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In this paper we present two implementations of the 
minimum LP norm phase unwrapping algorithm. This 
computation involves a 2D Discrete Cosine Transform 
(DCT) of 1024x512 and represents amongst the largest 
DCT/IDCTs on an FPGA documented in the literature. The 
other platform is an Nvidia 8800GTX Graphics Processing 
Unit (GPU) on which the algorithm is implementing using 
their Compute Unified Device Architecture (CUDA) API. 

 

Introduction 
There exist several applications that make use of coherent 
signals for imaging purposes. Coherent signals contain 
information about both magnitude and phase as opposed to 
incoherent ones that just contain magnitude information. 
Applications utilizing such signals include Synthetic 
Aperture Radar (SAR), Magnetic Resonance Imaging 
(MRI), optical interferometry and adaptive beamforming. 
Such applications often have a reference signal to which the 
received signal is compared (a stable local oscillator located 
in the radar unit in the case of SAR) and from that 
comparison the phase is extracted. However, this extraction 
is limited by the fact that the output phase will lie between 
π and – π. Hence, the raw output phase is referred to as 
wrapped. 

Given a noise free signal, the original phase can be 
recovered by accumulating the phase difference and an 
integer multiple of 2π every time a discontinuity is detected. 
In the presence of noise however, such an unwrapping can 
fail catastrophically in the two dimensional case. 

Phase Unwrapping 
A set of methods has evolved as a solution to this problem, 
discussed and analyzed in [1]. They can be roughly 
classified into two groups: those that unwrap around noisy 
sections and those that use numerical error minimization 
techniques. One of the methods that consistently produces 
high quality results is the minimum LP norm technique. 
This iterative technique, which falls under the class of error 
minimization algorithms, operates by first making an initial 
guess as to the solution and then iteratively refining it. It 
uses the minimum P (i.e. P=0) since that allows the final 
data to match the measured data in as many places as 
possible (if P were set to 2, this would be the equivalent of 
a least squares minimization). Convergence of the 
algorithm is tested by checking for residues.  If 
convergence is not achieved, the algorithm terminates after 
a preset number of iterations. A residue occurs when a 
closed loop integral on the two dimensional image data 
does not produce a zero, but instead produces either 2π or -
2π. The presence of residues indicates that naïve 
unwrapping via accumulation cannot be performed.  

 

A sample of the results produced by the minimum LP norm 
phase unwrap is displayed below in Figure 1.  

 

  
 

 

 

 

 

 

Figure 1: Wrapped phase above and unwrapped phase below. 
The image is of a mouse embryo and was taken using Optical 

Quadrature Microscopy (OQM), an interference based 
microscopy method. 

The phase unwrap algorithm utilizes a 2D DCT, a Poisson 
calculation and then a 2D IDCT.  The DCTs and Poisson 
calculation consume 70% of the total processing time and 
thus are a prime target for speedup.  

Implementation 
The FPGA implementation exploits the separability 
property of the DCT to decompose the 2D input matrix into 
1D rows, compute the transform, transpose the matrix and 
then recompute. This theoretically allows multiple 1D cores 
(described in [1]) to run in parallel. Intermediate 
computation of the frequency domain Poisson equation is 
then performed in a streaming fashion followed by the 2D 
IDCT. The platform used was the Annapolis Wildstar II 
Pro, a Virtex II Pro based accelerator board. 

The initial GPU implementation implements the same 
kernel (DCT, Poisson, IDCT) on the 8800GTX but 
performs entire 2D DCTs using identically sized 2D 
FFTs[2].   The FFT is done with a single kernel on the 
GPU; on the FPGA it was decomposed into rows and 
columns.  



 

Since program space on the GPU is less limited than on the 
FPGA, a larger portion of the phase unwrap algorithm was 
subsequently implemented. The portion implemented on the 
GPU included several matrix operations including constant 
bias elimination and Laplace computation in addition to the 
original kernel.  To implement phase unwrapping, these 
computations iterate a large number times.  Implementation 
of this larger segment of code on the GPU results in a 
drastic reduction in data transfer overhead since data 
remains on the GPU board. 

Results 
The DCT and Poisson calculations consume approximately 
70% of the total processing time and thus the upper bound 
on speed-up is 3x, assuming zero data transfer and 
computation time for the DCT. The entire inner kernel 
however consumes around 90% and thus has an upper 
bound of 10x. 

A working demonstration on the Wildstar II Pro with a 
single 1D DCT core operates at 100 MHz and consumes 
37% of the total area.  It completes the transforms and 
Poisson calculation in 82 ms including data transfer times. 
However, the Virtex II Pro is a six year old platform. For a 
fair comparison, synthesis results from a Virtex 5 show that 
it can operate at frequencies of 190 MHz in addition to 
which at least one more DCT core can be integrated into the 
design. Assuming a data transfer time similar to that of a 
GPU, that results in a 19 ms operation for two cores and 
14ms for three.  

The Nvidia implementation takes 13.9 ms assuming that the 
same logic is implemented on the GPU as on the FPGA. 
This performance is relatively similar to the FPGA. 
However, once the larger program segment is implemented 
on the GPU, overall algorithm performance more than 
doubles. 

Conclusions 
FPGAs are superior as front-end processors, processing 
data straight from sensors.  When the data to be processed 
is already on a host computer, the choice is less clear.  An 
architecture that minimizes communications over slow 
interconnect such as PCI has a definite advantage, as does 
an implementation that minimizes the amount of data to be 
communicated. For this example, the GPU has superior host 
to chip communications, as well as the ability to do more 
processing on the chip, minimizing data transfer time. The 
nature of the phase unwrap algorithm is such that it consists 
of many sequential and dependent matrix operations. 
Reprogramming an FPGA with a new kernel would 
consume too much time to be efficient, so the GPU with it’s 
larger program space provides the better solution.  In 
addition, the GPU was easier to program.  For phase 
unwrap, the GPU implementation was superior in overall 
application acceleration.   
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