
Chemistry & Biology

Article
Lacidipine Remodels Protein Folding and Ca2+

Homeostasis in Gaucher’s Disease Fibroblasts:
A Mechanism to Rescue Mutant Glucocerebrosidase
Fan Wang,1 Ann Chou,2 and Laura Segatori1,2,*
1Department of Chemical and Biomolecular Engineering
2Department of Biochemistry and Cell Biology

Rice University, 6100 Main Street, Houston, TX 77005, USA
*Correspondence: segatori@rice.edu

DOI 10.1016/j.chembiol.2011.04.008
SUMMARY

The hallmark of Gaucher’s disease cellular patho-
genesis is the lysosomal accumulation of glucosyl-
ceramide, which is caused by misfolding of mutated
glucocerebrosidase (GC) and loss of lysosomal GC
activity, and leads to depletion of [Ca2+]ER. We
demonstrate that modulation of Ca2+ homeostasis
and enhancement of the cellular folding capacity
synergize to rescue the folding of mutated GC vari-
ants. Lacidipine, an L-type Ca2+ channel blocker
that also inhibits [Ca2+]ER efflux, enhances folding,
trafficking, and activity of degradation-prone GC
variants. Lacidipine remodels mutated GC proteo-
stasis by simultaneously activating a series of
distinct molecular mechanisms, namely modulation
of Ca2+ homeostasis, upregulation of the ER chap-
erone BiP, and moderate induction of the unfolded
protein response. However, unlike previously re-
ported proteostasis regulators, lacidipine treatment
is not cytotoxic but prevents apoptosis induction
typically associated with sustained activation of the
unfolded protein response.

INTRODUCTION

Gaucher’s disease (GD) is characterized by deficient lysosomal

glucocerebrosidase (GC) activity and accumulation of GC

substrate, glucosylceramide (Schueler et al., 2004). Mutations

in GC-encoding gene (GBA; Hruska et al. [2008]) result in inactive

GC variants, which are typically retrotranslocated from the endo-

plasmic reticulum (ER) to the cytoplasm for ER-associated

degradation (ERAD). A number of characterized missense muta-

tions destabilize GC native structure without directly impairing its

catalytic activity (Schmitz et al., 2005). As a result, these unstable

GC variants retain biologic activity if forced to fold into their

native 3D structure (Sawkar et al., 2002, 2006; Yu et al., 2007).

Rescuing the function of mutated GC variants is an appealing

alternative to the currently available therapeutic options (mainly

enzyme replacement therapy [Cerezyme�]), which are inade-

quate for the treatment of neuronopathic forms of GD (Sidransky
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et al., 2007). Hence, considerable effort has been recently

devoted to the design of strategies to rescue cellular folding, traf-

ficking, and activity of mutated GC variants associated with neu-

ronopathic GD (Mu et al., 2008a, 2008b; Ong et al., 2010; Wang

et al., 2011), the most common being the severely destabilized

L444P GC variant, which is associated with complete loss of

activity and neuronopathic symptoms in homozygous patients

(Grabowski, 1997).

Ca2+ ions, and particularly the gradient of [Ca2+] between the

ER (1 mM) and the cytoplasm (100 nM), play a signaling role in

a number of fundamental cellular activities, including protein

folding in the ER (Berridge et al., 1998; Bygrave and Benedetti,

1996). Ryanodine receptors (RyRs) and inositol 1,4,5-trisphos-

phate (IP3) receptors on the ER membrane regulate [Ca2+]ER
efflux, whereas Ca2+-ATPases (SERCA pumps) transfer Ca2+

from the cytoplasm into the ER (Baumann and Walz, 2001)

(Figure 1A). In GD neurons, glucosylceramide accumulation

causes excessive [Ca2+]ER efflux via RyRs (Korkotian et al.,

1999; Lloyd-Evans et al., 2003; Pelled et al., 2005). The correla-

tion between the extent of GC variants’ residual activities in

patient-derived fibroblasts and the clinical severity of the

disease, including the occurrence of neuronopathic symptoms,

has been established (Beutler et al., 1984; Meivar-Levy et al.,

1994; Michelakakis et al., 1995). Hence, patient-derived fibro-

blasts have been repeatedly used to investigate how Ca2+

homeostasis modulation affects the folding of mutated GC vari-

ants (Mu et al., 2008a; Ong et al., 2010; Wang et al., 2011).

Ca2+ homeostasis influences the biogenesis of secretory

proteins and the activity of a number of ER chaperones (Michalak

et al., 2002). We previously suggested that impairment of Ca2+

homeostasis in GD fibroblasts, by compromising ER folding,

hampers rescue of highly unstable, degradation-prone L444P

GC folding (Wang et al., 2011). The application of RyR blockers

was shown to counteract the effect of glucosylceramide accu-

mulation on [Ca2+]ER efflux, reestablish Ca2+ homeostasis, and

create an environment more conducive to native folding of

L444P GC. However, it did not lead to a substantial rescue of

L444P GC folding (Wang et al., 2011).

L-type Ca2+ channel (LTCC) (Figure 1A) blockers bind to high

voltage-activated channels on the plasma membrane and lower

cytosolic-free [Ca2+] (Hockerman et al., 1997; Triggle, 2006).

Phenylalkylamines, benzothiazepines, and 1,4-dihydropyridines

are the three main classes of LTCC blockers and include mole-

cules that bind to three distinct LTCC receptor sites (Hockerman
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Figure 1. Treatment of GD Patient-Derived Fibroblasts with LTCC Blockers Enhances Mutated GC Activity

(A) [Ca2+]ER is regulated by RyRs, IP3 receptors, and SERCA pumps. L-type voltage-gated Ca2+ channels (LTCCs) mediate Ca2+ flow through the plasma

membrane. Lacidipine inhibits extracellular Ca2+ influx through LTCCs and ER Ca2+ efflux through RyRs.

(B–G) Relative L444P GC activities in cells treated with (B) lacidipine (20 mM), lercanidipine (20 mM), and nicardipine (20 mM) for 72 hr, and diltiazem (10 mM) and

verapamil (5 mM) for 120 hr. Relative GC activities were evaluated by normalizingGC activities measured in treated cells to the activity of untreated cells (left y axis)

(p < 0.01 if not specified; *p < 0.001). The corresponding fraction of WT GC activity is reported (right y axis). Experiments were repeated three times, and data

points are reported as mean ± SD. Relative L444P GC activities were also evaluated in L444P GC cells treated with a proteostasis regulator (MG-132, 0.6 mM;

celastrol, 0.6 mM) and an LTCC blocker: (C) lacidipine, (D) lercanidipine, and (E) nicardipine for 72 hr; and (F) diltiazem and (G) verapamil for 120 hr. GC activities

were obtained as described in (B) and are reported as mean ± SD.

(H–J) Relative N370S GC activities in cells treated with (H) lacidipine (20 mM) and diltiazem (10 mM) for 72 hr. Relative N370S GC activities in cells treated

a proteostasis regulator (MG-132, 0.6 mM; celastrol, 0.6 mM) and an LTCC blocker: (I) lacidipine, and (J) diltiazem.

See Figures S1 and S2.
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et al., 1997). Verapamil and diltiazem, prototypes of phenylalkyl-

amines and benzothiazepines, respectively, are FDA-approved

drugs for the treatment of hypertension and cardiac arrhythmias
Chemistry & Biology 18,
(Hockerman et al., 1997), and were previously reported to

partially rescue the folding of GC variants, but their mechanism

remains elusive (Mu et al., 2008a; Sun et al., 2009). We asked
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whether this reported rescue of mutated GC folding is a general

property of LTCC blockers and whether their ability to modulate

intracellular [Ca2+] correlates with the resulting increase in

mutated GC activity. We investigated LTCC blockers with 1,4-di-

hydropyridine structure including the prototype nifedipine and

a series of second- and third-generation derivatives (Epstein,

1999; Pepine, 1989).We found that cell treatment with lacidipine,

a third-generation 1,4-dihydropyridine that antagonizes Ca2+

mobilization through LTCCs and RyRs (Gunther et al., 2008;

Wishart et al., 2008) (Figure 1A), results in enhanced folding, traf-

ficking, and activity of mutated GC variants. Particularly, we

show here that lacidipine functions as a proteostasis regulator

in patient-derived GD fibroblasts and rescues L444P GC folding

with considerably higher efficiency than any other Ca2+ channel

blocker reported in this study and previously (Mu et al., 2008a;

Ong et al., 2010; Wang et al., 2011). By investigating lacidi-

pine-induced modulation of intracellular [Ca2+] and of cellular

folding pathways, we demonstrated that lacidipine functions

by lowering cytoplasmic [Ca2+], remodeling the expression of

ER chaperone and the unfolded protein response (UPR), and

reducing cellular toxicity and apoptosis induction, thus acti-

vating mechanistically different cellular events previously

reported in association with distinct small molecule proteostasis

regulators (Wang et al., 2011).
RESULTS

Treatment with Small Molecule LTCC and RyR Blockers
Enhances Folding, Trafficking, and Activity of Mutated
GC in Patient-Derived Fibroblasts
We investigated a series of LTCC blockers with 1,4-dihydropyr-

idine structure, particularly lacidipine, lercanidipine, nicardipine,

nifedipine, and nitrendipine (Triggle, 2003). Patient-derived fibro-

blasts harboring L444P GC were treated with a range of Ca2+

blocker concentrations for 5 days, and GC activities were evalu-

ated every 24 hr with the intact cell GC enzymatic activity assay

(Mu et al., 2008b) (see Figure S1 available online). Verapamil and

diltiazem, prototypes of the other two classes of LTCC blockers

(phenylalkylamines and benzothiazepines, respectively), were

included for comparison because they were previously reported

to partially rescue mutated GC folding (Mu et al., 2008a).

Culturing conditions resulting in maximal rescue of L444P GC

activity are reported in Figure 1B. L444P GC activity was

observed to increase up to 2.0-fold in cells treatedwith lacidipine

(20 mM, final medium concentration; p < 0.001) for 72 hr

compared to untreated cells, which corresponds to about 25%

of the WT cellular activity, and is expected to ameliorate GD

symptoms (Schueler et al., 2004). A milder increase in L444P

GC activity (1.2-fold; p < 0.01) was detected in the same cells

treated with lercanidipine and nicardipine (20 mM) for 72 hr,

compared to untreated cells (Figure 1B). Nifedipine and nitrendi-

pine treatment failed to rescue the activity of L444P GC (data not

shown). Lacidipine was observed to enhance the activity of

L444P GC to a considerably higher degree than diltiazem and

verapamil tested under the same conditions (Figure S1). Maximal

L444PGC activity increasewas observed upon diltiazem (10 mM,

1.4-fold) and verapamil (5 mM, 1.1-fold) treatment for 120 hr

(Figure 1B).
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Similar to diltiazem and verapamil, lacidipine blocks LTCCs on

the plasma membrane as well as RyRs on the ER membrane

(Gunther et al., 2008). Nicardipine and lercanidipine are known

to block LTCCs and were reported to interfere with the release

of Ca2+ from the ER (Wishart et al., 2008), whereas nifedipine

and nitrendipine are thought to only interact with LTCCs

(Gunther et al., 2008). These reported binding interactions,

together with results from the GC activity assays reported above

(Figure 1B), suggest a correlation between the mechanism of

Ca2+ mobilization and the extent of L444P GC folding rescue.

Specifically, a higher increase in L444P GC activity results from

treatment with Ca2+ blockers that antagonize both LTCCs and

RyRs.

We asked whether treatment with proteostasis regulators,

such as MG-132 and celastrol, applied in combination with

LTCC blockers enhances the rescue of L444P GC folding, as

previously demonstrated for RyR blockers (Wang et al., 2011).

Proteostasis regulation was achieved via cell treatment with

either MG-132 (0.6 mM) or celastrol (0.6 mM), which are known

to rescue L444P GC folding through a mechanism distinct from

Ca2+ homeostasis modulation (Mu et al., 2008b). Patient-derived

fibroblasts were cultured in medium supplemented with an

LTCC blocker and a proteostasis regulator for up to 5 days,

and GC activity was measured every 24 hr (Figures 1C–1G; Fig-

ure S2). Coadministration of lacidipine (20 mM) and MG-132 for

72 hr resulted in a dramatic increase in L444P GC activity

compared to untreated cells (5.1-fold; p < 0.001) (Figure 1C),

which corresponds to 64% of wild-type GC activity and is signif-

icantly higher than what was observed treating the cells only with

lacidipine (2.0-fold, Figure 1B) or MG-132 (2.7-fold, Figure 1C).

Addition of lacidipine was observed to also enhance celastrol-

mediated increase in L444P GC activity (2.6-fold, Figure 1C).

Interestingly, lercanidipine (20 mM) and nicardipine (5 mM)

enhanced MG-132-mediated L444P GC activity rescue (4.3-

and 3.2-fold [p < 0.001], respectively) but failed to improve celas-

trol activity (Figures 1D and 1E). Diltiazem and verapamil were

observed to synergize with proteostasis regulators with lower

efficiency than 1,4-dihydropyridines. Particularly, treatment

with diltiazem (10 mM) and verapamil (5 mM) moderately

enhanced celastrol-mediated L444P GC folding rescue (2.1-

and 1.9-fold, respectively), and failed to alter MG-132-mediated

rescue (Figures 1F and 1G).

N370S GC is the most common GC variant exhibiting low

residual activity (Meivar-Levy et al., 1994). Cellular folding rescue

and enhancement of N370S GC activity were previously re-

ported (Mu et al., 2008a, 2008b; Offman et al., 2010; Sawkar

et al., 2002; Wang et al., 2011; Yu et al., 2007). As opposed to

L444P GC, N370S GC folding was previously shown to be

amenable to rescue with GC-specific chemical chaperones,

suggesting that the location and nature of these two mutations

have different destabilizing effects on the enzyme’s native

folding and cellular trafficking (Sawkar et al., 2002, 2005). In

addition, patients with GD carrying the N370S GC variant never

present neuronopathic GD symptoms typically associated with

L444P GC (Michelakakis et al., 1995). To verify whether lacidi-

pine-mediated rescue of mutated GC folding is restricted to

the L444P GC variant, GD patient-derived fibroblasts carrying

N370S GC were cultured in the presence of lacidipine and pro-

teostasis regulators, andGC activities weremeasured. Diltiazem
Ltd All rights reserved



Figure 2. Treatment of GD Patient-Derived Fibroblasts with Lacidi-

pine Promotes L444P GC Folding, Glycosylation, and Trafficking

(A)Western blot analyses of EndoH-treated and untreated total protein content

of L444PGC fibroblasts culturedwith lacidipine (20 mM),MG-132 (0.6 mM), and

celastrol (0.6 mM) for 48 hr and detected using GC-specific antibody. The solid

and dashed arrows indicate, respectively, EndoH-resistant and EndoH-

sensitive bands. PR, proteostasis regulator; Lac, lacidipine; Dil, diltiazem; MG,

MG-132; Cel, celastrol.

(B) Quantification of GC bands detected by western blot. Lower MW, EndoH-

sensitive bands corresponding to ER-retained GC were quantified and are

reported in the white portion of the bars, and quantification of higher MW,

EndoH-resistant bands corresponding to lysosomal GC are reported in the

black top portions. Band analyses and quantifications were conducted using

NIH ImageJ analysis software.

(C and D) Immunofluorescencemicroscopy of (C) GC and CNX (an ERmarker),

and (D) GC and LAMP1 (a lysosomal marker) in L444P GC fibroblasts. Cells

were treated with lacidipine (20 mM) and MG-132 (0.6 mM) for 48 hr. Colocal-

ization of CNX (red, column 1) and GC (gray, column 2) is shown in green

(column 3). Colocalization of LAMP1 (red, column 1) and GC (blue, column 2) is

also shown in green (column 3).
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was previously shown to cause increase in N370S GC folding

(Mu et al., 2008a), hence it is reported here for comparison.

Similar to what was reported above for L444P GC fibroblasts, la-

cidipine (20 mM) treatment for 72 hr resulted in an increase in

N370S GC activity (1.8-fold; p < 0.001) (Figure 1H), which was

enhanced by the addition of MG-132 and celastrol (3.4- and

2.0-fold, respectively, Figure 1I). Diltiazem (10 mM, 1.4-fold; Fig-

ure 1H)-mediated increase in N370S GC activity was enhanced

by the addition of MG-132 and celastrol (3.1- and 1.7-fold,

respectively, Figure 1J). These results suggest that lacidipine

rescues the folding and activity of different mutated GC variants

and, thus, functions as a proteostasis regulator in GD patient-

derived fibroblasts.

In order to confirm that the increase in activity detected in cells

treated with lacidipine results from rescue of mutated GC folding

and trafficking to the lysosome, we tested L444P GC glycosyla-

tion state and cellular localization.

GC glycosylation state was investigated by endoglycosidase

H (EndoH) treatment. EndoH hydrolyzes high mannose, imma-

ture N-linked glycoproteins. EndoH treatment followed by GC

detection by western blot typically reveals a low MW band cor-

responding to partially glycosylated, ER-retained GC (EndoH-

sensitive) and a high MW band corresponding to fully glycosy-

lated, lysosomal GC (EndoH-resistant) (Maley et al., 1989). The

total protein content of cells cultured in media supplemented

with lacidipine (20 mM), MG-132 (0.6 mM), celastrol (0.6 mM), or

a combination thereof for 48 hr was subjected to EndoH treat-

ment, and GC was detected by western blot. A representative

western blot (Figure 2A) and quantification of EndoH-resistant

and EndoH-sensitive GC bands (Figure 2B) were reported. In

untreated cells nearly all L444P GC was detected as EndoH

sensitive, as expected (Mu et al., 2008b). However, a band cor-

responding to EndoH-resistant L444P GC was detected in cells

treated with lacidipine, and its intensity was comparable to that

detected in cells cultured with MG-132 or celastrol (the results

obtained from the experiments conducted with MG-132 and ce-

lastrol have been previously shown by Mu et al. [2008b], and are

reported here for comparison). Interestingly, lacidipine treatment

resulted in an �1.5-fold increase of total L444P GC and

a decrease of EndoH-sensitive fraction to 80% of total GC.

Cotreatment with lacidipine andMG-132 was observed to cause

a 2.5- and 1.7-fold increase in the EndoH-resistant pool of L444P

GC, compared to cells treated only with lacidipine and MG-132,

respectively (Figures 2A and 2B). This increase in mature, fully

glycosylated GC correlates with results obtained from GC enzy-

matic assays.

L444P GC cellular localization was evaluated using immuno-

fluorescence microscopy of L444P GC patient-derived fibro-

blasts treated with lacidipine (20 mM) and MG-132 (0.6 mM) for

48 hr and using antibodies specific for GC, for an ERmarker (Cal-

nexin, CNX), and for a lysosomal marker (LAMP-1). Colocaliza-

tion of GC and CNX (Figure 2C) and GC and LAMP-1 (Figure 2D)

is reported in green. L444P GC was barely detectable in

untreated cells due to extensive ERAD (Figures 2C and 2D), as

previously reported (Michelakakis et al., 1995). Analysis of

merged images revealed the presence of a large pool of enzyme

in the ER (Figure 2C) and in the lysosome (Figure 2D) in lacidi-

pine-treated cells, suggesting that lacidipine treatment

increases the pool of folded L444P GC that escapes ERAD
766–776, June 24, 2011 ª2011 Elsevier Ltd All rights reserved 769



Figure 3. LTCC Blockers Reduce Cytosolic

[Ca2+] Levels in Patient-Derived Fibroblasts

(A) L444P GD, (B) N370S GD, and (C) WT fibro-

blasts were cultured with lacidipine (20 mM) and

diltiazem (20 mM) for 5, 10, 20, 40, and 60 min,

respectively. Cytosolic [Ca2+] was evaluated by

measuring excitation 340/380 ratio of Fura-2

acetoxymethyl ester and normalized to that at time

zero. The data are reported as mean ± SD.
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and traffics to the lysosomes. Moreover, cotreatment with lacidi-

pine andMG-132 further increased the pool of ER and lysosomal

GC (Figures 2C and 2D), demonstrating that these twomolecules

synergize to rescue L444P GC folding and trafficking, and con-

firming the results obtained from enzymatic assays (Figures 1B

and 1C).

We previously showed that RyR inhibition creates an environ-

ment more amenable to L444P GC proteostasis than that of the

ER of untreated GD fibroblasts (Wang et al., 2011). The results

reported here suggest that combining inhibition of RyRs and

LTCCs enables direct rescue of L444P GC proteostasis.

However, lacidipine treatment seems to rescue L444P GC

folding and activity more efficiently than the other LTCC

blockers tested. This suggests that lacidipine is a more potent

modulator of intracellular [Ca2+] than other Ca2+ blockers used

here and previously (Mu et al., 2008a; Ong et al., 2010; Wang

et al., 2011) or that cell treatment with lacidipine rescues mutant

GC folding by activating other cellular mechanisms that influ-

ence the mutated GC folding free-energy diagram. The following

studies were conducted to investigate these hypotheses. Diltia-

zem was used as comparison in these studies because,

although it also inhibits LTCCs and RyRs and was reported to

enhance the folding of mutated GC variants (Mu et al., 2008a),

it is shown here to rescue L444P GC folding to a significantly

lower extent than lacidipine. In addition the mechanism involved

in diltiazem-mediated GC variant folding rescue still remains

elusive.

Lacidipine Depletes Cytosolic-Free [Ca2+] in GD
Patient-Derived Fibroblasts
Glucosylceramide buildup causes [Ca2+]ER efflux and elevation

of cytosolic [Ca2+] in GD cells (Korkotian et al., 1999). Lacidipine

and diltiazem, by binding to LTCCs and RyRs, are expected to

lower cytosolic [Ca2+] and increase [Ca2+]ER, respectively. We

asked whether the larger increase in mutated GC variants

activity caused by cell treatment with lacidipine compared to dil-

tiazem correlates with their different effect on intracellular Ca2+

mobilization. Cytosolic-free [Ca2+] was evaluated by monitoring

changes in Fura-2 fluorescence (Ong et al., 2010) in L444P,

N370S, and wild-type GC fibroblasts treated with lacidipine or

diltiazem (Figure 3). Lacidipine treatment was observed to

deplete cytosolic [Ca2+] with higher efficiency than diltiazem

treatment in all cell types. In addition, depletion of cytosolic

[Ca2+] is markedly more enhanced in L444P GC than in N370S

GC cells, suggesting a correlation between LTCC blocker-medi-
770 Chemistry & Biology 18, 766–776, June 24, 2011 ª2011 Elsevier
ated Ca2+ homeostasis modulation and rescue of mutated GC

variants’ folding.

Lacidipine Treatment Upregulates BiP Expression
in L444P GC Fibroblasts
We previously reported that the ER luminal chaperone BiP plays

a key role in L444PGC folding. Upregulation of BiP expression, in

combination with moderate UPR induction through MG-132

treatment, was shown to dramatically enhance the folding of

L444P GC (Wang et al., 2011). We asked whether cell treatment

with lacidipine influences the expression of ER chaperones and

conducted quantitative RT-PCR analyses to measure the

expression of the representative chaperones BiP, CNX, and Cal-

reticulin (CRT) in L444P GC fibroblasts treated with lacidipine

(20 mM), diltiazem (10 mM), MG-132 (0.6 mM), celastrol (0.6 mM),

or a combination thereof (Figures 4A–4C). BiP expression (Fig-

ure 4A) was dramatically upregulated by lacidipine treatment

(5.6-fold; p < 0.01), and lacidipine and MG-132 cotreatment

(13.1-fold; p < 0.01). Diltiazem treatment resulted in a milder

increase in BiP expression (1.8-fold), even when used in combi-

nation with MG-132 (3.1-fold). Although celastrol treatment was

observed to cause a modest increase in BiP expression (1.9-

fold), supplementing celastrol-containing medium with a LTCC

blocker did not influence BiP transcription.

ER chaperone expression in cells treated with lacidipine

(20 mM), diltiazem (10 mM), and MG-132 (0.6 mM) was confirmed

by western blot using chaperone-specific antibodies (Figure 4D).

BiP protein accumulation was enhanced by treatment with laci-

dipine alone or in combination with MG-132 compared to

untreated cells but only slightly enhanced by diltiazem and

MG-132 treatment. CNX and CRT protein levels did not seem

to be drastically altered. These results are consistent with RT-

PCR analyses and confirm the key role of BiP expression in

promoting native folding of L444P GC (Wang et al., 2011).

As opposed to what was previously reported for cells treated

with RyR blockers, which despite dramatically enhancing MG-

132-mediated L444PGC folding rescue do not directly modulate

the expression of ER chaperones (Wang et al., 2011), these

results indicate that lacidipine’s mechanism of action is based

on extensive remodeling of ER chaperone pathways. However,

we found that although cell treatment with lacidipine significantly

enhances BiP expression, it does not alter its cellular localiza-

tion. Particularly, immunofluorescence studies conducted to

test BiP localization in the ER and in the Golgi revealed that

BiP is still primarily localized in the ER (Figure S3).
Ltd All rights reserved



Figure 4. Treatment of Patient-Derived Fibroblasts with Lacidipine

Upregulates BiP Expression

(A–C) Relative mRNA expression levels of (A) BiP (p < 0.01), (B) CNX (p < 0.05),

and (C) CRT (p < 0.05) in L444P GC fibroblasts treated with lacidipine (20 mM),

diltiazem (10 mM), MG-132 (0.6 mM), and celastrol (0.6 mM) for 24 hr were

obtained by quantitative RT-PCR, corrected by the expression of the house-

keeping geneGAPDH, and normalized to those of untreated cells. The data are

reported as mean ± SD.

(D) Western blot analyses of BiP, CNX, CRT, and GAPDH (used as loading

control) accumulation in cells treated with lacidipine (20 mM) and MG-132

(0.6 mM) for 48 hr. Lac, lacidipine; Dil, diltiazem.

See Figure S3.

Chemistry & Biology

Lacidipine Rescues Mutated GC Variants Folding
Lacidipine Treatment Causes Modest Activation of All
Three Arms of the UPR but Does Not Induce Cytotoxicity
in L444P GC Patient-Derived Fibroblasts
The UPR is a tripartite signal-transduction cascade activated in

response to the accumulation of misfolded proteins in the ER.

UPR induction is mediated by the activation of three integral

ER membrane proteins, namely inositol requiring kinase 1

(IRE1), activating transcription factor 6 (ATF6), and double-

stranded RNA-activated ER kinase (PERK) (Schroder and Kauf-

man, 2005), which lead to the upregulation of UPR-related

genes, including chaperones and ERAD proteins. The expres-

sion of ATF6, PERK, and IRE1 was investigated to evaluate

UPR induction in GD patient-derived fibroblasts treated with
Chemistry & Biology 18,
lacidipine and diltiazem. Lacidipine was found to activate two

of the three arms of the UPR and with higher efficiency than dil-

tiazem. The increase in expression of UPR-associated genes in

cells treated with lacidipine was considerably enhanced by the

addition of MG-132. These results correlate with measurements

of L444P GC activity reported above, in which maximal increase

was obtained upon cotreatment with lacidipine and MG-132

(Figure 1).

Activation of IRE1 causes X-box binding protein-1 (Xbp-1)

mRNA cleavage (Ron and Walter, 2007). The product of Xbp-1

splicedmRNA acts as an activator of UPR target genes, whereas

the product of the unspliced Xbp-1 precursor acts as a repressor

(Ron and Walter, 2007). RT-PCR experiments followed by gel

electrophoresis were conducted to evaluate the accumulation

of the spliced and unspliced forms of Xbp-1 in L444P GC fibro-

blasts treated with LTCC blockers (lacidipine [20 mM] or diltiazem

[10 mM]) and a proteostasis regulator (MG-132 [0.6 mM] or celas-

trol [0.6 mM]) for 24 hr (Figure 5A). Treatment with MG-132

enhanced Xbp-1 splicing in L444P GC fibroblasts, as previously

reported (Mu et al., 2008b). Spliced Xbp-1 was barely detectable

in cells treated with lacidipine. However, a 4.8-fold increase in

spliced Xbp-1 accumulation was observed upon cotreatment

with lacidipine and MG-132 compared to treatment with MG-

132 only, recapitulating the synergistic effect of lacidipine and

MG-132 observed in enzymatic assays (Figures 5A and 5B). A

4.3-fold increase in spliced Xbp-1 was detected in L444P GC

fibroblasts treated with diltiazem and MG-132 compared to

that measured in fibroblasts treated with MG-132 only. Although

cell treatment with celastrol causes increase in Xbp-1 splicing

and in L444PGC folding rescue (Mu et al., 2008b), addition of ce-

lastrol to the media of lacidipine- or diltiazem-treated cells did

not increase Xbp-1 splicing. Taken together, these results

suggest a synergistic effect of LTCC blockers lacidipine and dil-

tiazem and the proteostasis regulator MG-132 on the activation

of the IRE1 arm of the UPR in L444P GC patient-derived fibro-

blasts. Among the culturing conditions investigated, the highest

degree of Xbp-1 splicing was observed in cells displaying the

maximum increase of L444P GC activity (lacidipine and MG-

132 treatment, Figure 1), suggesting a key role of IRE1 activation

in rescuing L444P GC folding.

The second arm of the UPR is mediated by ATF6 activation

(Ron and Walter, 2007). Quantitative RT-PCR was used to eval-

uate ATF6 expression in cells treated as described above. Laci-

dipine treatment resulted in ATF6 upregulation (2.1-fold), which

was further enhanced by the addition of MG-132 (3.5-fold), sug-

gesting that the ATF6 arm of the UPR is also activated by treat-

ment with lacidipine, particularly when used in combination with

MG-132 (Figure 5C). Diltiazem treatment barely affected ATF6

expression, and the addition of neither MG-132 nor celastrol to

diltiazem-supplemented media caused significant changes.

The third branch of the UPR is induced by PERK oligomeriza-

tion and phosphorylation of the eukaryotic translation initiation

factor-2 (eIF2a). eIF2a induces the expression of the transcrip-

tion factor ATF4 and a subset of ATF4 target genes, including

CHOP (Ron and Walter, 2007). Lacidipine treatment caused

CHOP upregulation (3.7-fold), which was considerably

enhanced by the addition of MG-132 (5.0-fold), indicating that

the PERK arm of the UPR is activated in response to lacidipine

treatment (Figure 5D). Treatment with diltiazem alone or in
766–776, June 24, 2011 ª2011 Elsevier Ltd All rights reserved 771



Figure 5. Treatment of Patient-Derived L444P GC Fibroblasts with

Lacidipine Results in Upregulation of the UPR without Induction of

Apoptosis
Cells were treated with lacidipine (20 mM), diltiazem (10 mM), MG-132 (0.6 mM),

and celastrol (0.6 mM) for 24 hr.

(A) Xbp-1 expression and splicing were determined by RT-PCR followed by gel

electrophoresis.

(B) Quantification of spliced Xbp-1 band intensities was conducted using the

NIH ImageJ analysis software. PR, proteostasis regulator; Lac, lacidipine; Dil,

diltiazem; MG, MG-132; Cel, celastrol.

(C–G) Relative mRNA expression levels of (C) ATF6, (D) CHOP, (E) BAK, (F)

BAX, and (G) Bcl-2 were obtained by quantitative RT-PCR and calculated as

described in Figure 4. The data are reported as mean ± SD (p < 0.01).

Chemistry & Biology

Lacidipine Rescues Mutated GC Variants Folding
combination with a proteostasis regulator did not cause signifi-

cant changes in CHOP expression (Figure 5D).

Prolonged induction of the UPR and inability of the ER folding

capacity to cope with the load of misfolded proteins lead to

apoptosis. A number of genes are involved in the regulation of

apoptosis induction, including the proapoptotic genes encoding

for Bcl-2 homologous antagonist (BAK) and Bcl-2-associated X

protein (BAX) (Scorrano et al., 2003), and the antiapoptotic

gene encoding the apoptosis regulator Bcl-2 (Rodriguez et al.,
772 Chemistry & Biology 18, 766–776, June 24, 2011 ª2011 Elsevier
2011). The expression of BAK, BAX, and Bcl-2 was investigated

in cells treated with LTCC blockers and proteostasis regulators

as described before. MG-132 and celastrol treatments caused

upregulation of the proapoptotic proteins BAK and BAX. Specif-

ically, MG-132 induced upregulation of BAK (2.1-fold, Figure 5E),

and celastrol induced upregulation of BAX (3.1-fold, Figure 5F).

Lacidipine did not significantly alter either BAX or BAK expres-

sion, whereas diltiazem caused upregulation of both BAK (1.9-

fold) and BAX (2.1-fold). Cotreatment with lacidipine and MG-

132 was compared to treatment with MG-132. When cells

were cotreated with lacidipine and MG-132, BAK expression

was barely altered, but BAX expression was observed to

decrease, compared to cells treated with MG-132 only. This is

interesting because lacidipine and MG-132 were shown to

have a synergic effect on the rescue of L444P GC activity (Fig-

ure 1C) and on UPR activation (Figures 5A–5D). Because

enhanced UPR activation typically leads to enhanced apoptosis

induction, both BAX and BAK expression would be expected to

increase in cells treated under these conditions. Particularly,

BAX expression was lowered 2.9-fold in cells treated with lacidi-

pine and MG-132, suggesting that the mechanism of lacidipine-

mediated L444P GC folding rescue involves inhibition of

apoptosis via BAX downregulation. Interestingly, when diltiazem

was used in combination with a proteostasis regulator, MG-132-

mediated BAK upregulation was enhanced (2.9-fold), but celas-

trol-mediated BAX upregulation was lowered, whichmay explain

why treatment with celastrol, but not with MG-132, results in

enhancement of L444P GC activity increase mediated by

diltiazem.

The expression of the antiapoptotic Bcl-2 encoding gene was

also evaluated (Figure 5G). Bcl-2 contributes to maintaining ER

Ca2+ homeostasis by reducing [Ca2+]ER efflux (Eckenrode

et al., 2010; Rong et al., 2009), and was found to be upregulated

in L444P GC fibroblasts cultured with either lacidipine or diltia-

zem (1.9-fold), underscoring the therapeutic potential of Ca2+

homeostasis modulation in L444P GC fibroblasts. MG-132 treat-

ment lowered Bcl-2 expression (0.8-fold), whereas celastrol

treatment did not seem to affect it. The addition of a proteostasis

regulator to lacidipine-treated cells resulted in lowered Bcl-2

expression, particularly it brought Bcl-2 expression back to the

level detected in untreated cells, whereas the addition of a pro-

teostasis regulator to diltiazem-treated cells resulted in substan-

tial downregulation of Bcl-2 (MG-132 and diltiazem: 2.3-fold;

celastrol and diltiazem: 2.0-fold). Similar to what was reported

above regarding the expression of proapoptotic genes, modula-

tion of Bcl-2 expression correlates with the ability of LTCC

blockers to rescue L444P GC folding when used alone or in

combination with an UPR-inducing proteostasis modulator.

We next tested whether lacidipine-mediated changes in the

expression of pro- and antiapoptotic genes translate in differ-

ences in cytotoxicity and cell death, a common marker of cells

treated for L444P GC folding rescue through UPR activators,

such as MG-132, tunicamycin, and thapsigargin (Wang et al.,

2011). L444P GC patient-derived fibroblasts treated with Ca2+

blockers and proteostasis regulators as described above were

tested using the CytoGLO� Annexin V-FITC Apoptosis Detec-

tion Kit to monitor membrane rearrangement (Annexin V binding)

and fragmentation (propidium iodide [PI] binding), which occur

during early and late apoptosis, respectively (Table 1; Figure S4).
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Table 1. Cell Toxicity Assay

Cell Treatment

Annexin V PI

Populationa Bindingb Populationa Bindingb

Lacidipine 1.80 ± 0.35 �2.92 ± 1.84 �3.30 ± 0.86 2.46 ± 1.26

MG-132 7.20 ± 0.12 47.36 ± 0.99 7.40 ± 0.38 27.87 ± 0.87

Lacidipine+MG-132 3.55 ± 0.14 40.77 ± 1.07 4.45 ± 0.26 14.53 ± 1.80

Celastrol 1.80 ± 0.86 10.40 ± 0.27 4.70 ± 0.23 18.98 ± 1.18

Lacidipine+celastrol 1.00 ± 0.53 8.34 ± 1.21 4.05 ± 0.95 13.20 ± 0.18

p < 0.01. Flow cytometry histograms are reported in Figure S4.
aChange (%) in number of cells bound to Annexin V/PI compared with untreated cells.
bChange (%) in Annexin V/PI-binding affinity compared with untreated cells.
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Treatment of L444P GC fibroblasts with lacidipine (20 mM) did

not cause cytotoxicity, and induction of apoptosis was not signif-

icantly altered compared to untreated cells. MG-132 (0.6 mM)

and celastrol (0.6 mM) resulted in 47.36% and 10.40% increase

in Annexin V binding, and 7.40% and 4.70% increase in dead

cell population, respectively. The addition of lacidipine to MG-

132 or celastrol-treated cells led to a decrease in Annexin V

binding to 40.77% and 8.34% and to a decrease in dead cell

population to 4.45%and 4.05%, respectively. These results indi-

cate that lacidipine treatment under conditions observed to

rescue mutated GC folding and induce UPR not only does not

cause cytotoxicity but also partially counteracts the cytotoxic

effect of UPR-inducing proteostasis regulators.

Interestingly, lacidipine mechanism of L444P GC folding

rescue differs significantly from that of RyR blockers reported

previously (Wang et al., 2011). Although cell treatment with

RyR blockers does not activate the UPR but rescues GD fibro-

blasts from UPR-induced toxicity, lacidipine treatment concur-

rently activates the UPR and ameliorates UPR-induced toxicity

in GD fibroblasts.

Lacidipine Treatment Upregulates GC Chromosomal
Expression in L444P GC Fibroblasts
As briefly alluded to before (Figures 2A and 2B), the total amount

of L444P GC seems to be enhanced by lacidipine treatment. Up-

regulation of GC gene (GBA) as well as of other genes encoding

for lysosomal enzymes involved in lipid metabolism was previ-

ously reported in cells treated for the rescue of L444P GC folding

through UPR induction. Particularly, we found that a number of

genes associated with the development of lysosomal storage

disorders, such as Niemann-Pick, Tay-Sachs, and Fabry

diseases, were upregulated upon MG-132-induced UPR

(Wang et al., 2011). This finding resonates with the general

increase in lipid metabolism that normally occurs during UPR

(Schroder and Kaufman, 2005) and was suggested as a poten-

tially therapeutic ‘‘side-effect’’ of mutated GC proteostasis regu-

lation via UPR activation (Wang et al., 2011).

Quantitative RT-PCR and western blot analyses were con-

ducted to understand whether the increase in cellular concentra-

tion of L444P GC observed in cells treated with lacidipine is due

to upregulation of GC expression in addition to L444P GC-

enhanced folding and lowered ERAD. L444P GC fibroblasts

were treated with lacidipine (20 mM), diltiazem (20 mM), MG-

132 (0.6 mM), celastrol (0.6 mM), or a combination thereof (Fig-

ure 6A). Lacidipine treatment was observed to enhance GC
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mRNA expression (3.1-fold) to an extent similar to MG-132

(3.1-fold) or celastrol (3.4-fold). Treatment with diltiazem resulted

in a lower increase in GC expression (2.5-fold), most likely re-

flecting diltiazem’s milder effect on UPR induction. Interestingly,

addition ofMG-132 resulted in increase in both lacidipine and dil-

tiazem-mediated GC upregulation (4.5- and 4.6-fold, respec-

tively), whereas celastrol slightly lowered it (2.9- and 2.2-fold,

respectively). These transcriptional changes were confirmed at

the translational level by western blot analyses (Figure 6B).

L444P GC fibroblasts were cultured with lacidipine (20 mM),

MG-132 (0.6 mM), and celastrol (0.6 mM) for 48 hr, and bands de-

tected with a GC-specific antibody were quantified using NIH

ImageJ analysis software (Figure 6C). The L444P GC content

of lacidipine-treated cells increased about 50% compared to

that of untreated cells, similarly to what was observed in MG-

132-treated cells. In addition the combination of lacidipine and

MG-132 caused a 2.3-fold increase in total L444P GC, which is

higher than what was observed in cells treated with either one

of these molecules, and is in perfect agreement with the results

obtained from quantitative RT-PCR. Celastrol treatment did not

significantly affect GC protein accumulation. In summary these

data indicate that GC chromosomal expression is enhanced

upon treatment with lacidipine, and suggest that GC upregula-

tion contributes to L444P GC folding rescue mediated by UPR

induction.

DISCUSSION

Ubiquitously expressed voltage-gated LTCCs support inward

current of Ca2+ ions. The function of Ca2+ ions as an intracellular

second messenger has been reported in many cellular

processes, ranging from gene expression to cardiac and smooth

muscle contraction. Because Ca2+ mediates both physiological

and pathological events, considerable effort has been devoted

to the study of Ca2+ channel antagonists, a chemically and phar-

macologically heterogeneous group of drugs widely used as

therapeutic agents as well as research tools. The prototypical

LTCC antagonists are diltiazem (a benzothiazepine), verapamil

(a phenylalkylamine), and nifedipine (a 1,4-dihydropyridine) (Trig-

gle, 2006). Diltiazem and verapamil are FDA-approved drugs for

the treatment of hypertension and cardiac arrhythmias (Hocker-

man et al., 1997). They were reported to rescue folding, traf-

ficking, and activity of GC variants in patient-derived fibroblasts

(Mu et al., 2008a),but failed to rescuemutatedGC activity inmice

(Sun et al., 2009). In an effort to discover small molecules that
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Figure 6. L444P GC Expression Is Upregulated in Fibroblasts

Treated with Lacidipine and Diltiazem
(A) Relative GCmRNA expression level was evaluated by quantitative RT-PCR

in L444P GC fibroblasts treated with lacidipine (20 mM), diltiazem (10 mM), MG-

132 (0.6 mM), and celastrol (0.6 mM) for 24 hr (p < 0.01). mRNA expression levels

were calculated as described in Figure 4.

(B) Representative western blot analysis of cells treatedwith lacidipine (20 mM),

MG-132 (0.6 mM), and celastrol (0.6 mM) for 48 hr using GC-specific antibody.

(C) Western blots band quantification. GC bands were quantified by NIH

ImageJ analysis software. GAPDH expression was used as a loading control.

PR, proteostasis regulator; MG, MG-132; Cel, celastrol. The data are reported

as mean ± SD.

Chemistry & Biology

Lacidipine Rescues Mutated GC Variants Folding
efficiently rescue the folding of mutated GC variants by

enhancing the cellular folding capacity but without inducing

cytotoxicity, we tested a series of 1,4-dihydropyridines, a class

of LTCC antagonists known to lower intracellular [Ca2+] with

higher selectivity than benzothiazepines and phenylalkylamine

(Triggle, 2003).

Lacidipine was found to rescue the activity of GC variants

carrying the two most common mutations, L444P and N370S,

in GD patient-derived fibroblasts. In particular, lacidipine medi-

ates a substantially higher increase in L444P GC activity than

what was observed using other LTCC and RyR blockers to

date (Mu et al., 2008a; Ong et al., 2010; Wang et al., 2011),

and this increase ismarkedly enhanced by cotreatment with pro-

teostasis modulators MG-132 and celastrol. The nature of LTCC

blockers’ chemical structure—with lacidipine highly hydro-

phobic, diltiazem and verapamil charged at physiologic pH (Trig-

gle, 2003)—is likely to influence their cell permeability and
774 Chemistry & Biology 18, 766–776, June 24, 2011 ª2011 Elsevier
explain why treatment of GD fibroblasts with lacidipine resulted

in higher depletion of cytosolic [Ca2+] and more effective remod-

eling of L444P GC proteostasis compared to diltiazem and

verapamil.

L444P GC fibroblasts treated with lacidipine (and diltiazem

for comparison) were used to conduct mechanistic studies

and gain a better understanding of the molecular mechanisms

involved in L444P GC proteostasis. We demonstrated that laci-

dipine-mediated rescue of mutated GC folding (Figures 1 and

2) correlates with its ability to: (1) lower cytoplasmic [Ca2+],

thereby counteracting the effect of GC substrate accumulation

(Figure 3); (2) enhance the ER’s folding capacity via substantial

upregulation of BiP expression (Figure 4), confirming that BiP

plays a key role in the folding of L444P GC; (3) induce the

UPR (Figure 5) and upregulate GC expression (Figure 6); and

(4) lower cytotoxicity and limit UPR-mediated apoptosis induc-

tion (Figure 5 and Table 1). An analogous mode of action was

previously reported to explain the synergic effect of two distinct

small molecules, a proteostasis regulator (MG-132) and a RyR

blocker (ryanodine), on L444P GC folding rescue. Particularly,

MG-132 was reported to induce BiP upregulation and UPR

induction, and ryanodine to lower intracellular [Ca2+] and coun-

teract UPR-induced cytotoxicity (Wang et al., 2011), suggesting

that combining these different mechanisms of proteostasis

regulation is an effective strategy to rescue mutated GC

folding. In summary this study sheds light on the cellular path-

ways involved in mutated GC folding and introduces a novel

strategy to rescue mutant GC folding via small molecule treat-

ment that combines remodeling of two general cellular path-

ways involved in protein homeostasis: protein folding and

Ca2+ homeostasis.
SIGNIFICANCE

This work describes an efficient strategy to rescue L444P

GC folding, the most frequently encountered allele causing

neuronopathic forms of Gaucher’s disease. Treatment of

patient-derived fibroblasts with lacidipine leads to rescue

of folding, lysosomal trafficking, and activity of mutated

GC variants. By comparing lacidipine to other LTCC

blockers previously reported to partially restore the folding

of mutated GC, we demonstrate that lacidipine efficiently

lowers cytosolic [Ca2+] and, thus, counteracts the delete-

rious effect of GC substrate accumulation. We profiled the

expression of a number of genes involved in cellular folding,

ER stress and UPR, and apoptosis induction, and demon-

strate that lacidipine remodels GC proteostasis by influ-

encing the expression of ER chaperones and by inducing

the UPR. However, unlike previously reported proteostasis

regulators, lacidipine limits cytotoxicity and prevents induc-

tion of apoptosis typically associated with sustained UPR

activation. By uncovering the molecular mechanisms asso-

ciated with the rescue of L444P GC folding induced by

Ca2+ homeostasismodulation, this study lays the foundation

for the development of strategies to modulate mutated GC

folding pathway for therapeutic intervention, which is partic-

ularly significant for the treatment of presently incurable

neuronopathic forms of Gaucher’s disease.
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EXPERIMENTAL PROCEDURES

GC Activity Assay

The intact cell GC activity assay was performed as described previously (Mu

et al., 2008b) and in the Supplemental Experimental Procedures.

Quantitative RT-PCR

RT-PCR was conducted as described previously (Wang et al., 2011) and in the

Supplemental Experimental Procedures, using the primers listed in Table S1.

Western Blot Analyses and Immunofluorescence Assays

Details are provided in the Supplemental Experimental Procedures.

Intracellular [Ca2+] Measurement

Fura-2, AM (AnaSpec) was used to measure cytosolic [Ca2+] according to

company’s instructions. Briefly, cells were incubated with 5 mM Fura-2, AM

and 0.05% (w/v) Pluronic F-127 (Invitrogen) at 37�C for 30 min. Following

two washing steps, fluorescence was measured (excitation 340 and 380 nm,

emission 510 nm). Fluorescence ratio of excitation 340/380 reflects relative

intracellular Ca2+ level. Additional details are provided in the Supplemental

Experimental Procedures.

Toxicity Assay

Toxicity assays were conducted as described previously (Wang et al., 2011)

and in the Supplemental Experimental Procedures.

Statistical Analysis

All data are presented as mean ± SD, and statistical significance was calcu-

lated using a two-tailed Student’s t test.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

four figures, and one table and can be found with this article online at

doi:10.1016/j.chembiol.2011.04.008.
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