
A QUICK DIP INTO MATHEMATICA

ULRICH KRÄHMER

Abstract. These are notes written during the process of learning
how to use mathematica. It ended abruptly when I got the (maybe
wrong) impression that it can not (yet) do what I really need for
my research, but sitll it is a helpful tool for many other things.

Contents

1. The afternoon 1
1.1. Introduction 1
1.2. Compute 2+2 1
1.3. Counting the primes less than 50 2
1.4. NCAlgebra 5
2. The evening 7

1. The afternoon

1.1. Introduction. OK, so here I am, not knowing anything at all
about computer algebra systems. In three weeks’ time I have to teach
students how to use mathematica, and on that occasion I want to
learn also how to use it for simplfying expressions in a noncommutative
algebra defined in terms of generators and relations.

1.2. Compute 2+2. Most of you will work with the graphical user
interface. But you can aslo work in shell, my mathematica is for exam-
ple only installed on a university server and I use it in a shell by sshing
there and typing

/maths/mathematica7/Executables/math

which produces

Mathematica 7.0 for Linux x86 (64-bit)

Copyright 1988-2008 Wolfram Research, Inc.
1

2 ULRICH KRÄHMER

In[1]:=

Now I can type in a command. When I’m done I hit ENTER and
the command will be executed. If you use the graphical front end you
need SHIFT plus ENTER instead. For example, if I type 2+2 and hit
ENTER the whole screen looks like this:

Mathematica 7.0 for Linux x86 (64-bit)

Copyright 1988-2008 Wolfram Research, Inc.

In[1]:= 2+2

Out[1]= 4

and I can now type the second command.

1.3. Counting the primes less than 50. Now I googled a bit for
examples and tutorials. I spare you banalities, let us go right away
into something more substantial but then study it step by step. Type
(or better copy and paste) in one go the following after the new input
prompt In[2]:= and hit ENTER.

sieve[n_]:=

Module[{count, result, i},

result = Range[n];

result[[1]] = 0; i = 2;

While[i^2 <= n,

If[result[[i]] != 0,

For[j = 2*i, j <= n, j += i, result[[j]] = 0]];

i++];

count = 0;

For[k = 1, k <= n, k++,

If[result[[k]] > 0, count++]];

count]

There should be no ouput, just In[3]:=. Now type

sieve[50]

and evaluate (meaning hit ENTER). You should get

A QUICK DIP INTO MATHEMATICA 3

Out[3]= 15

which is the number of primes less or equal than 50 - the whole code
has implemented the sieve of Eratosthenes.

Let us analyse this step by step.

sieve[n_]:=

defines a function called “sieve”. It has one variable “n”, the lower
dash is absolutely crucial and tells mathematica this is a variable I
think. “Module” defines local variables “count”, “result”, “i”. If later
in this mathematica session you introduce a constant named “count”
with some value, mathematica will be clever enough not to be confused
when you call “sieve” afterwards. Note that the square bracket of
“Module” is closed only at the very end of the whole algorithm.

“{count, result, i}” should be clear. Then after a comma comes
the actual algrotihm starting with “result = Range[n];” which says
that “result” should be the list of natural numbers from 1 to n. The
semicolon says that here a command ends and should be carried out.

Next comes “ result[[1]] = 0;” - well, “result” is by its definition
given in the previous step an array, i.e. a list of things, and this here
addresses its first entry and sets it to zero. To check I understood this
correctly I do some experiments. The glorious VPN of my university
has kicked me out in the meantime so I have to restart everything,
hence it starts with In[1] again.

In[1]:= testlist=Range[5]

Out[1]= {1, 2, 3, 4, 5}

In[2]:= testlist[[1]]

Out[2]= 1

In[3]:= testlist[[4]]

Out[3]= 4

In[4]:= testlist[[2]]=3

4 ULRICH KRÄHMER

Out[4]= 3

In[5]:= testlist

Out[5]= {1, 3, 3, 4, 5}

I hope this array concept is clear now, so let us get back to our
“sieve” function. “i=2” should be clear.

Now comes a huge “While”-loop. While something is true, here
i2 ≤ n, she (mathematica) is doing something, namely

If[result[[i]] != 0,

For[j = 2*i, j <= n, j += i,

result[[j]] = 0]];

which we discuss in a second. After mathematica has carried this out
“i++” adds 1 to the variable “i” and she checks again whether i2 ≤ n
is still true and so on.

In the nested “If” and “For”-thing, “!=” means 6= and “j += i”
means “replace j by j+i”. Things should be clear now as long as you
know the mathematics behind the sieve of Eratosthenes, for this see

http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

So far the algorithm has produced a list of the integers from 1 to
n and then replaced all integers that are not prime by zeroes. Now
mathematica counts with

count = 0;

For[k = 1, k <= n, k++,

If[result[[k]] > 0, count++]];

these zeroes, and the last line

count]

makes her to return the value of “count” as the value of the whole
function “sieve”. Recall that the square bracket just closes the one
from “Module[”.

I guess we are done with this example which I have taken from the
very good and one (long) page long tutorial

A QUICK DIP INTO MATHEMATICA 5

http://www.outbacksoftware.com/mathematica/

mathematica-intro.html

which contains also some other excellent and instructive examples. Fur-
thermore, I have used

http://reference.wolfram.com/

search.html?query=!%3D&collection=reference&lang=en

to find out what a single command does if it was not clear.

1.4. NCAlgebra. Now I feel comfortable with the basics so I searched
the web for the things I want to do. The first I found was the NCAl-
gebra suite, see

http://www.math.ucsd.edu/~ncalg/

You have to download this package from the above page. Details on
how to do this, how to install it, and how to use it can be found in a
344 pages documentation to be downloaded there as well.

In my case I downloaded “NC2010.tgz”, copied it into my home
directory on the uni server, untared it which produced a folder “NC/”,
and then I could restart mathematica and things worked fine.

So I assume now this installation is complete and you have started
mathematica. Right now my funtasting VPN has again stopped work-
ing so I anyway have to restart. Then I load the package by saying

In[1]:= << NC‘

which produces (hit ENTER now) the output

You are using the version of NCAlgebra which is found in:

/home/staff1/ukraehmer/NC.

You can now use "<< NCAlgebra‘" to load

NCAlgebra or

"<< NCGB‘" to load NCGB.

I am interested in the NCGB package which does noncommutative
Gröbner bases, so I say

6 ULRICH KRÄHMER

In[2]:= << NCGB‘

which yields a longish output. As you guess, “<<” reads a file, I will
talk about this later again.

Now follow the following steps which is a simplified example from the
NCGB documentation. I always list input and the output produced
when evaluating the input.

In[3]:= SetNonCommutative[x,y]

Out[3]= {False, False}

Mathematica now knows that “x” and “y” are some noncommuting
variables.

In[4]:= SetMonomialOrder[{x,y}]

If you know something about Gröbner bases, you have to give some
ordering to your variables, and this is done here. I will not explain the
theory behind this, but later when you deal with complicated relations
it might matter which ordering you use, the whole algorithm might not
work with some orderings.

Now comes the first real computation:

In[5]:= NCSimplifyAll[{x**y**x-3*y**x**x},{x**y-4**y**x},4]

There is some longish output, and then, at the end

x ** x ** y

Out[6]= {-----------}

16

Impressive, isn’t it? She understands that xy = 4yx and then simplifies
xyx − 3yx2. The 4 at the very end of the input tells her how hard to
try to simplify things, it seems she would otherwise get lost in more
difficult ones, its some depth of search. Feel free to check the manual
of NCAlgebra if you want to know it, I personally don’t but I guess I
have to keep the number large enough in bigger computations.

A QUICK DIP INTO MATHEMATICA 7

So far, I have now lost my VPN connection for the third time and
should have left anyway ten minutes ago to fetch my son from his piano
lessons, so I call this a day and will continue tomorrow.

2. The evening

There was an hour left before bed time, so I thought I’d finish the
example from the NCGB documentation. First of all I should say that
I noticed that above I made a typo, I meant to use “**” everywhere
but once just wrote “*” and it seems mathematica can cope with this.
“*” is the usual commutative multiplication that you will use in stan-
dard mathematica without the NCAlgebra package when dealing with
numbers, polynomials etc., “**” is the new one defined by the noncom-
mutative algebra package.

Anyway, what I really want to say is: I played a bit and read this
and that and now I think NCAlgebra is not really good for what I
want to do which is for example dealing with relations that involve a
parameter q so that at the end the objects one handles are quotients of
free algebras in finitely many generators but with coefficients in Q(q),
the field of rationl functions in q with values in the rational numbers.
Hence I guess I forget about matheatica very soon again unless I have
to use it for teaching.

