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Extremadura, Cáceres, Spain, {sanperez,jangomez,mavega}@unex.es

Summary

Multiple sequence alignment is one of the most recurrent assignments in Bioinformatics.
This method allows organizing a set of molecular sequences in order to expose their simi-
larities and their differences. Although exact methods exist for solving this problem, their
use is limited by the computing demands which are necessary for exploring such a large
and complex search space. Genetic Algorithms are adaptive search methods which per-
form well in large and complex spaces. Parallel Genetic Algorithms, not only increase the
speed up of the search, but also improve its efficiency, presenting results that are better
than those provided by the sum of several sequential Genetic Algorithms. Although these
methods are often used to optimize a single objective, they can also be used in multidi-
mensional domains, finding all possible tradeoffs among multiple conflicting objectives.
Parallel AlineaGA is an Evolutionary Algorithm which uses a Parallel Genetic Algorithm
for performing multiple sequence alignment. We now present the Parallel Niche Pareto
AlineaGA, a multiobjective version of Parallel AlineaGA. We compare the performance of
both versions using eight BAliBASE datasets. We also measure up the quality of the ob-
tained solutions with the ones achieved by T-Coffee and ClustalW2, allowing us to observe
that our algorithm reaches for better solutions in the majority of the datasets.

1 Introduction

One of the most common tasks in Bioinformatics is the alignment of molecular sequences.
Several biological modelling methods depend on a precise sequence alignment. These meth-
ods include phylogenetic reconstruction, profiles and structure prediction; and are applied to
different areas such as functional genomics, evolutionary studies, structure modelling, muta-
genesis experiments and drug design [30]. Multiple sequence alignment can help compare the
structure-relationship among sequences by building connections among their elements [15] and
exposing sequences’ similarities and differences [22]. Despite the fact that this is a recurring
task, there are no methods for computing biologically perfect alignments [20], not only due to
the mathematic approach underlying the majority of the existing methods, but also because of
the size and complexity of the search space involved.

*To whom correspondence should be addressed.

Journal of Integrative Bioinformatics, 8(3):174, 2011 http://journal.imbio.de

doi:10.2390/biecoll-jib-2011-174 1

C
op

yr
ig

ht
 2

01
1 

Th
e 

A
ut

ho
r(

s)
. P

ub
lis

he
d 

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e 

B
io

in
fo

rm
at

ic
s.

 
Th

is
 a

rti
cl

e 
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s 
3.

0 
U

np
or

te
d 

Li
ce

ns
e 

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/).



Presently, there are two main methods for performing multiple sequence alignment: the pro-
gressive method and the iterative method. However, multiple sequence alignment can also be
computed by exact algorithms, which attempt to compute an optimal or suboptimal alignment
within well defined boundaries. Even so, this procedure is greatly limited by the intensive com-
puter resources that are necessary for aligning a large number of sequences [18]. Although the
progressive approach is the one adopted by the majority of today’s multiple sequence align-
ment tools [20], it has some limitations. In this method the alignment is built by progressively
aligning pairs of sequences according to their similarity. If the similarity computation is incor-
rect, it will have consequences on the final result, which will be aggravated gradually as more
sequences are added to the alignment [21]. One of the most visible examples based on this
method is ClustalW 2.0 [16], which is probably the most commonly used multiple sequence
alignment program [7]. Another example is T-Coffee [21], one of the best algorithms available
for this purpose [17]. In opposition, iterative methods produce an alignment and then refine
it during a number of iterations until no further improvement can be made [8]. They seek to
optimize a scoring function that reflects biological events such that optimizing the score leads
to a correct alignment [17]. Evolutionary Algorithms (EAs), such as Genetic Algorithms (GAs)
and Parallel GAs (PGAs) are examples of iterative methods.

Despite GAs and PGAs are often used to solve single objective problems, they can also be used
in multiobjective domains, where they search for the Pareto front [23] - a set of solutions which
presents the best possible optimization of the objectives in test. Niching methods, can be used
for distributing the solutions along the Pareto front, increasing the diversity of the population
and allowing parallel convergence into different good solutions [23]. Parallel AlineaGA [27]
is a parallel EA for solving the multiple sequence alignment problem that makes use of the
MPI.NET [12] implementation of the Message Passing Interface (MPI) protocol [13] for com-
munication. The algorithm uses a PGA with a simple local search strategy embedded on some
of its mutation operators for optimizing two objective functions.

In this work, we test a multidimensional strategy that makes use of a niching mechanism named
Equivalence Class Sharing (ECS) [14] for optimizing both the sum-of-pairs and the identity of
the alignments. We test this approach using eight BAliBASE [29] datasets, and we compare
the quality of the found solutions with the ones found by its single objective version. We also
compare these results with the ones produced by ClustalW2 [16] and T-Coffee [21].

This paper is organized as follows. In the next Section we introduce concepts underlying our
research. In Section 3, we present a brief explanation regarding the multiobjective PNPAlin-
eaGA methods. Section 4 presents the experiments performed in order to validate and observe
our results. Finally, the ending Section presents final considerations on our work.

2 Background

This Section introduces background and terminology information on the most relevant concepts
related with our technical solution for solving the multiple sequence alignment task.
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2.1 Alignment

An alignment disposes the sequences in such a way that displays where the sequences are
similar, and where they differ. Spaces can be introduced in the sequences for finding regions of
similarity among them. These spaces are often referred to as gaps, represented by the ”-” sign.
The introduction of gaps into the sequences, allows the alignment to be extended into regions
where one sequence may have lost or gained sequence characters not found in the other. An
optimal alignment is the one that exhibits the most correspondences and the fewest differences,
but which may or may not be biologically meaningful [22]. Figure 1 shows an example of a
multiple sequence alignment.

Figure 1: Example of a Multiple Sequence Alignment.

2.2 Island Parallel Genetic Algorithms

EAs are search methods that take their inspiration from natural selection and survival of the
fittest in the biological world. They differ from more traditional optimization techniques in
that they engage a search from a population of solutions, not from a single point. GAs are a
category of EAs which focus on optimizing general combinatorial problems [11]. They are
adaptive and robust search processes whose search methods are inspired in natural events such
as genetic inheritance and Darwinian strife for survival [19]. In GAs, a fixed size population
of solutions is evolved throughout a series of iterations by means of genetic operators such as
crossover and mutation [6]. Crossover merges features in the population by swapping corre-
sponding segments of two randomly chosen individuals (parents), and forming two new similar
ones (offspring). Mutation usually applies a random change within a solution. Both operators
are used according to a defined probability rate [2]. In order to carry this evolution, every so-
lution has an associated fitness score which reflects its performance and that can be used for
determining which solutions can be used for producing new individuals.

Although parallelization is often related to speed up the optimization processes, in GAs it can
also result in an effectiveness improvement as consequence of its structured population and par-
allel execution [1]. Multiple population GAs, make use of various independent subpopulations
that exchange solutions from time to time. This trade of solutions is called migration and it is
restricted by several parameters, such as the migration rate, that is the number of individuals
that are exchanged within the subpopulations; the migration interval, that states when the mi-
gration occurs; and the topology, which establishes the connection among subpopulations [3].
This class of algorithms, often referred as Island PGAs (IPGA) [20, 22], are easy to implement,
since they run several independent GAs simultaneously, with an extension of subroutines that
handles migration. Also, multi-processor computers are becoming widely available, and even
single processor machines can simulate their behavior by using technologies as MPI [13].
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2.3 Multiobjecive Optimization and Equivalence Class Sharing

Although a great majority of optimization problems are solved as a single objective problem,
where the algorithm tries to optimize a single objective function, in reality there are usually
more than one conflicting objective to optimize. Multiobjective optimization has been adopted
by several different areas of investigation, representing one actual and important area in sci-
ence and engineering [28]. Unlike single objective optimization, which results in an optimal
single solution, multiobjective problems have a set of solutions which represent the best trade-
off among the multiple conflicting objectives [14]. These are Pareto optimal solutions and lie
on the Pareto front. There are two properties to have in mind when optimizing multiple objec-
tives: the convergence to the Pareto front, ensuring the generation of near-optimal solutions;
and uniform diversity, indicating a good distribution of the solutions along the Pareto front [28].

Fitness sharing [9] is a mechanism for maintaining population diversity. It distributes the popu-
lation over different peaks in the search space by reducing the fitness of highly similar solutions,
preventing the convergence to a single point in the Pareto front and allowing parallel conver-
gence into multiple good solutions [23]. ECS [14] is a particular method of sharing which can
be applied to the selection stage of the GA, avoiding genetic drift. This technique assumes
that candidate solutions, mutually dominated or non-dominated, are equally fit, and computes
the niche count of the candidates, selecting the one with the smallest individual number on
its neighborhood, maintaining diversity along the front. The niche count, mi, is computed by
adding a sharing function, Sh(di,j), over all members of the population, according to (1).

mi =
n∑

j=1

Sh(di,j) (1)

Here, di,j is the distance between solutions i and j, which can be based on either phenotype or
genotype similarity. The sharing function is given by (2).

Sh(di,j) =


1− di,j

σshare
, if d ≤ σshare

0, if d > σshare

(2)

σshare represents the niche radius. Solutions within this radius are in the same neighborhood,
and therefore increase the niche count.

3 Methods

Parallel Niched Pareto AlineaGA (PNPAlineaGA) uses an IPGA which relies on a star topology
for connecting the different processes. It has been written in C♯, using the .NET Framework 4
and MPI.NET [12] for interconnecting the different processes.

3.1 Representation, Evaluation, Crossover and Mutation

PNPAlineaGA uses real multiple sequence alignments to represent the solutions. Every solu-
tion of each subpopulation is randomly generated by putting each sequence in an array line and
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randomly inserting gaps on its sequences so as their size becomes the same. Then, they are
combined and mutated inside each subpopulation during a number of generations, trading so-
lutions periodically. All solutions are evaluated for determining their fitness in each generation.

Two different objectives are evaluated: the sum-of-pairs (3), which adds the scores of all the
pairwise comparisons on each column of the alignment [21]; and the identity, i.e. the number
of fully identical columns in the alignment.

Sum− of − Pairs =
n−1∑
i=1

n∑
j=i+1

ScoringMatrix(li, lj) (3)

The pairwise alignment cost of every amino acid is determined by the PAM 350 [5] scoring
matrix. As well, a gap penalty of -10 [25] is applied when an amino acid is aligned with a gap.

To combine the solutions three crossover operators are used. Two of them derive from Gold-
berg’s standard one point crossover [10], one defines the cut point at a random line and the
other at a random column of the alignment. The third one is derived from RecombineMatched-
Col [4], and originates a fully identical column from one of the parents, in the other parent for
generating the offspring. These operators are randomly selected within each generation. All of
the crossover operators are better described in [25].

Mutations can occur, introducing new characteristics in the population and thus, increasing
diversity. In order to not modify the sequences and consequently invalidating the alignment,
changes can only be made to the gaps and not to the amino acids. Therefore, inserting or shifting
gaps are the most effective ways of introducing new patterns in the population. PNPAlineGA
uses six mutation operators. Each mutation operator is randomly selected and it is applied to an
individual according to the defined mutation probability. If the mutated solution is worst than
the original one, a new mutation can be applied to the mutated individual. This can be repeated
until the fitness improves or during a certain number of attempts previously defined by the user.
In our tests, we perform a maximum of 2 tries because it represents a good tradeoff between
speed and robustness, without transforming completely the individuals in a single generation.
These operators are divided into stochastic and greedy ones which insert, shift and merge gaps
in the sequences of the alignments. The greedy ones, named ”Smart” operators [25], embed
a simple local search mechanism and only produce mutations whenever an improvement will
be made to the original solution. These operators make use of a direction probability which
determines the insertion/shift of the gaps at the beginning or at the end of the alignment. This
probability is initially set to the center of the alignment and it is updated according to the results,
increasing the probability of inserting/moving the gaps to the left or right in the alignment.
Also, each operator tries to improve the alignment to the maximum of 3 tries. The ”Smart”
operators and their effects are deeply explained in [24].

3.2 Selection

The Niched Pareto GA selection scheme uses Pareto Domination Tournaments (PDT) and ECS
[14] for sustaining multiple Pareto optimal solutions. Unlike to the normal binary tournaments,
PDTs allow the control of the domination pressure by means of a sampling scheme. Here,
two random candidate solutions are picked from the population for selection. Also, a random
set of population individuals is chosen to form a comparison set which is used to evaluate the
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candidate solutions. The candidate who dominates all solutions in the comparison set wins the
tournament. Domination pressure can be controlled by adjusting the size of the comparison
set. In general, a comparison set of 10% of the population size leads to a tight and complete
distribution over the front [14]. Whenever both candidates are dominated or non-dominated
by the sample set, ECS is used. This method selects the candidate which presents the smallest
number of solutions in its neighborhood. We use the Euclidean distance for computing di,j .
The niche radius σshare is calculated according to (4), which assumes that the solution set has
a previously known finite number of peaks q [23]. However, as in this domain there is no way
of knowing this number beforehand, we opted for considering 4 peaks because it was the value
which performed better for the majority of the datasets in our previous experiments [26].

σshare =
r
n
√
q

(4)

In (5), r is defined by computing the lower and upper bounds of each dimension n on every
generation.

r =
1

2

√√√√ n∑
k=1

(xk,max − xk,min)2 (5)

3.3 Migration

PNPAlineaGA uses a star topology for connecting the different processes. In this model, every
subpopulation is assigned to a different process where evolves independently. On every migra-
tion interval, each slave process sends its best solutions to the master process and the master
process sends its best individuals to each slave process. This topology has the advantage of
allowing the increase or decrease of the number of processes without changing the algorithm’s
implementation. It is also more fault tolerant, because if one of the slave processes stops, it will
not stop the program from running.

Three solutions are traded among the different islands: the one which presents the best com-
promise between the two objectives; the best solution for the sum-of-pairs objective; and the
best solution for the identity objective. These migrants replace each subpopulation’s worst so-
lutions, holding their size unaltered. In order to prevent bottleneck issues caused by slower
processes, this is performed asynchronously. The communication topology relies on MPI.NET
[12].

4 Testing and Results

To obtain the best possible solutions that optimizes both sum-of-pairs and identity of the align-
ments we have tested PNPAlineaGA with eight BAliBASE [29] datasets. BAliBASE is a
database of manually refined multiple sequence alignments. It was developed in order to es-
tablish a high quality structured and classified benchmark database for evaluating multiple se-
quence alignment programs [29]. Four of the datasets (1aho, 1fmb, 1plc and 1dox) present
more than 35% of identity among its sequences and the remaining ones (1fjlA, 1hpi, 1pfc and
1ycc) present 20% to 40% of identity. The parameters choice for our tests are based on our
previous work [27]; therefore, subpopulation size is 100, the comparison set for the PDTs is
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Table 1: Comparing PNPAlineaGA with Parallel AlineaGA, ClustalW2 and T-Coffee results. SOP,
sum-of-pairs; ID, identity.

Dataset
BAliBASE ClustalW2 T-Coffee

Islands
PNPAlineaGA Parallel AlineaGA

SOP ID SOP ID SOP ID
Average Best Average Best
SOP ID SOP ID

1aho 2015 12 1644 8 2010 11
4 2116.03 11.97 2145.67 10.50
8 2195.80 12.13 2207.77 11.03

1fmb 1706 25 1780 24 1805 24
4 1835.70 26.30 1859.80 25.40
8 1855.20 26.30 1876.23 25.86

1plc 2403 18 2387 14 2529 18
4 2432.27 18.30 2537.53 17.57
8 2515.33 18.73 2590.57 17.83

1dox 1234 22 1020 19 1133 21
4 1176.60 22.20 974.40 9.53
8 1257.63 23.40 1162.03 16.30

1fjlA 1740 6 1770 6 1801 6
4 1531.37 4.80 1558.17 4.50
8 1712.67 5.87 1710.03 5.43

1hpi 1280 10 1087 10 1148 11
4 1164.70 12.40 1190.37 11.33
8 1158.17 12.73 1199.43 11.63

1pfc 2216 13 2231 9 2425 12
4 2389.07 14.63 2501.80 12.70
8 2461.57 14.00 2533.33 12.86

1ycc 963 11 798 5 520 11
4 995.97 8.27 1099.33 6.50
8 1064.73 8.50 1152.20 7.43

10, crossover and mutation rates are 0.8 and 0.4 respectively, migration occurs every 100 gen-
erations, and the algorithm execution is limited to 1000 generations.

4.1 Solution Quality

Table 1 presents the results achieved by PNPAlineaGA and compares them with the ones
achieved by single objective Parallel AlineaGA [27], ClustalW version 2.0.12 [16] (available at:
www.ebi.ac.uk/Tools/clustalw2) and T-Coffee version 8.93 [21] (www.ebi.ac.uk/Tools/tcoffee),
all using the PAM 350 scoring matrix and default gap penalty values. ”BAliBASE” column
presents the sum-of-pairs and identity scores for the reference alignments, calculated using the
PAM 350 and a -10 gap penalty. The ”ClustalW2” and ”T-Coffee” columns presents both sum-
of-pairs and identity of the best found solution. ”Average Best” for both ”PNPAlineaGA” and
”Parallel AlineaGA” presents the average best scores for the sum-of-pairs and identity over 30
independent runs of each program. All these tests were performed for 4 and 8 island configu-
rations.

Globally, the 8 island configuration achieves better scores than the 4 island versions on both
versions of Parallel AlineaGA. However, despite we are not focusing on communication costs,
the 8 island model has the drawback of a higher execution time. Also, Parallel AlineaGA finds
solutions with higher sum-of-pairs scores, which is expected because it does not try to optimize
conflicting objectives, such as PNPAlineaGA. Still, there is one exception in the 8 island con-
figuration of dataset 1dox, where the optimization of both objectives allowed PNPAlineaGA to
perform better on both objectives. Considering the identity objective, PNPAlineaGA behaves
better than Parallel AlineaGA in all datasets.
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Comparing to the BAliBASE sum-of-pairs scores, PNPAlineaGA is able to find better values
for the majority of the datasets, with the exceptions of 1fjlA and 1hpi. Considering the identity
objective, PNPAlineaGA is able to find solutions with higher scores than BAliBASE on 6 of
the 8 datasets. PNPAlineaGA behaves better than ClustalW2 and T-Coffee on all of the datasets
except 1fjlA, where it is not able to find better scores for both objectives, and 1ycc, where it
surpasses only in the sum-of-pairs score.

4.2 Population’s Evolution

As explained in Section 3.3, in PNPAlineaGA there are three solutions which are considered
for migration. Figures 2 to 17, present the fitness evolution of these three solutions on each
subpopulation, for each dataset, on the 4 and 8 island models of PNPAlineaGA in 4 particular
moments: generations 100, 400, 700 and 1000. The results presented here were obtained by
averaging each solution’s sum-of-pairs and identity scores from the 30 runs of the program.

Comparing the evolution of the subpopulations for dataset 1aho on the different island config-
urations, represented in Figures 2 and 3, it is noticeable that the configuration which uses 8
islands presents a better overall result, which is visible in the four generations in study.

Figure 2: Population’s Evolution for 1aho using PNPAlineaGA 4 island model.

Figure 3: Population’s Evolution for 1aho using PNPAlineaGA 8 island model.

Figures 4 and 5 depict the evolution of the best solutions of the different subpopulations for
dataset 1fmb, on the 4 and 8 island models, respectively. The advantage of using a larger model
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is clearer in the early stage of execution of the algorithm. Nevertheless, despite the solutions
found by the 4 islands model appear to be similar, the majority of the 8 island model solutions
present better throughout evolution, and the final solution set is also better.

Figure 4: Population’s Evolution for 1fmb using PNPAlineaGA 4 island model

Figure 5: Population’s Evolution for 1fmb using PNPAlineaGA 8 island model

Comparing the best solutions evolution on 1plc dataset, in Figures 6 and 7, we can observe
that, despite that in an early state of execution, there is not a visible advantage of using a larger
parallel model, that use is rewarded in the subsequent generations. The bigger capacity of
exploration and exploitation of a larger number of subpopulations, allows the 8 island model to
reach better quality solutions, with higher scores on both objectives in test.

Figures 8 and 9 represent the evolution of the best solutions in dataset 1dox. In generation
100, the model with 4 islands presents higher identity and sum-of-pairs scores. However, in the
subsequent generations, the 8 island model reaches higher values on both objectives. That can
be observed from generation 400. The final solution set also presents a better tradeoff between
the identity and the sum-of-pairs, what is translated in better scores and higher quality solutions.

By comparing Figures 10 and 11, it is possible to examine the performance of the 4 and the
8 island parallel evolutionary algorithm on dataset 1fjlA. For this dataset, the 8 island model
performed better since generation 100. While in generation 400 the best sum-of-pairs score
of the 4 island model is around 1300, the 8 island model presents a score near 1500, which is
approximately the maximum sum-of-pairs score of generation 700 in the 4 island model. This
better performance reflects on the final solution set, which, for the 8 island model, presents
much better scores on both objectives, and therefore, achieves better quality solutions.
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Figure 6: Population’s Evolution for 1plc using PNPAlineaGA 4 island model

Figure 7: Population’s Evolution for 1plc using PNPAlineaGA 8 island model

Figure 8: Population’s Evolution for 1dox using PNPAlineaGA 4 island model

In dataset 1hpi, the evolution of the best solutions in the 4 island model, shown on Figure 12,
results in a final solution set quite similar to the one presented by the 8 island model, depicted
on Figure 13. In fact, a closer observation allows determining that in this case, the 4 island
model presents a slightly better final sum-of-pairs score. This however, does not happen when
considering the identity score, which is higher in the 8 island model.

In dataset 1pfc, the evolution of the best solutions performed better in the 8 island model of
PNPAlineaGA, shown in Figure 15, resulting on a better quality final solution set than the one
achieved by the 4 island model, in Figure 14. If in generation 100 the superiority of the larger
8 island model is only visible through the sum-of-pairs score, in the remaining generations that

Journal of Integrative Bioinformatics, 8(3):174, 2011 http://journal.imbio.de

doi:10.2390/biecoll-jib-2011-174 10

C
op

yr
ig

ht
 2

01
1 

Th
e 

A
ut

ho
r(

s)
. P

ub
lis

he
d 

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e 

B
io

in
fo

rm
at

ic
s.

 
Th

is
 a

rti
cl

e 
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s 
3.

0 
U

np
or

te
d 

Li
ce

ns
e 

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/).



Figure 9: Population’s Evolution for 1dox using PNPAlineaGA 8 island model

Figure 10: Population’s Evolution for 1fjlA using PNPAlineaGA 4 island model

Figure 11: Population’s Evolution for 1fjlA using PNPAlineaGA 8 island model

changes. Here it is possible to observe that the 8 island model presents better quality results in
all objectives in test. The use of a larger number of subpopulations allows a better exploration
of the Pareto front, which is wider in the 8 island model.

In dataset 1ycc, both models present an initial similar evolution such as Figures 16 and 17
depict. However in generation 700 the advantage of using the larger model becomes visible.
From this point, the 8 island model presents higher scores on both objectives. The quality of the
solutions of the 8 island model in generation 700 is similar to those present in the final solution
set found by the 4 island model.
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Figure 12: Population’s Evolution for 1hpi using PNPAlineaGA 4 island model

Figure 13: Population’s Evolution for 1hpi using PNPAlineaGA 8 island model

Figure 14: Population’s Evolution for 1pfc using PNPAlineaGA 4 island model

5 Conclusions

PNPAlineaGA is able to achieve quality solutions which can be observed by comparing its re-
sults with those presented by the test datasets. In the most cases, it can overcome two of the
most popular sequence alignment tools: ClustalW [16] and T-Coffee [21]. By optimizing two
objectives it is possible to achieve alignments which are similar to those present in the refer-
ence datasets. However, this may be of little use when aligning sequences which have distant
evolutionary relations, and that consequently, are expected to present low identity scores. In
these cases, optimizing only the sum-of-pairs may be the best option. The big advantage of
the multiobjective approach becomes evident in cases where the sequences to align present a
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Figure 15: Population’s Evolution for 1pfc using PNPAlineaGA 8 island model

Figure 16: Population’s Evolution for 1ycc using PNPAlineaGA 4 island model

Figure 17: Population’s Evolution for 1ycc using PNPAlineaGA 8 island model

close evolutionary relationship. Also, given that the optimal alignment is obtained mathemati-
cally and not biologically, the existence of a final set of solutions can be an advantage to help
choosing the one closest to the biological reality. In these tests, it has been possible to observe
that the use of a larger number of populations, allows a better exploration and exploitation of
the search space. This fact contributes to find better solutions in fewer generations. However,
although this study does not consider the execution costs, it has been possible to observe that
increasing the number of islands leads to greatly increased run times. This disadvantage can be
overcome by installing PNPAlineaGA in a computer cluster, where its speed and performance
can be optimized.
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