
2D Phase Unwrapping on FPGAs and GPUs
Sherman Braganza, Miriam Leeser

Northeastern University
Boston, MA

{sbraganz, mel}@coe.neu.edu

In this paper we present two implementations of the
minimum LP norm phase unwrapping algorithm. This
computation involves a 2D Discrete Cosine Transform
(DCT) of 1024x512 and represents amongst the largest
DCT/IDCTs on an FPGA documented in the literature. The
other platform is an Nvidia 8800GTX Graphics Processing
Unit (GPU) on which the algorithm is implementing using
their Compute Unified Device Architecture (CUDA) API.

Introduction
There exist several applications that make use of coherent
signals for imaging purposes. Coherent signals contain
information about both magnitude and phase as opposed to
incoherent ones that just contain magnitude information.
Applications utilizing such signals include Synthetic
Aperture Radar (SAR), Magnetic Resonance Imaging
(MRI), optical interferometry and adaptive beamforming.
Such applications often have a reference signal to which the
received signal is compared (a stable local oscillator located
in the radar unit in the case of SAR) and from that
comparison the phase is extracted. However, this extraction
is limited by the fact that the output phase will lie between
π and – π. Hence, the raw output phase is referred to as
wrapped.

Given a noise free signal, the original phase can be
recovered by accumulating the phase difference and an
integer multiple of 2π every time a discontinuity is detected.
In the presence of noise however, such an unwrapping can
fail catastrophically in the two dimensional case.

Phase Unwrapping
A set of methods has evolved as a solution to this problem,
discussed and analyzed in [1]. They can be roughly
classified into two groups: those that unwrap around noisy
sections and those that use numerical error minimization
techniques. One of the methods that consistently produces
high quality results is the minimum LP norm technique.
This iterative technique, which falls under the class of error
minimization algorithms, operates by first making an initial
guess as to the solution and then iteratively refining it. It
uses the minimum P (i.e. P=0) since that allows the final
data to match the measured data in as many places as
possible (if P were set to 2, this would be the equivalent of
a least squares minimization). Convergence of the
algorithm is tested by checking for residues. If
convergence is not achieved, the algorithm terminates after
a preset number of iterations. A residue occurs when a
closed loop integral on the two dimensional image data
does not produce a zero, but instead produces either 2π or -
2π. The presence of residues indicates that naïve
unwrapping via accumulation cannot be performed.

A sample of the results produced by the minimum LP norm
phase unwrap is displayed below in Figure 1.

Figure 1: Wrapped phase above and unwrapped phase below.
The image is of a mouse embryo and was taken using Optical

Quadrature Microscopy (OQM), an interference based
microscopy method.

The phase unwrap algorithm utilizes a 2D DCT, a Poisson
calculation and then a 2D IDCT. The DCTs and Poisson
calculation consume 70% of the total processing time and
thus are a prime target for speedup.

Implementation
The FPGA implementation exploits the separability
property of the DCT to decompose the 2D input matrix into
1D rows, compute the transform, transpose the matrix and
then recompute. This theoretically allows multiple 1D cores
(described in [1]) to run in parallel. Intermediate
computation of the frequency domain Poisson equation is
then performed in a streaming fashion followed by the 2D
IDCT. The platform used was the Annapolis Wildstar II
Pro, a Virtex II Pro based accelerator board.

The initial GPU implementation implements the same
kernel (DCT, Poisson, IDCT) on the 8800GTX but
performs entire 2D DCTs using identically sized 2D
FFTs[2]. The FFT is done with a single kernel on the
GPU; on the FPGA it was decomposed into rows and
columns.

Since program space on the GPU is less limited than on the
FPGA, a larger portion of the phase unwrap algorithm was
subsequently implemented. The portion implemented on the
GPU included several matrix operations including constant
bias elimination and Laplace computation in addition to the
original kernel. To implement phase unwrapping, these
computations iterate a large number times. Implementation
of this larger segment of code on the GPU results in a
drastic reduction in data transfer overhead since data
remains on the GPU board.

Results
The DCT and Poisson calculations consume approximately
70% of the total processing time and thus the upper bound
on speed-up is 3x, assuming zero data transfer and
computation time for the DCT. The entire inner kernel
however consumes around 90% and thus has an upper
bound of 10x.

A working demonstration on the Wildstar II Pro with a
single 1D DCT core operates at 100 MHz and consumes
37% of the total area. It completes the transforms and
Poisson calculation in 82 ms including data transfer times.
However, the Virtex II Pro is a six year old platform. For a
fair comparison, synthesis results from a Virtex 5 show that
it can operate at frequencies of 190 MHz in addition to
which at least one more DCT core can be integrated into the
design. Assuming a data transfer time similar to that of a
GPU, that results in a 19 ms operation for two cores and
14ms for three.

The Nvidia implementation takes 13.9 ms assuming that the
same logic is implemented on the GPU as on the FPGA.
This performance is relatively similar to the FPGA.
However, once the larger program segment is implemented
on the GPU, overall algorithm performance more than
doubles.

Conclusions
FPGAs are superior as front-end processors, processing
data straight from sensors. When the data to be processed
is already on a host computer, the choice is less clear. An
architecture that minimizes communications over slow
interconnect such as PCI has a definite advantage, as does
an implementation that minimizes the amount of data to be
communicated. For this example, the GPU has superior host
to chip communications, as well as the ability to do more
processing on the chip, minimizing data transfer time. The
nature of the phase unwrap algorithm is such that it consists
of many sequential and dependent matrix operations.
Reprogramming an FPGA with a new kernel would
consume too much time to be efficient, so the GPU with it’s
larger program space provides the better solution. In
addition, the GPU was easier to program. For phase
unwrap, the GPU implementation was superior in overall
application acceleration.

Acknowledgements
This work was supported in part by CenSSIS, the Center for
Subsurface Sensing and Imaging Systems, under the
Engineering Research Centers Program of the National
Science Foundation (award number EEC-9986821).

References
[1] D. C. Ghiglia and M. D. Pritt. Two-Dimensional Phase

Unwrapping: Theory, Algorithms and Software. Wiley Inter-
Science, 605 Third Avenue, New York, NY, 10158-
0012,1998.

 [2] J. Makhoul. “A fast cosine transform in one and two
dimensions”. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 28(1):27–34, February 1980.

[3] Xilinx Inc. Fast Fourier Transform 3.2. http://www.xilinx.
com/ipcenter/catalog/logicore/docs/xfft.pdf, Last accessed
March 2007.

[4] Sherman Braganza and Miriam Leeser. “Phase unwrapping
on Reconfigurable Hardware”, High Performance Embedded
Computing, 2007.

