The Morphological Lomo Filter for Multiscale Image Processing
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Abstract

Locally monortonic (lomo) images are defined as root
signals  of a morphological lomo filter. The
morphological appreach allows « multidimensional
generalization of local monotonicity. This generalization
is well-motivated in that it retains the essential properties
of one-dimensional (1-D) local monotonicity. Repeated
application of the lomo filter produces a lomo root signal
of a specified scale. By filtering at multiple scales, a
locally monotonic scale-space can be created and used in
multiscale image applications such as segmentation,
tracking, content-based retrieval, and image coding. In
conlrast to existing linear and nonlinear scale-generating
filters, the lomo filter has no spatial or graylevel bias and
preserves edge localization through scale-space.

1. Local Monotonicity in 1-D

In one dimension, the concept of monotonicity is
straightforward. A signal is monotonic over an interval
(continuous or discrete) if it is either non-increasing or
nen-decreasing over that interval. A localized definition
was introduced [1] in order to allow a measure of the
local smoothness of a discrete signal, and can be extended
to continuous signals easily, A 1-D signal is locally
monotonic of degree n ("lomo-n") if and only if the sigaal
is monotonic within every interval of length #.

Some basic properties of 1-D lomo-# signals are;

1. Plateaus between ascending and descending intervals:
Between any increasing interval and any decreasing

interval, there must exist a constant interval of length = n

(continuous) or = #-1(discrete) [1]. Any local minima or
maxima is a member of adjacent ascending and
descending intervals, and therefore is contained within a
platean. Fig. 1 shows a lomo-6 signal.

2. Separation of similar extrema: The distance between
any two distinct {i.e. not contained within the same

constant interval) local maxima is = » (continuous) or =
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n-1(discrete), and similarly for local minima. (Proof: A
local minimum must exist between any two distinct local
maxima, and that minimum must be contained within a
plateau of length given by Property 1.)

3. Root signal of order-statistic filters: A lomo-n signal is
a root of both the apen filter and the close filter of
constant-valued structuring elements, of length =
(continuous) or n-1 {(discrete), symmetric about the
center*[2][3]. Therefore, the signal is also a root of any
order-statistic filter that is bounded by the open and close
filters, e.g. the median of length 2r (continuous) or length
2n-3 (discrete).

*Discrete signals that are lomo-#n with » odd (and thus »-
1 is even) have a difficulty here. There is not a structuring
element of even length that is symmetric about the center.
However, these signals are roots of the median filter of
length of length 25-3.

4. Components of level-sets have a minimum 'scale’; Each
connected-component (both 1 and 0 connected objects) in
each level-set (binary threshold) of a lomo-n object is at
least larpe enough to enclose the morphological
structuring element from Property 3. (Proof: Level-set
objects must contain at least one local extremum, and
Property 1 sets a lower bound on the level-set size of
extrema.) Thus, there is a minimum size (Jomo scale)
associated with the level set components of a lomo-n
signal. See Fig 1,
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Figure 1. A discrete 1-D lomo-6 signal f{x} and the level-
set (or binary threshoid) for fix)2 5.

Each of the 1-D properties follows directly from the
original definition based on non-increasing and non-
decreasing segments. However, in higher dimensions,



non-increasing and non-decreasing become ill-defined
concepts. (Should the 2-D signal be non-increasing along
any path of length », any straight path, at least one
straight path, etc.?) Therefore, it is of interest to see
whether the 1-D definition can be stated in a more
general, but equivalent, manner. In fact, with the 1-D
case, any one of the four properties listed above is a
necessary and sufficient condition for a signal to be
identified as lomo-n. Thus, any of these can serve as the
basic definition of local monotonicity. We choose among
them the definition that most easily generalizes to
multiple dimensions, while retaining the properties that
are likely to be of greatest usility in application.

2. Multidimensional Local Monotonicity and
the Morphological Lomo Filter

2.1 Previous Multidimensional Generalizations

Some attempts have been made to generalize local
monotonicity to higher dimensions by way of the median
filter. As mentioned in Property 3, a 1-D lomo-n signal is
in fact a root of the symmetric median filter of the
appropriate window or structuring element. In higher
dimensions, a separable median filter has been proposed
[4]. Separable median filters treat the horizontal and
vertical directions separately, and therefore have inherent
spatial bias in those directions. Instead, an isotropic
definition is desired,

A spherically symmetric median in multiple
dimensions is a possibility. However, when repeatedly
applied to a signal, the median filter is susceptible to
oscillations and generates streaking and blotching
artifacts [5]. In addition, the median filter is rather
cumbersome and inelegant in the continuous domain,
both in theory and in computation, The basic concept of
local monotonicity should have a simple definition in
both continuous and discrete domains. As we will see,
these goals can be satisfied through morphology.

2.2 Morphological Local Monotonicity

As mentioned above in Property 3, 1-D lomo signals
are root signals of the morphological open filter and close
filter simultaneously (of the appropriate structuring
element). Tet wus define a multi-dimensional
generalization of this definition of local monotonicity:

Definition 1: A signal is strict-sense morphological
lomo-n if and onmly if it is a root signal of the
meorphological filters open and close (simultaneously)
where the structuring element is spherically symmetric of
radius »(»n) and of constant value. The structuring element
is centered on a single point and contains all points whose
distance from the center is less than or equal to r. For

continuous domain signals this implies r = #/2, and for
discrete signals r = (#-2)/2, in agreement with the 1-D
case,

In 1-D a single pass of the open-close (or close-open)
filter creates a root signal of both the open and close
fitters. However, the choice of applying one filter or the
other to a non-lomo signal would impose a graylevel bias
(the open-close filter is biased towards lower intensity
and the close-open filter towards higher intensity). In
higher dimensions, even this procedure breaks down, and
the open-close filter produces a signal that is a root of the
close filter but not necessarily of the open filter (See Fig.
2 for an example). A similar statement can be made about
the close-open filter. Thus, the procedure for obtaining a
lomo signal from a non-lomo signal is unclear.
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a (b) (c)
Figure 2. A simple 2-D example of a saddlepoint situation.
From left to right: (a) original test image, (b) after the open (or
close-open) filter of structuring element equat in size to the
circular object {r = 10), (¢} after the close (or open-close) filter.

Furthermore, signals that are roots of both open and
close may be too restrictive a set for useful applications.
For example, suppose a non-lomo 2-D image is given,
and it is desired to transform it into a lomo signal. For
convenience, let us define a regular lomo region as a
region the size of the structuring element that is neither
altered by the open filter nor by the close filter. Consider
the original 2-D image in Fig. 2a. When the original is
filtered (separately) by the open filter (Fig, 2b) and close
filter (Fig. 2c), the regular lomo regions are those pixels
left unchanged. However, by the above definition, there is
no lomo-r signal that leaves all these pixels unchanged.

Thus, creating a strict-sense morphologically lomo
signal from a non-lomo signal (such as in Fig. 2a) may
require that regular lomo regions be altered. It is desired,
however, that in creating a lomo signal from a non-lomo
signal, all regular lomo regions be left unaltered. This
constraint maintains fidelity to the original signal (and
can be exploited for computational efficiency), As we
will see, this objective can be met with a slightly
modified morphological filter,

Definition 2: A M-dimensional signal f is
morphological lomo-n if and only if it is a root signal of
the M-dimensional lomo filter of scale #. The lomo filter
is defined as the linear combination of open and close

filters of spherically symmetric, constant-valued
structuring element £ (of radius r(n)):
ok+ fek
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where the structuring element and relationship between n
and r{n) are the same as in Definition 1. This filter has
been considered as a merphological approximation to the
median [6]. However, the operator fails to be idempotent,
Therefore, (1) is written as an iterate, and the filter is
repeatedly applied until convergence.

This definition is equivalent to other 1-D definitions.
However, the introduction of the lomo filter has
significant advantages in higher dimensions. First,
iterative application of the filter converges to a lomo root
signal. Hence, a procedure for obtaining a lomo signal
from a non-lomeo one is achieved. Furthermore, all regular
lomo regions are unaltered by the filter, The filter
contains no directional bias, and applies easily to both
discrete and continuous signals, Similar to the median
filter, the lomo filter is self-duat and thus possesses no
graylevel bias [7].

The four 1-D properties mentioned above become
modified by both Definitions 1 and 2 in higher
dimensions. By either definition, Property 1 becomes the
following: Any local extremum is contained within a
constant region such that the structuring element fits
within that region, that is a constant regular lomo region,
This gives these constant regions a minimum size (radius)
corresponding to the lomo scale,

Property 2 is unaltered by Definition 1. However,
Definition 2 allows the existence of saddlepoints between
similar extrema. These extrema can be closer together
than a single structuring element width. The treatment of
these saddlepoints marks the fundamental difference
between Definitions 1 and 2 and will be analyzed in more
detail below.

Property 3 is also altered, as the relationships between
the order statistic filters becomes more complex. QOpen
and close no longer serve as bounds for the median in 2+
dimensions. Thus, the roots of the lomo filter are not
necessarily median roots. In contrast to signals satisfying
Definition 1, signals satisfying Definition 2 are not
necessarily roots of both open and close separately,
Again, the difference is the treatment of saddlepoints, For
example, the signal in Fig. 2a becomes the (Definition 2)
lomo signal in Fig, 3 (upon repeated application of the
lomo filter). It contains a saddlepoint region between two
local maxima {and two local minima), i.e. a portion of the
signal which is a root of the lomo filter, but not a root of
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Figure 3, 2-D signal of Fig. 2(a) after lomo filtering (root
signal reached after a single pass). The gray region is a
saddlepoint region. All other points are regular lomo points.
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either the open filter or the close filter.

Property 4 is retained in higher dimensions by both
definitions. For Definition 1, the 1-D proof can be
generalized immediately. For Definition 2, saddlepoint
regions must be considered. However, there can be no
level-set object contained entirely within a saddlepoint
region, because such regions contain no local extrema,
Thus, all level-set points in saddle regions are connected
to regular lomo regions that satisfy Property 4,

Definition 2 is less restrictive than Definition 1, and
the oot set of Definition 2 contains that of Definition 1.
If the original signal contains saddlepoint regions (as
often occurs in practice), there is no clear filtering
procedure for eliminating them and producing a root
signal of open and close simultaneously, as Definition 1
requires. Definition 2, in contrast, does provide a filtering
procedure, but allows saddlepoint regions {excluded by
Definition 1) to remain.

2.3 Alternative Lomo Filters

While the iterate given by (1) satisfies our need for a
filter that generates morphological lomo signals, it is
noteworthy that this filter is not unique. For example, a
root signal of (1) is also a root signal of both

f<__(f°k)°k;(f'k)°k, @
and
fe Rtk (feR)eR) ok o

2
Here we present a brief outline of the proof. Assume f
is a root signal of (1):
fok+fek=2f (4)
Then,
fok=f+(f~fok)=f+p, (%)
whete p, =~ fok is the open residue. Opening (5)
gives
(fokyok=(f+p,)ok. (6)
Since the addition of the open residue of f to a signal f
does not affect subsequent open filtering, we obtain
(f +po)ok=f ok, )
Combining (6) and (7), and demonstrating the dual case
for the close operation ((fok)ek = (f — pe )0k =fok),
the filter in (2) reduces to the filier in (1). The same
property extends this proof to include the filter in (3).
This implies that each of these lomo filters may serve
as an equivalent definirion of local monotonicity of a
given scale by sharing the same set of root signals.
However, it should be noted that iterative application of
each of these filters leads to different lomo roots within
that root set. Alternative lomo filters may be
advantageous. For example, (1) attenuates an image



impulse at a geometric convergence rate, while (2)
climinates the impulse in a single iteration.

3. Lomo Scale-Space

A signal scale-space is a series of representations that
vary from fine to coarse. The proposed lomo filter
possesses many of the same characteristics of other
morphological scale-generating filters, such as edge
localization, However, because the lomo filter has no
graylevel bias, the results of lomo filtering tend to remain
more faithful to the original signal.

In generating a lomo scale-space, each image of
increasing scale is formed by iteratively applying the
lomo filter to the previous image in scale-space, similar to
morphological alternating sequential filtering [8]. This
generation technique allows noise and small features to
be removed effectively as scale increases, Three selected
levels of the lomo scale-space for the original image of
Fig, 4 are shown in Fig, 5.

Figure 4. Original 256 x 256 pixel image with 256
graylevels used in generating the scale-space of Fig. 5.

Table. Mean Squared Error (w.r.t. the original Fig. 4)
of three scales from three morphological scale-
spaces: close-open and open-close alternating
sequential scale-spaces and the lomo scale-space,
using 256 graylevels and circular structuring
¢lements of specified radii.

radius radius radius

1 pixet 2 pixels 4 pixels
close-open 29.3 63.9 1534
open-close 29.5 76.9 191.3
lomo 27.1 59.8 113.7
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Figure 5, Selected levels of the lomo scale-
space derived from Fig. 5. From top, circular
structuring elements of radii 1,2, and 4 pixels.



The self-dual lomo scale-space outperforms its graylevel-
biased morphologicat counterparts. The lomo scale-space
therefore represents a viable alternative to previous scale-
spaces, by its fidelity to the original image, lack of
intensity * bias, and well-defined scale properties,
Quantitatively, the Table gives the mean squared error
{(MSE) of three scale-space levels measured from the
original image of Fig. 4 using morphological alternating
sequential scale-spaces and the  lomo scale-space
generated by (1)

4. Applications and Further Research

The motivation behind lomo filtering is the desire to
design a scale-generating pre-filter for multiscale image
processing tasks, Applications may include multiscale
object tracking, segmentation, content-based retrieval,
and other coarse-to-fine search processes, as well as
multiscale image/video coding.

For example, edge detection and ultimately
segmentation could be performed using the following
technique. A discrete approximation of the second
derivative of a 1-D lomo-n signal can be expressed
morphologically using the linear combination of dilation
and erosion operations:

$(x) = Fx@k(x)+ f(x)o k(x) . ®

The difference signal between the lomo signal f{x) and
this midrange [7] signal s(x) is identical to the common
discrete approximation formula given by

fu(x)gf(x+A)_2f2(x)+f(x_A), (9)

for any A< n/2, Thus, zero-crossings in the difference
signal s(x) — f{x) are akin to zero-crossings in the second
derivative of f{x).

This motphological edge detection could be extended
to 2-D as an alternative to the Laplacian of Gaussian.
Rather than applying the Laplacian operator within linear
scale-space, this morphological second derivative
approximation is used within a morphological scale-
space. In this manner, a scaled edge detector is properly
matched with a similarly scaled signal. An example of
this zero-crossing edge detection is shown in Fig. 6. This
technique is one of many peossibilities for taking
advantage of the well-defined scale properties of lomo
signals,

Areas requiring further research include the
convergence rate of the lomo filter and the characteristics
of the alternative lomo filters. Also, a study of sampling
conditions for the lomo filter may show that a lomo scale-
space pyramid can be created and used in a pyramidal
image analysis.
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Figure 6. Zero-crossings of the (thresholded)
difference image s(x) - fx), where f(x) is the radius-4
lomo signal of Fig. 5, and s(x) is given by {(8).
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