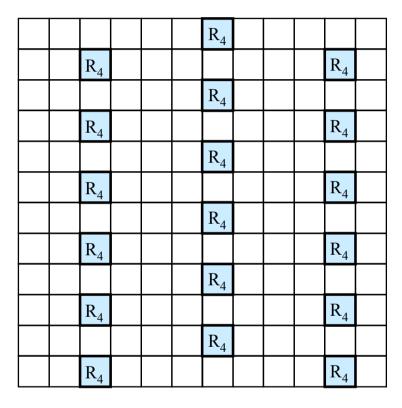
- Rank 1 MU-MIMO
- Based on same precoding codebooks and feedback as Mode 4
- PDCCH indicates power offset for PDSCH

⋒ Mode 6:

Based on mode 4 but for single-layer only

Mode 7:

- UE-specific RS
- Suitable for UE-specific beamforming, e.g. based on angle of arrival (no closed-loop precoding feedback from UE)


♠ Mode 8:

- Dual-layer UE-specific RS
- Closed-loop precoding feedback may or may not be used
- Supports dual-layer SU-MIMO and single-layer MU-MIMO

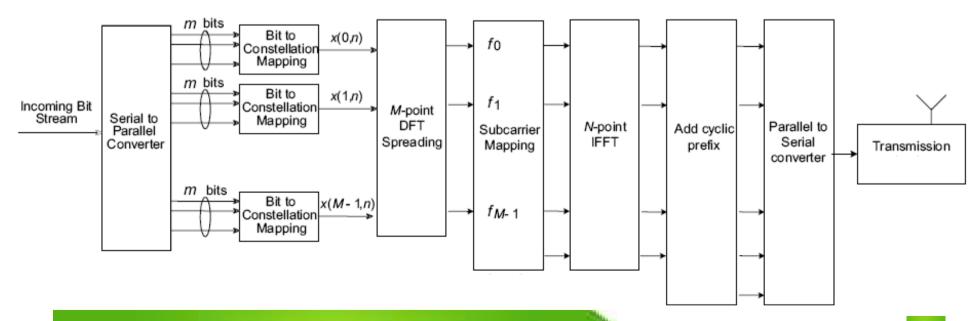
MBMS

- Supports Single-Frequency
 Network operation for high
 performance: "MBSFN"
 subframes
 - Physical Multicast Channel (PMCH) is used instead of PDSCH
 - Special RS pattern with higher density in frequency domain supports longer "delay spread" from multi-cell transmission

even-numbered slots odd-numbered slots

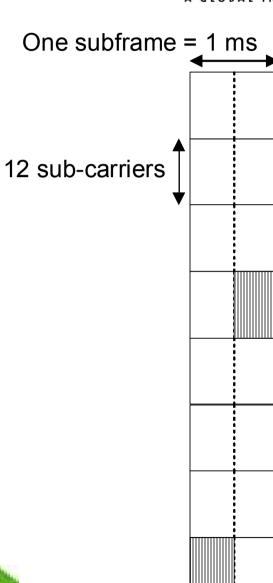
Antenna port 4

Contents

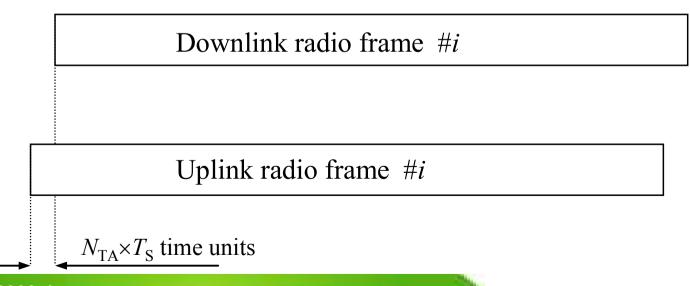


- **1** Introduction
- **n** Downlink Aspects
- **ា** Uplink Aspects
- ♠ Specific support for TDD
- Specific support for half-duplex FDD
- → UE categories in Rel-8
- Enhancements for LTE-Advanced

Uplink multiple access: SC-FDMA


- Same parameterisation as downlink
- ♠ DFT precoding ensures low PAPR / cubic metric
- Cyclic prefix facilitates frequency-domain equalisation at eNodeB

UL transmission resource allocation


- Same structure of PRBs in frequency domain as downlink
- ♠ Contiguous PRB allocation
- Possibility to configure frequency hopping to increase frequency diversity
- Number of allocated PRBs for a given user in a given subframe is in multiples of 2, 3 and 5 for low-complexity DFT implementation

3GP

Timing Advance

- Uplink transmission orthogonality between users is maintained by timing advance
- Set initially during Random Access Procedure
- Updated as necessary subsequently
- → Supports at least 100 km cell range
 - Greater ranges are up to the implementation

3GP

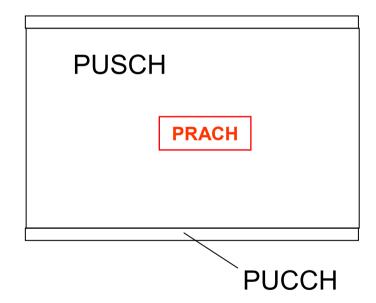
Uplink channel structure

- Data transmissions on Physical Uplink Shared Channel (PUSCH)
 - In centre of uplink bandwidth
 - Minimises out-of-band emissions from wide-bandwidth data transmissions
 - 1 transport block per TTI
 - Same channel coding / rate matching as PDSCH
 - Modulation QPSK, 16QAM, 64QAM
- Nhen PUSCH is transmitted, any control signalling is multiplexed with data to maintain single carrier structure
- When no PUSCH, control signalling is on Physical Uplink Control Channel (PUCCH)
 - Usually at edges of system bandwidth
 - PUCCH hops from one side of the carrier to the other to maximise frequency diversity

m=1	m = 0			
m=3	m=2			
PUSCH				
m=2	m=3			
m = 0	m=1			

- **♦• ACK/NACK for PDSCH transmissions**
- → Scheduling Request (SR)
- Channel Quality Information
 - CQI indicates an index of a Modulation / Coding Scheme (MCS) that could be received on PDSCH with BLER ≤ 0.1
 - PMI indicates preferred precoding matrix for PDSCH
 - RI indicates number of useful transmission layers for PDSCH

Channel Quality reporting modes


- → CQI/PMI/RI can be periodic on PUCCH
 - Wideband or UE-selected sub-band
- → CQI/PMI/RI can be aperiodic on PUSCH
 - Triggered by 1 bit in PDCCH message
 - Wideband, UE-selected sub-band or higher-layer configured sub-band
- Nith or without PMI depending on the configured transmission mode

36 P

Random Access Channel (RACH)

- ♠ PRACH resources assigned by eNB within PUSCH region
- ♠ PRACH preamble fits into 6 PRBs
 - Sufficient for timing estimation
 - Invariant with bandwidth for low complexity
 - Zadoff Chu sequence
 - Excellent correlation properties
 - Zero correlation zone for different cyclic shifts
 - Flat frequency spectrum
 - Different sequences provided first by different cyclic shifts, then by different root sequences

Multiple PRACH formats suitable for different cell sizes

- Zadoff Chu sequences
- Demodulation RS (DM RS)
 - Embedded in each PUCCH and PUSCH transmission
 - Same bandwidth as control / data transmission
- → Sounding RS (SRS)
 - In last symbol of a subframe
 - Can be configured by network
 - Supports:
 - UL frequency-domain scheduling
 - Channel sounding for downlink transmissions, especially for TDD
 - Uses interleaving in frequency domain (alternate subcarriers) to provide additional support for multiple users transmitting SRS in the same bandwidth

Uplink Power Control

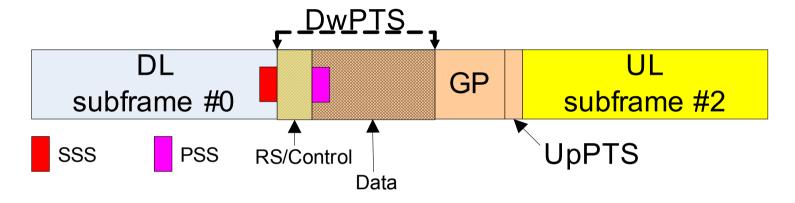
- Controls uplink power spectral density
 - Total uplink transmit power scales linearly with transmitted bandwidth
- Fractional power control can compensate for all or part of path loss
 - Allows trade-off between intra-cell fairness and inter-cell interference
- MCS-specific offsets may be applied
- Closed-loop power control commands can fine-tune the power setting
 - Carried on PDCCH
 - Individual commands in UL resource grants
 - Group commands for groups of UEs
- Separate power control for PUCCH and PUSCH

UL Multi-Antenna transmission

♠ Rel-8/9 supports:

- Switched antenna diversity
 - Closed-loop antenna switching supported by CRC masking on PBCH
- MU-MIMO
 - Different cyclic shifts of DM RS can be allocated to different UEs

Contents



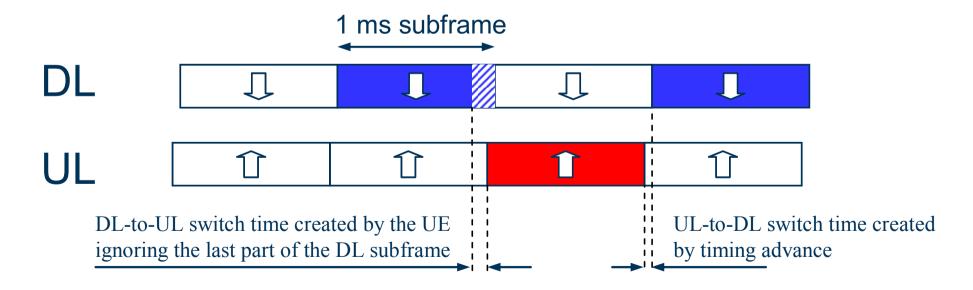
- **1** Introduction
- **n** Downlink Aspects
- **N** Uplink Aspects
- ຈາ Specific support for TDD
- Specific support for half-duplex FDD
- → UE categories in Rel-8
- Enhancements for LTE-Advanced

TDD operation

Special timeslot for downlink-uplink switching:

- UpPTS can transmit special short PRACH format or SRS
- ♠ TDD operation is also supported by:
 - An increased number of HARQ processes
 - ACK/NACK bundling / multiplexing configurations to enable control signalling to be transmitted

Contents



- **1** Introduction
- Downlink Aspects
- **N** Uplink Aspects
- ♠ Specific support for TDD
- Specific support for half-duplex FDD
- → UE categories in Rel-8
- Enhancements for LTE-Advanced

- Trom UE perspective, UL and DL do not overlap in time
- Tor DL-UL switching time, UE ignores end of DL subframe
- Tor UL-DL switching time, additional timing advance offset can be applied to the UL transmissions

Contents

- **1** Introduction
- **n** Downlink Aspects
- **N** Uplink Aspects
- ♠ Specific support for TDD
- Specific support for half-duplex FDD
- **№** UE categories in Rel-8
- Enhancements for LTE-Advanced

Category		1	2	3	4	5			
Peak rate Mbps	DL	10	50	100	150	300			
	UL	5	25	50	50	75			
Capability for physical functionalities									
RF bandwidth		20MHz							
Modulation	DL	QPSK, 16QAM, 64QAM							
	UL		QPSK,						
			16QAM,						
			64QAM						
Multi-antenna									
2 Rx diversity		Assumed in performance requirements.							
2x2 MIMO		Not supported	Mandatory						
4x4 MIMO		Not supported				Mandatory			

Contents

- **1** Introduction
- **n** Downlink Aspects
- **N** Uplink Aspects
- ♠ Specific support for TDD
- Specific support for half-duplex FDD
- → UE categories in Rel-8
- **a** Enhancements for LTE-Advanced

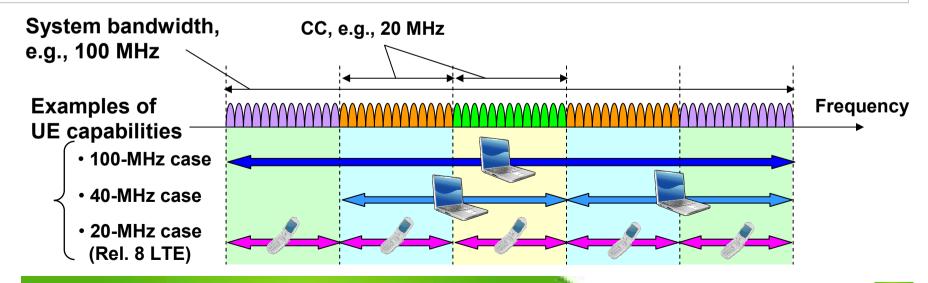
System Performance Requirements for LTE-Advanced

n Peak data rate

 1 Gbps data rate will be achieved by 4-by-4 MIMO and transmission bandwidth wider than approximately 70 MHz

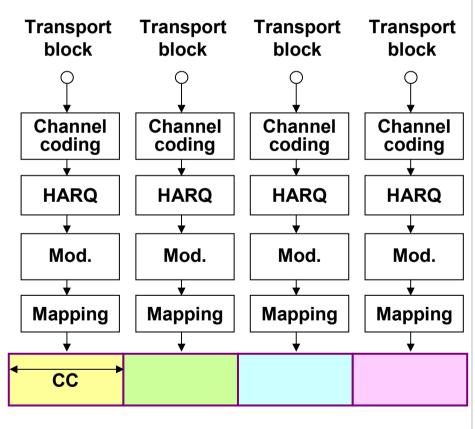
n Peak spectrum efficiency

- DL: Rel. 8 LTE satisfies IMT-Advanced requirement
- UL: Need to double from Release 8 to satisfy IMT-Advanced requirement

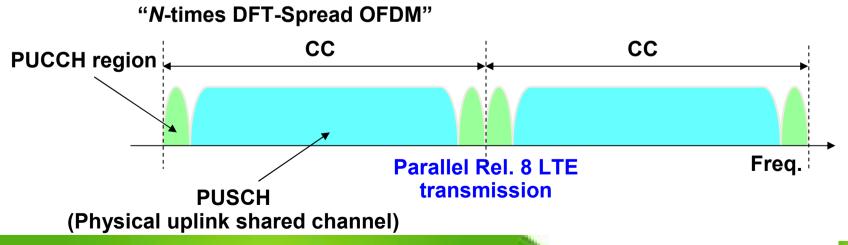

		Rel. 8 LTE	LTE-Advanced	IMT-Advanced	
Peak data rate	DL	300 Mbps	1 Gbps	1 Gbps ^(*)	
Peak data rate	UL	75 Mbps	500 Mbps		
Peak spectrum efficiency	DL	15	30	15	
[bps/Hz]	UL	3.75	15	6.75	

^{*&}quot;100 Mbps for high mobility and 1 Gbps for low mobility" is one of the key features as written in Circular Letter (CL)

Carrier Aggregation


- Nider bandwidth transmission using carrier aggregation
- Entire system bandwidth up to, e.g., 100 MHz, comprises multiple basic frequency blocks called component carriers (CCs)
 - → Satisfy requirements for peak data rate
- Each CC can be configured in a backward compatible way with Rel-8 LTE
 - → Maintain backward compatibility with Rel-8 LTE
- Carrier aggregation supports both contiguous and non-contiguous spectrum, and asymmetric bandwidth for FDD
 - → Achieve flexible spectrum usage

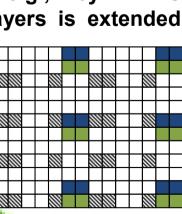
Downlink Multiple Access Scheme


- Downlink: OFDMA with component carrier (CC) based structure
 - → Priority given to reusing Rel. 8 specification for low-cost and fast development
- One transport block is mapped within one CC
- Parallel-type transmission for multi-CC transmission
- Good affinity to Rel. 8 LTE specifications
- Cross-carrier scheduling is possible:
 - PDCCH on one carrier can relate to data on another carrier

Uplink Multiple Access Scheme

- Uplink: N-times DFT-Spread OFDM
 - Achieve wider bandwidth by adopting parallel multi-CC transmission
 - → Satisfy requirements for peak data rate while maintaining backward compatibility
 - → Low-cost and fast development by reusing Rel. 8 specification
- Will also support non-contiguous resource allocation
 - Enhanced flexibility and efficiency of resource allocation
- Simultaneous PUCCH and PUSCH transmission will be supported.
- Independent power control will be provided per CC

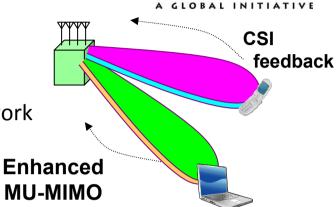
Enhanced Downlink Multi-antenna Transmission (1)


A GLOBAL INITIATIVE

Max. 8 streams

- **■** Extension up to 8-layer transmission
 - Increased from 4 layers in Rel-8/9
 - → Satisfy the requirement for peak spectrum efficiency, i.e., 30 bps/Hz

- Channel state information RS (CSI-RS)
 - For downlink channel sounding
 - Sparse, low overhead (configurable)
- UE-specific demodulation RS (DM-RS)
 - UE-specific DM-RS can be precoded, supporting non-codebook-based precoding
 - UE-specific DM-RS will enable application of enhanced multi-user beamforming such as zero forcing (ZF) for, e.g., 4-by-2 MIMO
 - DM RS pattern for higher numbers of layers is extended from 2-layer format for transmission mode 8 in Rel-9
 - E.g. for 4 antenna ports:



Enhanced Downlink Multi-antenna Transmission (2)

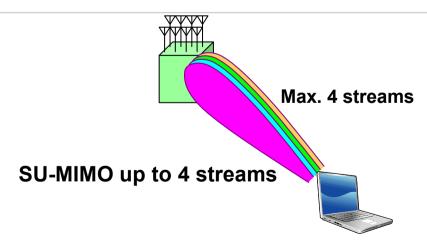
36PP

- Support for enhanced MU-MIMO is being studied
- Enhancements to CSI feedback are being studied
 - Implicit feedback based on Rel-8 CQI/PMI/RI framework
 - Explicit feedback
 - · considering gain versus overhead

- CoMP schemes are being studied
 - Joint processing (JP)
 - Joint transmission (JT): PDSCH is transmitted from multiple cells with precoding using DM-RS among coordinated cells
 - Dynamic cell selection: PDSCH is transmitted from one cell, which is dynamically selected
 - Coordinated scheduling/beamforming (CS/CB)
 - PDSCH transmitted only from 1 cell; scheduling/beamforming is coordinated among cells

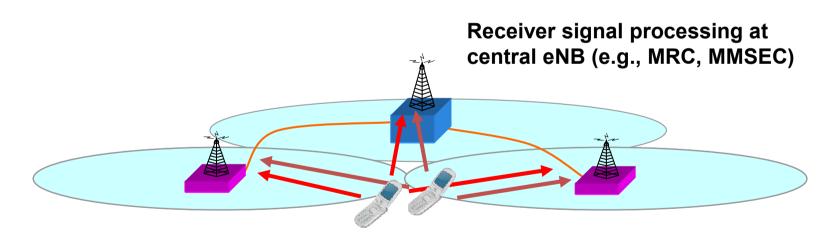
Coherent combining or dynamic cell selection

Joint transmission/dynamic cell selection



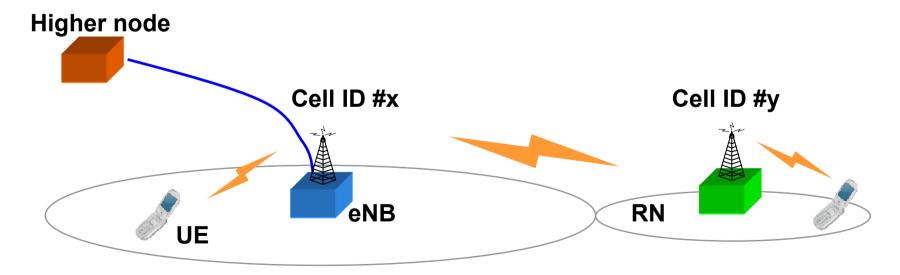
Coordinated scheduling/beamforming

Enhanced Uplink Multi-antenna Transmission


- Introduction of UL transmit diversity for PUCCH
 - → Improved signalling robustness and cell-edge performance
- Introduction of single user (SU)-MIMO up to 4-stream transmission
 - → Satisfy the requirement for peak spectrum efficiency, i.e., 15 bps/Hz
- Signal detection scheme with affinity to DFT-S-OFDM for SU-MIMO
- Turbo serial interference canceller (SIC) is assumed to be used for eNB receivers to achieve higher throughput performance for DFT-S-OFDM
 - → Improve user throughput, while maintaining low cubic-metric signal transmission

CoMP Reception in Uplink

- CoMP reception scheme in uplink
 - Physical uplink shared channel (PUSCH) is received at multiple cells
 - Scheduling is coordinated among the cells
 - → Improve especially cell-edge user throughput
 - Note that CoMP reception in uplink is an implementation matter and does not require any change to radio interface



Multipoint reception

Relaying

- "Type 1" relay
 - Relay node (RN) creates a separate cell distinct from the donor cell
 - UE receives/transmits control signals for scheduling and HARQ from/to RN
 - RN appears as a Rel-8 LTE eNB to Rel-8 LTE UEs
 - → Supports deployment of cells in areas where wired backhaul is not available or very expensive
- Other relay types are also being studied

Conclusions

- LTE-Advanced is a very flexible and advanced system
- → Built on the established capabilities of the LTE Rel-8
 and Rel-9 physical layer
- Turther enhancements to exploit spectrum availability and advanced multi-antenna techniques