
S.W. Smith.
"Hardware Security Modules."
in B. Rosenberg (editor).
Handbook of Financial Cryptography and Security.
Chapman and Hall/CRC. 2010. 257--278.

DRAFT.

Chapter 1

Hardware Security Modules

force label chap:trustcomp (1.1)

force label chap:fu (1.2)

1.1 Introduction

Say the word “bank” to the average person, and he or she will likely think of thick
iron safe, housed in a stately marble building, with security cameras and watchful
guards. For a variety of reasons — to deter robbers, to insure employees remain
honest, to assure customers and the community that the institution is trustworthy, the
brick-and-mortar financial industry evolved a culture that valued strong and visible
physical security. These values from the brick-and-mortar financial world over to the
electronic. Augmenting host computer systems with specialized Hardware Security
Modules (HSM) is a common practice in financial cryptography, which probably con-
stitutes the main business driver for their production (although one can trace roots to
other application domains such as defense and anti-piracy).

This chapter explores the use of HSMs. Section 1.2 considers the goals the use
HSMs is intended to achieve; section 1.3 considers how the design and architecture of
HSMs realizes these goals; section 1.4 considers the interaction of HSMs with broader
systems; and section 1.5 considers future trends relevant to HSMs. The chapter con-
cludes in section 1.6 with some suggestions for further reading.

1.2 Goals

Building and installing a specialized hardware module can appear a daunting, expen-
sive task, compared to just using a commodity computing system to carry out one’s
work. Because of this, we begin by considering motivations. Why bother? What is it
that we are trying to achieve?

1

DRAFT

2 CHAPTER 1. HARDWARE SECURITY MODULES

1.2.1 Cryptography

One set of motivations derives directly from cryptography (a term enshrined in the very
title of this book).

To start with, many types of cryptography (including the standard public-key tech-
niques of RSA, DSA, and Diffie-Hellman) can be very difficult to do on a standard
CPU. This challenge provides nice fodder for a classroom exercise for computer sci-
ence undergraduates.

• First, one explains the basics of RSA: “z ← xd mod N — what could be sim-
pler?”

• Then, one challenges students to code this, in C with no special libraries — but
for the currently acceptable size of N (say, at least 2048 bits).

Students quickly realize that the “simple” math operations of xd or y mod N becomes
not so simple when x, d, y, and N are 2048-bits long and one’s basic arithmetic
operands can only be 32 or 64 bits long. Naive (e.g., natural, straightforward) ap-
proaches to solve these problems are tricky and slow; clever optimizations are even
trickier and still not very fast. Supplementing a standard CPU with specialized hard-
ware for specialized tasks is a time-honored tradition (e.g., consider floating-point and
graphics support even in commodity personal computers).

Even if a standard CPU can do the cryptographic operations efficiently, it may
very well have better things to do with its cycles, such as handle Web requests or
network packets or interactive user responses, or calculate risk evaluations or update
accounting information. Consequently, another reason for supplementing a computer
with specialized cryptographic hardware is just to offload mundane, time-consuming
cryptographic tasks.

In the above discussions, we considered the efficiency and opportunity cost of using
a standard computer for cryptographic operations. However, we did not consider the
case when it might not even be possible to do the operation on a standard computer.
Cryptography in the real world requires randomness — for things such as symmetric
keys, inputs to public key generation algorithms, nonces, etc. Unlike the “random”
numbers sufficient for tasks such as statistical simulations, cryptographic randomness
needs to be unpredictable even by a dedicated adversary with considerable observation.
Producing cryptographically strong randomness on a standard computing platform is a
challenge. As computing pioneer John von Neumann quipped:

“Any one who considers arithmetical methods of producing random digits
is, of course, in a state of sin.”

A standard computer is a deterministic process (albeit complex). One can try to get
cryptographic randomness by harvesting inputs (such as disk events or keystrokes) that
an adversary might have trouble observing or predicting, but it is messy, and it is hard
to provide assurance that it really works. Once again, supplementing the standard
machine with specialized hardware might help.

DRAFT

1.2. GOALS 3

1.2.2 Security

It is probably safe to assert that cryptography is only necessary when we have some-
thing to protect. In financial cryptography, what we are protecting has something to do
with money, which usually suffices to get anyone’s attention! Another set of motiva-
tions for HSMs derives from security: using additional specialized hardware may help
in protecting critical information assets.

The first step might be to think about what assets need protecting. In the context of
cryptography, the first asset that might spring to mind are secret and private keys: we
want to make sure that these remain secret from the adversary. However, this is only
part of the picture. Besides keys, we might also want to protect other types of data,
e.g., customer authenticators); besides data, we might also want to protect algorithms,
e.g., a proprietary pricing strategy; besides secrecy, we might also want to ensure in-
tegrity, e.g., knowing that the AES implementation is still doing AES; or freshness,e.g.,
knowing that we are dealing with the most recent set of account records — or some
combination of these.

We might then think about the kinds of adversaries we need to protect against —
although, since we are dealing with physical devices, one often sees the discussion
start first with the avenues these adversaries might use. For HSMs, perhaps due to the
historical context of banks, one of the first angles we hear about is physical security:
physical armor, and other tricks, to keep an evil adversary from trying to physically
attack the device to extract secrets or cripple protections or something similarly nefar-
ious. However, over the last fifteen years, side-channel attacks — indirectly inferring
secrets via non-intrusive observations of things such as power consumption — have
become a more serious class of physical attacks.

However, a less obvious but no less dangerous avenue of attacks is via the soft-
ware running on the host computer. In fact, one could construct a good argument this
is a more serious threat — after all, it is hard for an adversary to drill into encapsu-
lated circuit board from over the Internet, but it can be easy for her to access a flaw
in a network-facing interface. As anyone running a standard commodity personal or
office computer knows, modern computing environments provide a wealth of weak
points: applications with flawed interfaces; operating systems with flawed protections
and flawed interfaces; users with flawed authentication; hard-to-configure security poli-
cies. It might not be as sexy as physical armor, but simply moving sensitive operations
away to their own dedicated platform may provide a significant security advantage.

The adversaries against whom an HSM defends may constitute a wider, less easily-
defined group. As with the avenue of exotic physical attacks, it is tempting to postulate
a cloak-and-dagger adversary who sneaks into a facility and carries the HSM off to a
well-funded analysis lab — but less exotic adversaries might be the bigger threat. For
physical thieves, enterprises might imagine a cloak-and-dagger burglary, but regularly
encounter low-level insiders, such as cleaning staff, removing small and easily-fenced
electronic equipment. Other adversaries could include insider attackers motivated by
greed or anger or blackmail and mounting more sophisticated attacks, by exceeding
authorization or exploiting excess authorization on systems and applications. Focusing
on malicious insiders can let us overlook insiders who are merely sloppy. Poor comput-
ing hygiene — such as rogue software, rogue Web surfing, poorly configured network

DRAFT

4 CHAPTER 1. HARDWARE SECURITY MODULES

firewalls — can provide vectors for an adversary to enter critical systems. As some
recent penetration tests have shown, rogue USB flashdrives sprinkled in a parking lot
can also be effective [44]; some enterprises even seal USB ports with epoxy, just for
that reason.

The above discussion all presented scenarios where an enterprise might use HSMs
to protect itself from rogue individuals. HSMs can also be used to protect against rogue
enterprises, e.g., an HSM can house not just SSL private keys but the entire server end
of an e-commerce Web application, thus protecting customers from rogue commerce
sites.

1.3 Realization
Section 1.2 laid out some goals of using HSMs in financial cryptography. We now
consider how design and development of HSMs might achieve those goals.

1.3.1 Silicon, for the Software Person
Financial cryptography (and security in general) is typically the realm of computer
scientists, not electrical engineers. Consequently, it can be easy for us to just imagine
that computation happens via logic circuits in some magical thing called “silicon.”
However, not all magical silicon is created equally, and some of the variations can be
relevant when considering HSMs.

To start with, logic circuits are composed of transistors, which one can think of
an electrically controlled electrical switch. The way that logic circuits work is that the
transistors switch on and off; the flow of electricity embodies the binary state. However,
nothing comes for free: both switching and not switching can require electric power.
Furthermore, these devices exist as real physical objects in the real world: consumption
of power can mean generation of heat; rapid state changes can mean sudden bursts in
power consumption.

It is also tempting to imagine that the process of building transistors and gates
into “custom silicon” performing specific functionality corresponds to building lines
of code into custom software. However, going from design to actual custom silicon
is an expensive and not particularly malleable process. This situation creates a strong
incentive to build one’s HSM out of off-the-shelf chips, rather than “rolling one’s own.”

When “rolling one’s own” is necessary, it can be far preferable to use a field pro-
grammable gate array (FGPA) — an off-the-shelf chip composed of generic circuit
blocks that one can configure to be a circuit of one’s choosing. One can think of the
“configuration” as state held in internal bits of memory, and the varying kinds of mem-
ory — ROM “burned” at the factory, or some type of non-volatile RAM which can
reloaded in the field, or even volatile RAM, which must reloaded each power-up —
lead to various types of FPGAs.

Instead of using an FPGA, one could instead build one’s own Application Specific
Integrated Circuit (ASIC). With an ASIC, the efficiency and performance is likely to
be better than an FPGA. Also, the per-unit cost will likely be lower — but one would
need a large quantity of units to amortize the vastly higher initial engineering cost.

DRAFT

1.3. REALIZATION 5

Furthermore, with ASIC, one is stuck; one does not have the ease of changes and
updates that one has with FPGAs.

1.3.2 Processor

An HSM often is a small computer of its own, installed as a peripheral on a larger
host. Although it is easy to rush ahead to think about security and cryptography and
such, it is important not to overlook the basic questions of computer architecture for
this small embedded system. Economic pressure and concern about heat and power
dissipation (especially for HSMs physically encapsulated for security) often to lead
to using an older and slower processor than what’s currently fashionable on desktops.
Things won’t be as fast.

When planning and analyzing software for a generic computer, one usually assumes
implicitly that the program will have essentially infinite memory — because the address
space will be at least 32 bits wide, if not larger, because there will be a big, cheap hard
disk available, and because the system will have an operating system that will invisibly
and magically take care of virtual memory and paging to disk. In the embedded system
inside an HSM, none of these implicit assumptions will necessarily hold. For reasons
of size and performance,the OS may be very limited; for economics and heat, the RAM
may be limited; for reliability, there might not be a hard disk.

Similarly, for most applications on a generic computer, one can safely assume that
the internal buses, interconnecting the CPU with memory and other internal periph-
erals, are as fast as necessary, and hence invisible; similarly, for many applications,
details of the interconnection between the system and the outside world can remain
invisible. Again, in an HSM, these assumptions may no longer hold — things inside
can be smaller and slower, and hence no longer invisible.

1.3.3 Cryptography

Since cryptographic acceleration is typically the first application imagined for HSMs,
let’s first consider that.

Public Key Cryptography A natural first step is to identify the computation that is
hard on a traditional CPU and design custom hardware for that operation. As observed
earlier, for traditional public key cryptography, modular exponentiation, z ← xd mod
N , for large integers is hard on traditional CPUs. Consequently, the first thing we
might try is simply to build some special silicon (or FPGA) to perform this operation,
and then hook it up as some type of I/O device for the HSM’s internal processor.

That is the straightforward view. However, thinking through the rest of what is
necessary for such an HSM to provide high-performance public-key operations for an
external host illuminates less straightforward issues.

To start with, providing a cryptographic operation is more than modular exponen-
tiation alone. Minimally, the CPU needs to determine what operands to use, send these
to the exponentiation engine, collect the results from the engine, and store them in the
correct place. Consequently, the process of “just use the HSM to continually crank out

DRAFT

6 CHAPTER 1. HARDWARE SECURITY MODULES

simple RSA operations” can make surprising use of internal CPU. In one real-world in-
stance, we found that the exponentiation engine was actually sitting idle half the time,
and re-factoring the internal CPU code to use threading doubled the throughput. As an-
other consequence, such typically “invisible” factors such as how the I/O between the
internal CPU and the exponentiation engine is structured (is it interrupt-driven, or does
it use programmed I/O?) suddenly come into play. Furthermore, performing services
for the host requires that the internal CPU somehow receive those requests and return
those responses — so I/O across the internal/external boundary is also a factor.

Simple public key operations can also require more than just shuttling around
operands and results for modular exponentiation. Basic RSA encryption usually re-
quires expanding the input data to the length of the modulus, via an algorithm care-
fully designed to avoid subtle cryptographic weaknesses (as the literature painfully
demonstrates, e.g. [14]). Signature verification and checking also requires performing
cryptographic hashes. Because of operations such as these, an HSM’s cryptographic
performance can incur an unexpected dependence on the internal CPU — which can
be a bottleneck, especially if the HSM designer has matched a too-slow CPU with a
fast state-of-the-art exponentiation engine.

Symmetric Cryptography Performing symmetric cryptography can be another ap-
plication of HSMs. As with public key cryptography, one might consider augmenting
the internal CPU with special hardware to do accelerate the operation. Most of the per-
formance and design issues we discussed above for public key can also show up in the
symmetric setting. However, hardware acceleration of symmetric cryptography (and
hashing too, for the matter) can also give rise to some new issues. Since symmetric
cryptography often operates on very large data items (e.g., orders of magnitude larger
than an RSA modulus length), the question of how to move that data around becomes
important — having a fast engine doesn’t help if we can only feed it slowly. Techniques
used here include standard architecture tricks such as direct memory access (DMA), as
well as special pipelining hardware.

However, thinking about moving data requires thinking about where, ultimately,
the data comes from and where it ends up. In the straightforward approach to internal
HSM architecture, we would configure the symmetric engine as an I/O device for the
internal CPU, perhaps with DMA access to the HSM’s RAM. But since the HSM is
proving services to the external host, it is probably likely that at least the final source
of the data or the final sink, or both, lie outside the HSM. This arrangement gives rise
to the bottleneck of HSM to host I/O, as noted earlier. This arrangement can also give
rise to a more subtle bottleneck: fast I/O and a fast symmetric engine can still be held
up if we first need to bring the data into slow internal RAM. As a consequence, some
designs even install fast pipelines, controlled by the internal CPU, between the outside
and the symmetric engine.

Of course, optimizing symmetric cryptography hardware acceleration for massive
data items overlooks the fact that symmetric cryptography can also be used on data
items that are not so massive. The symmetric engine needs to be fed data; but it also
needs to be fed per-operation parameters, such as keys, mode of operation, etc, and it
may also have per-key overhead of setting up key schedules, etc. Enthusiasm to reduce

DRAFT

1.3. REALIZATION 7

the per-data-byte cost can lead one to overlook the performance of these per-operation
costs — which can result in an HSM that advertises fast symmetric cryptography, but
only achieves that speed when data items are sufficiently massive; on smaller data
items, the effective speed can be orders of magnitude smaller, e.g. [30].

Composition Thinking simply about “public key operations” or “symmetric opera-
tions” can lead the HSM designer to overlook the fact that in many practical scenarios
one might want to compose operations. For example, consider an HSM application in
which we are using the host to store private data records whose plaintext we only want
visible to a program running safely in the shelter of the HSM. The natural approach is
to encrypt the records, so the host cannot see the internals, and to use our fast symmet-
ric engine and data paths to stream them straight into the HSM and thence to internal
RAM. However, at best that only gives us confidentiality of the record. Minimally,
we probably also want integrity. If the HSM architecture was designed with the im-
plicit assumption that we’d only perform one cryptographic operation at a time, then
we would have to then do a second operation: have the CPU scan through the plaintext
in RAM, or send the RAM image back through a hash engine, or set up the symmetric
engine for a CBC MAC and send the RAM image back through it. If we are lucky,
we have doubled the cost of the operation. If we are unlucky, the situation could be
worse — since the initial decryption may have exploited fast pipelines not available to
the second operation.

For even worse scenarios, imagine the HSM decrypting a record from the host and
sending back to the host — or sending it back after re-encrypting. Without allowing
for composition of encryption/decryption and integrity checking acceleration, we move
from scenarios with no internal RAM or per-byte CPU operation to scenarios with
heavy involvement.

Randomness As we observed back in section 1.2.1, another goal of an HSM is to
produce high-quality cryptographic randomness — that is, bits that appear to be the
result of fair coin flips, even to an adversary who can observe the results of all the
previous flips. Cryptographic approaches exist to deterministically expand a fixed seed
into a longer sequence that appears random, unless the adversary knows the seed. Using
this purely deterministic approach raises worries. Was the seed unpredictable? Could
an adversary have discovered it? Do we need to worry about refreshing the seed after
sufficient use? What if the cryptography breaks?

As a consequence, HSMs often include a hardware-based random number genera-
tor, which generates random bits from the laws of physics (such as via a noisy diode).
Hardware-based approaches raise their own issues. Sometimes the bits need to be
reprocessed to correct for statistical bias; some standards (such as FIPS 140 — see
section 1.4.4 below) require that hardware-derived bits be reprocessed through a pseu-
dorandom number generator. Since hardware bits are generated at some finite rate,
we also need to worry about whether sufficiently many bits are available — requir-
ing either pooling bits in advance and/or blocking callers who require them, or both
(practices familiar to users of /dev/random in Linux).

DRAFT

8 CHAPTER 1. HARDWARE SECURITY MODULES

1.3.4 Physical Security

Since “HSM” usually denotes an encapsulated multi-chip module, as opposed to a
single chip, we will start by considering that.

Marketing specialists like to brag about “tamper proof” HSMs. In contrast, col-
leagues who specialize in designing and penetrating physical security protections insist
that there is no such thing — instead, the best we can do is weave together techniques
for tamper resistance, tamper evidence, tamper detection, and tamper response [50, 49,
e.g.].

Tamper Resistance We can make the package literally hard to break into. For ex-
ample, the IBM 4758 [43, 12]1 used an epoxy-like resin that easily snapped drillbits
(and caused an evaluation lab to quip that the unit under test ended up looking “like a
porcupine”).

Tamper Evidence We can design the package so that it easily manifests when tam-
pering has been attempted. Many commercial devices use various types of hard-to-
reproduce special seals and labels designed break or reveal a special message when
physical tamper is attempted. However, for such approaches to be effective, someone
trustworthy needs to actually examine the device — tamper evidence does not help if
there is no audit mechanism. Furthermore, such seals and labels have a reputation of
perhaps not being as effective as their designers might wish.

Tamper Detection We can design the package so that the HSM itself detects when
tamper attempts are happening. For example, the IBM 4758 embedded a conductive
mesh within the epoxy-like package; internal circuitry monitored the electrical proper-
ties of this mesh — properties which physical tamper would hopefully disrupt. Devices
can also monitor for temperature extremes, radiation extremes, light, air, etc.

Tamper Response Finally, we can design an HSM so that it actually takes defensive
action when tamper occurs. In the commercial world, this usually requires that the
designer identify where the sensitive keys and data are, and building in mechanisms
to zeroize these items before an adversary can reach them. Occasionally, designers
of HSMs for the financial world wistfully express envy that they cannot use thermite
explosives, reputedly part of the tamper response toolkit for military HSMs.

Of course, a tradeoff exists between availability and security, when it comes to
tamper response for HSMs. Effective tamper response essentially renders the HSM
useless; depending on the security model the designer chose, this may be temporary,
requiring painstaking reset and re-installation, or permanent, because, after all, tamper
may have rendered the device fundamentally compromised. False positives — respond-
ing to tamper that wasn’t really tamper — can thus significantly impact an enterprise’s
operations, and can also incur significant cost, if the HSM must be replaced.

1This chapter uses the IBM 4758 as an illustrative example because of the author’s personal experience
in its development.

DRAFT

1.4. THE BIGGER SYSTEM 9

Attack Avenues In security, absolutes are comforting; in systems engineering, promises
of expected performance are standard. However, physical security of HSMs falls short
of these ideals. With tamper response, the designer can make some positive assertions:
“if X still works, then we will take defensive action Y with t milliseconds.” However,
for the others, it seems the best one can do is discuss classes of attacks the designer
worried about. “If the adversary tries A ∈ S, then the device will do Ya.” The truth
of these assertions can be verified by evaluating the design and explicitly testing if it
works. However, the security implied by these assertions depends on the faith that the
adversary will confine himself to the attacks the designer considered. The nightmare of
defenders — and the hope of attackers — is that an adversary will dream up a method
not in this set.

A related issue is the expense of the attack — and the skill set and tools required of
an adversary. Sensible allocation of resource requires the designer consider the effort
level of an attack, that is, the expected work required by an attacker to accomplish
the attack. The defenses should be consistent, and not cosider an estoric attack of one
type if only defending against basic attacks of another type. Sensible allocation of
enterprise resources dictates a similarly balanced approach. However, how to evaluate
the “difficulty” of an attack is itself difficult. One can demonstrate the attack — but
that only gives an upper bound on the cost. Another nightmare of defenders is that an
adversary will dream up a vastly cheaper way of carrying a previously expensive attack
— and thus compromising attempts at balanced defense.

Single Chips With Moore’s Law, we might expect shrinking of form factor. The
HSM that had required a large multichip module to implement could instead fit into a
single chip, assuming the economic drivers make sense. Physical security for single-
chip modules tends to be more of a game of cat-and-mouse: a vendor claims that one
cannot possibly compromise the chip, often followed by an attacker doing so. For an
enlightening but dated view of this, consult Ross Anderson and Markus Kuhn’s award-
winning paper at the 2nd USENIX Electronic Commerce symposium [2].

Chip internals aside, an Achilles’ heel of single-chip approaches, often overlooked,
is the security of the connection between the chip and the rest of the system. For
example, in recent years, multiple groups have shown how the TCG’s Trusted Platform
Module can be defeated by using a single additional wire to fool the it into thinking the
entire system has been reset [23]. Even if the HSM is a single chip, which typically is
more tightly coupled with a motherboard than a PCI peripheral is with a host, it is still
important for the designer to remember the boundary of the module — and to regard
what is outside the boundary with suspicion.

1.4 The Bigger System

Of course, an HSM only is useful if it is embedded within the larger system of a host
machine, and an enterprise that operates that machine as part of running a business in
the real world. In this section, we consider some of the design and implementation
issues that arise from looking at this bigger picture.

DRAFT

10 CHAPTER 1. HARDWARE SECURITY MODULES

1.4.1 The Host Computer System
The API Typically, an HSM provides computational services to another computa-
tional entity. For example, some financial program P runs on the host machine, but
for reasons of security or performance or such, subroutine R runs on the HSM instead.
Enabling this to happen easily requires thinking through various mechanics. On a ba-
sic level, we need to think of how P on the host tells the HSM that it needs to run R,
how to get the arguments across the electrical interface to the HSM, and how to get the
results back.

Essentially, the required mechanism looks a lot like a Remote Procedure Call (RPC) [36],
the hoary old technique for distributed computing. To enable P to invoke R, we need a
function stub at P that marshals (also known as serializes) the arguments, ships them
and the R request to the HSM, collects the result when it comes back, and then returns
to the caller. To enable the developer to easily write many such P s with many such
invocations, we would appreciate a mechanism to generate such stubs and marshal-
ing automatically. RPC libraries exist for this; and the more modern tool of Google
protocol buffers [39] can also help solve the problem.

Since the coupling between an HSM and its host is typically much closer than
the coupling between a client and server on opposite sides of the network, the glue
necessary for the HSM-host API may differ from general RPC in many key ways. For
one thing, it is not clear that we need to establish a cryptographic tunnel between the
host and HSM; e.g., the PCI bus in a machine is not quite as risky as the open Internet.
Fault tolerance may also not be as important; it is not likely that the HSM will crash or
the PCI connection disappear without the host being aware. More subtly, the need for
strict marshaling — all parameters and data must be squished flat, no pointers allowed
— may no longer be necessary in an HSM that has DMA or busmastering ability on
its host. As noted earlier, failure to fully consider the overheads of data and parameter
transport can lead to an HSM installation woefully underexploiting the performance of
its internal cryptographic hardware.

Cryptographic Applications Typically, the standard application envisioned for an
HSM is cryptography; the API is some suite of R for doing various types of crypto
operations. Cryptography raises some additional issues. Convenience and economics
provide pressure to standardize an API, so that a program P can work with variety
of HSMs, even if they are all from the same vendor, and perhaps even with a low-
budget software-only version. Alternatively, security might motivate the development
of HSMs that can be drop-in replacements for the software cryptography used by stan-
dard tools not necessarily conceived with HSMs in mind, e.g., think of an SSL Web
server, or an SSH tool.

Another distinguishing feature of cryptography as a subject is that, historically, it
has been a sensitive topic, subject to scrutiny and complicated export regulations by
the U.S. government, e.g. [29]. As recently as the 1990s, a U.S.-based HSM vendor
needed to take into account that customers in certain countries were not allowed to
do certain crypto operations or were limited in key lengths — unless they fell into
myriad special cases, such as particular industries with special approval. The need
to balance streamlined design and production against compliance with arcane export

DRAFT

1.4. THE BIGGER SYSTEM 11

regulations can lead to additional layers of complexity on a cryptographic API, e.g.,
imagine additional parameters embodying the permissible cryptographic operations for
the installation locality.

Attacks The cryptographic APIs provided by HSMs have, now and then, proven lu-
crative attack targets. Ross Anderson’s group at Cambridge make a big splash demon-
strating vulnerabilities in IBM’s Common Cryptographic Architecture (CCA) API, by
sequencing legitimate API calls in devious ways [7]. In some sense, the fundamental
flaws in the CCA API resulted from the above-discussed drivers: the goal of trying
to provide a unified API over a disparate HSM product line, and the Byzantine API
complexity caused by export regulations. The author’s own group at Dartmouth subse-
quently caused a much smaller splash demonstrating ways to bypass HSM security by
hijacking the library and linking connections between the host program and the HSM
[32]; one might attribute the fundamental flaw here to the need for a uniform API lead-
ing to its overly deep embedding and dependence on vulnerable commodity operating
systems.

Secure Execution Another family of HSM applications is to have the HSM provide
a safe sanctuary for more general types of computation. Some of us who do research in
this area envision some fairly sophisticated usages here such as auctions or insurance
premium calculations; however, in commercial practice, these applications often arise
from an enterprise’s need for a slightly customized twist to standard cryptographic
operations.

Enabling developers to easily write such applications requires more RPC-like glue.
Besides tools for automatically generating stubs and marshaling, the developer would
also appreciate the ability to debug the code that is to reside on the HSM. One solution
approach is to set up a special debugging environment inside the HSM itself — which
raises security concerns, since debuggers can enable security attacks, and the stake-
holder may worry whether a particular deployed HSM is configured normally or with
a debugger. Another approach is to develop and debug the HSM code by first running
it in a special environment on the host itself, an approach aided by RPC, and only later
moving into the HSM. This approach raises effectiveness concerns: emulation software
is notorious for being not quite like the real thing.

Moving more arbitrary computation into the HSM also raises a host of security
concerns. One is control: who exactly is it that has the right to add new functionality
to the HSM — the vendor, the enterprise, or third party developers? Other concerns
follow from standard worries about the permeability of software protections. If two
different entities control software running on the HSM, or even it is just one entity,
but one of the applications may be customized, and hence fresher and less tested, can
one of them attack or subvert the other? Can an application attack or subvert kernel-
level operations inside the HSM — including perhaps whatever software controls what
applications get loaded and how secrets get managed? Giving a potential adversary a
computational foothold inside the HSM can also increase the exposure of the HSM to
side-channel attacks (discussed later), because it becomes easier to do things like probe
the internal cache.

DRAFT

12 CHAPTER 1. HARDWARE SECURITY MODULES

Checking the Host In the initial way of looking at things, we increase security by
using the HSM as safer shelter for sensitive data and computation. However, many
researchers have explored using an HSM to in turn reach out and examine the security
state of its host, e.g. [6, 24, 47, 51] For example, an HSM with busmastering capa-
bilities might, at regular intervals, examine the contents of host memory to determine
if critical kernel data structures show evidence of compromise [38]. The idea is mov-
ing out of the research world; in recent years, more than one commercial vendor has
produced HSMs of this type.In some sense, one might think of such HSMs as trusted
platform modules on steroids (see chapter 1.1).

Using the Host Almost by definition, an HSM is smaller than its host computing
environment. As a consequence, the HSM may need to use the host to store data or code
that does not fit inside. Doing so without compromising the security properties that led
us to shelter computation inside the HSM in the first place can be more subtle than
first appears. Obviously, we immediately increase the risk of a denial-of-service attack
— what if the data the HSM needs is no longer present? And clearly sensitive data
should be encrypted before being left on the host. We also should take care to apply
integrity protections so that we can detect if the adversary has modified the ciphertext,
and perhaps even use a technique such as randomized initialization vectors to ensure
that the adversary cannot infer things from seeing the same ciphertext block stored a
second time.

However, further thought reveals more challenges not addressable so easily. For
one thing, encryption and integrity checking do not guarantee that the HSM will re-
ceive the most recent version of a data block it has stored on the host. What stops an
adversary from replaying an old version of the data, e.g., an access control list that still
lists a rogue employee as legitimate? One countermeasure is to retain a cryptographic
hash of the data block inside the HSM — but this can defeat the purpose using the host
because the internal storage is too small. Using a Merkle tree could work around the
space concerns, but may incur a significant performance hit without special hardware,
e.g. [10, 45]. Thinking about freshness also raises the issue: does the HSM have a
trustworthy source of “current time?”

Beyond freshness, we also need to worry about what the HSM’s access patterns
— which block of data or code the HSM is touching now — will tell the adversary.
Countermeasures exist to provably obfuscate this information, e.g. Asnonov [3] and
Iliev and Smith [19] building on Goldreich and Ostrovsky [15], but they exact a high
performance penalty — and probably still only count as “research,” not ready for prime
time.

Above, we have considered using the host for augment data storage for the HSM.
We could also use the host to augment the HSM’s computation engine, but, in the
general case, this would require advanced — and, for now, probably research-only
techniques, e.g., Malkhi et al. [31] and Iliev and Smith [20] building on Yao [52],
to ensure that the adversary could neither subvert the computation undetectably nor
illegitimately extract information from it.

DRAFT

1.4. THE BIGGER SYSTEM 13

The Operating Envelope When discussing physical security (section 1.3.4), it is
tempting to think of the HSM statically: as a unit by itself, at a single point in time.
However, HSM operations usually require nonzero duration, and are affected by the
HSM’s physical environment — such as temperature, pressure, radiation, external
power supply, electrical behavior on I/O signal lines, etc. Indeed, “affected” might
be an understatement; correct HSM operation might actually require that these envi-
ronmental parameters fall within certain constraints. Furthermore, this set of opera-
tions we worry about may include the tamper protections we depend upon for HSM
security; some designers stress the importance of carefully identifying the operating
envelope and ensuring that the HSM’s defenses treat actions that take the HSM out of
the envelope as tamper events.

1.4.2 The Enterprise
The HSM must also embed within the broader enterprise using it.

Management and Authorization To start with, the fact that the enterprise is using
an HSM implies that the enterprise almost certainly has something to protect. Keys,
data, and computation are sheltered inside the HSM because the host environment is
not sufficiently safe; the HSM performs cryptography for the enterprise because some
storage or transmission channel is not sufficiently safe. However, for the HSM’s shel-
tered environment to be meaningfully distinct from the generic host,let alone safer,
someone needs to think through the HSM’s policy: what services the HSM provides;
the conditions under which it provides those services; the entities who can authorize
such services; how the HSM determines whether these entities in fact authorized them.
As in the classic undecidability-of-safety results [17], the set of services the policy
speaks to can include the ability to modify and extend the policy itself. Unlike the
typical host computer, an HSM usually does not have a direct user interface — so it
must rely on less-trusted machines to act as intermediaries, raising questions about the
security in turn of the machines and user interfaces used in authentication. For exam-
ple, if we were to use a highly physically secure HSM for sensitive RSA operations
but use a generic Internet-connected desktop to perform the cryptography authorizing
the commands to control that HSM, it would not be clear how much we have gained.
Furthermore, given the mission-critical and enterprise-centered nature of typical fi-
nancial cryptography, any authentication and authorization scheme probably needs to
include concepts — such as role-based access control and key escrow or other method
of “emergency override” — foreign to the typical PC user.

Outbound Authentication The above discussion considered how an HSM might au-
thenticate the entity trying to talk to it. In many application scenarios, particularly when
the HSM is being used as a secure execution environment, and particularly when the
enterprise is using the HSM to protect against rogue parties at the enterprise itself, it is
also important to consider the other direction: how a remote relying party can authen-
ticate the entity that is the HSM. The advent of “trusted computing” (chapter 1.1) has
given rise to the notion of attestation as the ability of a computational platform to tes-

DRAFT

14 CHAPTER 1. HARDWARE SECURITY MODULES

tify to a remote party how it is configured. However, the earlier work on the IBM 4758
HSM developed a deeper notion of outbound authentication: the HSM security archi-
tecture binds a private key to an onboard entity, with a certificate chain tying the public
key to the “identity” of this entity [41]. The entity can thus participate as a full-fledged
citizen in cryptographic protocols and exchanges.

Of course, such approaches raise the tricky question of exactly what is an “onboard
computational entity.” In an HSM that allows only one security domain inside itself,
what happens when the software is updated, or erased and replaced, or even trickier,
erased and replaced with exactly the same thing? What about the any security control
or OS or management layers — are these the same as the “application,” or different?
An HSM that allows more general domain structures, such as multiple possibly mu-
tually suspicious applications or temporary applications (“load this bytecode into your
internal VM right now, temporarily”) gives rise to even more challenging scenarios.

Maintenance In addition to management and authorization of ordinary HSM oper-
ations, we also need to think about how to manage maintenance of the HSM. Given
the nature of physical encapsulation, hardware repairs may be beyond question. How-
ever, software repairs are another matter. In addition to esoteric issues such as updating
functionality or cryptography, we also need to worry about the more straightforward
problem of fixing bugs and vulnerabilities. Consider how often a typical PC operating
system needs to be patched! The set of who should authorize software updates may
extend beyond the enterprise, e.g., should the HSM vendor be involved? Another set of
questions is what should happen to sensitive data inside the HSM during maintenance.
Some enterprises may find it too annoying if the HSM automatically erases it; others
may worry that retention during upgrade may provide an avenue for a malicious party
such as a rogue insider at the vendor to steal sensitive secrets.

Maintenance can also interact with physical security. For example, many ap-
proaches to physical tamper protection require a continuous power source, such as
onboard batteries. How does the enterprise replace these batteries without introducing
a window for undetectable tamper?

Also, as we noted earlier, using tamper evidence defenses requires that someone
notice the evidence. Such audit processes need also be integrated into enterprise oper-
ations.

The Trust Envelope “Classical” presentations of computer security stress the impor-
tance of defining the trusted computing base (TCB). Typically, the TCB is defined in
terms of the software environment within a traditional computer: the minimal compo-
nent that one must trust, because one has no choice; however, if one assumes the TCB
is sacrosanct, then one can have faith that the rest of the system will be secure. When
analyzing the security offered by a traditional computer system, a sensible step is to ex-
amine its TCB. Does the system’s design sensibly pare down its security dependencies,
and channel them toward a reasonable foundation? Does the stakeholder have good
reason to believe the foundation actually works, and will not be compromised?

When considering HSMs, similar issues apply — except that we may need to
broaden our view to account for the potentially distributed nature of both the secu-

DRAFT

1.4. THE BIGGER SYSTEM 15

rity protections the HSM may provide and the infrastructure that helps it provide them.
For example, consider a physically encapsulated HSM that is intended to provide a
secure execution environment, assuring remote relying parties that the sheltered com-
putation is protected even from rogue insiders at the enterprise deploying the HSM. As
with the TCB of a traditional computer system, we might start by looking at the inter-
nal software structure protecting the system right now. However, we need to extend
from software to look at the physical security protections. We need to extend from a
static view of operation to look at the full operating envelope across the duration of
runtime. We may need to extend through the history of software updates to the HSM:
for example, if the previous version of the code-loading code in an HSM was evil, can
the relying party trust what claims to be running in there now? We also may need to
extend across enterprise boundaries: for example, if the HSM vendor can issue online,
automatic updates for the code-loading code in an HSM, does the relying party need to
trust the continued good behavior of the HSM? We may also need to extend beyond the
technical to regulatory and business processes. If security depends on auditing, who
does the auditing, and who checks the result? If the relying party’s confidence depends
on third-party evaluations (section 1.4.4 below), what ensure the evaluator is honest?

Recall that one sometimes hears the TCB defined as “that which can kill you, if
you don’t watch out.”2

The End Things come to an end, both HSMs and the vendors that make them. When
an enterprise integrates an HSM into its applications, it is important to take into account
that the a vendor may discontinue the product line — or the vendor itself may go out of
business. In such scenarios, what had been the HSM’s advantages — the physical and
logical security that safely and securely keep keys and secrets inside it — can become
a source of significant consternation. If the enterprise cannot migrate these sensitive
items into a new HSM (possibly from a new vendor), how can it guarantee continuity
of operations? But if the enterprise can migrate data out under these circumstances,
what prevents an adversary from using the same migration path as a method of attack?

1.4.3 The Physical World
HSMs exist as physical objects in the physical world. This fact, often overlooked, can
lead to significant security consequences.

Side-Channel Analysis It is easy to think of computation, especially cryptography,
as something that happens in some ethereal mathematical plane. However, when car-
rying out computation, computational devices perform physical-world actions which
do things like consume power and take time. An adversary can observe these actions;
analysis of the security of the computation must not just include the official outputs of
the ethereal function, but also these physical outputs, these side channels.

In the last fifteen years, researchers in the public domain have demonstrated numer-
ous techniques, e.g. [27, 28], to obtain private and secret keys by measuring such physi-
cal observables of a computer while it operates with those secrets. Usually these attacks

2The author heard this attributed to Bob Morris, Sr.

DRAFT

16 CHAPTER 1. HARDWARE SECURITY MODULES

require statistical calculation after extensive interaction with the device; however, the
author personally saw one case in which monitoring power consumption revealed the
secret key after a single operation. Researchers have also demonstrated the ability to
learn cryptographic secrets by observing behavior of a CPU’s cache [5] — which an
adversary who can run code on the CPU concurrently might be able to exploit.

What’s publicly known are these public research results. A prevailing belief is
that intelligence communities have known of these avenues for a long time (sometimes
reputed to be part of the TEMPEST program looking at electromagnetic emanations,
e.g. [37]). Furthermore, the prudent HSM designer needs to assume that adversaries
also know about and will try such techniques.

The published side channel work tends to focus either on specialized, limited-power
devices such as smart cards (which we might view as low-end HSMs) or more general-
pupose computers, such as SSL Web servers. However, the attacks may apply equally
well to an HSM, and the prudent designer should try to defend against them. As with
general physical attacks, however, defending against side-channel attacks can end up
a game of listing attack avenues (e.g., timing, power) and defending against them —
normalizing operation time, or smoothing out power consumption — and can leave the
defender worrying about whether the attacker will think of a new type of side channel
to exploit.

Fault Attacks With side-channel analysis, the adversary examines unforeseen out-
puts of the computation. The adversary can also use such unexpected physical channels
as inputs to the computation — and “breaking” the computation in controlled ways can
often enable the adversary to learn its secrets, e.g. [4, 8].

For a simple example, suppose an HSM is implementing the RSA private key op-
eration by iterating on the bits in the private exponent. If the adversary can somehow
cause the HSM to exit the loop after one iteration, then the adversary can easily learn
from the output whether that bit was a 1 or a 0. Repeating this for each bit, the adver-
sary now has an efficient scheme to learn the entire private exponent.

One approach to defending against such attacks is to try to enumerate and then
close off the possible physical avenues for disruption. If an adversary might introduce
carefully timed spikes or dips in the incoming voltage, the HSM might try to smooth
that out; if the adversary might bombard the HSM with carefully aimed radiation of
some type, the HSM might shield against that. These defenses can fall under the “op-
erating envelope” concept, discussed earlier. Another approach is to have the HSM
check operations for correctness; however, trying this approach can lead to some sub-
tleties: the action taken when error is detected should not betray useful information,
and the checking mechanism itself might be attacked.

1.4.4 Evaluation

In a very basic sense, the point of an HSM in a financial cryptography application is to
improve or encourage trust in some broader financial process. Of course, if one talks
to the sociologists, one knows that defining the verb “trust” can be tricky: they insist it
is an unconscious choice, and debate fine-grain semantics for what it means to “trustX

DRAFT

1.4. THE BIGGER SYSTEM 17

for Y .” In the HSM case, let’s annoy the sociologists and consider trust as a rational,
economic decision: should a stakeholder gamble their financial well-being on financial
computation correctly occurring despite adversaries?

For an HSM to help achieve this correctness goal, many factors must hold: the
HSM must carry out is computation correctly and within the correct performance con-
straints; the HSM must defend against the relevant adversaries; the defenses must be
effective against the foreseen types of attacks. Factors beyond the HSM itself must
also hold: for application correctness, the HSM must be appropriately integrated into
the broader installation; for effective security, the protections provided by the HSM
must be appropriately interleaved with the protections and exposure of the rest of the
computation.

Stakeholders trying to decide whether to gamble on this correctness might appre-
ciate some assurance that the HSM actually has these factors. Given that sensibly
paranoid security consumers do not relay on vendor claims alone, third-party evalua-
tion can play a significant role. Indeed, we have sometimes seen this cascade to n-th
party, where n > 3 — e.g., USPS standards for electronic postal metering may in turn
cite US NIST standards for HSMs.

What’s Examined When it comes to considering what a third-party evaluator might
examine, a number of obvious things come to mind. How tamper resistant is the case?
Can the evaluator penetrate without triggering tamper detection or leaving evidence?
Do tamper response defenses fire quickly enough — and actually zeroize data? Can
the evaluator break security by deviously manipulating environmental factors such as
power, voltage, or temperature? What about monitoring such factors — perhaps com-
bined with time of operations?

Although perhaps not as obvious an evaluation target as physical armor, an HSM’s
cryptography is also critical to its security. An evaluator might test whether the HSM
actually implements its cryptographic algorithms correctly, off-the-record anecdotes
claim this fails more often one would think, whether sources of randomness are suffi-
ciently strong, whether key lengths are long enough, whether key management is han-
dled correctly. The evaluator might also examine whether, for various elements such
as “block cipher” or “hash function,” the HSM designer chose appropriate primitives:
e.g., SHA-1 instead of MD5, or AES instead of DES. When it comes to cryptography,
one can see another level of indirection in evaluation: e.g., NIST standards on HSMs
in turn cite NIST standards on cryptography.

Since physical and cryptographic security only make sense if the HSM actually
does something useful, evaluators also look at the overall design: what is the HSM
supposed to do, and does it do it? This examination can often take the form of asking
for the traditional security policy — a matrix of who can do what to whom — for
the HSM, and then testing that the HSM allows what the policy allows, and that the
HSM denies what the policy denies. The evaluator might also examine how the HSM
determines authentication and authorization for the “who”: is the design appropriate,
and is it correctly implemented.

DRAFT

18 CHAPTER 1. HARDWARE SECURITY MODULES

What’s Not Always Examined Although it is easy to think of an HSM as “hard-
ware,” it is also important that an evaluator look at “software” and interface aspects,
these factors tend not to receive as thorough attention. Can the evaluator give some
assurance to the stakeholder that the HSM’s internal software is correct? The evalua-
tor could ask for basic documentation. The evaluator could also examine the software
design, development and maintenance process for evidence of best practices for soft-
ware security: things ranging from choice of language (was C really necessary — and
if so, were any security analysis tools or libraries used, to reduce risk of standard C
vulnerabilities) to standard software engineering practices, such as version control, to
more cutting-edge techniques, such as model checking for correctness. For that mat-
ter, a paranoid evaluator should also examine the tool chain: the compiler, linker, etc.
Thompson’s famous Trojan Horse-inserting compiler [46] was not just a thought exer-
cise, but a real tool that almost escaped into the wild. The evaluator should also look
at the external-facing interfaces. Are there any standard flaws, such buffer overflow
or integer overflow? Are there any evil ways the adversary can string together legiti-
mate interface calls to achieve an illegitimate result? Some researchers , e.g. [18], have
begun exploring automated formal methods to try to address this latter problem.

Looking at software development requires the evaluator, when evaluating HSM se-
curity, to look beyond the HSM artifact itself. Other aspects of the system beyond
the artifact might also come into play. What about the host operating system? If the
entities — at the enterprise using the HSM, or at the HSM manufacturer itself — re-
sponsible for authorizing critical HSM actions depend on cryptography, what about the
correctness and security of those devices and key storage? And if not, what authen-
ticators do these entities use — guessable passwords? What about the security of the
manufacturing process, and the security of the shipping and retail channels between
the manufacturer?

How It is Examined We have mentioned “standards” several times already. One
of the standard approaches to provide security assurance for an HSM is to have it
evaluated against against one of the relevant standards. The FIPS 140 series, from
NIST, is probably the primary standard here, aimed specifically at HSMs. The initial
incarnation, FIPS 140-1, and the current, FIPS 140-2 [13], matrixed four levels of
security against numerous aspects of the module; increasing security required stricter
rules; the newest version, 140-3, still pending, offers more options. The Common
Criteria [11] offers more flexibility: an HSM is examined against a vendor-chosen
protection profile at a specific evaluation level.

Usually, official validation requires that a vendor hire a third-party lab, blessed by
the governmental standards agency, to validate the module against the standard. Typ-
ically, this process can be lengthy and expensive — and perhaps even require some
product re-engineering; sometimes, vendors even hire third-party consulting firms,
sometimes affiliated with evaluation labs, to guide this design in the first place. On
the other hand, unofficial validation requires nothing at all: in their marketing litera-
ture, a vendor need merely claim “compliance.”

Although valuable, the standards process certainly has drawbacks. Because the
rules and testing process are, by definition, standardized, they can end up being insuf-

DRAFT

1.5. FUTURE TRENDS 19

ficiently flexible.

• The standards process can be expensive and cumbersome — smaller vendors
may not be able to afford it; bigger vendors may not be able to afford re-validating
all product variations; all vendors might have trouble reconciling a slow stan-
dards process with Internet-time market forces.

• Should the standard list exactly which tests an evaluation lab can try? What if a
particular HSM suggests a new line of attack which could very well be effective,
but is not one of the ones in the list?

• As security engineers well know, the threat environment continually and often
rapidly evolves. Can official standards keep up?

• Not all HSMs have the same functionality. How does an official standard allow
for the various differences in design and behavior, without allowing for so many
options as to lose meaning?

• As we have observed, the end security goal of an HSM is usually to increase
assurance in some broader process. How can an official standard capture the
varied nuances of this integration?

• As we have also observed, the security of an HSM can depend on more than just
the artifact of a single instance of the HSM. Does the official standard examine
the broader development and maintenance process?

These are areas of ongoing work.
An alternative to official validation is to use a third-party lab to provide customized

vulnerability analysis and penetration tests.

1.5 Future Trends

1.5.1 Emerging Threats
The evolving nature of security threats will likely affect HSM design and evaluation.

For example, an area of increasing concern in defense and presumably in financial
cryptography is the risk of tampered components, e.g. [1]. An enterprise might trust the
vendor of an HSM — but what about the off-the-shelf components that went into the
HSM? It is long been well-known that some FLASH vendors provide undocumented
functionality (“write this sequence of magic numbers to these magic addresses”) to pro-
vide convenience to the vendor; these conveniences can easily be security backdoors.
More recent research [25] has demonstrated how little need be changed in a standard
processor to provide all sorts of malicious features. What else could be in the chips —
and what if it was inserted by a few rogue engineers as a service to organized crime or
a nation-state enemy? How can an HSM vendor — or anyone else — test for this?

1.5.2 Evolving Cryptography
Ongoing trends in cryptography may also affect HSMs.

DRAFT

20 CHAPTER 1. HARDWARE SECURITY MODULES

Hashing Hash functions play a central role in cryptographic operations of all types.
However, recent years have brought some entertainment here, with the MD5 hash func-
tion beginning to break in spectacular ways, e.g. [26], and the standard alternative
SHA-1 deemed not strong enough to last much longer. HSMs with hardwired support
for only MD5 are likely now obsolete; HSMs with hardwired support for only SHA-
1 may become obsolete soon. That different hash functions may have different hash
lengths, and the embedded role that hash functions play in larger algorithms such as
HMAC further complicate the task of building in hash agility.

Elliptic Curve Our discussion in section 1.3.3 of public key cryptography focused
on the traditional and relatively stable world of exponentiation-based cryptography.
However, elliptic curve cryptography (ECC), e.g. [16], based on different mathematics,
has been receiving increasing practical attention in recent years. One reason is that
it can get “equivalent” security for shorter keylengths and signatures than traditional
cryptography, and consequently is attractive for application scenarios where channel
bandwidth or storage capacity is an issue. Another reason is that ECC has proved a
wonderland for innovative new tricks, such as aggregate signatures [9], which allow
n parties to sign a message, but in the space of just one signature. Because of these
advantages, one might expect to see increased usage and demand for ECC support
in HSMs; but because of its volatility, picking exactly which operation to commit to
hardware acceleration is risky.

Modes of Operation When it comes to symmetric cryptography, we typically see
block ciphers in financial cryptography. Typically the choice of block cipher is fairly
straightforward, based on standards and standard practice in one’s community: for a
while, we had DES, TDES or IDEA; since it was standardized and since it was designed
outside the U.S., AES. However, using a block cipher requires more than picking one;
it requires choosing a mode of operation — how to knit the block operations together.
Which modes are desirable for HSM applications can evolve over time — and it can be
frustrating if the acceleration hardware does not support the mode required for an appli-
cation, such as the recently emerging ones, e.g. [22], that give authentication/integrity
as well as confidentiality .

Is Hardware Acceleration Even Necessary? It can be easy to think about HSMs
in the context of a single moment. Is the host CPU too slow — can we do cryptog-
raphy faster in special hardware? However, as time progresses, host CPUs tend to get
faster, thanks to Moore’s Law — but special hardware stays the same. When integrat-
ing an HSM into some application scenario, optimization of engineering and resource
allocation needs to take this different aging into account.

1.5.3 Emerging Technology
As we have discussed, besides accelerating cryptography, HSMs can also serve as
secure coprocessors: protected, sometimes simpler computational domains, possibly
with additional attestation properties. However, rather than looking at such auxiliary

DRAFT

1.6. FURTHER READING 21

computation engines, we might want to start looking at the main computation engine
itself. Currently emerging technology may enable us to start obtaining these HSM-
provided properties within the main processor itself. A few examples:

• The notion of virtual machines has re-emerged from the dustbin of computer sci-
ence; vendors and developers are re-tuning operating systems and even hardware
to support virtualization, e.g. [40, 48]. Although perhaps primarily motivated by
economics, virtualization can also provide simpler, protected, and perhaps, via
virtual machine introspection attested computing environments, e.g. [35] — but
on the main engine, rather than an HSM.

• Newer commercial processor architectures, such as Intel’s TXT, formerly code-
named LaGrande [21], extend the traditional partition of kernel-user mode into
quadrants: a kernel-user pair for “ordinary” operation, and another for more
secure, protected operation. Perhaps this new pair of quadrants can provide the
environment we wanted from an HSM.

• Because of continuing exponential improvements in computing technology (smaller!
faster! cheaper!) many features and applications originally envisioned for high-
end HSMs may migrate toward personal tokens, such as smart cards.

• As chapter 1.1 discusses, a consortium of industry and research labs are promot-
ing a trusted computing architecture augmenting the main CPU with a smaller
trusted platform module (TPM) which can measure software, hardware, and
computational properties of the main engine, and attest and bind secrets to spe-
cific configurations. Partnering the main CPU with a TPM can start to provide
some of the protections we wanted in an HSM, albeit against adversaries of per-
haps less dedication.

• Combining a TPM with some of these other technologies above can bring us
even closer to an HSM in the main engine. For example, using a TPM to bind
secrets only to a specifically equipped “secure” pair of quadrants in a TXT-style
processor, as CMU prototyped [33], almost creates a dual to the traditional secure
coprocessor of research.

As this technology further penetrates commercial environments, it will be interesting
to see what happens.

Looming improvements in other aspects of computing technology can also affect
HSM design and development. For example, the emerging practicality of semiconductor-
based “disks” may make it practical to consider installing “hard disks” inside the com-
puting environment of an HSM — changing both their power, but also changing the
requirements and complexity of an internal OS.

1.6 Further Reading
For a longer history of the notion of HSMs and secure coprocessors, the reader might
consult the author’s previous book, Trusted Computing Platforms: Design and Appli-
cations [42].

DRAFT

22 CHAPTER 1. HARDWARE SECURITY MODULES

For further research results, the Cryptographic Hardware and Embedded Systems
(CHES) conference focuses on developments in technology core to many HSMs. With
the emergence of “trusted computing” (chapter 1.1) as a research area in its own right,
some cutting-edge work in HSM design and applications lands there instead.

To avoid both the appearance of bias and the futility of chasing a moving target, this
chapter has avoided discussing specific commercial products, unless the author had di-
rect personal experience, and then only as illustrative examples. For a good snapshot
of current commercial offerings, the reader might visit the web site for NIST’s cryp-
tographic module validation program [34], which will list currently validated devices
and thus point to vendors with active development efforts here.

DRAFT

Bibliography

[1] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar. Trojan Detec-
tion using IC Fingerprinting. In Proceedings of the 2007 IEEE Symposium on
Security and Privacy, pages 296–310. IEEE Computer Society Press, May 2007.

[2] R. Anderson and M. Kuhn. Tamper Resistance—A Cautionary Note. In Proceed-
ings of the 2nd USENIX Workshop on Electronic Commerce, pages 1–11, 1996.

[3] D. Asnonov. Querying Databases Privately: A New Approach to Private Infor-
mation Retrieval. Springer-Verlag LNCS 3128, 2004.

[4] C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, and J.-P. Seifert. Fault At-
tacks on RSA with CRT: Concrete Results and Practical Countermeasures. In
Cryptographic Hardware and Embedded Systems—CHES 2002, pages 260–275.
Springer-Verlag LNCS 2523, 2003.

[5] D. Bernstein. Cache-timing attacks on AES. cr.yp.to/antiforgery/
cachetiming-20050414.pdf, April 2005.

[6] R. Best. Preventing Software Piracy with Crypto-Microprocessors. In Proceed-
ings of the IEEE Spring Compcon 80, pages 466–469, 1980.

[7] M. Bond and R. Anderson. API-Level Attacks on Embedded Systems. IEEE
Computer, 34:64–75, October 2001.

[8] D. Boneh, R. DeMilllo, and R. Lipton. On the importance of checking crypto-
graphic protocols for faults. In Advances in Cryptology, Proceedings of EURO-
CRYPT ’97, pages 37–51. Springer-Verlag LNCS 1233, 1997. A revised version
appeared in the Journal of Cryptology in 2001.

[9] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. A Survey of Two Signature
Aggregation Techniques. RSA CryptoBytes, 6:1–10, 2003.

[10] D. Clarke, S. Devadas, M. van Dijk, B. Gassend, and G. Suh. Incremental Mul-
tiset Hash Functions and their Application to Memory Integrity Checking. In
Advances in Cryptology—ASIACRYPT, pages 188–207. Springer-Verlag LNCS
2894, 2003.

[11] Common Criteria for Information Technology Security Evaluation. Version 2.2,
Revision 256, CCIMB-2004-01-001, January 2004.

23

DRAFT

cr.yp.to/antiforgery/cachetiming-20050414.pdf
cr.yp.to/antiforgery/cachetiming-20050414.pdf

24 BIBLIOGRAPHY

[12] J. Dyer, M. Lindemann, R. Perez, R. Sailer, S. Smith, L.van Doorn, and S. Wein-
gart. Building the IBM 4758 Secure Coprocessor. IEEE Computer, 34:57–66,
October 2001.

[13] Federal Information Processing Standard 140-2: Security Requirements for Cryp-
tographic Modules. http://csrc.nist.gov/cryptval/140-2.htm,
May 2001. FIPS PUB 140-2.

[14] M. Girault and J.-F. Misarsky. Cryptanalysis of countermeasures proposed for
repairing ISO 9796-1. In Proceedings of Eurocrypt 2000, volume LNCS 1807,
pages 81–90. Springer-Verlag, 2000.

[15] O. Goldreich and R. Ostrovsky. Software Protection and Simulation on Oblivious
RAMs. Journal of the ACM, 43(3):431–473, 1996.

[16] D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptogra-
phy. Springer, 2004.

[17] M. Harrison, W. Ruzzo, and J. Ullmann. Protection in Operating Systems. Com-
munications of the ACM, 19(8):461–470, August 1976.

[18] J. Herzog. Applying Protocol Analysis to Security Device Interfaces. IEEE Se-
curity and Privacy, 4:84–87, 2006.

[19] A. Iliev and S. Smith. Private Information Storage with Logarithmic-space Secure
Hardware. In Information Security Management, Education, and Privacy, pages
201–216. Kluwer, 2004.

[20] A. Iliev and S. Smith. Faerieplay on Tiny Trusted Third Parties. In Second Work-
shop on Advances in Trusted Computing (WATC ’06), November 2006.

[21] Intel Trusted Execution Technology. http://www.intel.com/
technology/security/, 2009.

[22] C. Jutla. Encryption Modes with Almost Free Message Integrity. In Advances in
Cryptology EUROCRYPT 2001, 2001.

[23] B. Kauer. OSLO: Improving the security of Trusted Computing. In Proceedings
of the 16th USENIX Security Symposium, pages 229–237, 2007.

[24] S. Kent. Protecting Externally Supplied Software in Small Computers. PhD thesis,
Massachusetts Institute of Technology Laboratory for Computer Science, 1980.

[25] S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and Y. Zhou. Designing
and Implementing Malicious Hardware. In Proceedings of the First USENIX
Workshop on Large-Scale Exploits and Emergent Threats (LEET), 2008.

[26] V. Klima. Tunnels in Hash Functions: MD5 Collisions Within a Minute (extended
abstract). Technical Report 2006/105, IACR ePrint archive, March 2006.

DRAFT

http://csrc.nist.gov/cryptval/140-2.htm
http://www.intel.com/technology/security/
http://www.intel.com/technology/security/

BIBLIOGRAPHY 25

[27] P. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems. In Advances in Cryptology—Crypto 96. Springer-Verlag LNCS
1109, 1996.

[28] P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In Advances in
Cryptology—Crypto 99. Springer-Verlag LNCS 1666, 1999.

[29] S. Levy. Crypto: How the Code Rebels Beat the Government Saving Privacy in
the Digital Age. Diane Publishing, 2003.

[30] M. Lindemann and S. Smith. Improving DES Coprocessor Throughput for Short
Operations. In Proceedings of the 10th USENIX Security Symposium, pages 67–
81, August 2001.

[31] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay: a Secure Two-Party
Computation System. In Proceedings of the 13th USENIX Security Symposium,
August 2004.

[32] J. Marchesini, S. Smith, and M. Zhao. Keyjacking: the Surprising Insecurity of
Client-side SSL. Computers and Security, 4(2):109–123, March 2005. http:
//www.cs.dartmouth.edu/˜sws/papers/kj04.pdf.

[33] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and A. Seshadri. Minimal TCB
Code Execution (Extended Abstract). In Proceedings of the IEEE Symposium on
Security and Privacy, 2007.

[34] Module Validation Lists. http://csrc.nist.gov/groups/STM/cmvp/
validation.html, 2000.

[35] K. Nance, B. Hay, and M. Bishop. Virtual Machine Introspection: Observation
or Interference? IEEE Security and Privacy, 6:32–37, 2008.

[36] B. Nelson. Remote Procedure Call. PhD thesis, Dept. of Computer Science,
Carnegie-Mellon University, 1981.

[37] NSA Tempest Documents. http://cryptome.org/nsa-tempest.htm,
2003.

[38] N. Petroni, T. Fraser, J. Molina, and W. Arbaugh. Copilot—a Coprocessor-based
Kernel Runtime Integrity Monitor. In Proceedings of the 13th USENIX Security
Symposium, pages 179–194, 2004.

[39] Protocol Buffers-Google Code. http://code.google.com/apis/
protocolbuffers/, 2009.

[40] J. Robin and C. Irvine. Analysis of the Intel Pentium’s Ability to Support a Secure
Virtual Machine Monitor. In Proceedings of the 9th USENIX Security Symposium,
2000.

[41] S. Smith. Outbound Authentication for Programmable Secure Coprocessors. In-
ternational Journal on Information Security, 2004.

DRAFT

http://www.cs.dartmouth.edu/~sws/papers/kj04.pdf
http://www.cs.dartmouth.edu/~sws/papers/kj04.pdf
http://csrc.nist.gov/groups/STM/cmvp/validation.html
http://csrc.nist.gov/groups/STM/cmvp/validation.html
http://cryptome.org/nsa-tempest.htm
http://code.google.com/apis/protocolbuffers/
http://code.google.com/apis/protocolbuffers/

26 BIBLIOGRAPHY

[42] S. Smith. Trusted Computing Platforms: Design and Applications. Springer,
2004.

[43] S. Smith and S. Weingart. Building a High-Performance, Programmable Secure
Coprocessor. Computer Networks, 31:831–860, April 1999.

[44] S. Stasiukonis. Social Engineering, the USB Way. http://www.
darkreading.com/document.asp?doc_id=95556&WT.svl=
column1_1, June 2006.

[45] G. Suh, D. Clarke, B. Gassend, M. Dijk, and S. Devadas. Efficient Memory In-
tegrity Verification and Encryption for Secure Processors. In International Sym-
posium on Microarchitecture (MICRO-36), 2003.

[46] K. Thompson. Reflections on Trusting Trust. Communications of the ACM,
27:761–763, 1984.

[47] J. Tygar and B. Yee. Strongbox: A System for Self-Securing Programs. In
CMU Computer Science: A 25th Anniversary Commemorative, pages 163–197.
Addison-Wesley, 1991.

[48] R. Uhlig et al. Intel Virtualization Technology. IEEE Computer, 38(5):48–56,
May 2005.

[49] S. Weingart. Physical Security for the µABYSS System. In Proceedings of the
1987 Symposium on Security and Privacy, pages 52–59. IEEE, 1987.

[50] S. Weingart. Physical Security Devices for Computer Subsystems: A Survey of
Attacks and Defenses. In Cryptographic Hardware and Embedded Systems—
CHES 2000, pages 302–317. Springer-Verlag LNCS 1965, 2000.

[51] S. White and L. Comerford. ABYSS: A Trusted Architecture for Software Pro-
tection. In IEEE Symposium on Security and Privacy, 1987.

[52] A. C. Yao. How to Generate and Exchange Secrets. In 27th Annual Symposium
on Foundations of Computer Science, pages 162–167, 1986.

DRAFT

http://www.darkreading.com/document.asp?doc_id=95556&WT.svl=column1_1
http://www.darkreading.com/document.asp?doc_id=95556&WT.svl=column1_1
http://www.darkreading.com/document.asp?doc_id=95556&WT.svl=column1_1

Index

TLA’s
ASIC, Application Specific Integrated

Circuit, 4
DMA, direct memory access, 6
ECC, elliptic curve cryptography, 20
FGPA, field programmable gate ar-

ray, 4
HSM, Hardware Security Modules, 1
TCB, trusted computing base, 14

Achilles’ heel, 9
Advanced Encryption Standard (AES), 3,

17, 20
anti-piracy, 1
Application Specific Integrated Circuit (ASIC),

4, 5
attack

denial-of-service, 12
fault, 16
insider, 3
physical, 3, 16
side-channel, 3, 11, 16

attestation, 13
audit, 8
authentication, 3, 13, 17, 20
authenticators

customer, 3
authorization, 3, 13, 14, 17

block cipher, 20
block ciphers, 20
Bob Morris, Sr., 15
brick-and-mortar, 1
buffer overflow, 18
busmastering, 12

cat-and-mouse, 9

CCA, 11
Common Cryptographic Architecture,

11
CHES, 22

Cryptographic Hardware and Embed-
ded Systems, 22

cloak-and-dagger adversary, 3
Common Criteria (CC), 18
Common Cryptographic Architecture (CCA),

11
confidentiality, 7, 20
continuity, 15
cryptographic hardware, 2, 10
Cryptographic Hardware and Embedded Sys-

tems (CHES), 22
cryptographic randomness, 7

Dartmouth, 11
Data Encryption Standard (DES), 17, 20
Diffie-Hellman, 2
Digital Signature Algorithm (DSA), 2
Direct Memory Access (DMA), 6, 10
direct memory access (DMA), 6

electromagnetic emanation, 16
electronic postal metering, 17
elliptic curve cryptography (ECC), 20
encryption

3DES, 20
AES, 3, 17, 20
DES, 17, 20
IDEA, 20
RSA, 2, 6, 13, 16
TDES, 20

evaluation lab, 18
evaluation level, 18
export regulation, 10, 11

27

DRAFT

28 INDEX

field programmable gate array (FGPA), 4
Field Programmable Gate Arrays (FPGA),

4, 5
FIPS

140, 7, 18
formal methods, 18
freshness, 3, 12

Google protocol buffers, 10

Hardware Security Modules (HSM), 1, 5–
8

hash
MD5, 17, 20
SHA-1, 17, 20

hash agility, 20
hash function, 20
HMAC, 20

IBM, 11
IBM 4758, 8
IBM 4758, 8, 14
initialization vector, 12
insiders, 3, 15
integer overflow, 18
integrity, 3, 7, 20
integrity checking, 7, 12
integrity protection, 12
Intel, 21
Intel TXT, 21
International Data Encryption Algorithm

(IDEA), 20

John von Neumann, 2

key escrow, 13
key management, 17

LaGrande, 21
Linux, 7

maintenance, 14, 18, 19
marshal, 10
marshaling, 10, 11
MD5, 17, 20
Merkle tree, 12
migrate, 15

mode of operation, 20
modular exponentiation, 5
Moore’s Law, 9, 20

National Institute of Standards and Tech-
nology (NIST), 17, 18, 22

NIST
module validation program, 22

nonce, 2

operating envelope, 13, 15, 16
outbound authentication, 14

penetration test, 19
personal tokens, 21
physical security, 1, 8, 9, 13–15
power consumption, 16
protection profile (PP), 18
pseudorandom, 7
public key cryptography, 20

randomness, 2, 17
cryptographic, 2, 7
cryptographically strong, 2

Remote Procedure Call (RPC), 10, 11
Role-based Access Control (RBAC), 13
RSA Public-key encryption, 2, 6, 13, 16

Secure Sockets Layer (SSL), 4, 10, 16
security policy, 17
serialize, 10
SHA-1, 17, 20
side channel, 15, 16
side-channel analysis, 16
signature

aggregate, 20
DSA, 2
verification, 6

smart cards, 21
SSH, 10
strict marshaling, 10
symmetric cryptography, 6, 7, 20
symmetric engine, 6, 7
symmetric key, 2

tamper
detection, 8, 17

DRAFT

INDEX 29

evidence, 8, 14
proof, 8
resistance, 8
resistant, 17
response, 8, 9, 17

TEMPEST, 16
TPM, 21

trusted platform module, 21
Triple DES (TDES or 3DES), 20
Trojan Horse, 18
trust, 14–17, 19
trusted computing, 13, 22
Trusted Computing (TC)

Base (TCB), 14, 15
Group (TCG), 9

trusted computing architecture, 21
trusted computing base (TCB), 14
Trusted Platform Module, 9
trusted platform module (TPM), 21
trusted platform modules, 12
trustworthy, 1, 8, 12

USB flashdrive, 4
USB port, 4
USPS, 17

virtual machine introspection, 21
virtual machines, 21
virtualization, 21
vulnerability analysis, 19

Web server, 10, 16

zeroize, 8, 17

DRAFT

	Hardware Security Modules
	Introduction
	Goals
	Cryptography
	Security

	Realization
	Silicon, for the Software Person
	Processor
	Cryptography
	Physical Security

	The Bigger System
	The Host Computer System
	The Enterprise
	The Physical World
	Evaluation

	Future Trends
	Emerging Threats
	Evolving Cryptography
	Emerging Technology

	Further Reading

