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1. Introduction 
Considerable effort has been devoted to the study of 

nonlinear oscillations and chaotic motion of some coupled 
oscillators in several scientific fields [1,2]. The nonlinear 
oscillations and chaotic motions in a controlled 
electromechanical seismograph system with time-varying 
stiffness is investigated [3]. The stiffness in the seismograph 
is considered as the time varying in a periodic form. The 
method of multiple time scale perturbation technique is 
used to solve the nonlinear differential equations 
describing the controlled system up to second order of 
accuracy, where different active controllers are applied. 
The dynamics and synchronization of two coupled 
electromechanical devices and effects of higher 
nonlinearity were investigated [4], where harmonic 
balance is utilized to derive the amplitude equations in the 
general case. The averaging method is used to study the 
oscillatory state of a self-sustained electromechanical 
system [5]. The effects of the nonlinear coupling, detuning 
parameter and chaotic behavior were investigated. Chaos 
control, bifurcation diagrams of the electromechanical 
seismograph system were studied [6]. The amplitudes of 
the fifth subharmonic and superharmonic vibrations states 
of the system were found using the multiple scales method. 
The appropriate coupling parameter of an electromechanical 
damping device with magnetic coupling was found 
analytically and numerically [7]. The problem of suppressing 
the vibrations of a hinged-hinged flexible beam when 
subjected to external harmonic and parametric excitations 
is considered and studied. The multiple scale perturbation 
method is applied to obtain a first-order approximate 
solution. The equilibrium curves for various controller 
parameters are plotted. The stability of the steady state 
solution is investigated using frequency-response equations. 
The approximate solution was numerically verified. It is 

found that all predictions from analytical solutions were in 
good agreement with the numerical simulations [8]. The 
bifurcation structure of the model was analyzed and the 
effects of the coupling parameter on the bifurcation 
structure was studied. An extended Duffing-Van der Pol 
oscillator was considered and the method of multiple 
scales is utilized to obtain the approximate solution both 
in the case of non-resonant and resonant states [9]. 
Moreover, the Melinkov theorem is used to investigate the 
chaotic behavior of the system. A particular case of the 
micro-elctro-mechanical system (MEMS) model is 
introduced by including a time-varying stiffness, and the 
motion of the model is studied using the phase portrait, 
time series, and Poincare map [10]. It is shown from the 
phase portrait, and Poincare map that there exist different 
motions in the MEMS resonator system under certain 
conditions. Melnikov’s method has been employed to 
define the regions of parameter space where homoclinic 
and heteroclinic chaos can occur. Numerical simulations 
are performed to study the system’s behavior for various 
parameter sets and to verify the result from Melnikov’s 
method. in the self-sustained electromechanical system 
with multiple functions is considered, and he averaging 
and the harmonic balance methods were used to analyze 
the amplitudes of the oscillatory states in the autonomous 
and nonautonomous cases, respectively [11]. Different 
bifurcation structures, stability chart and the variation of 
the Lyapunov exponent were obtained. The dynamics and 
chaos control of the self-sustained electromechanical 
device with and without discontinuity were studied [12]. 
The effects of the amplitude of the parametric modulation 
and some coefficients along with the transition to chaotic 
behavior were studied. 

In this paper, the steady-state response of the 
seismograph model with time-dependent magnetic field is 
investigated for various system parameters under 
subharmonic resonance condition. The stability of the 
numerical solution is studied using the frequency response 
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function method. Three active control laws have been 
applied and their performance is investigated. Numerical 
integration using Runge-Kutta fourth order is performed 
to verify analytical results obtained by the method of 
multiple scales perturbation technique. 

2. Approximate Perturbation Solution 
The considered seismograph system will be subjected 

to parametric excitations with periodically time-varying 
magnetic field. The modified governing equations of 
motion are given by [3], 
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where, the coefficients are the same as those defined in [3].  
The method of multiple scales is used to obtain 

approximate solutions of the nonlinear equations (1) and 
(2). Assuming x and q in the form 

 0 0 1 1 0 1( , ) ( , ) ( , ) ...,x t x T T x T Tε ε= + +  (3) 

 0 0 1 1 0 1( , ) ( , ) ( , ) ...,q t q T T q T Tε ε= + +  (4) 

where T0 = t is the fast time scale associated with changes 
occurring at the frequencies ω, ω1,2 and Ω, and T1 = εt is 
the slow time scale associated with modulations in the 
amplitudes and phases caused by the nonlinearity, 
damping, and resonances. 

In terms of T0 and T1, the time derivatives become: 
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Then substituting equations (3) and (4) and the time 
derivatives into equations (1) and (2) and comparing the 
coefficients of the same powers of ε, we obtain 
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The solutions of (5) and (6) can be expressed as: 

 
( )
( )

1 0 1 00 0 1 0 0

0 00 0 1 0 0

, ,

, ,

i T i T

iT iT

x T T A e A e

q T T B e B e

ω ω−

−

= +

= +
 

where A0, B0 are complex functions in T1 . 
Substituting for x0 and q0 into equations (7) and (8), 

then the general solutions of equations (1) and (2) can be 
expressed in the following simplified form 
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3. Subharmonic Resonance Analysis 
In this section, the principal parametric resonance 

(subharmonic) which occurs when the frequency of the 
excitation is close to twice that of the natural frequencies 
of the system, that is ( 12ωΩ ≅ ) and ( 22ω ω≅ ), in the 
presence of one-to-one internal resonance ( 1 2 1ω ω≅ = ). 
The previous resonant relations can be expressed as follows 

 1 1 2 1 32 , 2 , 1 .ω εσ ω εσ ω εσΩ = + = + = +  (11) 

Eliminating the secular terms from equations (9) and 
(10), the solvability condition yields 
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Substituting equation (11) into equations (12) and (13) 
then dividing by 1 0i Te ω  and 0iTe , respectively, we get 
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Substituting the polar forms 10
1
2
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where ,a b  and 1 2,θ θ  are the steady-state amplitudes and 
the phases of motions, respectively, and simplifying we 
obtain  
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Dividing (16) by 11
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where 1 1 1 12Tυ σ θ= − , 2 2 1 22Tυ σ θ= − ,  
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Separating real and imaginary parts, gives the 
governing equations of the amplitudes a, b and phases υi 
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The steady-state solutions correspond to constant a, b, 
υi, (i =1,…,4); that is 1 2 3 0a b υ υ υ′ ′ ′ ′ ′= = = = = . Then 
equations (20) – (23), which describe the modulation of 
the amplitudes and the phases for the parametric 
resonance response of the system (1) and (2), become 
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Squaring (24-27), adding (24) and (25), then (26) and 
(27) yields the following frequency response equations 

 6 4 2
1 2 3 4 0,a a aΓ +Γ + Γ + Γ =  (28) 

 10 8 6 4 2
5 6 7 8 9 10 0.b b b b bΓ +Γ + Γ + Γ + Γ + Γ =  (29) 

The coefficients iΓ  , for i=1,2,…,10 are defined in 
Appendix C. 

4. Numerical Results 
In this section, the steady-state response of the system 

is investigated for various system parameters under the 
subharmonic resonance condition. The stability of the 
numerical solution is studied using the frequency response 
function method. 

The frequency response Equations (28) and (29) which 
are nonlinear algebraic equations in the amplitude a and b 
respectively are solved. The results are shown in Figure 1 
as the amplitude a of the mechanical part against the 
detuning parameter σ2, and in Figure 2 as the amplitude b 
of the electrical part against the detuning parameter σ1 for 
different values of the system parameters.  

Figures 1(a), (c) , (d) and (h) show that the steady-state 
amplitude a decreases as each of the natural frequency ω1, 
the damping coefficient μ1, the nonlinear coefficient γ1 and 
the gain G1 increase. It can also be seen that the branches 
of the response curves converge to each other and the 
region of unstable solutions get smaller. But in Figures 1(e) 
and (g) the steady- state amplitude a increases as each of 
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the second mode amplitude b and the mechanical 
excitation amplitude F increase. Figure 1(f) indicates that 
the curves are shifted as the detuning parameter σ3 varies. 

The effect of varying the coupling coefficient α1 on the 
frequency response is trivial, as shown in Figures 1(b). 

 
Figure 1. Frequency response curves of the mechanical part at subharmonic resonance case 12ω ωΩ = =  with linear velocity feedback when: F=3.0, 
γ1=2.0, ω1=1.0, σ3=0.01, μ1=0.1, α1=2.5, b=0.01, G1=0.1 

It is shown from Figure 2(g) that the branches of 
frequency response curve diverge and the unstable region 
increases as the first mode amplitude a increase. This 
would explain that there might be a transfer of energy 
from the first mode to the second mode through the 
coupling parameters and the internal resonance as well. 
Whereas Figure 2(i), indicates that the steady-state 
amplitude b increases as the electrical amplitude E 
increase. Figures 2(a) and (b) show that the effects of 

varying the natural frequency ω1 and the coupling 
coefficient α2 are trivial. But from Figures 2(c), (d), (e), (f) 
and (j) we can see that the steady-state amplitude b 
increases as each of the linear damping coefficient μ2, the 
nonlinear damping coefficient μ3, the nonlinear coefficient 
γ2, the nonlinear coefficient γ3 and the gain G2 decrease. 
Figure 2(h) indicates a shifting effect to the left and an 
increase in the amplitude as the detuning parameter σ3 
increases. 

 
Figure 2. Frequency response curves of the electrical part at resonance case with linear velocity feedback, when: E=2.0, γ2=0.07, γ3=0.7, ω1=1.0, 
σ3=0.01, μ2=0.03, μ3=0.2, α2=0.02, a=0.01, G2=0.1 

Figure 3 and Figure 4 show the force response curves of 
the mechanical part and electrical part, respectively, at 
resonance case with linear velocity feedback. We can see 
in Figures 3(a), (c), (d), (f) and (h) that the amplitude of 

the mechanical part a increases as each of the natural 
frequency ω1, the linear coefficient µ1, the nonlinear 
coefficient γ1, the detuning parameters σ3, and the gain G1 
decrease. Figure 3(b) shows that as the mechanical force 
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lies in the range 0 < F < 0.4, the amplitude a increases as 
the coupling coefficient α1 is increased. But if F > 0.4, 
then any further increase in the coupling coefficient α1 has 
insignificant effect on the amplitude and may lead to 

saturation phenomenon. From Figure 3(e) we can see that 
the first mode amplitude a increases as second mode 
amplitude b increases. 

 
Figure 3. Force response curves of the mechanical part at resonance case with linear velocity feedback, when: σ2=0.05, γ1=2.0, ω1=1.0, σ3=0.01, μ1=0.1, 
α1=2.5, b=0.01, G1=0.1 

 
Figure 4. Force response curves of the electrical part at resonance case with linear velocity feedback when: σ1=0.05, γ2=0.07, γ3=0.7, ω1=1.0, σ3=0.01, 
μ2=0.03, μ3=0.2, α2=0.6, a=0.01, G2=0.1 

It can be shown from Figures 4(c), (d) and (j) that the 
electrical excitation amplitude E increases as each of the 
linear coefficient µ2 , the nonlinear coefficient µ3, and the 
gain G2 decrease. But it can be seen from Figures 4 (a), (b) 
and (g) that the electrical excitation amplitude E increases 
as each of the natural frequency ω1, the coupling 
coefficient α2 and the first mode amplitude a increase. 
Moreover, a saturation phenomenon is noticed for the 
system as these parameters are increased when E > 0.3. 
Figures 4(e), (f), (h) and (i) show the effects of each of the 
nonlinear coefficients γ2,3 and the detuning parameters σ3 
and σ1. 

To verify the analytic predictions, Eqs. (1) and (2) are 
numerically integrated using a fourth order Runge-Kutta 
algorithm. A non-resonance system behavior is shown in 
Figure 5. Different resonance cases are investigated and 
shown in Figure 6, where the steady-state amplitude x has 
maximum peak at the subharmonic resonance case 
( 12ω ωΩ ≅ ≅ ) in Figure 6 (d). It is noticed that compared 
to the nonresonant case, the steady-state amplitude x is 
increased by 900%, while the steady-state amplitude q has 
not changed. Thus, it is considered as the worst resonance 
case of the system behavior. 
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Figure 5. Non-resonant time history without control when: Ω=3.0, ω1=2.7, ω=3.5, F=0.05, E=0.05 , γ1=0.04, γ2=0.07, γ3=0.7, f1 =0.1, μ1=0.1, μ2=0.3, 
μ3=0.2, α1=2.5, α2=0.02 

 
Figure 6. Time history solution at different resonance cases without control when: Ω=3.0, ω1=2.7, ω=3.5, F=0.05, E=0.05 , γ1=0.04, γ2=0.07, 
γ3=0.7, f1 =0.1, μ1=0.1, μ2=0.3, μ3=0.2, α1=2.5, α2=0.02 

 
Figure 7. Subharmonic resonance time history with various control laws, when: Ω=2.0, ω1=1.0, ω=2.0, F=0.05, E=0.05, γ1=0.04, γ2=0.07, γ3=0.7,  
f1 =0.1, μ1=0.1, μ2=0.3, μ3=0.2, α1=2.5, α2=0.02, G1=G2=0.2 
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From Figure 7(b) we can see that the best control 
method is the negative linear velocity feedback. The effect 

of varying the gains G1 and G2 on the x and q amplitudes 
are shown in Figures 8(a) – (e). 

 
Figure 8. Effects of the linear velocity feedback gains G1 and G2 on the subharmonic resonance time solution, when : Ω=2.0, ω1=1.0, ω=2.0, F=0.05, 
E=0.05, γ1=0.04, γ2=0.07, γ3=0.7, f1 =0.1, μ1=0.1, μ2=0.3, μ3=0.2, α1=2.5, α2=0.02 

 
Figure 9. Effect of the parametric excitation amplitude f1 at resonance case without control 
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The effect of parametric excitation f1, the amplitude of 
time varying magnetic field, is studied at subharmonic 
resonance case and shown in Figure 9, which represents 
the time-series solutions (t, x) for the mechanical part , and 
(t, q) for the electrical part. Considering Figure 9(a) as 
basic case for comparison, it can be seen from Figure 9 
that as the parametric excitation increases, a chaotic 
motion occurs for the x amplitude and the q amplitude. 
Figures 9(b) – (e) indicate that a continuous increase in f1 
changes the shape of the chaotic motion. 

5. Conclusions 
The response and stability of the system of coupled 

non-linear differential equations representing the non-
linear dynamical two-degree-of-freedom electromechanical 
system including cubic and quintic nonlinearities subject 
to parametric excitation forces with time-varying magnetic 
field are solved and studied. The investigation includes the 
solutions applying both the perturbation technique and 
Runge-Kutta numerical method. The stability of the 
system is investigated applying both the frequency 
response equation and time series solution. From the study 
it is concluded that the active controllers are very effective 
tool in vibration reduction at many different resonance 
cases. They are very helpful in suppressing the undesired 
vibration or sometimes eliminate them. The end of the 
work gives some recommendations regarding the design 
of such system. Also a comparison with similar published 
work is reported. In this section, the main conclusions of 
the system are reported briefly. 

1. It is found that the frequency response curves 
consist of two branches. These curves are bent to 
right or left for some curves due to the 
nonlinearity effect (hardening or softening). This 
leads to multi-valued solutions and hence to a 
jump phenomenon occurrence, which are typical 
characteristics of the behavior of nonlinear 
dynamical system and are an important challenge 
in the controllers design. These results are in 
agreement with the results in [3]. 

2. The steady-state amplitudes x and q of the 
mechanical and electrical parts, respectively, of 
the system are monotonic increasing functions in 
the mechanical and electrical forces F and E, 
respectively. 

3. The steady-state amplitude x of the mechanical 
part is  
i) a monotonic increasing function in the 

steady-state amplitude q and the 
coupling coefficient α1. 

ii) a monotonic decreasing function in the 
linear damping coefficient μ1, the 
nonlinear coefficient γ1 and the gain G1. 

4. The steady-state amplitude q of the electrical part 
is 
i) a monotonic increasing function in the 

steady-state amplitude x, the natural 
frequency of the mechanical part ω1 and 
the coupling coefficient α2. 

ii) a monotonic decreasing function in the 
linear and nonlinear damping coefficients 
μ1 and μ3, the nonlinear coefficients γ1 
and γ3 and the gain G2. 

5. The force response curves could detect the 
behavior of some parameters that show 
insignificant (trivial) effect in the frequency 
response curves. It also gives an indication to the 
values of some parameters at which saturation 
may occur. 

6. The applied parametric forces produce various 
resonance cases. The resonance case with 
maximum peak of amplitudes is considered as 
the worst resonance case. Numerical results show 
that the worst resonance case under parametric 
forces occurs at the subharmonic resonance case 
at which the frequency of the excitation is twice 
that of the natural frequency of the system. 

7. As for the parametric excitations f1 and f2, which 
are the amplitudes of the time-varying magnetic 
field. When the magnitude of any excitation is 
increased a chaotic behavior occurs in both 
modes of the system. The chaotic motion changes 
as the parametric excitation changes. Moreover, 
the shapes of chaotic motions for both modes are 
different. Whereas in [3], the parametric 
excitation, which results from varying the 
stiffness of the mechanical oscillator periodically, 
has an effect on the x-amplitude only. Thus, 
stability and controllability in electromechanical 
seismograph models with time-varying magnetic 
field are better than seismograph models with 
constant or time-varying stiffness. 

8. Different control laws were applied to the system 
under parametric excitation forces. It is noticed 
that the best control method is the negative 
velocity feedback. Moreover, the higher the gain 
(G1 or G2) is, the faster is the approach to the 
equilibrium solution, which is in agreement with 
[3]. This control force has also an effect in 
reducing or eliminating nonlinearity effect in the 
frequency response curves. 
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