
ON THE CATEGORY OF BANACH SPACES

ULI KRÄHMER

Abstract. These notes are targeted mainly at final year under-
graduate students and present Whitley’s proof of Phillips’ theorem
that c0 has no closed complement in `∞ which means that c0 is not
injective as an object of the category of Banach spaces. All the ma-
terial is taken from Werner’s Funktionalanalysis [5, Section IV.6].

1. Introduction

These notes are based on Section IV.6 of Werner’s Funktionalanalysis
[5] and present Whitley’s neat and clever proof that c0 has no closed
complement in `∞ (a result originally due to Phillips). I include this
in our lecture course on functional analysis at the end of the Banach
space theory section as I find it a superb illustration of the subtlety
of the topology of Banach spaces and of their homological properties,
and in fact much more generally of a doable but tricky and unexpected
proof of a harmless looking statement. Last but not least the proof fits
perfectly into a one-hour lecture if one is well-prepared and determined
(so I usually fail) and it allows me to review some linear algebra before
getting into Hilbert spaces. As [5] is unfortunately not available in
English and I do not know another textbook that treats the matter in
this detail, I have typed up these notes for the students. Maybe one
day I will expand this further, so any comments and suggestions are
highly welcome.

2. On direct sums and idempotent morphisms

2.1. Linear algebra. We begin by recalling some linear algebra. In
all of this section, we consider vector spaces over an arbitrary field F.

Proposition 1. If V is a subspace of a vector space U , then there
exists a second subspace W ⊂ U such that U = V ⊕W .

Proof. Choose a basis BV ∈ P(V ) of V . As this is a linearly inde-
pendent subset of U it can be completed to a basis BU of the whole
of U . Then define W as the span of the newly added basis vectors,
W := spanF(BU \BV ). This is easily verified to do the job. �
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Note that W is by no means unique. However, the possible choices
of W can be easily characterised in terms of linear maps π : U → U
which are idempotent, meaning that π = π ◦ π:

Proposition 2. Given V ⊂ U , there is a bijective correspondence
between subspaces W ⊂ U with U = V ⊕ W and idempotent linear
maps π : U → U having kernel kerπ = V .

Proof. Given π, put W = imπ. Then V ∩W = 0 because if x ∈ kerπ
is also in the image of π, x = π(y), then π ◦ π = π implies

(1) 0 = π(x) = π(π(y)) = (π ◦ π)(y) = π(y) = x.

Furthermore, every element x ∈ U can be written as y + z with y :=
x− π(x) and z := π(x). Clearly z ∈ W = imπ but we also have

(2) π(y) = π(x)− π(π(x)) = π(x)− π(x) = 0

using once more that π is idempotent, so y ∈ V = kerπ and we have
shown that U = V +W . In combination, U = V ⊕W .

Conversely, U = V ⊕ W means that we can write every x ∈ U
uniquely as y + z with y ∈ V, z ∈ W and we can simply define the
idempotent map π corresponding to this choice of W by π(x) := z. �

In particular, W = imπ is by the first isomorphism theorem isomor-
phic to the quotient vector space U/V , so the complement is at least
unique up to a canonical isomorphism.

2.2. Functional analysis. The operation of a direct sum exists for
many other types of mathematical objects. There is an abstract defini-
tion (see textbooks on category theory), but instead of spending time
on this let us consider just one simple example from algebra that illus-
trates the matter before we begin with our main story:

Example 1. As for vector spaces, the direct sum G ⊕ H of abelian
groups G,H is the product G×H of the underlying sets with compo-
nentwise group operation. However, here the analogue of Proposition 1
is not true: the additive subgroup 2Z ⊂ Z of even integers has no com-
plement, that is, there is no subgroup G ⊂ Z such that Z = 2Z⊕G.

Note that in Section 2.1 we were talking about internal direct sums,
V,W were from start subspaces of a vector space U , while in the above
example this gets somewhat mixed up with the notion of an external
direct sum as we talk about taking any two abelian groups G,H and
forming their direct sum which a posteriori can be shown to be the
internal direct sum of two subgroups isomorphic to G and H. However,
I think we can also skip the somewhat tedious and not very inspiring
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discussion of the precise relation between internal and external direct
sums, once we are ready we will prove a result that clarifies that point.

What we want to talk about here is how subtle this topic is when
dealing with Banach spaces, that is, normed vector spaces (U, ‖·‖) over
F = C which are complete with respect to the metric d(x, y) := ‖x−y‖.
We assume that the reader is familiar with the most standard material
on Banach spaces but will try to recall some of that on the way.

So, let us return to the beginning and carefully clarify what the
various notions we used in Section 2.1 should mean for Banach spaces.

Definition 1. A Banach subspace V of a Banach space U is a vector
subspace which is closed (in the topology of U defined by the norm).

Equivalently, V is a vector subspace which is a Banach space in its
own right with respect to the norm of U restricted to V .

However, how about direct sums? Here is one definition:

Definition 2. If U is a Banach space and V,W ⊂ U are Banach
subspaces, then we write U = V ⊕W and say U is the direct sum of
V and W if U = V ⊕W as vector spaces.

This definition is supposed to trigger some obvious questions: should
the direct sum really just refer to the underlying vector space? Do we
not want compatibility with the topological structure? Well, it turns
out that we get this for free, but this is a nontrivial result and in order
to discuss it we first should introduce another notion:

Definition 3. A morphism ϕ : V → U of Banach spaces U, V is a
linear map of the underlying vector spaces which is continuous with
respect to the topologies defined by the norms.

The first result on linear maps between Banach spaces that is proven
in any course on functional analysis says that the morphisms ϕ : V → U
are exactly what one traditionally calls bounded linear operators, that
is, linear maps ϕ : V → U for which there is a constant C > 0 such
that ‖ϕ(x)‖ ≤ C‖x‖ for all x ∈ V . The norm ‖ϕ‖ of ϕ is the infimum
of all such C, so that for every morphism ϕ of Banach spaces we have

(3) ‖ϕ(x)‖ ≤ ‖ϕ‖‖x‖ ∀x ∈ V.
At this moment one might ask why a morphism of a Banach space

should not respect the structure complelety in the sense that it should
be also an isometry, meaning ‖ϕ(x)‖ = ‖x‖ for all x ∈ V . However,
note that then ϕ(x) = 0 implies x = 0, so isometries are necessarily
injective, and this is a bit more restrictive than what we want. Still, I
think a lot of the mysteries in Banach space theory arise exactly from
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this fact that we study objects with a certain structure but allow for
morphisms that do not really respect that structure completeley.

For example, let us contemplate the relation between Banach sub-
spaces and monomorphisms (injective morphisms, that is, bounded lin-
ear operators ϕ with kernel kerϕ = 0) in the category of Banach spaces.

Proposition 3. If ϕ : V → U is a monomorphism of Banach spaces,
then imϕ is a Banach subspace of U if and only if there exists c > 0
such that ‖ϕ(x)‖ ≥ c‖x‖ for all x ∈ V .

Proof. Like Conway [2, Exercise III.13.5] I leave this as an exercise. �

Example 2. The main example of a Banach space we will need is
the vector space `∞ of all bounded sequences x = {xn}n∈N of complex
numbers equipped with the norm

(4) ‖x‖ := sup
n∈N
|xn|.

See any textbook on functional analysis for more information about this
Banach space. Now consider the operator ϕ : `∞ → `∞ that rescales
the n-term of a sequence x = {xn} ∈ `∞ by 1

n
,

(5) ϕ(x)n :=
1

n
xn.

This is an injective bounded linear operator of norm ‖ϕ‖ = 1 violating
the condition in the proposition, so imϕ is not closed.

So one has to be very careful when assuming that the obvious gen-
eralisations of facts from linear algebra are true for Banach spaces.
Sometimes they might be wrong, and sometimes they might be much
deeper results than one thinks they are. Here is an example:

Theorem 1. If ϕ : V → U is a morphism of Banach spaces which
is bijective as a map of sets, then the inverse map ϕ−1 : V → U is a
morphism of Banach spaces as well.

This inverse mapping theorem is usually served as a dessert following
the highly nontrivial open mapping theorem which says that bounded
linear maps are open, that is, map open sets to open stes. See e.g. [2,
Section III.4] for the full story and proofs. Note that in the category
of topological spaces the analogous theoremis wrong, the inverse of
a bijective continuous map might be not continuous, while for linear
maps between vector spaces the statement is true but pretty banal. It
is in functional analysis where linear algebra meets topology where a
lot of things results turn out to be true but also to be surprisingly deep.
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Now we are ready to come back to direct sums of Banach spaces.
Recall that at the start of Section 2.2 I have confused you by talking
about internal and external direct sums. Let me now explain what
the fuss is about in the conrete setting of Banach spaces. On the
one hand, there is Definition 2 which explains what we mean when
saying that a Banach space is the direct sum of two Banach subspaces.
On the other hand, suppose V,W are any two Banach spaces, not
necessarily embedded into soem other Banach space U . Then we can
take V ×W as sets and turn this into a vector space in the usual way
with componentwise operations. However, we can now also deifne a
norm on that vector space by putting

(6) ‖(x, y)‖ := ‖x‖+ ‖y‖, x ∈ V, y ∈ W,

where ‖x‖, ‖y‖ are of course the norms taken in V and W . An easy
consideration proves that this indeed deifnes a norm on V ×W , and
that the normed space V ×W is a Banach space as V,W are Banach.
This is called the external direct sum of V,W (and a direct sum in the
proper categorical meaning of the word), but in fact we have:

Proposition 4. If V,W are Banach subspaces of a Banach space U
and U = V ⊕W , then U ' V ×W as Banach spaces.

Proof. In any category, an isomorphism is by deifnition a morphism
ϕ : U → U ′ for which there is a morphism ϕ−1 : U ′ → U such that the
two compositions of the morphisms are the identity morphisms on U
respectively U ′. In our concrete situation, every x ∈ U can be uniquely
written as y + z with y ∈ V, z ∈ W , so we can deifne

(7) ϕ : U → V ×W

by mapping x to (y, z). This is quite easily seen to be a bijective
bounded linear operator between Banach spaces of norm 1 as the tri-
angle inequality in U says that

(8) ‖x‖ = ‖y + z‖ ≤ ‖y‖+ ‖z‖ = ‖ϕ(x)‖.

However, be aware that for proving that ϕ−1 : (y, z) 7→ y + z is a
bounded you will have to use some sledgehammer such as Theorem 1,
you are bound to fail proving this in an elementary way! �

So there is no need to distinguish between internal and external
direct sums, but again, while this is almost trivial in most situations
in algebra it requires much work in the category of Banach spaces. By
the way, one can also easily check now that the direct sum of Banach
spaces is as a topological space the product of the two factors.
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Anyway, the above is part of [5, Satz IV.6.3], and the second part
settles the question about the analogue of Proposition 2:

Proposition 5. If V ⊂ U are Banach spaces, then there is a bijective
correspondence between Banach subspaces W ⊂ U with U = V ⊕W
and idempotent morphisms π : U → U having kernel kerπ = V .

Proof. Proposition 2 provides us with the correspondence. What has to
be investigated here is that the idempotent linear map π : U → U with
kernel V and image W from Proposition 2 is a morphism of Banach
spaces (i.e. is bounded) if both V,W are closed, and conversely that if
π is an idempotent morphism that both kerπ and im π are closed.

For the latter fact one observes first that kerπ is the preimage of a
closed set, namely {0} ⊂ U , so if π is continuous, its kernel is closed.
A priori one feels that the image is more tricky to deal with (recall
Proposition 3). however, if π is an idempotent morphism, then so is
η := idU − π, and as imπ = ker η this is closed by the same argument
applied to η rather than π.

The former claim follows from Proposition 4 respectively the inverse
mapping theorem as used in its proof: we have seen there that

(9) V ×W → U, (y, z) 7→ y + z

is a continuous map, hence bounded. So there exists C > 0 such that

(10) ‖y‖+ ‖z‖ ≤ C(‖y + z‖) ∀y ∈ V, z ∈ W.
In particular, ‖z‖ ≤ C(‖y + z‖), so the projection π : y + z 7→ z is
bounded with norm ‖π‖ ≤ C. �

The last remark made in Section 2.1 is also true but we would have
to deifne the quotient of Banach spaces to discuss this so we skip that,
see again [5, Satz IV.6.3].

2.3. Phillips’ theorem. After all the discussion above we can now
finally get to the quesiton we really want to reflect upon:

Definition 4. A Banach subspace V of a Banach space U is com-
plemeneted if U = V ⊕W for some Banach subspace W ⊂ U .

So, are all Banach subspaces complemented? That is, is the analogue
of Proposition 1 true in the category of Banach spaces? Or, if you want
to ask the same question in more abstract terms: are all Banach spaces
injective objects in the category of Banach space?

The answer is no, not at all, and that deciding wheter a given V ⊂
U is complemented is pretty obscure. And what we will do in the
remaining second part of this note is demonstrating this by proving
the following:
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Theorem 2. The Banach subspace c0 ⊂ `∞ consisting of all sequences
that converge to zero is not complemented.

So whenever we take a vector space complemenet W ⊂ `∞ of c0 using
Proposition 1 it can not be closed, and the corresponding idempotent
linear map π from Proposition 2 is necessarily unbounded.

This was proved by Phillips in 1940 [3] as an application of some quite
detailed study of morphisms between `p-spaces (if you try to read the
original article be aware that his notaiton is not quite ours, for example
you will find on p. 356 the sentence “For notational convenience, we
write c0 = l∞” which is not so convenient for us). Anyway, the proof I
present and that I learned from [5] is a beautiful direct argument due
to Whitley [4]. Conway mentions the result and these two references
on [2, p 94] and I suggest you have a look at the further fascinating
remarks he makes there. One should maybe only add to this that in
the same year 1966 when Whitley wrote up his proof, Conway himself
wrote [1] which he is too modest to mention in [2].

Whitley’s himself also admits that his proof is very related to proofs
in the literature and that the referee (Conway?) has pointed this out to
him. But let us not spend too much time on history and moral decline
in mathematics and instead prove the thing.

3. The proof of Phillips’ theorem

3.1. Krause’s lemma and its implication. We begin by construct-
ing some sets that will be needed in the proof. Whitley attributes at
least this particular constuction to Arthur Krause:

Lemma 1. There ecists an uncountable set {Nx} of infinite sets Nx of
natural numbers such that each two of them have finite intersection.

Proof. Pick a numbering of Q (which we recall is countable)

(11) Q = {q1, q2, q3, . . .}
and for every irrational number x ∈ R \Q a sequence of rational num-
bers {xi} converging to x. Then define

(12) Nx := {n ∈ N | qn = xi for some i}.
There are uncountably many irrational numbers, and if Nx were

finite, then the sequence {xi} that converges to x has only finitely
many different terms and hence becomes stable which is impossible as
xi ∈ Q but x /∈ Q. So Nx is infinite. Finally, if Nx∩Ny is infinite, then
there is a corresponding infinite subsequence common to both {xi} and
{yj} and that must converge to both x and to y, hence x = y. �
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So, what has this to do with our story? Well, we can now consider the
characteristic function kx := χNx ofNx which is the sequence {kxn} ∈ `∞
whose n-th term is

(13) kxn :=

{
1 n ∈ Nx

0 n 6∈ Nx.

By construction of Nx the sequences kx, ky have for x 6= y at most
a finite number of 1’s in common, and this allows us to say something
about the norm of a linear combination of these sequences if we allow
for a small perturbation that belongs to c0:

Lemma 2. For all x1, . . . , xr ∈ R \ Q and λ1, . . . , λr ∈ C there exists
d ∈ c0 such that

(14) ‖λ1kx1 + . . .+ λrk
xr − d‖ = max{|λ1|, . . . , |λr|}.

Proof. This is in fact pretty banal but a bit awkward to write up for-
mally: given n ∈ N define

(15) Sn := {j ∈ {1, . . . , r} | n ∈ Nxj
}.

Then the n-th term kn in the sequence k := λ1k
x1 + . . .+λrk

xr ∈ `∞ is∑
j∈Sn

λj, as the set Sn are simply those indices j for which k
xj
n is not

zero so that λjk
xj contributes a λj to kn.

The main point is that only for finitely many n ∈ N the set Sn can
have more than one element: i, j ∈ Sn for i 6= j means nothing but
n ∈ Nxi

∩Nxj
. However, recall that this intersection was finite, so

(16) N :=
⋃

1≤i<j≤r

Nxi
∩Nxj

is a finite set. Hence the sequence d with n-th term

(17) dn :=

{ ∑
j∈Sn

λj n ∈ N
0 otherwise

has only finitely many nonzero terms, and in particular belongs to
c0. This sequence concides with k in all terms except those for which
|Sn| = 1 where kn = λj for some j ∈ {1, . . . , r} while dn = 0. So, k− d
is a sequence all of whose nonzero terms areone of the λj’s. Now the
claim should be clear. �

3.2. Assume Phillips’theorem is wrong. Now assume there is a
Banach subspace W ⊂ `∞ with `∞ = c0 ⊕W and let π : `∞ → `∞ be
the idempotent morphism corresponding to this decomposition, that
is, ker π = c0, imπ = W and we know that π is bounded.

The contradiction will arise from the following fact:
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Lemma 3. If we define

(18) wx := kx − π(kx) ∈ W,

then for every continuous linear functional f ∈ (`∞)∗ the set

(19) If := {x ∈ R \Q | f(wx) 6= 0}

is countable.

I put this into a new subsection to help you keeping track of where
we are.

3.3. Proof of Lemma 3. Indeed, for N ∈ N

INf := {x ∈ R \Q | |f(vx)| > 1

N
}

is finite: if we fix r pairwise different irrational numbers

(20) x1, . . . , xr ∈ INf ,

then Now η is continuous and η(y) = 0 (c0 = ker η), so if we fix λi with
|λi| = 1 such that

f(λiv
xi) = |f(vxi)| ≥ 1

N
,

then we get

1

N
r ≤ |

r∑
i=1

f(λiv
xi)| = |f(

r∑
i=1

λiv
xi)|

≤ ‖f‖‖
r∑

i=1

λiv
xi‖∞ ≤ ‖f‖‖η‖‖

r∑
i=1

λie
xi − y‖∞

= ‖f‖‖η‖.

This means that for fixed N , the number r of xi’s in (20) is at most
N‖f‖‖η‖, so INf is indeed finite. And since If from (19) is the union⋃

N≥N I
N
f , this set is indeed at most countable as claimed.

Final step of the proof: consider the sequence of functionals

fi ∈ (`∞)∗, {xn} 7→ xi, i ∈ N.

There are countably many of these, and they separate the points in
`∞, that is, a sequence w ∈ `∞ is zero if and only if fi(w) = 0 for all
i. Now, for each single fi we know that the set If of x ∈ R \ Q with
fi(v

x) 6= 0 is countable. Since there are countably many fi’s, the set of
x ∈ R\Q for which fi(v

x) 6= 0 for some i ∈ N is also at most countable,
so the remaining vy must be zero, a contradiction.
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