
A brief note on stochastic homogenization in 1D

Alen Alexanderian∗

Abstract

In this brief note, we discuss the homogenization of a 1D elliptic operator with a ran-
dom coefficient function. As is generally well-known, under assumptions of stationar-
ity and ergodicity, there is a closed form expression for the homogenized coefficient
in 1D. We provide a simple derivation of this result and also discuss the connections
to the general theoretical framework in [4]. We also discuss the method of periodiza-
tion in the 1D case and provide some numerical examples.
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1 Introduction

Let (Ω,F , µ) be a probability space. Recall that a measurable mapping T : Ω 7→ Ω is
called measure preserving if µ

(
T−1(E)

)
= µ(E) for all E ∈ F . A family of mappings,

T = {Tx}x∈R, on Ω is called an 1-dimensional dynamical system if Tx : Ω 7→ Ω satisfies
the following group property: {

Tx+y = TxTy
T0 = I

Moreover, in the context of homogenization, we require the following additional prop-
erties:

• Tx is measure preserving for all x ∈ R

• For any measurable function f on Ω, the composition f(Txω) ≡ (f ◦Tx)(ω) is Leb⊗µ
measurable, where Leb is the Lebesgue measure on R.
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Stochastic homogenization in 1D

Suppose a : Ω 7→ R satisfies the following:

1. a is µ-measurable.
2. There exists positive constants α and β such that

α ≤ a(ω) ≤ β almost everywhere in Ω.

Realizations of a with respect to T are given by a
(
Tx(ω)

)
. We use the following notation

for realizations of a,

aT (x, ω) = a
(
Tx(ω)

)
.

We consider the following problem,{
−
(
aT (x, ω)u′(x, ω)

)′
= f(x) in O = (0, 1)

u(0, ω) = u(1, ω) = 0
(1.1)

for ω ∈ Ω.

The goal is to show that for almost all ω ∈ Ω, the problem (1.1) admits homogeniza-
tion with the homogenized coefficient given by

ā =
1

E
{

1
a

} .
Here E {a} denotes the expectation,

E {a} :=

∫
Ω

a(ω) dµ(ω).

The proof of the above result relies on several major results one of which is Birkoff’s
Ergodic Theorem. For convenience, we recall Birkhoff’s Theorem in the next section.

2 Birkhoff Ergodic Theorem

Since we are working in 1D, the results in this section are specialized to the 1D case.
Let us first recall the notion of the mean value of a function [4].
Definition 2.1 (Mean Value). Let f ∈ L1

loc(R) and suppose the limit, limε→0
1
|K|
∫
K
f(x

ε ) dx

exists for any Lebesgue measurable subset K ⊂ R independently of K. Then, we say
that f has a mean-value f∗ given by

f∗ = lim
ε→0

1

|K|

∫
K

f(
x

ε
) dx.

The following result, due to Birkhoff, is one of the fundamental results in Ergodic
Theory1.
Theorem 2.2. Let (Ω,F , µ) be a probability space, and suppose T = {Tx}x∈R is a
measure-preserving dynamical system on Ω. Let f ∈ Lp(Ω), where p ≥ 1. Then for
almost all ω ∈ Ω the realization fT (x, ω) has a mean value F ∗(ω) in the following sense:
denote fTε (x, ω) = fT (x/ε, ω), then

fTε (·, ω) ⇀ F ∗(ω) in Lploc(R).

1 See [3] or [5] for references on Ergodic Theory.
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Stochastic homogenization in 1D

Moreover, F ∗ = F ∗(ω) is an invariant function; that is,

F ∗
(
Tx(ω)

)
= F ∗(ω) ∀x ∈ R, µ-almost everywhere . (2.1)

Also,

E {f} =

∫
Ω

F ∗(ω) dµ(ω). (2.2)

We briefly mention the notion of an ergodic dynamical system here [3]. First, let us
recall what an invariant function is. A measurable function f on Ω is called an invariant
function (with respect to the dynamical system T ) if,

f
(
Tx(ω)) = f(ω), µ-a.e, ∀x ∈ R.

A 1-dimensional dynamical system T = {Tx}x∈R is ergodic if every invariant function is
a constant almost everywhere.
Corollary 2.3. Let f and T be as in Theorem 2.2; moreover, suppose the dynamical
system T is ergodic. Then, the mean value F ∗ is a constant and is given by

F ∗ = E {f} . (2.3)

Proof. Using ergodicity of T , (2.1) implies F ∗ = const almost everywhere. Then, (2.2)
gives,

E {f} =

∫
Ω

F ∗ dµ = F ∗. (2.4)

3 Proof of Convergence

Recall the problem (1.1), and suppose a is as before. Moreover, suppose T is an
ergodic dynamical system. By Birkhoff Ergodic Theorem (along with Corollary 2.3), we
know that there is a set E ∈ F , with µ(E) = 1 such that for all ω ∈ E,

1

aTε (·, ω)
⇀ E

{
1

a

}
in L2(O). (3.1)

From now on, let ω ∈ E be fixed but arbitrary. Consider the problem,{
−
(
aTε (x, ω)u′ε(x, ω)

)′
= f(x) in O = (0, 1)

uε(0, ω) = 0 = uε(1, ω)
(3.2)

Using standard arguments (we show that {uε(·, ω)}ε>0 is bounded in H1
0 (O), etc.)

uε(·, ω) ⇀ ū in H1
0 (O). (3.3)

At this point, however, it is not clear whether ū is deterministic. From (3.3) we immedi-
ately get that,

u′ε(·, ω) ⇀ ū′ in L2(O). (3.4)

Next, let σε(x, ω) = aTε (x, ω)u′ε(x, ω) and note that again by standard arguments,
σε(·, ω) ⇀ σ̄ in H1(Ω). Now, by compact embedding of H1(O) into L2(O) we have,

σε(·, ω)→ σ̄ in L2(O). (3.5)
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Stochastic homogenization in 1D

Now, consider the following obvious equality,

u′ε(·, ω) =
aTε (·, ω)

aTε (·, ω)
u′ε(·, ω) = σε(·, ω)

1

aε(·, ω)
. (3.6)

By (3.1) and (3.5) we have

σε(·, ω)
1

aε(·, ω)
⇀ σ̄

1

ā
in L2(O), (3.7)

where

ā =
1

E
{

1
a

} . (3.8)

Then, (3.4) and (3.7) give
σ̄ = āū′. (3.9)

Moreover, we know −σ′ε(·, ω) = f for all ε and therefore, −σ̄′ = f ; this latter conclusion
along with (3.9) gives,

−(āū′)′ = f.

Hence, we have shown that for almost all ω ∈ Ω, the problem{
−
(
aT (x, ω)u′(x, ω)

)′
= f(x) in O = (0, 1)

u(0, ω) = u(1, ω) = 0

admits homogenization, with the homogenized coefficient given by (3.8).

4 Connections to Classical Theory

The homogenization result shown in the previous section relies heavily on the fact
the we are working in a 1D setting. In higher dimension, the analysis becomes sig-
nificantly more complicated. However, the homogenization theory for the general n-
dimensional case is fully developed [4]. Our goal in this section is to verify that, in
the special case of 1D, the homogenization results such as those in [4] give the same
expression for the homogenized coefficient ā as in (3.8).

The homogenization results in [4] state that (here we specialize everything to the 1D
case): The homogenized coefficient ā is characterized as follows.

For ξ ∈ R,

āξ =

∫
Ω

a(ω)(ξ + vξ(ω)) dµ(ω), (4.1)

where vξ ∈ V2
pot(Ω, T ) (let T be as before), is solution to

a(ξ + vξ) ∈ L2
sol(Ω, T ). (4.2)

Now, in the above equations we let ξ = 1. Denote,

q(ω) = a(ω)(1 + v1(ω)), (4.3)

and note that by (4.2), for almost all ω, q
(
Tx(ω)

)
is a constant (depending on ω). There-

fore, we get that for almost all ω ∈ Ω,

q
(
Tx(ω)

)
= q(ω), ∀x ∈ R.
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Consequently, by ergodicity of the dynamical system T , we have

q(ω) = const =: c̄, µ-a.e. (4.4)

Using (4.3) and (4.4) we solve for v1

v1(ω) =
c̄

a(ω)
− 1.

Moreover, using using
∫

Ω
v1(ω) dµ(ω) = 0, we have

c̄ =
1∫

Ω
1

a(ω) dµ(ω)
. (4.5)

Then, (4.1) gives (recall we let ξ = 1),

ā =

∫
Ω

a(ω)(1 + v1(ω)) dµ(ω)

=

∫
Ω

c̄ dµ(ω)

= c̄

=
1∫

Ω
1

a(ω) dµ(ω)
,

where the last equality follows from (4.5). Hence, we see that the homogenization
theory of random media as developed in [4], when specialized to the case of 1D, gives
the same conclusion as that we saw in the previous section.

5 Numerical Computations

While (3.8) gives a closed form expression for the homogenized coefficient ā, in prac-
tice one cannot compute this quantity, because it involves integrating in an abstract
probability space. Of course it is possible to do Monte-Carlo like simulations to approx-
imate the expectation in (3.8) by ensemble averages; however, our approach in this
section will be different. We will proceed in the framework of periodization [2] and
consider specialized convergence results in our 1D context. The developments in this
section follow that of [1] closely.

Denote Sρ = (0, ρ) and let a : Ω 7→ R be as in the previous section. Define aρper(x, ω)

as follows,
aρper(x, ω) = a

(
Tx mod Sρ(ω)

)
= aT (x mod Sρ, ω). (5.1)

One thing to note immediately is that for x ∈ S1,

aρper(ρx, ω) = aT (ρx mod Sρ) = aT (ρx, ω). (5.2)

Now, for each ρ and for a fixed ω, we can consider the (periodized) problem,{
−
(
aρper(x, ω)u′ρ

)′
= f(x) in O = (0, 1)

uρ(0, ω) = 0 = uρ(1, ω)
(5.3)

We know from homogenization of periodic operators that this problem admits ho-
mogenization with homogenized coefficient given by

āρ(ω) =
1

1
ρ

∫ ρ
0

1
aρper(x,ω)

(5.4)
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Stochastic homogenization in 1D

The following theorem [1] provides a convergence result for method periodization in
1D:
Theorem 5.1. For almost all ω ∈ Ω, āρ(ω)→ ā, as ρ→∞. with ā as in (3.8).

Proof. First note that using the change of variable x 7→ x/ρ in (5.4) we get

āρ(ω) =
1∫ 1

0
1

aρper(ρx,ω)

=
1∫ 1

0
1

aT (ρx,ω)

, (5.5)

where the second equality follows from (5.2). Now, as we saw in the previous section,
we can invoke Birkhoff’s Ergodic Theorem to conclude that for almost all ω ∈ Ω, as
ρ→∞,

1

aT (ρx, ω)
⇀ E

{
1

a

}
in L2(O). (5.6)

Therefore, ∫ 1

0

1

aT (ρx, ω)
→ E

{
1

a

}
, as ρ→∞. (5.7)

But then it follows from (5.5) that for almost all ω ∈ Ω,

lim
ρ→∞

āρ(ω) = lim
ρ→∞

1∫ 1

0
1

aT (ρx,ω)

=
1

E
{

1
a

} ,
which completes the proof.

5.1 Numerical experiments and results

Let us begin by considering a simple numerical study. Suppose we are working with
a one dimensional rod whose conductivity is a random function which in each interval
[n − 1, n), n ∈ Z, takes the value 1 or 2 with probability of 1

2 . Figure 1 depicts the
conductivity function for a sample realization of such a rod. The function a used to

Figure 1: Conductivity function for a rod with random structure.

model such a medium, will take values of 1 or 2 with equal probability of 1
2 . Without

delving too much into the technical details, we know from the results of the previous
sections that the effective conductivity ā will be

ā =

(
E

{
1

a

})−1

=
4

3
.
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To get some numerical insight on the periodization process, we compute āρ(ωj) for
ρ = 2i, i = 6, . . . 9 and for realizations ωj , j = 1, . . . , N . We used number of realizations
N = 10000 in our simulations. The histograms in Figure 2 show the improvement of the
approximation āρ to ā as ρ gets larger. We note that the distribution of āρ gets more and
more centered around the value of 4

3 . We also look at the arithmetic mean the harmonic
mean:

Ma(ρ) =
1

N

N∑
j=1

āρ(ωj), Mh(ρ) =
N∑N

j=1
1

āρ(ωj)

,

for different values of ρ listed in Table 1. Also, we record the sample standard deviation
for each choice of ρ in Table 1.

Figure 2: Distribution of āρ for different ρ
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Stochastic homogenization in 1D

ρ Ma(ρ) Mh(ρ) Sample Std. Deviation
64 1.335595 1.333235 0.056361
128 1.334577 1.333399 0.039705
256 1.333984 1.333402 0.027889
512 1.333653 1.333355 0.019961
1024 1.333453 1.333307 0.013974
2048 1.333131 1.333059 0.009797

Table 1: Sample averages for different ρ

Remark 5.2. The histograms in Figure 2 suggest that for large values of ρ the distri-
bution of ρ approaches that of a normal distribution. As shown in detail in [1],this is
in fact the case; that is, asymptotically, distribution of āρ approaches that of a normal
distribution. See [1] for details and further numerical examples.
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