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Abstract. This paper proposes a new method for understanding the
structure of populations of complex objects in the area of medical image
analysis. The new methods require invention of approaches to the sta-
tistical analysis of a population of tree-structured objects. The approach
is based on a metric in tree space. The metric provides a foundation
for defining a notion of population center. In Functional Data Analysis,
variation about the center is usually analyzed by Principal Component
Analysis. Here an analog of PCA is developed for tree space.

1 Introduction

Shape is an interesting and useful characteristic of objects. The problem of how
to represent and classify shapes is very complicated. In medical research, various
diseases, such as schizophrenia, have been associated with the shape of various
brain parts (see Yushkevich, et al, [1] for discussion and further references).

Fig. 1. Example of shapes of interest Fig. 2. Representation by M-reps

For example, consider the shape in Figure 1. It shows an example of one
member of a population of shapes of interest. There are bendings at the two
ends and one bump in the middle of the object.
A class of convenient and powerful shape representations is M-reps (see Pizer,

S.M., et al, [2]). These are being developed by the Medical Image Display and
Analysis Group at UNC3. The M-rep parameters (location, radius, angles) are
concatenated into a vector to provide a numerical summary of the shape.

3 visit the MIDAG web site at http://midag.cs.unc.edu



The statistical analysis of populations of shapes represented by M-reps is
straightforward when the general structures of the shapes are all the same be-
cause each member of the population is represented by a vector of the same
length. But this is a rather restrictive assumption, and many medical imagining
data sets need a more general representation. This can be done in the M-rep
framework, but a more complicated tree structured representation is needed.
For example, for a population of hands, the palm and each finger can be

represented by a figure, which is a collection of M-rep parameters. Each hand is
a multi-figural object (see Figure 3).

Palm Finger 3

Finger 2
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Finger 4
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Fig. 3. An example of multi-figural object — hand

If every member in the population has five fingers, we can simply put all of
the features of one hand into a feature vector. Thus, the shape space is equivalent
to the Euclidean space. And, we can do statistical analysis, such as finding center
point and quantifying the variation, on the Euclidean space spanned by those
feature vectors.
It is not straight forward to analyze population structures when some hands

do not have five fingers. In this case, we can not get feature vectors of the same
length. We use tree structure to represent members of such a population.
In section 2, a brief overview 4 of the methodology on tree space is given, e.g.,

a new metric, a population “center point” and an analog of Principal Component
Analysis. In section 3, an application of the tree version PCA is discussed.

2 Development of the Method On the Tree Space

In this research, a population of abstract complex multi-figural objects is consid-
ered. The single observation in this population is called a “tree”. For simplicity,
a special case, the binary tree, is studied.
A binary tree is a tree such that every node has at most two children (left

child and right child). Also, every node is uniquely labelled by a natural number,
level-order index.
Tree structure represents the topological aspects of the data. Sometimes, the

nodes of the trees contain attributes, numerical values such as M-rep parameters,

4 A draft of my dissertation proposal can be viewed at
http://www.cs.unc.edu/Research/MIDAG/pubs/papers



which should also be used in the statistical analysis. In later research, we will
study both aspects of the population, structure and attributes.
A first question for statistical analysis is, what is the “center point” of a tree

population? A notion of “center point” of a population is the tree which is the
“closest to all other trees”. This requires a metric on the tree space.
A new metric (δ) is defined on the tree space as the summation of two

parts: an integer part (dI) and a fractional part (fδ); that is, δ = dI + fδ.
The integer part metric measures the topological difference between two trees
by counting the number of different nodes; while, the fractional part metric
measures the attribute difference, equivalent to the weighted Euclidean distance
on the attribute vectors. (See Margush, [3] for more discussion of metrics on
trees.)
Next, we define the “center point” of a tree population with structure only.

Considering a finite tree sample T = {t1, t2, . . . , tn}, the “center point”, the me-
dian tree, is defined as the minimizer of the summation

∑n

i=1
dI(t, ti) over all

trees t. The minimizer tree must follow the majority rule (Banks and Constan-
tine, [4], page 204), a node is in the median tree if and only if it is present in
more than half of the trees (non-uniqueness may arise when n is even).
Furthermore, a new “center point”, the median-mean tree, is introduced as

a combination of median and mean for a tree sample with nodal attributes. Its
tree structure complies with the majority rule and its nodal attributes can be
calculated as a “sample mean”.
For a tree sample, we can quantify the variation as

n∑

i=1

Vδ(ti,mδ) =

n∑

i=1

dI(ti,mδ) +

n∑

i=1

f2

δ (ti,mδ)

where mδ is a “central” tree and Vδ = dI + f2

δ
is the variation function.

In Euclidean space, Principal Component Analysis (PCA) provides a useful
decomposition of complex data sets, in terms of simple one-dimensional repre-
sentations. In tree space, a challenging non-linear space, the “treeline” plays the
role of the line in Euclidean space, i.e. a one-dimensional subset. There are two
important types, the structure treeline and the attribute treeline (shown in Fig-
ure 4 and Figure 5), which indicate the variation of tree structure and attributes
respectively. (See Wang, [7]). Note that, the size of the box associated with each
node visually indicates the magnitude of the corresponding attributes.

Fig. 4. An example of a structure treeline with nodal attributes



Fig. 5. An example of an attribute treeline

For any tree t and treeline l, the projection of t onto l is the tree which
minimizes the distance δ(t, ·) over all trees on the treeline l and is denoted by
Pl(t).
Next, a tree version Principal Component Analysis is developed on the tree

space. The fundamental theorem is a tree version of the Pythagorean theorem.
(See Wang, [7]). The total variation

∑
Vδ(ti,mδ) can be decomposed as

n∑

i=1

Vδ(ti,mδ) =

n∑

i=1

Vδ(ti, Pl(ti)) +

n∑

i=1

Vδ(Pl(ti),mδ),

where l is a structure treeline passing through the central treemδ or any attribute
treeline.
The tree version PCA is a two-step variation analysis. First, it finds the

principal structure treeline as the minimizer of the sum
∑

Vδ(Pl(ti), ti) over
all structure treelines passing through the central tree mδ, which quantifies the
topological aspects of the structure of the tree population. Next, it finds the
principal attribute direction, which quantifies features of the nodal attributes.
The tree version PCA is a generalization of the regular PCA. When all the

trees in the sample have the same structure, the principal attribute direction is
the same as the first eigenvector of a weighted PCA. When the structures are
not all the same, the tree version PCA will give a more appropriate attribute
direction. We illustrate this idea using the following toy example.

Example 1. Let T be a sample of trees with size n = 13. Each member in T has
one of the two structures shown in Figure 6. The tree attributes have the form
shown in Table 1, where xi and yi are real values, i = 1, 2, . . . , 13.

Type I Type II

Fig. 6. Two types of tree structures in T



Table 1. Attribute form of trees in T

Level-order index Attributes

1 (0.1,0.1)
2 (xi, xi)
3 (yi, yi)

Six of the trees have just two nodes, so the yi is non-existent. The xi and yi
values are shown in Figure 7, with the missing yi replaced by the average of the
non-missings. Note that, the red circle indicates the center point, which is the
sample mean in the regular PCA and the nodal attributes of the median-mean
in the tree version PCA.
Applying a weighted PCA to the attribute vectors, gives the first principal

component (solid line in Figure 7). It shows that the trees with the Type I
structure have a strong effect on the attribute direction, pulling it towards a
horizontal line.
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Fig. 7. Scatter plot of attributes and principal attribute directions given by Regular
PCA and Tree version PCA

Next, we will apply the tree version PCA to the tree sample T . The tree
version PCA has two steps, finding the principal structure direction and finding
the principal attribute direction.
The first two elements (denoted as u0 and u1) on the principal structure

treeline l is shown in Figure 8. Note that, u1 is the median-mean tree of the
sample T . Moreover, the elements in T can be categorized by projection on the
treeline l. The trees with Type I structure have projection u0 on the treeline l;
while, the trees with Type II structure have projection u1 instead.
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Fig. 8. Principal structure treeline l = {u0, u1}

Based on the principal structure treeline, the principal attribute direction is
calculated and shown as the dashed line in Figure 7. Comparing with the direc-
tion given by regular PCA, it is more appropriate because it correctly represents
the variation in the attributes. The Type I elements should not influence the
direction because they contain no information about the relationship between
the attributes.

3 Application of Tree Version PCA

In section 2, the PCA on tree space was developed. Now, we will apply the
approach to a sample of blood vessel trees.

The brain receives one fifth of the resting cardiac output. This blood supply is
carried by the two internal carotid arteries (ICA) and the two vertebral arteries
that anastomose at the base of the brain to form the circle of Willis. Carotid
arteries and their branches (referred to as the anterior circulation) supply the
anterior portion of the brain while the vertebrobasilar system (referred to as
posterior circulation) supplies the posterior portion of the brain. 5

An example of brain blood vessels is shown in Figure 9, provided by Dr.
E. Bullitt, UNC Department of Surgery 6. This system has three important
components: left carotid, right carotid and Vertebrobasilar system, shown in
different colors.

Fig. 9. An example of brain blood vessels

5 From http://www.thedoctorslounge.net/education/tutorials/cerebcirc/cerebcirc1.htm.
6 Dr. Bullitt’s webpage can be viewed at http://casilab.med.unc.edu/Bullitt Home.htm.



Because of the branching nature of blood vessel systems, a tree-structured
data representation is very natural. This data set has 11 trees from 3 people.
These are the left carotid, right carotid and Vertebrobasilar system from each
person, plus two smaller components from one person.

Each blood vessel branch is denoted as a node in the tree structure. The
attributes of the root node are, the three coordinates of the starting point and
the three coordinates of the ending point. The attributes of the non-root nodes
are the three coordinates of the ending point and the proportion parameter,

p =
Distance of starting point to attaching point on its parent

Distance of starting point to ending point on its parent
,

which determines the location of the starting point by interpolation of the par-
ent’s starting and ending points.

For simplicity and computational speed, we only consider a subtree (up to
level 2 and three nodes) of each element among those 11 trees (See Figure 10).
The trees with thicker black lines are the median-mean trees in each figure.
Note that, the median-mean trees are “central” in terms of structure, size, and
location, for each of the three people.

Fig. 10. Reduced blood vessel trees (thin colored lines) and the median-mean trees
(thicker black line) for each person. Root nodes are solid and children are dashed.

These trees are combined into a larger population in Figure 11. Again, the
median-mean of the larger population is showed as a thick black line. This time
the median-mean tree is surprisingly small. This will be understood through
careful analysis of the variation about the median-mean.

Next, we will apply the tree version PCA to the blood vessel tree sample
(denoted by T ). There are only two types of tree structures of these 11 trees,
shown in Figure 12.

The principal structure treeline l = {u0, u1, u2} is shown in Figure 13 (struc-
ture only, without attributes) and Figure 14 (with attributes). On this treeline,
the tree u0 only has the root node and the right child. The trees u1 and u2 add
one left child on u0 and u1 respectively.

Next, consider the principal attribute direction. The attribute treelines pass-
ing through the median-mean and through the full support tree are shown in



Fig. 11. Combined population of reduced blood
vessel trees and the median-mean tree

Type I Type II

Fig. 12. Two types of tree struc-
tures in T
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Fig. 13. Principal structure treeline l = {u0, u1, u2} without nodal attributes

Fig. 14. Principal structure treeline l = {u0, u1, u2} with nodal attributes

Fig. 15. Attribute treeline passing through the median-mean tree.



Fig. 16. Attribute treeline passing through the full support tree.

Figure 15 and Figure 16. There are six subplots in each figure. Each subplot
depicts one location on the attribute treeline.

In Figure 15, from the upper left subplot to the lower right one, we can see
that the orientation of the main root (solid black line) changes very substantially,
in fact “flipping”, with the top becoming the bottom. This was a surprising
feature of the population. Careful investigation showed that the given data set
used two orientations to the direction of blood flow. Some of them have the
same direction; while, some of them have the inverse direction. Also, we can
verify these two clusters in the data from the projection coefficients of all 11
trees on the attribute treeline passing through the median-mean tree (shown in
Figure 17). This shows that, there are two groups with a gap in the middle, six
trees with negative projection coefficients and five with positive ones. This also
shows that, no trees correspond to the middle two frames in Figure 15, with a
very short root, as can be seen in the raw data in Figure 11.

0

Fig. 17. Projection coefficients of 11 trees on the attribute treeline passing through
the median-mean tree

Figure 16 shows the attribute treeline passing through the full support tree.
Similar to Figure 15, the six frames show that the main root also has a tendency
of flipping over and the length of main root becomes shorter (three subplots
on the top row) then becomes longer (three subplots on the bottom row). A
projection plot, similar to Figure 17, shows the same structure.



In this example, we saw that the tree version PCA found a surprising char-
acteristic of the population: there are two different orientations about the blood
flow in the data set. This dominates the total variation, perhaps obscuring pop-
ulation features of more biological interest. Future work with Dr. Bullitt will
investigate these.
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