
1
1

UCLA Stat 130D
Statistical Computing and
Visualization in C++/Java

Instructor: Ivo Dinov, Asst. Prof. in
Statistics / Neurology

University of California, Los Angeles, Winter 2007
http://www.stat.ucla.edu/~dinov/courses_students.html

Introduction to Computers
and C++/Java Programming

Computer Systems, Writing, compiling, making,
packaging, distributing and running programs/software

- Variables and assignments
- Input/Output, Data types and expressions
- Procedural (structured) vs. OOP
- Classes, methods, abstract data types
- Overloading (functions & classes)
- Call-by-value vs. call-by-reference
- I/O Streams
- Multidimensional Arrays
- Strings
- Pointers, dynamic arrays
- Recursion
- GUI

Computer Systems

Hardware -- Parts of a computer you can touch
» PC
» Workstation
» Mainframe
» Grid (CCB/Wiki

– Infrastructure/Grid URL)
» Network
» input/output
» memory

– primary, secondary
– fixed, removable

» CPU
» Why 8Bits = 1Byte?

Address
Value1

2

3

4

5

6

7

8

9

10

0

1

0

1

1

1

0

0

0

0

bits

1 Byte

Computer Systems

Software -- Parts of a computer you cannot touch
» Operating Systems

– Macintosh
– Windows
– Linux
– UNIX

» High-Level Languages
– Ada, C/C++, Java, BASIC, Lisp, Fortran, Python, Scheme

» Compilers
– Source program, object program, Linking

» Editor: Integrated Development Environments (IDE)
– IDEs combine editor, compiler and the execution environment

(usually including a debugger)

Programming and Problem Solving

Algorithms
» Idea is more general than ‘program’
» Hard part of solving a problem is finding the algorithm

Program Design Process
» Problem Solving phase | Implementation phase

Problem definition

– Algorithm Design Translation to C++

– Desk Testing Testing
–
– Working Program

Software Life Cycle

Analysis and specification of task (problem definition).
Design of the software (algorithm design)
Implementation (coding).
Testing
Maintenance and evolution of the system
Obsolescence

2
2

Introduction to C++

Origins of the C++ Language
» Bjarne Stroustrup designed C++ for modeling (1985?).
» C++ is an OOP extension of the C language.
» C was developed as a systems programming language

from the B language in the Unix environment. It grew
into a general purpose programming language as its
libraries were developed.

A Sample C++Program
#include <iostream>
using namespace std;
int main()
{

int number_of_pods, peas_per_pod, total_peas;
cout << "Press return after entering a number.\n";
cout << "Enter the number of pods:\n";
cin >> number_of_pods;
cout << "Enter the number of peas in a pod:\n";
cin >> peas_per_pod;
total_peas = number_of_pods * peas_per_pod;
cout << "If you have ";
cout << number_of_pods;
cout << " pea pods\n";
cout << "and ";
cout << peas_per_pod;
cout << " peas in each pod, then\n";
cout << "you have ";
cout << total_peas;
cout << " peas in all the pods.\n";
return 0;

}

Borland
gcc

or other
compiler

Some details of a C++ Program

#include <iostream>
using namespace std;
int main()
{

These lines are a complicated way to say “the
program starts here”

return 0;
}

The last two lines say “the program ends here.”

Some Details of a C++ Program

int number_of_pods, peas_per_pod, total_peas;
This is a variable declaration.
Variable must be declared before they can be used.
Variables are used to store values.
The int in the declaration says the variables can hold integer
values.
Other lines are (executable) statements that tell the computer
to do some task.

Some Details of a C++ Program

cout [see-out] is the output stream. It is attached to
the monitor screen. << is the insertion operator
cin [see-in] is the input stream and is attached to the
keyboard. >> is the extraction operator.
“Press return after entering a number.\n” is called a
cstring literal. It is a message for the user.
cout << “Press return …\n” sends the message to
cout
cin >> number_of_pods;

Some Details of a C++ Program

cout << “Enter the number of peas in a pod.\n”;
cin >> peas_per_pod;

The first of these lines sends a request to the user.
The second extracts an integer value (the type of
peas_per_pod) into peas_per_pod.

3
3

Some Details of a C++ Program

total_peas = number_of_pods * peas_per_pod;
The asterisk, *, is used for multiplication.
This line multiplies the already entered values of
number_of_pods and peas_per_pod to give a value which is
stored (assigned to) total_peas.

Layout of a Simple C++ Program

#include <iostream> An include directive
using namespace std; More later, for now “do it”
int main() Declares main function
{ Start of main’s block

variable _declarations
Statement1;
Statement2;

. . .
Statement_last;
return 0; Says “end program here”

} End of main’s block
(Other functions may follow)

Compiling and Running a C++ Program

You write a C++ program using a text editor exactly as you
would write a letter, create a home-page or compose an e-mail.

Compiling depends on the environment.
You may be using an Integrated Development Environment
or IDE. Each IDE has its own way to do things.
Read you manuals and consult a local expert.
You may be using a command line compiler. In that event,
you may some thing like write:

cc myProgram.cpp /* cc=gcc, bcc32, c++ … */
Your compiler may require .cxx., .cc, .cpp or perhaps .C
Linking is usually automatic. Again, read your manuals and
ask a local expert.

Testing and Debugging

An error in a program, whether due to design errors or
coding errors, are known as bugs.
Program Errors are classified as
» design errors -- if you solved the wrong problem, you have a design

error.
» syntax errors -- violation of language’s grammar rules, usually

caught by the compiler, and reported by compiler error messages.

» run-time errors -- a program that compiles may die while running
with a run-time error message that may or may not be useful.

» logic error -- a program that compiles and runs to normal completion
may not do what you want. May be a design error.

Kinds of Errors

Design errors occur when specifications
are do not match the problem being solved.

The compiler detects errors in syntax

Run-time errors result from incorrect
assumptions, incomplete understanding of
the programming language, or
unanticipated user errors.

Summary
Hardware physical computing machines.
Software programs that run on hardware.
Five computer components: input and output devices, CPU, main
memory, secondary memory.
There are two kinds of memory: main and secondary. Main
memory is used when program is running. Secondary memory is
usually nonvolatile.
Main memory is divided into bytes, usually individually
addressable.
Byte: 8 bits. A bit is 0 or 1.
KiloByte:1KB= 2^10 ~1,000 Bytes.
(MegaByte)1MB=2^10KB~1,000,000B.
(GigaByte) 1GB=2^10MB; (Tera) 1TB=2^10GB; (Peta)
1PB=2^10TB
Note: In reality, 1Byte = 9Bits, 9-th bit is for parity check

4
4

Summary(continued)

A compiler translates high level language to machine
language.
Algorithm is a sequence of precise instructions that
lead to a solution to a problem.
A solution to a problem begins with algorithm design.
Errors are of several kinds: syntax, run-time, and logic
errors.
A variable is used to name a number.
cout << is an output statement
cin >> is an input statement

20

A variable that has not been set by your program
will have the value left there by the last program to
use the memory associated with that variable. This
is an UNINITIALIZED variable. It contains garbage
in the root sense of the word.
This is illegal and incorrect but few compilers will
catch this error.
int x = 3; double pi = 3.14159;
int x(3); double pi(3.14159);
Int x;

x = 3;

Pitfall: Uninitialized Variables

Include Directories and Namespaces

21

#include <iostream>
using namespace std;
These lines provide declarations necessary to make iostream
library available.
C++ divides collections of names into namespaces. To
access names in a namespace, the second line above, the
using directive, is sufficient. It means that your program can
use any name in the namespace std.
A C++ namespace usually contains more than just names.
They usually contain code as well.
Older compilers will require the older style, <iostream.h>, and
such compilers may not like the using directive. If your
compiler doesn’t like the using directive, just omit it. 22

Escape sequences

The \ (backslash) preceding a character tells the compiler that
the next character does not have the same meaning as the
character by itself.
An escape sequence is typed as two characters with no space
between them.
\\ is a real backslash character, not the escape character, a
backslash that does not have the property of changing the
meaning of the next character.
\n newline
\t tab character (same as control-h)
\a alert, or bell
\” double quote (that does not end a string literal).

\r return

23

Formatting for Numbers with a Decimal Point

The following statements will cause your floating
point output to be displayed with 2 places of
decimals and will always show the decimal point
even when the output has a zero fractional part.
cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);
//Output format:

78.50

24

Input using cin

When a program reaches a cin >> statement, it
waits for input. You are responsible for prompting
the user of your program for proper input.
Syntax:
cin >> number >> size;
cin >> time_to_go

>> points_needed;

5
5

25

Designing input and output

Echoing your input is frequently requested by
problem statements. Even when not requested, it is
usually better to echo your input.
Example:
….
cout << “Enter … \n”;
cin >> user_entry_variable;
cout << “You Entered: “ << user_entry_variable;
….

Scientific vs. floating point notation:
3.14159 ; 0.00314159 x 103 ; 0.00314159e3 26

Other Number types
Memory

Type used Range Precision - meaningful digits
(unsigned) char 1 byte [0 ; 255] NA

short 2 bytes -32,767 NA
(a.k.a. short int) to 32,767

int 4 bytes -2,147483,647 NA
to 2,147483,647

long 4 bytes same as int NA

float 4 bytes approximately 7 digits
10-38 to 1038

double 8 bytes approximately 15 digits
10-308 to 10308

long double 10 bytes approximately 15 digits
10-4932 to 104932

27

Two Additional Variable Types
char and bool

char is a special type that is designed to hold single
members of the ASCII character set.
» Some vendors have extended ASCII character encoding to

include more characters than upper and lower case letters,
digits and punctuation. (Notably: IBM, on the PC, which has
been adopted in nearly all Microsoft software.)

» cstring (from C) and string (from the Standard Library) are for
more than one char value.

» bool is a type that was added to C++ in the1995 Draft ANSI
Standard. There are only two values: true and false. Almost all
compilers support the bool type.

Why do we need additional (bool/char) variable types?

28

Division /, and modulus % are complementary operations.
Mod, or modulus, %, works ONLY for integer types.

4 12 / 3 is the quotient
3 12

12
0 12 % 3 = 12 mod 3 is the remainderremainder
4 14 / 3 quotient = 3 THIS IS NOT 4.66

3 14
12
2 14 % 3 remainder after dividion

Dividend == divisor * quotient + remainder.

Arithmetic Operators and Expressions
division /, and modulus %, for integer values

Euclidean Algorithm

29

Arithmetic Operators and Expressions
Precedence

When two operators appear in an arithmetic expression, there
are PRECEDENCE rules that tell us what happens.

Evaluate the expression,
X + Y * Z

by multiplying Y and Z first then the result is added to X.

Rule: Do inside most parentheses first, then
multiplication and division next,
additions and subtractions next, and
break all ties left to right.

30

Simple Flow of Control
A simple branching mechanism

Making decision in computer programs requires changing the execution from
next instruction next to some other instruction next. This is called flow of
control.

There are two types of flow of control: selection and looping.
Looping repeats an action, and will be discussed later.
Selection chooses between alternative actions.

Selection:
if (expression) Control Expression returns a bool value

action1; Affirmative clause. Executed if Expression is true
else

action2; Negative clause. Executed if Expression is false

6
6

31

Comparison Operators

C++ provides comparison operators for making decisions in
computer programs. These operators return a value of type
bool: true or false.

Math C++ C++ Math
Symbol English Notation Example Equivalent

= equal to == x + 7 == 2 * y x + 7 = 2y?
≠ not equal to != ans != ‘n’ ans ≠ ‘n’?
< less than < count < m + 3 cout < m + 3?
≤ less than <= time <= limit time ≤ limit?

or equal to
> greater than > time > limit time > limit?
≥ greater than >= age >= 21 age ≥ 21?

or equal to
32

Logical (Boolean) Operators

The ‘and’ operator &&
Syntax: (Comparison_1) && (Comparison_2)
Example, in an assignment to a bool variable:
bool in_range;
in_range = (0 < score) && (10 < score);
The ‘or’ operator || . Example -- in an if-else statement
if ((x ==1) || (x == y))

cout << “x is 1 or x equals y. \n”;
else cout < “x is neither 1 nor equal to y.\n”;

Not operator (!, ^, ~): E.g., ~x is true x is false

33

PITFALL: strings of inequalities

Suppose x, y and z are integer values.

if (x < y < x) // Unfortunately, this is WRONG BUT IT COMPILES.
cout << “z is between x and y” ;

Here is why the expression is WRONG.

In mathematics x < y < z is short hand for x < y && y < z.

In C++, this is not true. It is still valid C++, but isn’t what you expect
from the mathematics. In C++ the precedence rules require x < y < z
be evaluated like this:
(x < y) < z

The parenthesized expression returns a bool value. The < requires the
same type on both sides. The bool value gets converted to the int
value 0 (for false) or 1 (for true). Then 0 <z or 1 < z compiles. And
gives (most of the time) a wrong answer!

34

PITFALL: using = instead of ==

if (x = 12) // The = should have been ==
cout << “x is equal to 12”;

else
cout << “x is not equal to 12”;

The second expression is NEVER executed, regardless of the
value of x before this statement is encountered.
WORSE, after this if statement executes, the expression
x = 12 HAS ASSIGNED the value 12 to x.
Why? The expression x = 12 returns the value 12, which is
converted to the bool value true, which is used by the if.
Always write:

if (12 == x) // Compiler will say: 12 = x “non-lvalue on left”
cout << “x is equal to 12”;

else
cout << “x is not equal to 12”;

35

Simple Loop Mechanisms

Most programs include a mechanism to repeat a block of
code multiple times. 30 Students, 30 grades on each
test, 100 workers, pay check generator block runs 100
times.

C++ provides loops named
while
for
do while

The piece of code the loop executes is called the body.
Each loop execution of the body is called an iteration.

36

Display 2.10 A while loop

while (count_down > 0)
{

cout << "Hello ";
count_down = count_down - 1;

}

while (bool expression) Do not put a semicolon here
{ This usually causes an

several statements infinite loop.
}

do {
cout << "Hello\n";
cout << "Do you want another greeting?\n"

<< "Press y for yes, n for no,\n";
cin >> ans;

} while (ans == 'y' || ans == 'Y'); // Don’t forget the semicolon

7
7

37

Increment and decrement operators

C++ provides the ++ and -- operators, each in each of
two forms, prefix and postfix.

The text, for good teaching reasons, leaves the use of
expressions using ++ and -- to provide a value until
later.

For now, we use n++; as a synonym for n = n + 1;
and n-- for a synonym n = n - 1;

38

Programming Style
Comments

The most difficult part of any programming
language to learn to use properly comments.
A comment should always tie the code to the
problem being solved. In some circumstances, a
comment could explain ‘tricky’ code. (It is better to
write clear code and omit the comment.)

/* comment in this style */ may span more than
one line.
// these comments run from the // to the end of the
line.

39

Indenting

Indenting: elements considered a group should be
indented to look like a group (E.g., C++ Builder vs.
Notepad).
if-else, while, and do-while should be indented as in the
sample code.
The affirmative clause and negative clause of if-else
statements should be indented more than surrounding
code.
The body of loops should be indented more than
surrounding code.
CONSISTENCY of style is more important than any
particular style standard.

40

Program header comments

Comments should be placed at the start of the program
that describes the essential information about the
program:

/**The file name (part of what package)
* The author
* The address or other means to contact the author
* The purpose of the program
* What/How the program does
* Data Input/Output
* Execution syntax
* The date written or version number
*/

Predefined Functions
Libraries

#include <cmath> // include declarations of math
// library functions

#include <iostream> // include definitions of
// iostream objects

using namespace std; // make names available
int main()
{

cout << sqrt(3.0) << endl; // call math library function
} // sqrt with argument 3.0, send

// the returned value to cout
41

√3

42

A Function call

//Computes the size of a dog house that can be purchased
//given the user’s budget.
#include <iostream>
#include <cmath>
using namespace std;

int main()
{

const double COST_PER_SQ_FT = 10.50;
double budget, area, length_side;

cout << "Enter the amount budgeted for your dog house $";
cin >> budget;

area = budget/COST_PER_SQ_FT;
length_side = sqrt(area); // the function call

8
8

43

A Function call

cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);
cout << "For a price of $" << budget << endl

<< "I can build you a luxurious square dog house\n"
<< "that is " << length_side
<< " feet on each side.\n";

return 0;
}

NOTE: “makefiles”

44

PITFALL: Problems with Library functions

Some compilers do not comply with the ISO
Standard.
If your compiler does not work with
#include <iostream>
use
#include <iostream.h>
Similarly, for headers like cstdlib: use stdlib.h,
and for cmath, use math.h
Most compilers at least coexist with the headers
without the .h, but some are hostile to these
headers.

45

Predefined Functions
Type changing functions

Question: 9/2 is an int, but we want the 4.5 floating point
result. We want the integer part of some floating
point number. How do we manage?

Answer: Type casting, or “type changing functions”.
C++ provides a function named double that takes a

value of some other type and converts it to double.
Example:

int total, number;
double ratio;
// input total, number
winnings = double(total) / number;

46

Programmer Defined Functions
function prototypes

A function prototype tells you all the information you need to call
the function. A prototype of a function (or its definition) must
appear in your code prior to any call to the function.
Syntax: Don’t forget the semicolon
» Type_of_returned_value Function_Name(Parameter_list);
» Place prototype comment here.
» Parameter_list is a comma separated list of parameter

definitions:
type_1 param_1, type_2 param_2, …. , type_N param_N

Example:
double total_weight(int number, double weight_of_one);
// Returns total weight of number of items that
// each weigh weight_of_one

47

Programmer Defined Functions
A function Definition

#include <iostream>
using namespace std;

double total_cost(int number_par, double price_par);
//Computes total cost, including 5% sales tax, on number_par items at a cost of price_par each.

int main()
{ double price, bill;

int number;
cout << "Enter the number of items purchased: ";
cin >> number;
cout << "Enter the price per item $";
cin >> price;

bill = total_cost(number, price); The function call
cout.setf(ios::fixed); cout.setf(ios::showpoint); cout.precision(2);
cout << number << " items at “ << "$" << price << " each.\n“

<< "Final bill, including tax, is $" << bill << endl;
return 0;

} 48

Programmer Defined Functions
- A function Definition (Slide 2 of 2)

double total_cost(int number_par, double price_par) The function
{ heading
heading

const double TAX_RATE = 0.05; //5% sales tax The function
double subtotal; The function definition

body
subtotal = price_par * number_par;
return (subtotal + subtotal*TAX_RATE);

}

9
9

49

Programmer Defined Functions
Call-by-value Parameters

Consider the function call:
bill = total_cost(number, price);

The values of the arguments number and price are “plugged” in
for the formal parameters .
A function of the kind discussed in this chapter does not send
any output to the screen, but does send a kind of “output” back
to the program. The function returns a return-statement instead
of cout-statement for “output.”

50

Programmer Defined Functions
Alternate form for Function Prototypes

The parameter names are not required:
double total_cost(int number, double price);

It is permissible to write:
double total_cost(int, double);

51

PITFALL
Arguments in the wrong order

When a function is called, C++ substitutes the first argument
given in the call for the first parameter in the definition, the
second argument for the second parameter, and so on.

There is no check for reasonableness. The only things checked
are:
i) that there is agreement of argument type with parameter type and
ii) that the number of arguments agrees with the number of parameters.

If you do not put correct arguments in call in the correct order,
C++ will happily assign the “wrong” arguments to the “right”
parameters.
Function-overloading

52

Procedural Abstraction
Principle of Information Hiding

David Parnas, in 1972 stated the principle of
information hiding.

» A function’s author (service provider programmer)
should know everything about how the function does its
job, but nothing but specifications about how the
function will be used.

» The client programmer -- the programmer who will call
the function in her code -- should know only the function
specifications, but nothing about how the function is
implemented.

53

Local Variables
Namespaces

All our use of namespaces has amounted to
#include <iostream>
using namespace std;

While this is correct, we are sidestepping the reason
namespaces were introduced into C++, though we have
done this for good teaching reasons.

In short, we have been “polluting the global namespace.”
So long as our programs are small, so this is not a problem.

This won’t always be the case, so you should learn to put
the using directive in the proper place.

54

Local Variables
Namespaces Revisited (2 of 2)

Placing a using directive anywhere is analogous to putting
all the definitions from the namespace there. This is why
we have been polluting the global namespace. We have
been putting all the namespace std names from our
header file in the global namespace.

The rule, then is:
Place the namespace directive,

using namespace std;
inside the block where the names will be used. The next

slide is Display 3.13 with the namespace directive place
correctly.

10
10

55

Local Variables
Using Namespaces

//Computes the area of a circle and the volume of a sphere.
//Uses the same radius for both calculations.
#include <iostream>
#include <cmath>//Some compilers may use math.h instead of cmath.

const double PI = 3.14159;

double area(double radius);
//Returns the area of a circle with the specified radius.

double volume(double radius);
//Returns the volume of a sphere with the specified radius.

int main()
{

using namespace std;
double radius_of_both, area_of_circle, volume_of_sphere;

cout << "Enter a radius to use for both a circle\n"
<< "and a sphere (in inches): ";

cin >> radius_of_both; 56

Local Variables
Using Namespaces

area_of_circle = area(radius_of_both);
volume_of_sphere = volume(radius_of_both);

cout << "Radius = " << radius_of_both << " inches\n"
<< "Area of circle = " << area_of_circle
<< " square inches\n"
<< "Volume of sphere = " << volume_of_sphere
<< " cubic inches\n";

return 0;
}
double area(double radius)
{

using namespace std;
return (PI * pow(radius, 2));

}
double volume(double radius)
{

using namespace std;
return ((4.0/3.0) * PI * pow(radius, 3));

}

57

Overloading Function Names

C++ distinguishes two functions by examining the
function name and the argument list for number
and type of arguments.
The function that is chosen is the function with
the same number of parameters as the number of
arguments and and that matches the types of the
parameter list sufficiently well.
This means you do not have to generate names for
functions that have very much the same task, but
have different types.

58

Overloading Function Names
Overloading a Function Name

//Illustrates overloading the function name ave.
#include <iostream>
double ave(double n1, double n2);
//Returns the average of the two numbers n1 and n2.

double ave(double n1, double n2, double n3);
//Returns the average of the three numbers n1, n2, and n3.

int main()
{

using namespace std;
cout << "The average of 2.0, 2.5, and 3.0 is "

<< ave(2.0, 2.5, 3.0) << endl;

cout << "The average of 4.5 and 5.5 is "
<< ave(4.5, 5.5) << endl;

return 0;
}

59

Overloading Function Names
Automatic Type Conversion

We pointed out that when overloading function names, the C++
compiler compares the number and sequence of types of the
arguments to the number and sequence of types for candidate
functions.
In choosing which of several candidates to use when overloading
function names, the compiler will choose an exact match if one if
available.

An integral type will be promoted to a larger integral
type if necessary to find a match. An integral type will
be promoted to a floating point type if necessary to get
a match.

60

Sorter Program Design

11
11

61

Sorter Program Design

Data Input

Sorting

Result Report

62

Sorter Program Design
D:\Ivo.dir\UCLA_Classes\2007\Winter\Stat130D_C_PlusPlus.dir\SourceCode\ClassSourceDemos

Data Input

Sorting

Result Report

Header Files
- variable declarations

Collect user input

Perform the number
sorting

Report the reordered
numbers to the user
(perhaps on stdout)

mySorterHeader.h

sorter_main.cpp

mySorter.cpp

sorter_report.cpp
or Inside

sorter_main.cpp
mySorter.cpp

Histogram Computation
HistogramEqualization.html

63

Raw data
Student’s grades
HW1

Score

Student

25

1 2 ……………….. 120

50

75
100

What is the grade
Distribution?

project on y

Counts

Score Ranges25 50 75 100

100

50

20

Normal Curve –
Normal (Gaussian) Distribution

64

Analytic Definition

Most General Form
of N(μ, σ^2)

Std Normal Distr.

Original Process (Data)

time

μ

−μ

Most of the Data (68%)

Is between [-μ; μ]

// Example
// Simple Histogram Computation
#include <iostream>

using std::cout; Note the different usage of the
using std::endl; namespace directives
using std::setw;

void getUserInput();
void computeHistogram();
int reportHistogram();
int n0, n1, n2, n3, n4, n5, n6, n7, n8, n9;

int main()
{ getUserInput();

computeHistogram();
cout << “Output of the Histogram Report is “ <<

reportHistogram() << “ 0 indicates ok!”;
return (0);

} 65

void getUserInput()
{ // get user input

}

void computeHistogram()
{ // integers in [0;11], histogram bins [0;3] , [4;7] , [8, 11]

int bin1, bin2, bin3;

}

int reportHistogram()
{ // report number of integers inside each bin
}

66

[0;3] [4;7] [8;11]

10

5

2

12
12

Call-by-Reference Parameters
A first view of Call-by-reference

67

Value
1

2

3

4

5

6

7

8

9

10

0

1

0

1

1

1

0

0

0

0

1 Byte

Variable Specs

Address
in Memory

myChar name

Call-by-Reference Parameters
A first view of Call-by-reference

The call-by-value mechanism we have used until now is
not adequate to certain tasks.
Input subtasks should be carried out with a function call.
This is not adequate for more than one return value. We
need another mechanism.
With a Call-by-Value parameter, the corresponding
argument is only read for its value. The argument can be
variable, but this is not necessary. The parameter is
initialized with the value of the value-parameter.
With Call-by-Reference, the corresponding argument must
be variable, and the behavior of the function is as if the
variable were substituted for the parameter.

68

A first view of Call-by-reference

To make a parameter a call-by-reference, parameter,
an ampersand (&) is placed between the type name
and the variable name in the function header and in
any prototypes that are to declare this function in
other places. a call-by-reference parameter

Example: void Get_Input(double & f_variable)
{

using namespace std;
cout << “Enter a Fahrenheit, I will return Celsius\n”;
cin >> f_variable;

}

69

Call by Reference parameters (1 of 2)
//Program to demonstrate call-by-reference parameters.
#include <iostream>

void get_numbers(int& input1, int& input2);
//Reads two integers from the keyboard.

void swap_values(int& variable1, int& variable2);
//Interchanges the values of variable1 and variable2.

void show_results(int output1, int output2);
//Shows the values of variable1 and variable2, in that order.

int main()
{

int first_num, second_num;

get_numbers(first_num, second_num);
swap_values(first_num, second_num);
show_results(first_num, second_num);
return 0;

} 70

Call by Reference parameters (2 of 2)
//Uses iostream:
void get_numbers(int& input1, int& input2)
{

using namespace std;
cout << "Enter two integers: ";
cin >> input1

>> input2;
}

void swap_values(int& variable1, int& variable2)
{

int temp;
temp = variable1;
variable1 = variable2;
variable2 = temp;

}

//Uses iostream:
void show_results(int output1, int output2)
{

using namespace std;
cout << "In reverse order the numbers are: "

<< output1 << " " << output2 << endl;
} 71

get_numbers(first_num, second_num);
swap_values(first_num, second_num);
show_results(first_num, second_num);

Call-by-Reference in Detail

The whole truth is - it is the address of the
argument is used in place of the parameter,
and the address is used to fetch values from
the argument as well as to write to the
argument.

72

13
13

Parameters and Arguments

If you keep these points in mind, you can handle all the
parameter passing language.

1. The formal parameters for a function are listed in the
function prototype and function definition header. A
formal parameter is a place holder and a local variable
that is filled at the time the function is called.

2. Arguments appear in a comma separated list in the
call to any function, and are used to fill in the
corresponding formal parameters. When the function
is called, the arguments are plugged in for the formal
parameters.

3. The terms call-by-value and call-by-reference refer to
the mechanism that is used in the “plugging in”
process.

73

Parameters and Arguments

In the call-by-value method, the arguments are
read, and the parameters are initialized using a
copy of the value of the argument.

In the call-by-reference method, the argument
must be a variable. The behavior is exactly as if
the argument were substituted for the parameter.
Then if the code assigns the parameter, it is the
argument that is changed. The mechanism is to
pass the address of the argument and then the
parameter mechanism knows where the
argument is so when the parameter is written,
the argument is where the writing is done.

74

Mixed Parameter Lists

It is entirely feasible to have value parameters (call-by-
value parameter) mixed in with reference parameters
(call-by-reference parameters).

Function prototype definition:

void example(int& par1, int par2, double & par3, int &n);
Function Call:

example(arg1, 17, arg3, local_n);
Here 17 is permissible because par2 is a value parameter.
This code may (but by no means must) change the values

of arg1 and arg3.
75

PITFALL: Inadvertent Local Variables

Omitting an ampersand (&) when you intend a reference
parameter is a mistake that bites twice.

(1) It makes you code run incorrectly, the compiler
probably won’t catch it!

(2) The Bug is very difficult to find because it looks right.
See the following

76

Inadvertent local variables

//Inadvertent local variables. Shows what happens when you omit &
//Program to demonstrate call-by-reference parameters.
#include <iostream>
void get_numbers(int& input1, int& input2);
//Reads two integers from the keyboard.

Forgot the & here

void swap_values(int variable1, int variable2);
//Interchanges the values of variable1 and variable2.

void show_results(int output1, int output2);
//Shows the values of variable1 and variable2, in that order.
int main()
{

using namespace std;
int first_num, second_num;

get_numbers(first_num, second_num);
swap_values(first_num, second_num);
show_results(first_num, second_num);
return 0;

}

77

// Inadvertent local variables (2 of 2)

void swap_values(int variable1, int variable2)
{ int temp;

temp = variable1; Forgot the & here, which
variable1 = variable2; Makes these inadvertent local variables
variable2 = temp; Variable swap stays local to swap_values

}

//Uses iostream:
void get_numbers(int& input1, int& input2)
{ using namespace std;

cout << "Enter two integers: ";
cin >> input1

>> input2;
}

//Uses iostream:
void show_results(int output1, int output2)
{ using namespace std;

cout << "In reverse order the numbers are: "
<< output1 << " " << output2 << endl;

} 78

What happens if there’s
a discrepancy between
function prototype and
header definitions?

14
14

Using Procedural Abstraction
Functions calling functions

A function may call another function, or itself,
and the second function could call back the

first.
The situation is exactly the same as if
the first call had been in the main
function.
swaps the values of two variables if the
values are out of order.

// Function Calling Another Function (1 of 2)
// Program to demonstrate a function calling another function.
#include <iostream>

void get_input(int& input1, int& input2);
// Reads two integers from the keyboard.

void swap_values(int& variable1, int& variable2);
// Interchanges the values of variable1 and variable2.

void myOrder(int& n1, int& n2);
// Orders the numbers in the variables n1 and n2
// so that after the function call n1 <= n2.

void report_results(int output1, int output2);
// Outputs the values in output1 and output2.
// Assumes that output1 <= output2

int main()
{ int first_num, second_num;

get_input(first_num, second_num);
myOrder(first_num, second_num);
report_results(first_num, second_num);
return 0;

}
80

// Function Calling Another Function (2 of 2)
void get_input(int& input1, int& input2)
{ using namespace std;

cout << "Enter two integers: ";
cin >> input1 >> input2;

}

void swap_values(int& variable1, int& variable2)
{ int temp;

temp = variable1;
variable1 = variable2;
variable2 = temp;

}

void myOrder(int& n1, int& n2)
{ if (n1 > n2) swap_values(n1, n2); }

void report_results(int output1, int output2)
{ using namespace std;

cout << "In increasing order the numbers are: "
<< output1 << " " << output2 << endl;

} 81

Preconditions and Postconditions

The Prototype comment should be broken
into a precondition and a postcondition.
The precondition is what is required to be
true when the function is called.
The postcondition describes the effect of
calling the function, including any returned
value and any effect on reference
parameters.

Preconditions and Postconditions

Example Pre - and Post-conditions.
// square root function, sqrt
// Prototype:
double sqrt(double arg);
// Pre: arg >= 0;
// Post: returns value, where value2 == arg

If the Precondition is satisfied the function promises
to put the Postcondition true.

If the precondition is not satisfied, the function’s
behavior is not constrained (not guaranteed) in
any way.

Testing and Debugging Functions
Stubs and Drivers

Every function should be designed, coded and
tested as a separate unit from the rest of the
program.
Every function should be tested in a program
in which every other function in that program
has already been completely tested and
debugged.
This is catch 22. You need a framework to
develop and test, but the framework must be
debugged as well. How to get around?

15
15

Stubs and Drivers

Every function should be designed, coded and
tested as a separate unit from the rest of the
program.
This is the essence of the top-down design
strategy.
How do you test a function? By writing a
simple, short program called a driver that calls
the function. The driver should be simple
enough that we can confirm its correctness by
inspection.

Stubs and Drivers

How do you test a program that needs a
function, before you have written the
function?
By writing a simple, short program called a
stub that provides the program with the
same prototype, and provides enough data
to the caller so the caller can be tested.
The stub should be simple enough that we
can confirm its correctness by inspection.

Stubs and Drivers

How do you test a program using stubs when
the program needs several functions?
We write stubs for all the functions, then
write the real functions, putting them into the
program one at a time. This way the complete
program and already written code continues
to be tested, while the new functions are
written and tested until the final program is
produced.
Imagine how impossible it may be to debug a
program which has errors in two, or more
functions?!?

Driver Program (1 of 3)
// Driver program for the function get_input.
#include <iostream>

void get_input(double& cost, int& turnover);
// Precondition: User is ready to enter values correctly.
// Postcondition: The value of cost has been set to the
// wholesale cost of one item. The value of turnover has been
// set to the expected number of days until the item is sold.

int main()
{

using namespace std;
double wholesale_cost;
int shelf_time;
char ans;

get_input(wholesale_cost, shelf_time);
return 0;}

88

void get_input(double& cost, int& turnover)
{ using namespace std;

cout << "Enter the wholesale cost of item $";
cin >> cost;
cout << "Enter the expected number of days until sold: ";
cin >> turnover;

}

// Driver Program (2 of 3)
// Or for a more complex testing the main driver may be:

do
{

get_input(wholesale_cost, shelf_time);

cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);

cout << "Wholesale cost is now $" << wholesale_cost << endl;
cout << "Days until sold is now " << shelf_time << endl;

cout << "Test again?"
<< " (Type y for yes or n for no): ";

cin >> ans;
cout << endl;

} while (ans == 'y' || ans == 'Y');

89

Fundamental Rule for Testing Functions

Every function should be tested in a
program where every other function in that
program is functional, has already been
completely tested and debugged.

MAIN

Func3_Lev1Func2_Lev1Func1_Lev1

F3_Lev2F2_Lev2F1_Lev2

F1_Lev3

16
16

Fundamental Rule for Testing Functions

Every function should be tested in a
program where every other function in that
program is functional, has already been
completely tested and debugged.

MAIN

Func3_Lev1Func2_Lev1Func1_Lev1

F3_Lev2F2_Lev2F1_Lev2

F1_Lev3

Needs
Driver &
3 stubs

// Program that uses a Stub (part 1 of 4)
// Determines the retail price of an item according to
// the pricing policies of the Quick-Shop supermarket chain.
#include <iostream>

void introduction();
// Postcondition: Description of program is written on the screen.

void get_input(double& cost, int& turnover);
// Precondition: User is ready to enter values correctly.
// Postcondition: The value of cost has been set to the
// wholesale cost of one item. The value of turnover has been
// set to the expected number of days until the item is sold.

double price(double cost, int turnover);
// Precondition: cost is the wholesale cost of one item.
// turnover is the expected number of days until sale of the item.
// Returns the retail price of the item.

92

// Program that uses a Stub (part 2 of 4)

void report_output(double cost, int turnover, double price);
// Precondition: cost is the wholesale cost of one item; turnover is the
// expected time until sale of the item; price is the retail price of the item.
// Postcondition: The values of cost, turnover, and price have been
// written to the screen.

int main()
{

double wholesale_cost, retail_price;
int shelf_time;

introduction();
get_input(wholesale_cost, shelf_time);
retail_price = price(wholesale_cost, shelf_time);
report_output(wholesale_cost, shelf_time, retail_price);
return 0;

}

93

// Program that uses a Stub (part 3 of 4)

// Uses iostream:
void introduction()
{

using namespace std;
cout << "This program determines the retail price for\n"

<< "an item at a Quick-Shop supermarket store.\n";
}

// Uses iostream:
void get_input(double& cost, int& turnover)
{

using namespace std;
cout << "Enter the wholesale cost of item $";
cin >> cost;
cout << "Enter the expected number of days until sold: ";
cin >> turnover;

}

94

// Program that uses a Stub (part 4 of 4)

// Uses iostream:
void give_output(double cost, int turnover, double price)
{

using namespace std;
cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);
cout << "Wholesale cost = $" << cost << endl

<< "Expected time until sold = "
<< turnover << " days" << endl
<< "Retail price= $" << price << endl;

}

// This is only a stub:
double price(double cost, int turnover)
{

return 9.99; // Not correct, but good enough for some testing.
}

95

Streams and Basic File I/O

A stream is a flow of characters (or other kind of data).
Data flowing INTO your program is an input stream.
Data flowing OUT OF your program is an output stream.
We have dealt with two of the three standard streams
already: cin and cout.
If in_stream and out_stream are input and output
streams, we could write:

int the_number;
in_stream >> the_number;
out_stream << “the_number is “ << the_number << endl;

96

17
17

File I/O

The two code lines need to be embedded in the block of a function.
The #include goes in the normal position at the top of the file.
Example:

#include <fstream>
. . .
ifstream in_stream;
ofstream out_stream;

These variables are not yet attached to a file, so are not usable.
The fstream library provides a member function named open that
ties the stream to a file the outside world knows about. (More later
on members of an object.)

Example:
in_stream.open (“infile.dat”); // infile.dat must exist on your system
out_stream.open (“outfile.dat”); // outfile.dat will be created.

97

File I/O

In the example:
in_stream.open (“infile.dat”); // infile.dat must exist on your system
out_stream.open (“outfile.dat”); // outfile.dat will be created.

The file stream in_stream is said to be open for reading, and the file
stream out_stream is said to be open for writing.

98

File I/O

WORDS OF WARNING:
In the example:
in_stream.open (“infile.dat”); // infile.dat must exist on your system
out_stream.open (“outfile.dat”); // outfile.dat will be created.

For Windows, this is at worst “8+3” i.e. 8 characters for the name
and 3 characters for the extension. Many recent systems allow long
file names. Read your manuals and ask a local expert.

The file name arguments for open is known as the external name for
the file. This name must be legitimate file names on the system you
are using. The stream name is the name of the file to your program.
If you have a file named outfile.dat on your system, and open a file
named the same, outfile.dat. in a program, the program will delete the
old outfile.dat and replace it with data from your program.

99

File I/O

Once we have declared the file variables, in_stream and
out_stream, and connected them to files on our system, we can
then take input from in_stream and send output to out_stream in
exactly the same manner as we have for cin and cout.

Examples:
#include <fstream>
. . .
// appropriate declarations and open statements
int one_number, another_number;
in_stream >> one_number >> another_number;
. . .
out_stream << “one_number: “ << one_number

<< “another_number: << another_number;
100

File I/O

Every file should be closed when your program is through fetching
input or sending output to the file.
This is done with the close() function.

Example:
in_stream.close():
out_stream.close();

Note that the close function takes no arguments.
If your program terminates normally, the system will close the
arguments.
If the program does not terminate normally, this might not happen.
File corruption is a real possibility.
If you want to save output in a file and read it later, then you must
close the file before opening it the second time for reading.

101

A File Has Two Names

Every input and every output file in a program has two names.
The external file name is the real name of the file, which is the name
known to the OS system. It is only used in your program in the call
to the open function.
The stream name is the name declared in the program, and that is
tied to the external file name with the open statement.
After the call to open, the program always uses the stream name to
access the file.

102Hard Drive

myFile
Software Black Box

OS
Var1

Pointer to stream name

Func1

RAMRAM

18
18

Classes and Objects

Consider the code fragment:
#include <fstream>
. . .
ifstream in_stream;
ofstream out_stream;
in_stream.open (“infile.dat”);
out_stream.open (“outfile.dat”);

. . .
in_stream.close():
out_stream. close();
Here the streams in_stream and out_stream are objects.
An object is a variable that has functions as well as data associated
with it.
The functions open and close are associated with in_stream and
out_stream, as well as the stream data and file data.

103

Definition of a hypothetical Integer Object

Variables/Fields: min-value; max-value
Functions (operating on Integer objects)
Suppose
Integer int1, int2; // int1 & int2 are objects of type Integer

- int1.compareTo(int2) == 0 ?

104

Definition of a hypothetical Integer Object

Variables/Fields: min-value; max-value
Functions (operating on Integer objects)
- int1.compareTo(int2) == 0 ?
- int1.doubleValue()

105

Definition of a hypothetical Integer Object

Variables/Fields: min-value; max-value
Functions (operating on Integer objects)
- int1.compareTo(int2) == 0 ?
- int1.doubleValue()
- Integer.parseInt(“123”) == 123, as an integer

106

Definition of a hypothetical Integer Object

Variables/Fields: min-value; max-value
Functions (operating on Integer objects)
- int1.compareTo(int2) == 0 ?
- int1.doubleValue()
- Integer.parseInt(“123”) == 123, as an integer
- int1.writeAsString()

107

Introduction to Classes and Objects
(continued)

Consider the code fragment:
#include <fstream>

. . .
ifstream in_stream;

ofstream out_stream;
in_stream.open (“infile.dat”);

out_stream.open (“outfile.dat”);
. . .

in_stream.close();
out_stream. close();

The functions and data associated with an object are refered to as
members of the object.
Functions associated with the object are called member functions.
Data associated with the object are called data members.
Note that data members are not (usually) accessible to functions
that aren’t members. (More on this later.)

108

19
19

Summary of Classes and Objects
An object is a variable that has functions/data associated with it.
Functions associated with an object are called member functions.
A class is a type whose variables are objects, e.g., Integer int1.
The object’s class determines which member functions the object
has.

Syntax for calling a member function of an object:

Calling_Object.member_function(Argument_List);
Examples: dot operator

in_stream.open(“infile.dat”);
out_stream.open(“outfile.dat”);
out_stream.precision(2);
The meaning of the Member_Function_Name is determined by
class (type of) the Calling_Object.

109

Programming Tip
Checking that a file was opened successfully

A very common error is attempting to open a file for reading where
the file does not exist or is NOT readable. The member function
open fails then.
Your program must test for this failure, and in the event of failure,
manage the error.
Use the istream member function fail to test for open failure.
in_stream.fail();
This function returns a bool value that is true if the stream is in a fail
state, and false otherwise.

Example:
#include <cstdlib> // for the predefined exit(1); library function
. . .
in_stream.open(“infile.dat”);
if(in_stream.fail())
{ cout << “Input file opening failed. \n”;

exit(1); // Predefined function quits the program.
}

110

The exit Statement

The exit statement is written
#include <cstdlib> // exit is defined in the header file cstdlib.h
using namespace std; // to gain access to the names
exit(integer_value); // to exit the program

When the exit statement is executed, the program ends immediately.
By convention, 1 is used as an argument to exit to signal an error.
By convention, 0 is used to signal a normal successful completion
of the program. (Use of other values is implementation defined.)
The exit is defined in the cstdlib library header file, so any use
requires
» #include <cstdlib>
» a directive to gain access to the names

File I/O with Checks on open (1 of 2)
// Reads three numbers from the file infile.dat, sums the numbers,
// and writes the sum to the file outfile.dat.
#include <fstream>
#include <iostream>
#include <cstdlib>

int main()
{ using namespace std;

ifstream in_stream;
ofstream out_stream;
in_stream.open("infile.dat");
if (in_stream.fail())
{

cout << "Input file opening failed.\n";
exit(1);

}
out_stream.open("outfile.dat");
if (out_stream.fail())
{

cout << "Output file opening failed.\n";
exit(1);

} 112

// File I/O with Checks on open (2 of 2)

int first, second, third;
in_stream >> first >> second >> third;
out_stream << "The sum of the first 3\n"

<< "numbers in infile.dat\n"
<< "is " << (first + second + third)
<< endl;

in_stream.close();
out_stream.close();

return 0;
}

113

File Names as Input (1 of 4)

So far, we have used only cstring literals for stream
names for input and output files.
You can specify your own file names from the keyboard or
from file input. Here’s how:
A variable that can hold a file name is a cstring variable.
» A cstring is what the textbook calls string in this chapter. This is

the string type that C++ inherits from its C parentage.
» A cstring is declared as in the following example:

char file_name[256];
The cstring file_name, declared here, can hold at most 255
characters, (NOT 256), indices: 0, 1, 2,…, 255.
Why 255 and not 256?

114

20
20

File Names as Input (2 of 4)

Some notes on behavior of the cstring variables.
“Why 255, not 256?”
The character position just beyond the last character
entered is used to hold a special character (end-of-string)
that signals that is the last character. If you enter 255
characters, there really are 256 characters in file_name,
just as the definition suggests.
You can access the cstring variable file_name for input
and output exactly as you access a variable of type int or a
double. (The terminating character is automatically
inserted by the istream insertion mechanism.)

115

File Names as Input (3 of 4)

Example:
char file_name[256];
cout << “Enter a file name (maximum of 255 characters)\n”;
cin >> file_name;
cout << “I will process file: “ << file_name << endl;

// Try to open file file_name for input. Test for success.
ifstream in_stream;
ifstream.open(file_name); // Notice the cstring variable
if (instream.fail())
{

cout << “Failed to open file “ << file_name << “ for input\n”;
exit(1);

}

116

File Names as Input (4 of 4)

Notes on related ideas:

There are several generalizations of the cstrings
notion.

Arrays of any type.
The string class provided in the C++ Standard
Library.
The vector class from the Standard Template
Library.
Linked lists are also a generalization of cstring in
the sense that a linked list is a container for
objects.

117

Inputting a File Name (1 of 2)
//Reads three numbers from the file specified by the user, sums the numbers,
//and writes the sum to another file specified by the user.
#include <fstream>
#include <iostream>
#include <cstdlib>

int main()
{

using namespace std;
char in_file_name[256], out_file_name[256];
ifstream in_stream;
ofstream out_stream;

cout << "I will sum three numbers taken from an input\n"
<< "file and write the sum to an output file.\n";

cout << "Enter the input file name (maximum of 255 characters):\n";
cin >> in_file_name;
cout << "Enter the output file name (maximum of 255 characters):\n";
cin >> out_file_name;
cout << "I will read numbers from the file “ << in_file_name << " and\n"

<< "place the sum in the file “ << out_file_name << endl;

118

Inputting a File Name (2 of 2)
in_stream.open(in_file_name);
if (in_stream.fail())
{

cout << "Input file opening failed.\n";
exit(1);

}

out_stream.open(out_file_name);
if (out_stream.fail())
{

cout << "Output file opening failed.\n";
exit(1);

}
int first, second, third;
in_stream >> first >> second >> third;
out_stream << "The sum of the first 3\n"

<< "numbers in " << in_file_name << endl
<< "is " << (first + second + third) << endl;

in_stream.close();
out_stream.close();
cout << "End of Program.\n";
return 0;

}
119

Formatting Output with Stream Functions

Setting Stream Flags
cout .setf(ios::showpoint);

The ostream member function setf sets flags in the stream.
A stream flag is a variable that controls how the stream
behaves. The output stream has many flags.
The ios::showpoint is a flag-value defined in the class ios

[2.34 (US) vs. 2,34 (EU) vs 234 (Non std)].

Sending the value ios::showpoint to the setf member
function causes the decimal point always to be displayed.

21
21

Formatting Flags for setf

Flag value Effect Default
ios::fixed floating output not in not set

e-notation. Unsets
scientific flag

ios::scientific floating point output, not set
will be e-notation as
needed

ios::pos a plus (+) sign prefixes not set
all positive output,
including exponents

ios::point a decimal point and trailing not set
zeros are printed for floating
point output.

Formatting Flags for setf

Flag value Effect Default
ios::right if a width is set and output set

fits within, output is right
justified within the field
This flag is cleared by setting
the right flag.

ios::left if a width is set and output not set
fits within, output is left
justified within the field
This flag is cleared by setting
the right flag.

I/O Manipulators

An i/o manipulator is a function that is called in a nonstandard
manner. Manipulators are called by insertion into the output
stream as if they were data. The stream calls the
manipulator function, changing the state of the i/o stream.

The manipulator setw (set width), with an argument, and the
member function width, with an argument, do the same
thing.

Example: The output statement
cout << “Start”

<< setw(4) << 10 // Print 10 in a field of width 4
<< setw(4) << 20 // Print 20 in a field of width 4
<< setw(6) << 30; // Print 30 in a field of width 6

generates the following output (columns are numbered below)
Start 10 20 30
123456789012345678901

Streams as Arguments to Functions

A stream may be an argument for a function just like any other
object type.

Because the effect of any function that uses a stream it to
change the stream, it is necessary to pass the stream by
reference.

Formatting Output (1 of 3)
// Illustrates output formatting instructions.
// Reads all the numbers in the file rawdata.dat and writes the numbers
// to the screen and to the file neat.dat in a neatly formatted way.
#include <iostream>
#include <fstream>
#include<cstdlib>
#include <iomanip>
using namespace std;

void make_neat(ifstream& messy_file, ofstream& neat_file,
int number_after_decimalpoint, int field_width);

// Precondition: The streams messy_file and neat_file have been connected
// to files using the function open.
// Postcondition: The numbers in the file connected to messy_file have been
// written to the screen and to the file connected to the stream neat_file.
// The numbers are written one per line, in fixed point notation (i.e., not in
// e-notation), with number_after_decimalpoint digits after the decimal point;
// each number is preceded by a plus or minus sign and each number is in a field of
// a field of width field_width. (This function does not close the file.)

125

Formatting Output (2 of 3)
int main()
{ ifstream fin;

ofstream fout;

fin.open("rawdata.dat");
if (fin.fail())
{ cout << "Input file opening failed.\n";

exit(1);
}

fout.open("neat.dat");
if (fout.fail())
{ cout << "Output file opening failed.\n";

exit(1);
}

make_neat(fin, fout, 5, 12);
fin.close();
fout.close();
cout << "End of program.\n";
return 0;

}

126

22
22

Formatting Output (3 of 3)
// Uses iostream, fstream, and iomanip:
void make_neat(ifstream& messy_file, ofstream& neat_file,

int number_after_decimalpoint, int field_width)
{ neat_file.setf(ios::fixed);

neat_file.setf(ios::showpoint);
neat_file.setf(ios::showpos);
neat_file.precision(number_after_decimalpoint);
cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.setf(ios::showpos);
cout.precision(number_after_decimalpoint);

double next;
while (messy_file >> next)
{ cout << setw(field_width) << next << endl;

neat_file << setw(field_width) << next << endl;
}

}

127

Character I/O
Member Functions get and put

C++ provides low level facilities that input and output
(raw) character data.
The istream member function get allows reading of
one character from the input and store it in a variable
of type char.
char next_symbol;
cin.get(next_symbol);
Note that a program can read any character this way.
Note further that this will read a blank, a newline, or
any other character.

128

Member Functions get and put

If the code fragment
char c1, c2, c3, c4, c5 ,c6;
cin.get(c1); cin.get(c2);
cin.get(c3); cin.get(c4);
cin.get(c5); cin.get(c6);

is given input consisting of AB followed by return then
CD followed by return:
AB<cr>
CD<cr>

then the above code fragment sets c1 to ‘A’, c2 to ‘B’
and c3 to ‘\n’, that is, c3 is set to the newline
character, c4 is set to ‘C’, c5 is set to ‘D’ and c6 is set
to ‘\n’.

129

Member Functions get and put

Why?
For one thing, your program can detect end-of-line
instead of having the i/o machinery do it for you.
This loop will let you read a line of input and stop at
the end of a line. Example code:
cout << “Enter a line of input. I will echo it:\n”;
char symbol;
do
{ cin.get(symbol);

cout << symbol;
} while (symbol != ‘\n’);
cout << “That all for this demonstration.\n”;

130

Member Function get

Every input stream has a member function get.
Syntax:
Input_Stream.get(char_variable);

Example:
char next_symbol;
cin.get(next_symbol);

To read from a file, use a file stream instead of cin.

in_stream.get(next_symbol);

131

Member Function put

Every input stream has a member function put.
Syntax:

output_Stream.put(char_variable);

Example:
cout.put(next_symbol);
cout.put(‘a’);

To write to a file, use a file stream instead of cout.

out_stream.put(next_symbol);
As with all output, you must declare and connect your

stream to an output file.

132

23
23

A Note on compilers

If you are using Emacs editor under
Windows2K your may find that the input
functions get and getline fail to work in
peculiar fashion. Perhaps this is true
even if we use the Borland command
line compiler.
A work around is to run the programs in
a DOS Window.

’\n’and “\n”

’\n’ and “\n” seem to be the same thing. They are NOT
the same. Take care to distinguish them.
They seem to be the same: A cout statement such as
cout << “\n” or cout << ‘\n’
will produce the same output: flush the output buffer and
write a newline to the output.
HOWEVER:
‘\n’ has type char and “\n” is a cstring literal. “\n” has type
pointer to char.
‘\n’ and “\n” cannot be compared, nor can either be
assigned to a variable the other’s type.

134

’\n’and “\n”

The text says that “\n” is a string having exactly one
character. The string “\n” has only one character
stored in it, the newline.
By contrast, recall the terminating character we had to
leave space for when we were inputting file names.
There we saw that cstrings had to have space for one
character signal the end of string, beyond what we
could use. The string literal “\n” also has a
terminating character in addition to the newline
character stored in the cstring.

135

The putback Member Function (1 of 2)

Sometimes you need to inspect but not
process the next character from the input. To
do this you can read the character, decide you
didn’t want it, and push it back on the input
stream.
The member function, putback, is a member
of every input stream. It takes an argument of
type char, and replaces the character read
from the input.

136

The putback Member Function (2 of 2)

Example:
fin.get(next);
while (next != ‘ ‘)
{ fout.put(next);

fin.get(next);
}
fin.putback(next);

This code reads characters until a blank is encountered,
then puts the blank back on the input.
Final notes:
The character put back need NOT be the one we read! It

can be any character.
The input file will not be changed, but the program will

behave as if it were (only the local, RAM, copy of the
stream is effected). 137

Programming Example:
Checking Input(1 of 2)

If a program does not check input, a single bad character input can
ruin the entire run of a program.

This program allows the user to reenter input until input is satisfactory.
Code:

// Program to demonstrate the functions new_line and get_input.
#include <iostream>

void new_line();
// Discards all the input remaining on the current input line.
// Also discards the ’\n’ at the end of the line.
// This version only works for input from the keyboard.

void get_int(int& number);
// Postcondition: The variable number has been
// given a value that the user approves of.

138

24
24

Programming Example:
Checking Input(2 of 2)

int main()
{ using namespace std;

int n;
get_int(n);
cout << "Final value read in = "
<< n << endl

<< "End of
demonstration.\n";

return 0;
}
// Uses iostream:
void new_line()
{ using namespace std;

char symbol;
do
{ cin.get(symbol);
} while (symbol != '\n');

}

139

// Uses iostream:
void get_int(int& number)
{

using namespace std;
char ans;
do
{

cout << "Enter input number: ";
cin >> number;
cout << "You entered " <<

number
<< " Is that correct? (yes/no):

";
cin >> ans;
new_line();

} while ((ans != 'Y') && (ans != 'y'));
}

Pitfall: Unexpected ‘\n’ in Input (1 of 3)

Example with a problem:
cout << “enter a number: \n”;

int number;
cin >> number;

cout <<“enter a letter: \n”;
char symbol;

cin.get(symbol);
With the input
enter a number:
21
Enter a letter:
A

Unfortunately, with this code, the variable number gets 21,
but character symbol gets a newline, not ‘A’.

140

Pitfall: Unexpected ‘\n’ in Input (2 of 3)

With get, one must account for every character on the
input, even the new-line characters.
A common problem is forgetting to account for the
newline at the ends of every line.
While it is legal to mix cin >> style input with cin.get()
input, the code in the previous slide can cause problems.

You can rewrite this using the newline() function from the
Preceeding Programming Example to dump the
characters remaining on the input.

141

Pitfall: Unexpected ‘\n’ in Input (3 of 3)
Two workable rewrites of the code on slide 1 of 3 above
cout << “enter a number \n”;
int number;
cin >> number;
cout << “enter a letter: \n”;
char symbol;
cin >> symbol; // as opposed to: cin.get(symbol);

Or You may write:
cout << “enter a number \n”;
int number;
cin >> number;
new_line();
cout << “enter a letter: \n”;
char symbol;
cin.get(symbol);

142

With the input
enter a number:
21
Enter a letter:
A

The eof Member Function(1 of 2)

Every input-file stream has a function to detect end-of-file
called eof. The letters stand for end of file.

This function returns a bool value, true if the input file is at
end-of-file, false otherwise.

The result of this function can be used to control a while-
loop, a for- loop or an if statement.

Typically, what we are really interested in is when we are
not at end of file. The code usually reads,
while(! file_stream.eof())
{ // do something with the file_stream
}

143

The eof Member Function (2 of 2)
The while loop might look like this:

char next;
in_stream.get(next);
while(! in_stream.eof())
{ cout << next; // This could be cout.put(next);

in_stream.get(next);
}
This loop reads the file attached to in_stream into the char

variable next character by character.

There is an end of file marker that can be read. The eof
function does not change from false to true until this
marker is read. You can read this marker but writing it
out produces unpredictable results.

144

25
25

Call by Reference parameters (1 of 3)
// Program to create a file called cplusad.dat which is identical to the file
// cad.dat, except that all occurrences of ’C’ are replaced by "C++".
// Assumes that the uppercase letter ’C’ does not occur in cad.dat, except
// as the name of the C programming language.

#include <fstream>
#include <iostream>
#include <cstdlib>
using namespace std;

void add_plus_plus(ifstream& in_stream, ofstream& out_stream);
// Precondition: in_stream is connected to an input file with open().
// out_stream has been connected to an output file with open().
// Postcondition: The contents of the file connected to in_stream is
// copied into the file connected to out_stream, but with each ’C’ replaced
// by "C++". (The files are not closed by this function.) 145

Call by Reference parameters (2 of 3)
int main()
{

ifstream fin;
ofstream fout;

cout << "Begin editing files.\n";

fin.open("cad.dat");
if (fin.fail())
{

cout << "Input file opening failed.\n";
exit(1);

}

fout.open("cplusad.dat");
if (fout.fail())
{

cout << "Output file opening failed.\n";
exit(1);

}

add_plus_plus(fin, fout);
146

Call by Reference parameters (3 of 3)
// int main() continued

fin.close();
fout.close();

cout << "End of editing files.\n";
return 0;

}

void add_plus_plus(ifstream& in_stream, ofstream& out_stream)
{

char next;

in_stream.get(next);
while (! in_stream.eof())
{

if (next == 'C') // NOTE char comparison!
out_stream << "C++";

else
out_stream << next;

in_stream.get(next);
}

}
147

Some predefined character functions(1 of 2)

Predefined Character Functions
To access the library functions, our code must contain
#include <cctype>
Here is an abbreviated table of functions from cctype.

Function Description Example

toupper(char_expr) if char_expr is lowercase char c = toupper(‘a’);
transform char_expr cout << c ; // writes ‘A’
to uppercase
return this value

else
return char_expr

tolower(char_expr) lowercase version of toupper
isupper(char_expr) if arg is uppercase char c = ‘a’;

return true if (isupper(c))
else return false cout << “Uppercase”;

islower(char_expr) Behavior is as in toupper
except islower tests for lowercase 148

Display 5.8:
Some predefined character functions (2 of 2)

Function Description Example
isalpha(char_expr) if ((‘a’ <= char_expr && char c = ‘&’;

char_expr <= ‘z’) || if(isalpha(c))
(‘A’ <= char_expr && cout << c << “ is a letter.”;
char_expr <= ‘Z’)) else

return true; cout << c << “is not a letter”.;
else

return false;
isdigit(char_expr) if (‘0’ <= char_expr && if (isdigit(c))

char_expr <= ‘9’) cout << c << “ is a digit.”;
return true; else

else return false; cout << c << “ is not a digit.”;
isspace(char_expr) if char_expr is any of

whitespace, such as tab
newline or blank,

return true;
else return false;

149

Inheritance

One of the most powerful features of C++ is the use of
derived classes.
A class is derived (subclass) from another class (superclass,
base-class) means that the derived class is obtained from the
superclass by adding features while retaining all the features
in the superclass.
We speak of the derived class inheriting from the base-class,
and this mechanism as inheritance.
We use the words Inherit, inheriting, and speak of a derived
class inheriting from a base class.

150

26
26

Inheritance

151

NUMBER class

string toString(); // Every number should

// be printable as string

Integer class
int min=-2147483647;
int max=2147483647;
bool compareTo(int);
int increment(int);

Double class

string toString();
int getPrecision(); //15 digits

Super
Class

Sub-classes
Inherit from Number

Inheritance Among Stream Classes (1 of 3)

Recall that an object has member data and functions.
Also a class is type whose variables are objects.
It turns out that ALL file streams are derived from other I/O
streams.
In particular, ifstream inherits from istream, and
ofstream inherits from ostream.
Notice that ifstream has the open() member function but
istream does not, remember NUMBER – INTEGER class
relation. So, sub-class (ifstream) not only inherits from the
super-class (or base-class) istream, but it has extra
members.

152

Inheritance Among Stream Classes(2 of 3)

We say one class is derived from another class if the derived class is
obtained from the other super-class by keeping all the features of the
super-class and adding additional members: data/variables and functions.
Input-file streams are derived from istreams.
The class ofstream is derived from class ostream.
Any input stream (incl. ofstream outf_stream) is an object of type ostream,
but NOT the other way around. Example:
void say_hello(ofstream& outf_stream)
{ outf_stream << “Hello!” << endl; }

However, the istream object cout does
NOT have a method close() as a member!
cout.close(); // illegal

153

ostream class
cout object

No close() function

ofstream class
outf_stream object

close() function
But also ostream functionality

Inheritance Among Stream Classes(3 of 3)

If class B inherits from class A, then A is said to be
the base class (superclass), and B is said to be the
derived class (subclass).
If class B inherits from class A, then any object of
class B is also an object of class A. Wherever a
class A object is used, we can substitute it by a
class B object.
If class B inherits from class A, then class A is called
the parent class and class B is called the child
class.
Some textbooks prefer base class and derived class.

154

ofstream objects is an ostream object
Making Stream Parameters Versatile

Suppose you define a function that takes a input stream as
an argument and you want the argument to be cin in some
cases and an input-file stream in others. To accomplish
this, you can use istream as a formal parameter type. Then
you can use either an ifstream object or an istream object
as parameter.
Similarly, you can define a function that uses an ostream
formal parameter then use either ostream arguments or
ofstream arguments.

void say_hello(ostream& o_stream)
{ o_stream << “Hello!” << endl; }

155

Function call with diff streams:
say_hello(cout);
say_hello(outFile_stream);
Possible since, ofstream objects
ARE also ostream objects.

Programming Example:
Another new_line function

By using an istream formal parameter, we can use this
new_line function with either ifstream or istream
arguments.

// Uses iostream
void new_line(istream& in_stream)
{

char symbol;
do
{ in_stream.get(symbol);
} while (symbol != ‘\n’);

}

156

27
27

Default Arguments (1 of 2)

An alternative to writing two versions of new_line() we can
write one version with a default argument:

// Uses iostream
void new_line(istream& in_stream = cin)
{

char symbol;
do
{

in_stream.get(symbol);
} while (symbol != ‘\n’);

}

157

Default Arguments (2 of 2)

If we call this as
new_line();

then the default argument, cin, is used.

If we call this as
new_line(fin);

where fin is an ifstream object, then the function uses this
as the argument.

If several parameters are to have default arguments, but
some parameters do not have default arguments, those
parameter supplied with default arguments must follow
those not supplied with default arguments. If arguments
are provided in a call, there must be enough arguments
to provide for parameters without defaults. Arguments
beyond this number will replace default arguments.

158

159

Defining Classes and Abstract
Data Types

Structures
» Structures for Diverse Data
» Structures as Function Arguments
» Initializing Structures

Classes
» Defining Classes and Member Functions
» Public and Private Members
» Summary of Properties of Classes
» Constructors for Initialization

Abstract Data Types
» Classes to Produce ADTs

160

Structures

A class is a data type that can be made to behave
the same as built-in data types (e.g., int). Such data
types are called Abstract Data Types. A class
encapsulates both data and functions.
A structure may be thought of as an object without

member functions.
A structure Definition defines a type.
struct CDAccount structure tag
{ Member names

double balance;
double interest_rate;
int term; // months until maturity

};
DON’T FORGET THE SEMICOLON

Structures

Given the structure definition on the previous slide,
structure variables (of this type) can be defined by:

CDAccount my_account, your_account;
This structure variable definition creates member
variables balance, interest_rate, and term associated with
the structure, for each structure variable.
Member variables are accessed using the dot operator.
my_account.balance; // type is double
my_account.interest_rate; // type is double
my_account.term; // type is int
Other structure variable’s members may also be accessed:

your_account.balance;
These variables may be used exactly like any other
variables. 161

// A Structure Definition (1 of 2)
// Program to demonstrate the CDAccount structure type.
#include <iostream>
using namespace std;

// Structure for a bank certificate of deposit:
struct CDAccount
{ double balance;

double interest_rate;
int term; // months until maturity

};

void get_data(CDAccount& the_account);
// Postcondition: the_account.balance and the_account.interest_rate
// have been given values that the user entered at the keyboard.

int main()
{

CDAccount account;
get_data(account);

double rate_fraction, interest;
rate_fraction = account.interest_rate/100.0;
interest = account.balance*rate_fraction*(account.term/12.0);
account.balance = account.balance + interest;

162

28
28

// A Structure Definition (2 of 2)

cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);
cout << "When your CD matures in "

<< account.term << " months,\n"
<< "it will have a balance of $"
<< account.balance << endl;

return 0;
}

// Uses iostream:
void get_data(CDAccount& the_account)
{

cout << "Enter account balance: $";
cin >> the_account.balance;
cout << "Enter account interest rate: ";
cin >> the_account.interest_rate;
cout << "Enter the number of months until maturity\n"

<< "(must be 12 or fewer months): ";
cin >> the_account.term;

}

163

// Member Values
struct CDAccount
{

double balance;
double interest_rate;
int term; // months to run

};
int main()
{ balance ????

CDAccount account; interest_rate ????
term ????

balance 1000.00
account.balance = 1000.00 interest_rate ?????

term ?????

balance 1000.00
account.interest_rate = 4.7 interest_rate 4.7

term ?????

balance 1000.00
account.term = 11; interest_rate 4.7

term 11
} 164

{
{
{
{

The Dot Operator
The dot operator is used to specify a member variable of a structure variable.

Syntax: Structure_Variable_Name.Member_variable_name
Example:

struct StudentRecord
{

int student_number;
char grade;

};
int main()
{

StudentRecord your_record;
your_record.student_number = 2001;
your_record.grade = ‘A’;

}
The dot operator is also called “structure member access operator”. 165

Structures as Function Arguments

A function can have
» call-by-value parameters of structure type and/or
» call-by-reference parameters of structure type and/or
» return type that is a structure type

Example, a wrapper that instantiates (constructs) a structure from 3 values:

CDAccount shrink_wrap(double the_balance,
double the_rate, int the_term)

{
CDAccount temp;
temp.balance = the_balance;
temp.interest_rate = the_rate;
temp.term = the_term;
return temp;

} 166

void exampleFunc(CDAccount& acc1);
void exampleFunc1(CDAccount acc2);

Programming Tip(1 of 2)
Use Hierarchical Structures

If a structure has a subset of its members that may be
considered an entity, consider nested structures.
Example:
A PersonInfo struct might include a birthday
struct Date
{

int month;
int day;
int year;

};
struct PersonInfo
{

double height; // inches
int weight; // pounds
Date birthday;

};

Programming Tip(2 of 2)
Use Hierarchical Structures

Declare a variable of PersonInfo type as usual:
PersonInfo person1;

Person1.birthday
// This is a Date structure, with members accessible
// as in any other structure variable.

If the structure variable person1 has been set, the year a person
was born can be obtained by:

cout << person1.birthday.year;

structure structure int member
variable member contained in (inner)

structure.

29
29

Initializing Structures

A structure may be initialized at the time it is declared.
struct Date
{ double hour;

int month;
int day;
int year;

};

Date due_date = { 1520.00, 12, 31, 2001};

The sequence of values is used to initialize the successive
variables in the struct. The order is essential.
It is an error to have more initializers than variables.
If there are fewer initializers than variables, the provided
initializers are used to initialize the first few data members.
The remainder are initialized to 0 for primitive types.

Classes
Defining Classes and Member Functions

A class is a data type whose variables are objects.
An object is a variable that has member functions and
member variables.
A class definition specifies the function members and the
data members.
A data members for a class are defined much as we have
defined structure members.
Programmer defined member functions of a class are
called exactly as we showed for predefined classes, e.g.,
ostream and ofstream.

170

// Class with a Member Function (1 of 2)
// Program to demonstrate a very simple example of a class.
// A better version of the class DayOfYear will be given next.
#include <iostream>
using namespace std;

class DayOfYear
{
public:

void output(); member function prototype
int month;
int day;

};

int main()
{

DayOfYear today, birthday;
cout << "Enter today's date:\n";
cout << "Enter month as a number: ";
cin >> today.month;
cout << "Enter the day of the month: ";
cin >> today.day;
cout << "Enter your birthday:\n";
cout << "Enter month as a number: ";
cin >> birthday.month;
cout << "Enter the day of the month: ";
cin >> birthday.day; 171

The following members are
publically accessible

// Class with a Member Function (1 of 2)

cout << "Today's date is ";
today. Output(); calls to the member
cout << "Your birthday is "; function Output
birthday.output();

the calling object
if (today.month == birthday.month

&& today.day == birthday.day)
cout << "Happy Birthday!\n";

else
cout << “ , sorry your B-Day is not today!\n";

return 0;
}

scope resolution operator
//Uses iostream:
void DayOfYear::output()
{ member function

cout << "month = " << month definition
<< ", day = " << day << endl;

}

172

Do we need to
define member
functions outside
the class def?

Encapsulation

Combining several items such as variables,
or variables and functions, into a single
package, such as an object of some class,
is called encapsulation

Member Function Definition

A member function is defined as any other function, except that the
Class_Name and the scope resolution operator :: are given in the
function heading.

Syntax:
Returned_Type Class_Name::Function_Name(Parameter_List)
{

// Function Body Statements
}

Example:
// uses iostream:
void DayOfYear::output()
{ cout << “month = “ << month

<< “, day = “ << day << endl;
}

The class definition for this example, where month and day are defined
as members of class DayOfYear. Note that month and day are not
preceded (qualified) by an object name. We will see that the calling
object is automatically supplied with the call to output().

30
30

The Dot Operator and the Scope Resolution Operator

Both the dot operator and scope resolution operator are used with
member names to specify the thing they are a member of. For example,
suppose you have declared a class called DayOfYear, and you declare
an object called today of type DayOfYear :
DayOfYear today; // today is an object of class DayOfYear

You use the dot operator . to specify a member of this object. For
example, output() is a member function of class DayOfYear (see
Display 6.3) and this call will output data stored in the particular object
today. [today.output();]

You use the scope resolution operator :: to specify the class name when
giving the function definition for a member function. For example, the
heading of the function definition for the member function output() is:
void DayOfYear::output()

Remember, the scope resolution operator :: is used with a class name,
while the dot operator is used with an object of that class.

// Class with Private Members (1 of 3)
// Program to demonstrate the class DayOfYear.

#include <iostream>
using namespace std;

class DayOfYear
{
public:

void input();
void output();

void set(int new_month, int new_day);
// Precondition: new_month and new_day form a possible date.
// Postcondition: The date is reset according to the arguments.

int get_month();
// Returns the month, 1 for January, 2 for February, etc.

int get_day();
// Returns the day of the month.

private:
int month;
int day;

};
176

Class with Private Members (2 of 3)

int main()
{

DayOfYear today, bach_birthday;
cout << "Enter today's date:\n";
today.input();
cout << "Today's date is ";
today.output();

bach_birthday.set(3, 21);
cout << "J. S. Bach's birthday is ";
bach_birthday.output();

if (today.get_month() == bach_birthday.get_month() &&
today.get_day() == bach_birthday.get_day())

cout << "Happy Birthday Johann Sebastian!\n";
else

cout << “Today is NOT Johann Sebastian’s B-Day!\n";
return 0;

}
177

//Class with Private Members (3 of 3)
// Uses iostream:
void DayOfYear::input()
{

cout << "Enter the month as a number: [1;12] ";
cin >> month;
cout << "Enter the day of the month: [1;31]";
cin >> day;

}
void DayOfYear::output()
{

cout << "month = " << month
<< ", day = " << day << endl;

}
void DayOfYear::set(int new_month, int new_day)
{

month = new_month;
day = new_day;

}
int DayOfYear::get_month()
{

return month;
}
int DayOfYear::get_day()
{

return day;
} 178

Note we need
not provide object
name when we’re
in the scope of the
class

Public and Private Members(1 of 2)

With an ideal class definition, the class author should be able
to change the details of the class implementation without
necessitating changes in any program using the class (code
using the class is called “client code”).

This requires enough member functions to access the data
members whenever necessary. This will allow the
representation of the data to be changed as required by
changes in implementation without changing client code.

Everything (functions or data members) defined after “private:”
line are accessible only in member functions of the class.
(See the remark in the next slide.)

The keyword public is used to state that the members defined
after the “public:” line are accessible in any function that
can see the class definition. (Again, see the next slide.)

Public and Private Members(2 of 2)

Remark:
It is not quite true that everything (functions or data members)

defined after “private:” line are accessible only in member
functions of the class.

There can be several public and private sections in a class, and
there is one other access keyword we will talk about later.

Members defined after “public:” up to the next “private:” or
other access specifier keyword are accessible by all
functions. Members defined after “private:” up to the next
public: or other access keyword are accessible only by all
functions defined in the class.

While we won’t have several public and private sections in our
classes, you may find code that makes use of multiple public
and private sections, so we mentioned this for the sake of
completeness.

31
31

The Bank Account Class (1 of 4)
// Program to demonstrate the class BankAccount.
#include <iostream>
using namespace std;
// Class for a bank account:
class BankAccount
{
public:

void set(int dollars, int cents, double rate);
// Postcondition: The account balance has been set to $dollars.cents;
// The interest rate has been set to rate percent.
void set(int dollars, double rate);
// Postcondition: The account balance has been set to $dollars.00.
// The interest rate has been set to rate percent.
void update();
// Postcondition: One year of simple interest has been
// added to the account balance.
double get_balance();
// Returns the current account balance.
double get_rate();
// Returns the current account interest rate as a percent.
void output(ostream& outs);
// Precondition: If outs is a file output stream, then
// outs has already been connected to a file.
// Postcondition: Account balance and interest rate have been written
// to the stream outs. 181

The Bank Account Class (2 of 4)
// class BankAccount cont.

private:
double balance;
double interest_rate;
double fraction(double percent);
// Converts a percent to a fraction. For example, fraction(50.3) returns 0.503.

};
int main()
{

BankAccount account1, account2;
cout << "Start of Test:\n";
account1.set(123, 99, 3.0);
cout << "account1 initial statement:\n";
account1.output(cout);
account1.set(100, 5.0);
cout << "account1 with new setup:\n";
account1.output(cout);
account1.update();
cout << "account1 after update (1 yr interest):\n";
account1.output(cout);
account2 = account1;
cout << "account2:\n";
account2.output(cout);
return 0;

} 182

The Bank Account Class (3 of 4)
void BankAccount::set(int dollars, int cents, double rate)
{

balance = dollars + 0.01*cents;
interest_rate = rate;

}
void BankAccount::set(int dollars, double rate)
{

balance = dollars;
interest_rate = rate;

}
void BankAccount::update()
{

balance = balance + fraction(interest_rate)*balance;
}
double BankAccount::fraction(double percent)
{

return (percent/100.0);
}
double BankAccount::get_balance()
{

return balance;
}
double BankAccount::get_rate()
{

return interest_rate;
}

183

The Bank Account Class (4 of 4)
// Uses iostream:
void BankAccount::output(ostream& outs)
{

outs.setf(ios::fixed);
outs.setf(ios::showpoint);
outs.precision(2);
outs << "Account balance $" << balance << endl;
outs << "Interest rate " << interest_rate << "%" << endl;

}

184

Programming Tips

Make Data Members private. When defining a class, the
normal practice is to make all member variables private. This
means these variables can only be accessed or changed
using member functions.
Define Accessor Functions (get/set). The operator == does
not apply to class objects without additional work. Functions
get_day and get_month are accessors. Consider providing a
complete set of accessors to data in useful formats. This will
make comparing objects for equality easier.
Using the Assignment Operator with Objects: The assignment
operator = applies to struct and class objects. In the case
where all member variables are primitive (char, short, int,
long, float, double, long double, bool) operator = can be used
to assign class objects. The members are each assigned.

Structures versus Classes

The keyword struct was provided in C++ for
backward compatibility with C. For this reason
many authors treat the struct as a class though it
does not have function members.
In fact, a struct can have function and data
members exactly like a class. The only difference
is that struct default access is public, whereas
class default access is private.
We encourage use of the struct without function
members and classes as developed in this
chapter. This use follows C++ programming
custom.

32
32

Constructors for Initialization

For automatic initialization of class objects at
definition, C++ provides a special kind of member
function known as a constructor.
A class constructor has the same name as the
class.
A constructor does not return a value, not even
void. In a constructor, a return statement is
allowed only without an argument.
Class constructors may be overloaded as needed.

Constructors for Initialization

class BankAccount
{
public:

BankAccount(int dollars, int cents, double rate);
. . .

private;
double balance;
. . .

};
BankAccount::BankAccount(int d, int c, double r)
{

dollars = d;
cents = c;
rate = r;

}

Constructors for Initialization

// Object Declaration & Initialization:

BankAccount account1(10, 50, 2.0);
// sets dollars, cents and rate to values indicated.

// This is shorthand for
BankAccount account1 = BankAccount(10, 50, 2.0);

Calling a Constructor
A constructor is called automatically when an object is declared, but

you must give the arguments for the constructor when you declare
the object. A constructor can be called explicitly to create a new
object.

Syntax (for an object declaration when you have constructors):
Class_Name Object_Name(Arguments_for_Constructor);

Example:
BankAccount account1(100, 2.3);

Syntax (for an explicit constructor call):
Object_Name = Constructor_Name(Arguments_for_Constructor);

Example:
account1 = BankAccount(200, 3.5);

A constructor must have the same name as the class of which it is a
member. Hence Class_Name and Constructor_Name are the same
identifier.

190

Programming Tip
Always Include a Default Constructor(1 of 3)

class SampleClass
{ This constructor requires two arguments
public:

SampleClass(int parameter1, double parameter2);
void do_stuff();

private;
int data1;
double data2;

};

SampleClass my_object(7, 7.77); // OK, supplies required arguments
SampleClass my_object= SampleClass();

// illegal -- no Default constructor
// SampleClass() found.

A constructor with prototype
SampleClass();

is called a default constructor (trivial list of arguments). 191

Programming Tip
Always Include a Default Constructor(2 of 3)

class SampleClass
{ constructor requires two arguments
public:

SampleClass(int parameter1, double parameter2);
SampleClass(); a default constructor
void do_stuff();

private;
int data1;
double data2;

};

SampleClass my_object(7, 7.77); // OK, supplies required arguments
SampleClass myObject; // Legal -- default constructor

// SampleClass() exists.
The constructor SampleClass() is called a default constructor. 192

33
33

Programming Tip
Always Include a Default Constructor(3 of 3)

If no constructors are provided, the compiler will “implicitly”
generate a default constructor that does nothing but be present
to be called.

If any constructor is provided at all, no default constructor will be
generated. In that case the attempted definition

SampleClass myObject;

will try to call a default constructor so will fail, as there will be none.

193

Pitfall:
Constructors with no arguments

The declaration
BankAccount object_name(100, 2.3);

invokes the BankAccount constructor that requires
two parameters.
The function call

f();
invokes a function f that takes no parameters
Conversely,

BankAccount object_name();
does NOT invoke the no-parameter constructor.
Rather, this line of code defines a function that
returns an object of BankAccount type. 194

Constructors with No Arguments

When you declare an object and want the constructor with zero
arguments to be called, you do not include parentheses. For example,
to declare an object and pass tow arguments, you might do this:

BankAccount account(100, 2.3);

However, to cause the constructor with NO arguments, to be called, you
declare the object:

BankAccount account;

You do NOT declare the object

BankAccount account(); //THIS IS NOT WHAT YOU WANT!!

(This declares account to be a function that has no parameters and
returns a BankAccount object as its function value.)

195

Abstract Data Types
Classes to Produce ADTs

A data type has a set of values and a set of operations
For example:
the int type has values {. . ., -2, -1, 0, 1, 2, 3, . . .}
and operations +, -, *, /, %.
A data type is called an Abstract Data Type (ADT) if the
programmers who use the type do not have access to the
details of how the values and operations are
implemented.
Programmer defined types are not automatically ADTs.
Care is required in construction of programmer defined
types to prevent unintuitive and difficult-to-modify code.

196

Classes to Produce ADTs
How to make an ADT:

Make all the member variables private.
Make each of the basic operations that the programmer needs a
public member function of the class, and fully specify how to use
each such function.
Make any helping functions private member functions.
The interface consists of the public member functions along with
commentary telling how to use the member functions. The interface
of an ADT should tell all the programmer need to know to use the
ADT.
The implementation of the ADT tells how the ADT is realized in C++
code. The implementation consists of private members of the class
and the definitions of all member functions. This is information the
programmer should NOT NEED to use the class.

197

Programming Example
Alternative Implementation of a Class

The client programmer does not need to know how data is stored, nor
how the functions are implemented.
Consequently alternative implementations may store different
variables differently.
Suppose we have interest_rate variables, but the different
implementations store this value differently (as a percent, say 4.7, vs
as a decimal fraction, say 0.047). There are also differences in the
implementations get_balance() methods. Client user need not be
concerned with these differences.
There may also be other differences between the implementations,
e.g., different computational algorithms, totally different program
organization which may or may not produce the same output.

198

34
34

Alternative BankAccount Implementation(1 of 6)
// Demonstrates an alternative implementation of the class BankAccount.
#include <iostream>
#include <cmath>
using namespace std; Notice that the public members of
// Class for a bank account: BankAccount look and behave
class BankAccount exactly the same as before
{
public:

BankAccount(int dollars, int cents, double rate);
// Initializes the account balance to $dollars.cents and
// initializes the interest rate to rate percent.

BankAccount(int dollars, double rate);
// Initializes the account balance to $dollars.00 and
// initializes the interest rate to rate percent.

BankAccount();
// Initializes the account balance to $0.00 and the interest rate to 0.0%.
void update();
// Postcondition: One year of simple interest has been added to
// account balance. 199

Alternative BankAccount Implementation(2 of 6)
double get_balance();
// Returns the current account balance.
double get_rate();
// Returns the current account interest rate as a percent.
void output(ostream& outs);
// Precondition: If outs is a file output stream, then
// outs has already been connected to a file.
// Postcondition: Account balance and interest rate have been
// written to the stream outs.

private:
int dollars_part;
int cents_part;
double interest_rate;//expressed as a fraction, e.g., 0.057 for 5.7%
double fraction(double percent);
// Converts a percent to a fraction. For example, fraction(50.3)
// returns 0.503.
double percent(double fraction_value); New
// Converts a fraction to a percent. For example, percent(0.503)
// returns 50.3.

};

200

// Alternative BankAccount Implementation(3 of 6)
int main()
{

BankAccount account1(100, 2.3), account2;

cout << "account1 initialized as follows:\n"; The body of main is identical
account1.output(cout); to that before, the
cout << "account2 initialized as follows:\n"; screen output is also identical
account2.output(cout);

account1 = BankAccount(999, 99, 5.5);
cout << "account1 reset to the following:\n";
account1.output(cout);
return 0;

}

BankAccount::BankAccount(int dollars, int cents, double rate)
{

dollars_part = dollars;
cents_part = cents;
interest_rate = fraction(rate);

} 201

// Alternative BankAccount Implementation(4 of 6)

BankAccount::BankAccount(int dollars, double rate)
{

dollars_part = dollars;
cents_part = 0;
interest_rate = fraction(rate);

}

BankAccount::BankAccount()
{

dollars_part = 0;
cents_part = 0;
interest_rate = 0.0;

}

double BankAccount::fraction(double percent)
{

return (percent/100.0);
}

202

// Alternative BankAccount Implementation(5 of 6)
// Uses cmath:
void BankAccount::update()
{

double balance = get_balance();
balance = balance + interest_rate*balance;
dollars_part = floor(balance);
cents_part = floor((balance - dollars_part)*100);

}

double BankAccount::get_balance()
{

return (dollars_part + 0.01*cents_part);
}

double BankAccount::percent(double fraction_value)
{

return (fraction_value*100);
}

double BankAccount::get_rate()
{

return percent(interest_rate);
}

203

Alternative BankAccount Implementation(6 of 6)

// Uses iostream:
void BankAccount::output(ostream& outs)
{

outs.setf(ios::fixed); new definition
outs.setf(ios::showpoint);
outs.precision(2);
outs << "Account balance $" << get_balance() << endl;
outs << "Interest rate " << get_rate() << "%" << endl;

} //The new definitions of get_balance and get_rate
// ensure that the output will still be in the correct units.

204

void BankAccount::output(ostream& outs)
{ outs.setf(ios::fixed);

outs.setf(ios::showpoint);
outs.precision(2);
outs << "Account balance $" << balance << endl;
outs << "Interest rate " << interest_rate << "%" << endl;

}

35
35

Information Hiding
We discussed information hiding when we introduced functions in Chapter3.

We said that information hiding, as applied to functions means that you
should write the function so that they can be used with no knowledge of how
they were written: as if they were black boxes. We know only the interface
and specification.

This principle means that all the programmer needs to know about a function is
its prototype and accompanying comment that explains how to use the
function.

The use of private member variables and private member functions in the
definition of an abstract data type is another way to implement information
hiding, where we now apply the principle to data values as well as to
functions. 205

Information Encoding, Transmission and Decoding

A company wants to transmit data over the telephone,but
they are concerned that their phones may be tapped. All of
their data are transmitted as four-digit integers. They have
asked you to write a program that encrypts their data so that
it can be transmitted more securely. Your program should
read a four-digit integer and encrypt it as follows: Replace
each digit by (the sum of that digit plus 7)modulus 10. Then,
swap the first digit with the third,swap the second digit with
the fourth and print the encrypted integer. Write a separate
program that inputs an encrypted four-digit integer and
decrypts it to form the original number.

206

Information Encoding, Transmission and Decoding

A company wants to transmit data over the telephone,but
they are concerned that their phones may be tapped. All of
their data are transmitted as strings of characters. They have
asked you to write a program that encrypts their data so that
it can be transmitted more securely. Your program should
read a string from a file and encrypt it as follows: Replace
each char by (the sum of its digit plus KEY) modulus 256.
Then, invert every other character. Finally, report the string
in reverse order (back-to-front). Ask the user for the integer
KEY and if encoding or decoding is to be performed, read the
data from a file and write the output message to another file.

207

Solution

Problem Understanding
Top-Down algorithmic design
Details implementation
Testing
Debugging and redesign

208

1. Problem Understanding

209

Communication
Medium

1. Problem Understanding

210

Communication
Medium

What are they saying?
How can I use it?

Can we talk? Use the Key!

36
36

1. Problem Understanding

211

Encryption:
1. char (char plus KEY) % 256
2. Then, invert every other character.
char 256-char, if char_index =odd

char , if char_index =even
3. Report the string in reverse order

Decryption:
1. Report the string in reverse order
2. Then, invert every other character.
3. char (char plus (256-KEY)) % 256

1. Problem Understanding

212

Communication
Medium

What are they saying?
How can I use it?

Can we talk? Use the Key!

