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Abstract  Wireless systems are widely used as a networking technology for the Internet of Things (IOT). 
Although they were initially designed for voice communication systems, they can be used to exchange control 
commands and data between machines. In this paper, we present the BlueSteps system which gives a user wireless 
control over stepper motors. The BlueSteps hardware incorporates a Field Programmable Gate Array (FPGA) 
coupled to a Bluetooth module and a custom build driver circuit. The FPGA hosts a micro-controller and the control 
logic for the stepper motors. The Bluetooth module establishes a wireless connection between a mobile device and 
the micro-controller. Apart from the general systems design, we also conceived the User Interface (UI) software and 
a driver circuit for the stepper motors. The combination of custom software and custom hardware gave us the 
flexibility to create a versatile wireless stepper motor control system, which can be used in a wide range of 
applications. 
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1. Introduction 
The Internet of Things (IOT) is the result of a recent 

idea where objects become smart or indeed smarter 
through microprocessing and networking [1]. Such smart 
objects take measurements, do processing and communicate 
the resulting data through the network [2,3]. It is up to 
either a central instance or a distributed processing system 
to make sense of that data [4]. One of the goals of that 
technology is to remove human decision making almost 
completely [5]. For mature IOT systems, human 
interaction happens only on a very high level, where 
machine based decision making is incapable of resolving a 
choice. However, such a scenario implies that routinely 
choices are resolved and actions need to be executed. 
Actuators are devices which translate decisions into 
physical actions. 

Stepper motors are a special type of actuators: they 
trans- late electronic commands into precise rotary motion. 
These electro-mechanical devices are widely used for 
motion control, because of their low cost and their ability 
to manipulate a connected electromechanical system [6]. 
The motor shaft moves in discrete step increments when 
electrical pulses are applied to it. Stepper motor 
technology is advantageous in applications where we need 
to control rotation angles, speed, steps and position. They 
can work in open loop control, i.e. no feedback channel is 
necessary. Furthermore, these motors are known for their 
high reliability and low maintenance. However, stepper 

motors need a dedicated control unit and they need 
sophisticated driver circuits which can deliver high 
currents. Using stepper motors for IOT applications 
implies that the dedicated control circuit is networked. 

The BlueSteps system addresses the need for networked 
stepper motor control. The system offers remote control 
for up to two stepper motors. The remote control channel 
is estab- lished, via a Bluetooth link between a user centric 
device, such as smart-phone, tablet or PC, and dedicated 
control hardware. A user controls direction, speed and the 
number of steps with a User Interface (UI) on the 
Bluetooth terminal. To establish that functionality, we 
designed and manufactured a circuit which boosts the 
control signals from a dedicated embedded control system 
and interfaces to a Bluetooth module. We configured Field 
Programmable Gate Array (FPGA) logic as an embedded 
control system. To be specific, we instantiated a standard 
microcontroller with peripherals and a custom built 
stepper motor driver module in the FPGA. The 
microcontroller runs custom software which generates the 
UI and at the same time interfaces to the dedicated stepper 
motor driver module. To integrate these ideas, we 
prepared software which enabled communication between 
these components. The BlueSteps system links stepper 
motors and mobile devices. Such a link is very important 
for turning the decisions of an IOT system into actions. 

The material of the paper is organized as follows. 
Section II details the individual components used to 
establish the BlueSteps system. That section presents a 
block diagram which provides a system overview and it 
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structures the module description. The discussion section 
details specific design decisions and it sets the BlueSteps 
system into a wider context of IOT systems. The paper 
concludes with Section IV. 

2. Materials and Methods 
The project is an integrated system which includes 

compo- nents and blocks as highlighted in Figure 1 and 
Figure 2. Figure 1 shows the physical setup of the 
BlueSteps system. Its upper half shows two connected 
stepper motors. One motor sits at the base and turns a 
shaft. The second motor is mounted on the turning shaft 
and it moves a pointing arm in an angular motion. The 
stepper motors receive control signals from a driver circuit. 
The driver circuit boosts the control signals, such that they 
deliver enough power to drive the stepper motors. That 
driver circuit is shown in the middle of Printed Circuit 
Board (PCB). The Darlington driver components are 
arranged in two distinct columns. The lower portion of the 
Figure shows the Spartan FPGA LX9 microboard 
mounted on the PCB. The Bluetooth module is plugged in 
on the left side of the PCB. That module ensures the up-
link between the FPGA logic and a user centric Bluetooth 
enabled device. 

 
Figure 1. Physical setup of the BlueSteps system 

 

Figure 2. Block Diagram of the BlueSteps system 

Figure 2 shows the block diagram of the BlueSteps 
system. The diagram details both the blocks which establish 
the mod- ule functionality and the communication links 
between them. The mobile device is connected to the 
BlueSteps hardware via Bluetooth. The Bluetooth module 
translates the wireless communication to wire bound 
Universal Asynchronous Re- ceiver/Transmitter (UART) 
signals. These wire bound signals are transmitted and 
received by the embedded system, imple- mented in 
FPGA logic. That logic establishes the BlueSteps core 
functionality by instantiating a MicroBlaze (MB) mi- 
crocontroller with peripherals as well as a custom stepper 
Intellectual Property (IP) core. Section II-A describes the 
functionality of these components in greater detail. 
Actuator control is exercised when the stepper IP core 
sends low power control signals to the driver circuit on the 
PCB. That circuit boosts the control signals such that high 

power signals are sent to the stepper motors in order to 
ensure proper operation of such a demanding load. 

The Well-Known HC-05 Bluetooth Module Was Used 
To Es- Tablish A Host Control Interface (HCI) Bluetooth 
Link Between The Bluesteps Hardware And The 
Handheld Mobile Device. It Is A Bluetooth Serial Port 
Protocol Secure Simple Pairing (SSP) Device, Designed 
To Establish Transparent Wireless Serial Connections [7]. 
The HCI Uses The UART Protocol. That Pro- Tocol 
Establishes A Bi-Directional Communication Link 
Between The Bluetooth Module And The Embedded 
System Which Is Implemented In FPGA Logic. 
A. Embedded System 

To realize the BlueSteps embedded system 
functionality, we have used a Spartan-6 FPGA LX9 
microboard [8] from Avnet. As such, an FPGA is a 
flexible logic Integrated Circuit (IC) which is configured 
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by a designer after manufacturing. The specifications, 
associated with the FPGA board, are given as: 
•  Board Vendor: Avnet 
•  Processor frequency: 100 MHz 
•  Processor: microblaze 0 
•  Local Memory Size: 8 KB 
•  Instruction Cache Size: 512 B 
•  Data Cache Size: 512 B 
The BlueSteps embedded system incorporates the so 

called MicroBlaze (MB) soft processor and not an actual 
IC core. The cost effective Spartan-6 FPGA LX9 
microboard is a good solution for exploring embedded 
systems with soft processing. The evaluation board comes 
with several built in systems and permits designers to 
focus on the software development. The Embedded 
Development Kit (EDK) provides the Xilinx Platform 
Studio (XPS) as a hardware development tool and the 
Software Development Kit (SDK) as an environment for 
writing and debugging software code. It includes 
peripherals and expansion interfaces as well [9]. 

IP cores are the key building blocks for FPGA based 
systems [10]. An IP core is a logic block or data that is 
used in making an application for a product. Its 
importance in interfacing with the devices has been 
highlighted in many scientific articles [11]. IP cores are 
instantiated directly in XPS and they can be controlled 
with the MB. The Xilinx development environment 
provides a number of IP cores, such as UART, Light 
Emitting Diode (LED), Ethernet, MB and Memory. 

The embedded system is composed from a number of 
func- tional blocks, as shown in Figure 2. The individual 
functional components communicate via the Advance 
Extensible Inter- face (AXI) bus [12]. AXI 4-LITE 
communication protocol is being used in the BlueSteps 
system. 
B. Stepper Core 

The next step was creating our own IP core (Custom 
core) named as the Stepper IP core. The embedded system 

contains two instances of the Stepper IP core, labeled 
steppercore 0 and steppercore 1. Each of these instances 
controls one stepper motor with four control signals. 
Figure 2 depicts these two Stepper cores: each instance 
provides four control output signals. The XPS framework 
takes care that the Stepper IP cores get unique addresses. 
Hence, they can be addressed individually from the 
BlueSteps software program, executed by the MB. The 
Stepper IP cores are connected to the interconnect bus 
through AXI IP Interface modules, which provide a quick 
way to implement the interface between AXI 4 interconnect 
and the user_logic. 

The two stepper motors work as an integrated unit. 
Stepper motors are not driven by normal excitation, they 
require a sequential excitation of adjacent phases. There 
are four stepper motor control signals for each motor. 
Figure 3 shows the timing diagram of the four stepper 
motor control signals. Such a signal configuration is called 
a stepping sequence, because the signals carrying the 
phases have a step like appearance in the timing diagram. 
The stepper motors, used in this project, require a so 
called half step sequence. Half step excitation means 
alternating single and dual phase operation, which results 
in steps that are half the basic step angle. Due to a smaller 
step angle, half step mode provides twice the resolution 
and a smoother operation [13]. Our system setup ensures 
that each stepper motor receives independent control 
signals. Its control behavior can be adapted by altering the 
control input from the mobile phone. 

 

Figure 3. Timing Diagram of the stepper motor controlsignals 

 

Figure 4. Block Diagram of the User_Logic.v 

Figure 4 shows the block diagram of the User_Logic.v 
module, which resides in every Stepper IP core. That 
module contains three sub-blocks. The XPS tool creates a 
Hardware Description Language (HDL) template file. In 
our case, that template file was called User_Logic.v. We 
have extended that template file to define our peripheral. 
Software Acces- sible Registers and Stepper Control.v in 
Figure 4 are these extensions. The sub-blocks are 
described as: 

•  AXI Interface: This block implements the AXI 4-Lite 
slave interface for register access and data transfer. 

•  Software Accessible Registers: Three Software 
Accessi- ble Registers are instantiated: they are 
implemented in the slave mode of User_Logic.v. The 
content of these registers is referred to as one buffer. 
The MB is a 32 bit processor, hence each of the 
register holds 32 bits. We can read and write to the 
Software Accessible Registers. So, the 
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communication link, between AXI interface and 
Soft- ware Accessible Registers, is bi-directional. 
The reading and writing of registers provide adequate 
functionality. When the peripheral is instantiated, we 
can access the register by reading and writing to the 
base address+offset. The base address is unique for 
each peripheral on the AXI bus. Out of three registers, 
one is specified for “Direction of the motor” with 
offset “0” 1, second is for “No. of steps” with offset 
“4” and third is for specifying the “Speed of the 
motor” with offset “8”. 

•  Stepper_Control.v: That module contains the func- 
tional components of the stepper core. The Timing.v 
module receives the signals from the Software 
Accessible Registers and processes the user input. 
The user input is the number of steps, the time 
duration for one step and the direction. As soon as 
the command for direction is received by the 
Timing.v module, the motor starts to move. The 
movement is initiated through an output com- mand 
named “gate”, which is input to User_Logic.v. The 
stepper motors can process only one user command 
at a time. If the motor/motors are already in motion 
then it cannot process a new instruction before the 
current task is accomplished. Hence, the “gate” 
signal takes care of that issue. 

The Stepper.v module receives information from 
Timing.v. It is responsible for generating the half step 
control signals for the stepper motor. The four bit wide 
“dout” register drives these four signals and sends them 
to the User_Logic.v module. These signals are 
generated according to the movement, speed and 
direction of each motor. The information for movement, 
speed and direction is being provided to it from the 
Timing.v module. 
Stepper_Control.v is the top-level module for the 
components discussed above. The top-level module 
sends all input and output signals to the User_Logic 
module. 

C. User Interface (UI) 
The previous section described the embedded system 

hard- ware setup. In this section, we detail the software 
which controls the hardware. The first step was to import 
the hard- ware IP configuration to the SDK environment. 
Within that environment, we used the C language to craft 
the BlueSteps control software [14]. 

The BlueSteps control software provides the UI and it 
translates the user input to commands for the hardware IP. 
For this paper, we adopt a functional description of the 
software rather than a source code based description. The 
description starts with powering up the BlueSteps system. 
Once there is a stable clock on the MB, the control 
software takes over and publishes the initial UI main 
menu over the Bluetooth link to the mobile device. 

For the sake of understanding, we consider a specific 
scenario. We assume that user wants to turn stepper motor 
0 10 steps clockwise and the pointing arm attached to 
stepper motor 1, 10 steps anti-clockwise. Figure 5 shows 
the dynamic communication between the MB and the 
Mobile device, which is necessary to accomplish that task. 
When the Bluetooth connection is established for the first 
time after power up, the MB sends the main menu 

                                                           
1 Offset 0 means that the register is located at the base address. 

information to the Mobile device, that action is 
symbolized by an arrow from the MB to the Mobile which 
is labeled “Main Menu”. Once the main menu is published, 
the user can choose between seven options. Figure 7 
shows a screenshot of a mobile phone displaying the main 
menu. To complete the task of moving the stepper motors, 
a user has to select option 5, which is “keyboard motor 
control”. Therefore, the user keys in 5 and sends back the 
command “5” which is depicted as the arrow labeled “5”, 
from Mobile to MB, as shown in Figure 5. As soon as “5” 
is received by the MB, a second menu, i.e. first Sub Menu, 
is communicated to the Mobile. Figure 8 shows the Sub 
Menu 1. That menu asks the user to specify the number of 
steps for the motor per key press. The number of steps 
defines the motor turning angle. The user then specifies it 
as “10” i.e. the motor turns 10 steps for each key press. 
Afterwards, Sub Menu 2, shown in Figure 9, appears on 
the Mobile screen. That menu lets the user choose which 
motor to move 10 steps in what direction. In our scenario, 
we assume the user presses “k” followed by “enter” in 
order to move stepper motor 0 in a clockwise direction 
and in return the MB performs that action, as shown in 
Figure 5. Then, to move the pointing arm, a user has to 
press “s” followed by “enter”, which causes the MB to 
move stepper motor 1 in an anti-clockwise direction. 
Finally, the user presses “x” with “enter” to exit Sub 
Menu 2 and in response the MB publishes the Main Menu 
again. In this way, one cycle of the dynamic 
communication is accomplished. This is how the specified 
task is accomplished, a user can move the motors in any 
direction with whatever turning angle, by selecting the 
corresponding option issued to the Mobile device in Sub 
Menus 1 and 2. 

 
Figure 5. One cycle of dynamic communication between MB and 

Mobile phone. The messages shown in the diagram will cause stepper 
motor 0 to do 10 steps clockwise and stepper motor 1 to do 10 steps anti-

clockwise 
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D. Driver Circuit 
The driver circuit is shown as the fourth block from the 

left in row one of the block-diagram, shown in Figure 4. It 
is acting as an interface between the embedded control 
system, which is instantiated in the FPGA, and the stepper 
motors. The purpose of the circuit is to boost both voltage 
and current of the control signals. The FPGA works at 3.3 
V, but the stepper motors require 12 V input. So, an 
amplifier is required. We realized that amplifier using a 
Darlington pair in common emitter configuration, as 
shown in Figure 6. That circuit increases the 3.3 V control 
signal, from the FPGA, to 12 V for the stepper motor. The 
circuit also features two free wheel diodes D1 and D2. 
They were included to eliminate flyback, which is a 
sudden voltage spike, seen across the output of the stepper 
motor (inductive load) when it tries to stop, i.e. its supply 
voltage is suddenly reduced or removed. In the circuit, 
shown in Figure 6, the magnetizing current goes through 
the diode and dies out. 

 

Figure 6. Driver circuit schematic 

On the custom PCB, eight such driver circuits are 
integrated to achieve the complete driver functionality. 
The driver circuits provide a total of eight power signals to 
the two stepper motors. Four signals are provided to each 
motor, as discussed in Section II-B and Figure 3. 

3. Discussion 
The BlueSteps FPGA logic is designed as an embedded 

system. Embedded systems are hardware/software systems 
built into devices that are not necessarily recognized as 
com- puterized devices, but embedded systems do control 
the func- tionality of these devices [15]. The importance 
of embedded systems is growing continuously [16]. This 
importance comes from the fact that embedded systems 
are required to provide real-time responses. A real-time 
system is defined as a system whose correctness depends 
on the timeliness of its response [17,18]. Examples of 
these systems are aircraft flight control systems, sensor 
systems in nuclear reactors and power plants [19]. 
Embedded systems reside in nearly all of the electronic 
devices used today, from remote sensing over avionics to 
the health sector [20]. By now, it is almost impossible to 
build an electronic system without adding at least a small 
microprocessor which is controlled by software [21]. 

Although, the BlueSteps system is an embedded system, 
it has a number of advantages. But still, there are a few 
limita- tions associated with the system. Firstly, the 
BlueSteps system incorporates polling in the hardware 

control mechanism. The microcontroller polls the registers 
to check whether or not they contain new data. In the 
current implementation, hardware control and user 
interaction are mutually exclusive. This exclu- sivity 
results in a halt situation. If the stepper motor/motors are 
moving then the UI is frozen. Conversely, if the UI is 
active so the motor/motors cannot move. Hence, 
BlueSteps is a system where both software and hardware 
interfaces are not active at the same time. This leads a 
discontinuity in the buffer processing.2 The discontinuity 
arises because of the approach we used. The Stepper IP 
core ensures that, when buffer is processed, it releases a 
specific bit as “0”. The software ‘looks’ for the bit value 
and if the bit value is “0”, then the software writes back to 
the buffer. This scenario causes the stepper motors to be 
non-functional for the duration it takes for the software to 
generate the new buffer values. Hence, in the worst case 
scenario, the motor stops until all buffers are serviced. 

Although polling avoids the overhead of interrupt-based 
systems, polling is generally used only for low level 
hardware control. Interrupt driven systems are another 
technique in computer architecture, which has a number of 
advantages [22]. In short, in polling systems, the device 
priority is determined by how often it is serviced within 
the polling loop. Unlike polling systems, devices can be 
prioritized in interrupt driven systems. So, interrupt driven 
systems are fast and efficient and they would be better 
suited to address the halting problem than polling systems. 
Moreover, to keep the UI unfrozen all the time, there 
should be an Operating System (OS) [23]. An OS, such as 
the XILkernel [24], partitions the Central Processing Unit 
(CPU) processing time. Concurrent lines of execution 
open up when multiple software threads are instantiated 
and the OS is allocating CPU processing time to these 
threads. To solve the stepper motor staling issue of the 
BlueSteps system, the hardware control and the UI 
functionality have to reside in separate threads. These 
threads execute concurrently, which, for that application, 
is indistinguishable from executing hardware control and 
the UI functionality in parallel. In case there are still 
discontinuities in the stepper motor operation, a double 
buffering technique can be used. Double buffering uses 
two buffers to ensure a seamless handover of data between 
two functional entities [25]. Data in one buffer is being 
processed, while the next set of data is read into the other 
one. 

4. Conclusion 
In this paper, we present BlueSteps, a Bluetooth based 

remote control system for stepper motors. The system 
con- sists of the BlueSteps hardware and software. The 
hardware establishes a Bluetooth link between a mobile, 
user centric, device and an embedded system, instantiated 
in FPGA logic. Using that link, the embedded system 
provides the UI, which facilitates user control. To be 
specific, a user can set speed, number of steps and 
direction for each of the two stepper motors. Within the 
embedded system, two custom IP cores translate the 
commands into stepper motor signals. These signals are 

                                                           
2 The content of the three user logic registers in the Stepper IP core is 
called as buffers, as discussed in Sub-Section II-B. 
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boosted by a driver circuit on a custom made PCB before 
they cause the stepper motors to move. 

Our achievement was the completion of a whole cycle 
of control between a remote device and the actuator. To 
establish that control we designed and developed both the 
BlueSteps hardware and software. That design was 
challeng- ing, because it involved custom IP cores and 
custom PCB circuits. Furthermore, the software setup was 
also developed without supporting frameworks. Hence, 
the BlueSteps system is an example of hardware software 
co-design which generates control signals with a precision 
of 10 ns. As a consequence, our system facilitates the 
development of innovative actuator control strategies for 
state of the art IOT applications. 

Remote controlling actuators is becoming one of most 
im- portant factors which determines the feasibility of 
introducing an IOT environment to manufacturing 
companies. The most likely way of interfacing with 
devices in the future will be IP; it is more flexible, 
scalable and compatible. One of the biggest issues will be 
to realize usable and accessible devices, with relevant 
functionality, for all kinds of users. Since this is an 
ongoing field of investigation, the results of the BlueSteps 
project are likely to be worthy of further analysis. 

Acronyms 
AXI   Advance Extensible Interface 
CPU   Central Processing Unit 
EDK   Embedded Development Kit 
FPGA  Field Programmable Gate Array 
HCI   Host Control Interface 
HDL   Hardware Description Language 
IC   Integrated Circuit 
IOT   Internet of Things 
IP   Intellectual Property 
LED  Light Emitting Diode 
MB   MicroBlaze 
OS   Operating System 
PCB   Printed Circuit Board 
SSP   Secure Simple Pairing 
SDK   Software Development Kit 
UART  Universal Asynchronous Receiver/ 

Transmitter 
UI   User Interface 
XPS   Xilinx Platform Studio 
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Appendix 

 

Figure 7. Main Menu Information 

 

Figure 8. Sub Menu 1 Information 

 

Figure 9. Sub Menu 2 Information 

 


