
Journal of Embedded Systems, 2015, Vol. 3, No. 1, 21-27
Available online at http://pubs.sciepub.com/jes/3/1/4
© Science and Education Publishing
DOI:10.12691/jes-3-1-4

BlueSteps: A Bluetooth Based Stepper Motor Control
System

Ifrah Jaffri1,*, Zeeshan Nafees1, Shoaib Zaidi1, Oliver Faust2

1School of Science and Engineering, Habib University, Karachi, Pakistan
2Electrical, Electronic Control Engineering, Sheffield Hallam University, Sheffield, England, UK

*Corresponding author: ifrahjaffri@yahoo.com

Abstract Wireless systems are widely used as a networking technology for the Internet of Things (IOT).
Although they were initially designed for voice communication systems, they can be used to exchange control
commands and data between machines. In this paper, we present the BlueSteps system which gives a user wireless
control over stepper motors. The BlueSteps hardware incorporates a Field Programmable Gate Array (FPGA)
coupled to a Bluetooth module and a custom build driver circuit. The FPGA hosts a micro-controller and the control
logic for the stepper motors. The Bluetooth module establishes a wireless connection between a mobile device and
the micro-controller. Apart from the general systems design, we also conceived the User Interface (UI) software and
a driver circuit for the stepper motors. The combination of custom software and custom hardware gave us the
flexibility to create a versatile wireless stepper motor control system, which can be used in a wide range of
applications.

Keywords: stepper motors, bluetooth, field programmable gate array, remote control, custom intellectual property
cores, custom driver circuit

Cite This Article: Ifrah Jaffri, Zeeshan Nafees, Shoaib Zaidi, and Oliver Faust, “BlueSteps: A Bluetooth
Based Stepper Motor Control System.” Journal of Embedded Systems, vol. 3, no. 1 (2015): 21-27. doi:
10.12691/jes-3-1-4.

1. Introduction
The Internet of Things (IOT) is the result of a recent

idea where objects become smart or indeed smarter
through microprocessing and networking [1]. Such smart
objects take measurements, do processing and communicate
the resulting data through the network [2,3]. It is up to
either a central instance or a distributed processing system
to make sense of that data [4]. One of the goals of that
technology is to remove human decision making almost
completely [5]. For mature IOT systems, human
interaction happens only on a very high level, where
machine based decision making is incapable of resolving a
choice. However, such a scenario implies that routinely
choices are resolved and actions need to be executed.
Actuators are devices which translate decisions into
physical actions.

Stepper motors are a special type of actuators: they
trans- late electronic commands into precise rotary motion.
These electro-mechanical devices are widely used for
motion control, because of their low cost and their ability
to manipulate a connected electromechanical system [6].
The motor shaft moves in discrete step increments when
electrical pulses are applied to it. Stepper motor
technology is advantageous in applications where we need
to control rotation angles, speed, steps and position. They
can work in open loop control, i.e. no feedback channel is
necessary. Furthermore, these motors are known for their
high reliability and low maintenance. However, stepper

motors need a dedicated control unit and they need
sophisticated driver circuits which can deliver high
currents. Using stepper motors for IOT applications
implies that the dedicated control circuit is networked.

The BlueSteps system addresses the need for networked
stepper motor control. The system offers remote control
for up to two stepper motors. The remote control channel
is estab- lished, via a Bluetooth link between a user centric
device, such as smart-phone, tablet or PC, and dedicated
control hardware. A user controls direction, speed and the
number of steps with a User Interface (UI) on the
Bluetooth terminal. To establish that functionality, we
designed and manufactured a circuit which boosts the
control signals from a dedicated embedded control system
and interfaces to a Bluetooth module. We configured Field
Programmable Gate Array (FPGA) logic as an embedded
control system. To be specific, we instantiated a standard
microcontroller with peripherals and a custom built
stepper motor driver module in the FPGA. The
microcontroller runs custom software which generates the
UI and at the same time interfaces to the dedicated stepper
motor driver module. To integrate these ideas, we
prepared software which enabled communication between
these components. The BlueSteps system links stepper
motors and mobile devices. Such a link is very important
for turning the decisions of an IOT system into actions.

The material of the paper is organized as follows.
Section II details the individual components used to
establish the BlueSteps system. That section presents a
block diagram which provides a system overview and it

22 Journal of Embedded Systems

structures the module description. The discussion section
details specific design decisions and it sets the BlueSteps
system into a wider context of IOT systems. The paper
concludes with Section IV.

2. Materials and Methods
The project is an integrated system which includes

compo- nents and blocks as highlighted in Figure 1 and
Figure 2. Figure 1 shows the physical setup of the
BlueSteps system. Its upper half shows two connected
stepper motors. One motor sits at the base and turns a
shaft. The second motor is mounted on the turning shaft
and it moves a pointing arm in an angular motion. The
stepper motors receive control signals from a driver circuit.
The driver circuit boosts the control signals, such that they
deliver enough power to drive the stepper motors. That
driver circuit is shown in the middle of Printed Circuit
Board (PCB). The Darlington driver components are
arranged in two distinct columns. The lower portion of the
Figure shows the Spartan FPGA LX9 microboard
mounted on the PCB. The Bluetooth module is plugged in
on the left side of the PCB. That module ensures the up-
link between the FPGA logic and a user centric Bluetooth
enabled device.

Figure 1. Physical setup of the BlueSteps system

Figure 2. Block Diagram of the BlueSteps system

Figure 2 shows the block diagram of the BlueSteps
system. The diagram details both the blocks which establish
the mod- ule functionality and the communication links
between them. The mobile device is connected to the
BlueSteps hardware via Bluetooth. The Bluetooth module
translates the wireless communication to wire bound
Universal Asynchronous Re- ceiver/Transmitter (UART)
signals. These wire bound signals are transmitted and
received by the embedded system, imple- mented in
FPGA logic. That logic establishes the BlueSteps core
functionality by instantiating a MicroBlaze (MB) mi-
crocontroller with peripherals as well as a custom stepper
Intellectual Property (IP) core. Section II-A describes the
functionality of these components in greater detail.
Actuator control is exercised when the stepper IP core
sends low power control signals to the driver circuit on the
PCB. That circuit boosts the control signals such that high

power signals are sent to the stepper motors in order to
ensure proper operation of such a demanding load.

The Well-Known HC-05 Bluetooth Module Was Used
To Es- Tablish A Host Control Interface (HCI) Bluetooth
Link Between The Bluesteps Hardware And The
Handheld Mobile Device. It Is A Bluetooth Serial Port
Protocol Secure Simple Pairing (SSP) Device, Designed
To Establish Transparent Wireless Serial Connections [7].
The HCI Uses The UART Protocol. That Pro- Tocol
Establishes A Bi-Directional Communication Link
Between The Bluetooth Module And The Embedded
System Which Is Implemented In FPGA Logic.
A. Embedded System

To realize the BlueSteps embedded system
functionality, we have used a Spartan-6 FPGA LX9
microboard [8] from Avnet. As such, an FPGA is a
flexible logic Integrated Circuit (IC) which is configured

 Journal of Embedded Systems 23

by a designer after manufacturing. The specifications,
associated with the FPGA board, are given as:
• Board Vendor: Avnet
• Processor frequency: 100 MHz
• Processor: microblaze 0
• Local Memory Size: 8 KB
• Instruction Cache Size: 512 B
• Data Cache Size: 512 B
The BlueSteps embedded system incorporates the so

called MicroBlaze (MB) soft processor and not an actual
IC core. The cost effective Spartan-6 FPGA LX9
microboard is a good solution for exploring embedded
systems with soft processing. The evaluation board comes
with several built in systems and permits designers to
focus on the software development. The Embedded
Development Kit (EDK) provides the Xilinx Platform
Studio (XPS) as a hardware development tool and the
Software Development Kit (SDK) as an environment for
writing and debugging software code. It includes
peripherals and expansion interfaces as well [9].

IP cores are the key building blocks for FPGA based
systems [10]. An IP core is a logic block or data that is
used in making an application for a product. Its
importance in interfacing with the devices has been
highlighted in many scientific articles [11]. IP cores are
instantiated directly in XPS and they can be controlled
with the MB. The Xilinx development environment
provides a number of IP cores, such as UART, Light
Emitting Diode (LED), Ethernet, MB and Memory.

The embedded system is composed from a number of
func- tional blocks, as shown in Figure 2. The individual
functional components communicate via the Advance
Extensible Inter- face (AXI) bus [12]. AXI 4-LITE
communication protocol is being used in the BlueSteps
system.
B. Stepper Core

The next step was creating our own IP core (Custom
core) named as the Stepper IP core. The embedded system

contains two instances of the Stepper IP core, labeled
steppercore 0 and steppercore 1. Each of these instances
controls one stepper motor with four control signals.
Figure 2 depicts these two Stepper cores: each instance
provides four control output signals. The XPS framework
takes care that the Stepper IP cores get unique addresses.
Hence, they can be addressed individually from the
BlueSteps software program, executed by the MB. The
Stepper IP cores are connected to the interconnect bus
through AXI IP Interface modules, which provide a quick
way to implement the interface between AXI 4 interconnect
and the user_logic.

The two stepper motors work as an integrated unit.
Stepper motors are not driven by normal excitation, they
require a sequential excitation of adjacent phases. There
are four stepper motor control signals for each motor.
Figure 3 shows the timing diagram of the four stepper
motor control signals. Such a signal configuration is called
a stepping sequence, because the signals carrying the
phases have a step like appearance in the timing diagram.
The stepper motors, used in this project, require a so
called half step sequence. Half step excitation means
alternating single and dual phase operation, which results
in steps that are half the basic step angle. Due to a smaller
step angle, half step mode provides twice the resolution
and a smoother operation [13]. Our system setup ensures
that each stepper motor receives independent control
signals. Its control behavior can be adapted by altering the
control input from the mobile phone.

Figure 3. Timing Diagram of the stepper motor controlsignals

Figure 4. Block Diagram of the User_Logic.v

Figure 4 shows the block diagram of the User_Logic.v
module, which resides in every Stepper IP core. That
module contains three sub-blocks. The XPS tool creates a
Hardware Description Language (HDL) template file. In
our case, that template file was called User_Logic.v. We
have extended that template file to define our peripheral.
Software Acces- sible Registers and Stepper Control.v in
Figure 4 are these extensions. The sub-blocks are
described as:

• AXI Interface: This block implements the AXI 4-Lite
slave interface for register access and data transfer.

• Software Accessible Registers: Three Software
Accessi- ble Registers are instantiated: they are
implemented in the slave mode of User_Logic.v. The
content of these registers is referred to as one buffer.
The MB is a 32 bit processor, hence each of the
register holds 32 bits. We can read and write to the
Software Accessible Registers. So, the

24 Journal of Embedded Systems

communication link, between AXI interface and
Soft- ware Accessible Registers, is bi-directional.
The reading and writing of registers provide adequate
functionality. When the peripheral is instantiated, we
can access the register by reading and writing to the
base address+offset. The base address is unique for
each peripheral on the AXI bus. Out of three registers,
one is specified for “Direction of the motor” with
offset “0” 1, second is for “No. of steps” with offset
“4” and third is for specifying the “Speed of the
motor” with offset “8”.

• Stepper_Control.v: That module contains the func-
tional components of the stepper core. The Timing.v
module receives the signals from the Software
Accessible Registers and processes the user input.
The user input is the number of steps, the time
duration for one step and the direction. As soon as
the command for direction is received by the
Timing.v module, the motor starts to move. The
movement is initiated through an output com- mand
named “gate”, which is input to User_Logic.v. The
stepper motors can process only one user command
at a time. If the motor/motors are already in motion
then it cannot process a new instruction before the
current task is accomplished. Hence, the “gate”
signal takes care of that issue.

The Stepper.v module receives information from
Timing.v. It is responsible for generating the half step
control signals for the stepper motor. The four bit wide
“dout” register drives these four signals and sends them
to the User_Logic.v module. These signals are
generated according to the movement, speed and
direction of each motor. The information for movement,
speed and direction is being provided to it from the
Timing.v module.
Stepper_Control.v is the top-level module for the
components discussed above. The top-level module
sends all input and output signals to the User_Logic
module.

C. User Interface (UI)
The previous section described the embedded system

hard- ware setup. In this section, we detail the software
which controls the hardware. The first step was to import
the hard- ware IP configuration to the SDK environment.
Within that environment, we used the C language to craft
the BlueSteps control software [14].

The BlueSteps control software provides the UI and it
translates the user input to commands for the hardware IP.
For this paper, we adopt a functional description of the
software rather than a source code based description. The
description starts with powering up the BlueSteps system.
Once there is a stable clock on the MB, the control
software takes over and publishes the initial UI main
menu over the Bluetooth link to the mobile device.

For the sake of understanding, we consider a specific
scenario. We assume that user wants to turn stepper motor
0 10 steps clockwise and the pointing arm attached to
stepper motor 1, 10 steps anti-clockwise. Figure 5 shows
the dynamic communication between the MB and the
Mobile device, which is necessary to accomplish that task.
When the Bluetooth connection is established for the first
time after power up, the MB sends the main menu

1 Offset 0 means that the register is located at the base address.

information to the Mobile device, that action is
symbolized by an arrow from the MB to the Mobile which
is labeled “Main Menu”. Once the main menu is published,
the user can choose between seven options. Figure 7
shows a screenshot of a mobile phone displaying the main
menu. To complete the task of moving the stepper motors,
a user has to select option 5, which is “keyboard motor
control”. Therefore, the user keys in 5 and sends back the
command “5” which is depicted as the arrow labeled “5”,
from Mobile to MB, as shown in Figure 5. As soon as “5”
is received by the MB, a second menu, i.e. first Sub Menu,
is communicated to the Mobile. Figure 8 shows the Sub
Menu 1. That menu asks the user to specify the number of
steps for the motor per key press. The number of steps
defines the motor turning angle. The user then specifies it
as “10” i.e. the motor turns 10 steps for each key press.
Afterwards, Sub Menu 2, shown in Figure 9, appears on
the Mobile screen. That menu lets the user choose which
motor to move 10 steps in what direction. In our scenario,
we assume the user presses “k” followed by “enter” in
order to move stepper motor 0 in a clockwise direction
and in return the MB performs that action, as shown in
Figure 5. Then, to move the pointing arm, a user has to
press “s” followed by “enter”, which causes the MB to
move stepper motor 1 in an anti-clockwise direction.
Finally, the user presses “x” with “enter” to exit Sub
Menu 2 and in response the MB publishes the Main Menu
again. In this way, one cycle of the dynamic
communication is accomplished. This is how the specified
task is accomplished, a user can move the motors in any
direction with whatever turning angle, by selecting the
corresponding option issued to the Mobile device in Sub
Menus 1 and 2.

Figure 5. One cycle of dynamic communication between MB and

Mobile phone. The messages shown in the diagram will cause stepper
motor 0 to do 10 steps clockwise and stepper motor 1 to do 10 steps anti-

clockwise

 Journal of Embedded Systems 25

D. Driver Circuit
The driver circuit is shown as the fourth block from the

left in row one of the block-diagram, shown in Figure 4. It
is acting as an interface between the embedded control
system, which is instantiated in the FPGA, and the stepper
motors. The purpose of the circuit is to boost both voltage
and current of the control signals. The FPGA works at 3.3
V, but the stepper motors require 12 V input. So, an
amplifier is required. We realized that amplifier using a
Darlington pair in common emitter configuration, as
shown in Figure 6. That circuit increases the 3.3 V control
signal, from the FPGA, to 12 V for the stepper motor. The
circuit also features two free wheel diodes D1 and D2.
They were included to eliminate flyback, which is a
sudden voltage spike, seen across the output of the stepper
motor (inductive load) when it tries to stop, i.e. its supply
voltage is suddenly reduced or removed. In the circuit,
shown in Figure 6, the magnetizing current goes through
the diode and dies out.

Figure 6. Driver circuit schematic

On the custom PCB, eight such driver circuits are
integrated to achieve the complete driver functionality.
The driver circuits provide a total of eight power signals to
the two stepper motors. Four signals are provided to each
motor, as discussed in Section II-B and Figure 3.

3. Discussion
The BlueSteps FPGA logic is designed as an embedded

system. Embedded systems are hardware/software systems
built into devices that are not necessarily recognized as
com- puterized devices, but embedded systems do control
the func- tionality of these devices [15]. The importance
of embedded systems is growing continuously [16]. This
importance comes from the fact that embedded systems
are required to provide real-time responses. A real-time
system is defined as a system whose correctness depends
on the timeliness of its response [17,18]. Examples of
these systems are aircraft flight control systems, sensor
systems in nuclear reactors and power plants [19].
Embedded systems reside in nearly all of the electronic
devices used today, from remote sensing over avionics to
the health sector [20]. By now, it is almost impossible to
build an electronic system without adding at least a small
microprocessor which is controlled by software [21].

Although, the BlueSteps system is an embedded system,
it has a number of advantages. But still, there are a few
limita- tions associated with the system. Firstly, the
BlueSteps system incorporates polling in the hardware

control mechanism. The microcontroller polls the registers
to check whether or not they contain new data. In the
current implementation, hardware control and user
interaction are mutually exclusive. This exclu- sivity
results in a halt situation. If the stepper motor/motors are
moving then the UI is frozen. Conversely, if the UI is
active so the motor/motors cannot move. Hence,
BlueSteps is a system where both software and hardware
interfaces are not active at the same time. This leads a
discontinuity in the buffer processing.2 The discontinuity
arises because of the approach we used. The Stepper IP
core ensures that, when buffer is processed, it releases a
specific bit as “0”. The software ‘looks’ for the bit value
and if the bit value is “0”, then the software writes back to
the buffer. This scenario causes the stepper motors to be
non-functional for the duration it takes for the software to
generate the new buffer values. Hence, in the worst case
scenario, the motor stops until all buffers are serviced.

Although polling avoids the overhead of interrupt-based
systems, polling is generally used only for low level
hardware control. Interrupt driven systems are another
technique in computer architecture, which has a number of
advantages [22]. In short, in polling systems, the device
priority is determined by how often it is serviced within
the polling loop. Unlike polling systems, devices can be
prioritized in interrupt driven systems. So, interrupt driven
systems are fast and efficient and they would be better
suited to address the halting problem than polling systems.
Moreover, to keep the UI unfrozen all the time, there
should be an Operating System (OS) [23]. An OS, such as
the XILkernel [24], partitions the Central Processing Unit
(CPU) processing time. Concurrent lines of execution
open up when multiple software threads are instantiated
and the OS is allocating CPU processing time to these
threads. To solve the stepper motor staling issue of the
BlueSteps system, the hardware control and the UI
functionality have to reside in separate threads. These
threads execute concurrently, which, for that application,
is indistinguishable from executing hardware control and
the UI functionality in parallel. In case there are still
discontinuities in the stepper motor operation, a double
buffering technique can be used. Double buffering uses
two buffers to ensure a seamless handover of data between
two functional entities [25]. Data in one buffer is being
processed, while the next set of data is read into the other
one.

4. Conclusion
In this paper, we present BlueSteps, a Bluetooth based

remote control system for stepper motors. The system
con- sists of the BlueSteps hardware and software. The
hardware establishes a Bluetooth link between a mobile,
user centric, device and an embedded system, instantiated
in FPGA logic. Using that link, the embedded system
provides the UI, which facilitates user control. To be
specific, a user can set speed, number of steps and
direction for each of the two stepper motors. Within the
embedded system, two custom IP cores translate the
commands into stepper motor signals. These signals are

2 The content of the three user logic registers in the Stepper IP core is
called as buffers, as discussed in Sub-Section II-B.

26 Journal of Embedded Systems

boosted by a driver circuit on a custom made PCB before
they cause the stepper motors to move.

Our achievement was the completion of a whole cycle
of control between a remote device and the actuator. To
establish that control we designed and developed both the
BlueSteps hardware and software. That design was
challeng- ing, because it involved custom IP cores and
custom PCB circuits. Furthermore, the software setup was
also developed without supporting frameworks. Hence,
the BlueSteps system is an example of hardware software
co-design which generates control signals with a precision
of 10 ns. As a consequence, our system facilitates the
development of innovative actuator control strategies for
state of the art IOT applications.

Remote controlling actuators is becoming one of most
im- portant factors which determines the feasibility of
introducing an IOT environment to manufacturing
companies. The most likely way of interfacing with
devices in the future will be IP; it is more flexible,
scalable and compatible. One of the biggest issues will be
to realize usable and accessible devices, with relevant
functionality, for all kinds of users. Since this is an
ongoing field of investigation, the results of the BlueSteps
project are likely to be worthy of further analysis.

Acronyms
AXI Advance Extensible Interface
CPU Central Processing Unit
EDK Embedded Development Kit
FPGA Field Programmable Gate Array
HCI Host Control Interface
HDL Hardware Description Language
IC Integrated Circuit
IOT Internet of Things
IP Intellectual Property
LED Light Emitting Diode
MB MicroBlaze
OS Operating System
PCB Printed Circuit Board
SSP Secure Simple Pairing
SDK Software Development Kit
UART Universal Asynchronous Receiver/

Transmitter
UI User Interface
XPS Xilinx Platform Studio

References
[1] G. Kortuem, F. Kawsar, D. Fitton, and V. Sundramoorthy, “Smart

objects as building blocks for the internet of things,” Internet
Computing, IEEE, vol. 14, no. 1, pp. 44-51, 2010.

[2] S. Hong, D. Kim, M. Ha, S. Bae, S. J. Park, W. Jung, and J.-E.
Kim, “Snail: an ip-based wireless sensor network approach to the
internet of things,” Wireless Communications, IEEE, vol. 17, no. 6,
pp. 34-42, 2010.

[3] O. F. Xue-ning Jiang and X. min Xu, “Beatmaster : Software
defined clock frequency for system on chip designs,” International
Journal of Novel Materials, vol. 3, pp. 27-32, 2012.

[4] T. S. Lo´ pez, D. C. Ranasinghe, M. Harrison, and D. McFarlane,
“Adding sense to the internet of things,” Personal and Ubiquitous
Computing, vol. 16, no. 3, pp. 291-308, 2012.

[5] Z. Ji, J. Ma, and O. Faust, “Formal and model driven design of a
high speed data transmission channel,” Journal of Circuits,
Systems, and Computers, vol. 22, no. 10, p. 1340038, 2013.

[6] F. Alidoust Aghdam and S. Saeidi Haghi, “Implementation of high
performance microstepping driver using fpga with the aim of
realiz- ing accurate control on a linear motion system,” Chinese
Journal of Engineering, vol. 2013, pp. 1-8, 2013.

[7] “Bluetooth module: HC-05,”
http://wiki.iteadstudio.com/Serial_Port_Bluetooth_Module
(Master/Slave)_:_HC-05, accessed: 2015-10-30

[8] X. Spartan, “Fpga lx9 microboard user’s manual,” Avnet
Incorporated, vol. 2211, 2006.

[9] “Avnet microboard,”
http://www.em.avnet.com/en-us/design/drc/Pages/Xilinx-Spartan-
6-FPGA-LX9-MicroBoard.aspx, accessed: 2015-10-25.

[10] M. P. By Gang Qu, Intellectual Property Protection in VLSI
Designs: Theory and Practice. Kluwer Academic, 2003.

[11] S. Aurell, “Remote controlling devices using instant messaging:
building an intelligent gateway in erlang/otp,” in Proceedings of
the 2005 ACM SIGPLAN workshop on Erlang. ACM, 2005, pp.
46-51.

[12] AXI, Xilinx, “Reference guide,” Xilinx Inc, 2011.
[13] V. V. Athani, Stepper motors: fundamentals, applications and

design. New Age International, 1997.
[14] “Software manual,”

http://www.xilinx.com/support/documentation/sw
manuals/xilinx13 2/edk ctt.pdf, accessed: 2015-10-28.

[15] B. H. C. Sputh, O. Faust, and A. R. Allen, “A versatile hardware-
software platform for in-situ monitoring systems.” in CPA, 2007,
pp. 299-311.

[16] B. H. C. Sputh, O. Faust, and A. R. Allen, “Portable csp based
design for embedded multi-core systems.” In CPA, 2006, pp. 123-
134.

[17] D. Nathan, B. Sputh, O. Faust, and C. B. Koon, “Real-time
decoding and streaming of dab audio frames by a user-space
program running on a non-real-time os,” Consumer Electronics,
IEEE Transactions on, vol. 48, no. 2, pp. 313-321, 2002.

[18] O. Faust, W. Yu, and U. R. Acharya, “The role of real-time in
biomedical science: A meta-analysis on computational complexity,
delay and speedup,” Computers in biology and medicine, vol. 58,
pp. 73-84, 2015.

[19] “Importance of embedded systems,”
https://en.wikibooks.org/wiki/ Embedded Systems/Embedded
Systems Introduction, accessed: 2015-11-03.

[20] Z. Song, Z. Ji, J.-G. Ma, B. H. C. Sputh, U. R. Acharya, and O.
Faust, “A systematic approach to embedded biomedical decision
making,” Computer methods and programs in biomedicine, vol.
108, no. 2, pp. 656-664, 2012.

[21] M. Barr and A. Massa, Programming embedded systems: with C
and GNU development tools. ” O’Reilly Media, Inc.”, 2006.

[22] D. Jen and A. Lotan, “Processor interrupt system,” Jan. 29 1974,
uS Patent 3,789,365.

[23] B. H. C. Sputh, O. Faust, E. Verhulst, and V. Mezhuyev,
“Opencomrtos: A runtime environment for interacting entities.” in
CPA, 2009, pp. 173-184.

[24] G. Uğurel and C. F. Bazlamac¸ci, “Context switching time and
memory footprint comparison of xilkernel and µc/os-ii on
microblaze,” in Elec- trical and Electronics Engineering (ELECO),
2011 7th International Conference on. IEEE, 2011, pp. II–62.

[25] O. Faust, B. Sputh, D. Endler, and A. R. Allen, “Chaining commu-
nications algorithms with process networks,” Communicating
Process Architectures 2004, vol. 62, p. 325, 2004.

 Journal of Embedded Systems 27

Appendix

Figure 7. Main Menu Information

Figure 8. Sub Menu 1 Information

Figure 9. Sub Menu 2 Information

