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Abstract

We address two issues in Evolutionary Robotics, namely the genetic encoding and the

performance criterion, also known as fitness function. For the first aspect, we suggest to

encode mechanisms for parameter self-organization, instead of the parameters themselves as

in conventional approaches. We argue that the suggested encoding generates systems that

can solve more complex tasks and are more robust to unpredictable sources of change. We

support our arguments with a set of experiments on evolutionary neural controller for physical

robots and compare them to conventional encoding. In addition, we show that when also the

genetic encoding is left free to evolve, artificial evolution will select to exploit mechanisms of

self-organization. For the second aspect, we shall discuss the role of the performance criterion,

also known as fitness function, and suggest Fitness Space as a framework to conceive fitness

functions in Evolutionary Robotics. Fitness Space can be used as a guide to design fitness

functions as well as to compare different experiments in Evolutionary Robotics.
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1 Introduction

Evolutionary Robotics is a methodology for developing robotic systems that adapt to par-

tially unknown and dynamic environments with minimal or without human intervention. The

method is based on artificial evolution (Holland, 1975; Rechenberg, 1973) of a population of

robots whose components (control architecture, electronic circuit, or morphology) are encoded

on artificial chromosomes (bit strings). The best chromosomes, i.e. those that correspond to

the most performing robots in the population, are selected for reproduction, crossed over

and randomly mutated to generate a new population of chromosomes. The procedure is re-

peated until an individual with desired characteristics is born or until the performance of the

population stops increasing (Nolfi & Floreano, 2000).

In this article we address two crucial issues in Evolutionary Robotics, namely the genetic

encoding and the performance criterion, also known as fitness function. For the first aspect,

we suggest to encode mechanisms for parameter self-organization, instead of the parameters

themselves as in conventional approaches. We argue that the suggested encoding generates

systems that can solve more complex tasks and are more robust to unpredictable sources of

change. We support our arguments with a set of experiments on evolutionary neural controller

for physical robots and compare them to conventional encoding. In addition, we show that

when also the genetic encoding is left free to evolve, artificial evolution will select to exploit

mechanisms of self-organization. For the second aspect, we shall discuss the role of the per-

formance criterion, or fitness function, and suggest Fitness Space as a framework to conceive

fitness functions in Evolutionary Robotics. Fitness Space can be used as a guide to design

fitness functions as well as to compare different experiments in Evolutionary Robotics.

2 Coping with Change

The situated nature of Evolutionary Robotics is such that often evolved controllers find sur-

prisingly simple –yet efficient– solutions that capitalize upon unexpected invariants of the

interaction between the robot and its environment. For example, a robot evolved for the abil-
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ity to discriminate between shapes can do so without resorting to expensive image processing

techniques by simply checking the correlated activity of two receptors located in strategic posi-

tions on the retinal surface (Harvey, Husbands, & Cliff, 1994). Analogously, a robot evolved for

finding a hidden location can display performances similar to those obtained by rats trained

under the same conditions without resorting to complex environmental representations by

using simple sensory-motor sequences that exploit geometric invariants of the environment

(Lund & Miglino, 1998). The remarkable simplicity1 and efficiency of these solutions is an

advantage for fast and real-time operation required from autonomous robots, but it raises the

issue of robustness when environmental conditions change. Environmental changes can be a

problem also for other approaches (programming, learning, e.g.) to the extent in which the

sources of change have not been considered during system design, but they are even more so

for evolved systems because these rely on environmental aspects that often are not predictable

by an external observer.

Environmental changes can be induced by several factors such as modifications of the

sensory appearance of objects (e.g., different light conditions), changes in sensor response, re-

arrangement of environment configuration, transfer from simulated to physical robots, transfer

across different robotic platforms, and behavioral changes of other agents in the same envi-

ronment.

Some authors have suggested to improve the robustness of evolved systems by adding

noise (Miglino, Lund, & Nolfi, 1996; Jakobi, 1997) and by evaluating fitness values in several

different environments (Thompson, 1998). However, both techniques imply that one knows

in advance what makes the evolved solution brittle in the face of future changes in order to

choose a suitable type of noise and of environmental variability during evolutionary training.

Another approach consists of combining evolution and learning “during life” of the individual

(see (Belew & Mitchell, 1996) for a comprehensive review of the combination of evolution and

learning). This strategy not only can improve the search properties of artificial evolution, but

can also make the controller more robust to changes that occur faster than the evolutionary

1This does not imply that evolutionary approaches are restricted to forms of reactive intelligence; see for example
(Floreano & Mondada, 1996).
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time scale (i.e., changes that occur during the life of an individual) (Nolfi & Floreano, 1999).

The combination of evolution and learning is typically achieved by evolving neural controllers

that learn with an off-the-shelf algorithm, such as reinforcement learning (Ackley & Littman,

1992) or back-propagation of error (Nolfi, Miglino, & Parisi, 1994), starting from synaptic

weights specified on the genetic string of the individual. Only initial synaptic weights are

evolved. A limitation of this approach is the “Baldwin effect”, whereby the evolutionary

costs associated with learning give a selective advantage to the genetic assimilation of learned

properties and consequently reduce the plasticity of the system over time (Mayley, 1996).

Another limitation consists in the fact that the adaptation process is constrained by the type

of learning algorithm chosen by the experimenter, which may not be the most suitable for the

actual situation.

Here we suggest to evolve the adaptive characteristics of a controller instead of combining

evolution with off-the-shelf algorithms. The method consists of encoding on the genotype

a set of four local Hebb rules for each synapse, but not the synaptic weights, and let these

synapse use these rules to adapt their weights online starting always from random values at

the beginning of the life. Since the synaptic weights are not encoded on the genetic string,

there cannot be genetic assimilation of abilities developed during life. In other words, these

controller can rely less on genetically-inherited invariants and must develop on-the-fly the

connection weights necessary to achieve the task. At the same time, the evolutionary cost of

adaptation (i.e., the time and energy spent to adapt goes to the detriment of the individual’s

fitness) implicitly puts pressure for the generation of fast-adaptive architectures.

In preliminary investigations described in this journal (Floreano & Mondada, 1998) we

compared evolution of genetically-determined weights with evolution of adaptive controllers

on a simple navigation task and showed that the latter approach generates equally-good per-

formances in less generations by taking advantage of the combined search methods. Later,

we showed that evolution of adaptive controllers significantly alters the performance of robots

that must cope with dynamic environments and described an experiment where co-evolutionary

adaptive predators adapted on line to co-evolutionary prey robots (Floreano, Nolfi, & Mon-

dada, 2000).
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Here we describe a new set of experiments designed to further show that this approach

can generate more complex controllers and test its robustness to environmental changes that

were not included during evolutionary training. For what concerns adaptation to change,

we focus on transfer of evolved controllers across different robotic platforms whose sensory-

motor characteristics require partial re-configuration of the control system. In another set of

companion papers, we also show that this approach is effective for environmental changes that

involve new sensory characteristics and new spatial relationships of the environment (Urzelai

& Floreano, 2000c) and in transfers from simulations to physical robots without additional

evolution (Urzelai & Floreano, 2000b).

In the next sections we give an overview of the evolutionary method, describe its application

to a complex sequential task, and compare the results to other encoding schemes. We then

present some results on the transfer of evolved controllers across different robotic platforms.

Finally, we show that when the genetic encoding itself is evolved, best individuals across

generations select encoding of adaptive mechanisms rather than encoding of synaptic weights.

2.1 Encoding Mechanisms of Adaptation

The artificial chromosome encodes a set of four modification rules for each component of the

neural network (components can be individual synapses or groups of synapses that converge

towards the same neuron, as we shall see below), but not the synaptic strengths of the network.

Whenever an artificial chromosome is decoded into a neural controller, the synaptic strengths

are set to small random values. This means that the robot will initially display random

actions both at the initial generation and at later generations. However, as time goes the

synapses start to change their value using the genetically specified rules every 100 ms (the

time necessary for a full sensory-motor loop on the physical robot). Notice that synaptic

adaptation occurs on-line while the robot moves and that the network self-organizes without

external supervision and reinforcement signals. The fitness function is computed along the

whole duration of the robot “life”. This introduces an implicit learning cost (Mayley, 1996)

that gives selective advantage to individuals that can adapt faster. At the end of the life, the
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Figure 1: Synaptic change for each of the four Hebb rules. Notice that this is the amount of change
∆w added to the synapses, not the synaptic strength. Each graph indicates the amount of change
as a function of presynaptic x and postsynaptic y activity. The amount of change also depends on
the current strength w of the synapse so that synapses are always bound between 0 and 1. Three
graphs are shown for each rule, in the case of current strength 0.0, 0.5, and 1.0 respectively.

final synaptic strengths are not “written back” into the artificial chromosome.2

We have selected four types of modification rules (figure 1) to be encoded on the artificial

chromosome. The choice has been based on neurophysiological findings and on computational

constraints of local adaptation (the description of the rules that follows was given in a previous

issue of this journal (Floreano & Mondada, 1998) and is reported here only for sake of clarity).

In other words, these rules capture some of the most common mechanisms of local synaptic

2In other words, we use Darwinian evolution instead of Lamarckian evolution where the effects of learning are
encoded in the artificial chromosome. See (Yamamoto, Sasaki, & Tokoro, 1999) for an experimental comparison
between these two types of evolution in changing environments.
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adaptation found in the nervous systems of mammalians (Willshaw & Dayan, 1990). These

rules were modified in order to satisfy the following constraints. Synaptic strength could not

grow indefinitely, but was kept in the range [0, 1] by means of a self-limiting mechanism which

depended on synaptic strength. Because of this self-limiting factor, a synapse could not change

sign, which was genetically specified, but only strength. Each synaptic weight wij is randomly

initialized at the beginning of the individual’s life and is updated after every sensory-motor

cycle (100 ms),

wt
ij = wt−1

ij + η∆wij ,

where 0.0 < η < 1.0 is the learning rate and ∆wij is one of the four modification rules

specified in the genotype:3

1. Plain Hebb rule: can only strengthen the synapse proportionally to the correlated activity

of the pre- and post-synaptic neurons.

∆w = (1 − w) xy (1)

2. Postsynaptic rule: behaves as the plain Hebb rule, but in addition it weakens the synapse

when the postsynaptic node is active but the presynaptic is not.

∆w = w (−1 + x) y + (1 − w) xy (2)

3. Presynaptic rule: weakening occurs when the presynaptic unit is active but the postsy-

naptic is not.

∆w = wx (−1 + y) + (1 − w)xy (3)

4. Covariance rule: strengthens the synapse whenever the difference between the activations

of the two neurons is less than half their maximum activity, otherwise the synapse is

weakened. In other words, this rule makes the synapse stronger when the two neurons

3These four rules co-exist within the same network.
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have similar activity and makes it weaker otherwise.

∆w =




(1 − w)F(x, y) if F(x, y) > 0

(w)F(x, y) otherwise

(4)

where F(x, y) = tanh(4(1 − |x − y|) − 2) is a measure of the difference between the

presynaptic and postsynaptic activity. F(x, y) > 0 if the difference is bigger or equal to

0.5 (half the maximum node activation) and F(x, y) < 0 if the difference is smaller than

0.5.

The genetic encoding refers to the way in which the neural controller is mapped into a bit

string that represents the artificial chromosome of an individual. A gene is a set of bits that

encode a given feature of the neural controller. We consider two aspects of genetic encoding:

the feature level and the properties of that feature.

Features. We consider two levels of feature encoding that reflect the two basic components

of a neural networks: the synapses and the nodes (see top of figure 2). Synapse Encoding

refers to the case where a gene encodes the properties of an individual synapse. In this case,

the artificial chromosome will have as many genes as synapses in the network. This type

of encoding is rather common in works that combine evolutionary computation and neural

networks; it is also known as “direct encoding” (Yao, 1993). Node Encoding instead refers

to the case where a gene encodes the properties of an individual node. In that case, all the

incoming synapses to that node will share the same properties specified for that node (except

for the sign of the traversing signal which is a property of the presynaptic node). The artificial

chromosome will have as many genes as nodes in the network. Synapse Encoding allows a

detailed definition of the neural network, but for a fully connected network of N neurons the

genetic length is proportional to N2. Instead Node Encoding requires a much shorter genetic

length (proportional to N), but it allows only a rough definition of the controller.

Properties. Irrespectively of the feature level chosen (synapses or nodes), each gene is

composed of five bits that represent the properties of the corresponding feature. We consider
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Figure 2: Different type of Genetic Encoding. Top: Two feature levels. The genetic string
can either encode the properties of each individual synapse in the network (Synapse Encoding)
or encode the properties of each node only (Node Encoding). In the latter case, the encoded
properties are applied to all incoming synapses to that node. Node Encoding results in shorter
genetic strings. Bottom: Three types of properties. Genetically-determined properties specify the
connection sign and strengths of synapses. Adaptive properties specify the sign, the adaptation
rule, and the learning rule of the synapses. Noisy properties specify the sign, weight strength,
and a noise range that is continuously applied to the synapse. Properties are applicable to both
Synapse and Node encoding, but in the latter case all incoming synapses will be have the same
properties.

three types of properties (see bottom of figure 2 and the table). For all three types, the first

bit always represents the sign of the signal travelling outward (either through the synapse in

the case of synapse encoding or through the outgoing axon in the case of node encoding). The

remaining four bits can encode the following properties:

Encoding Bits for one synapse / node

Genotype 1 2 3 4 5

A sign strength

B sign Hebb rule rate

C sign strength noise

Table 1: Genetic encoding of synaptic parameters for Synapse Encoding and Node Encoding. In
the latter case the sign encoded on the first bit is applied to all outgoing synapses whereas the
properties encoded on the remaining four bits are applied to all incoming synapses. A: Genetically
determined controllers; B: Adaptive synapse controllers; C: Noisy synapse controllers.
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1. Genetically-determined synapses: 4 bits encode the synaptic strength. This value is

constant during “life” of the individual. This is the conventional way of evolving neural

networks (Yao, 1993).

2. Adaptive synapses: 2 bits encode the 4 adaptive rules described above and 2 bits the

corresponding learning rate. Synaptic weights are always randomly initialized at the

beginning of an individual’s life and then updated on-line every 100 ms according to

their own adaptation rule while the individual interacts with the environment. This is

the core of the methodology proposed in this paper, that is evolving the mechanisms of

self-organization of a controller.

3. Noisy synapses: 2 bits encode the weight strength and 2 bits a noise range. The synaptic

strength is genetically determined at birth, but a random value extracted from the noise

range is freshly computed and added every 100 ms while the individual interacts with the

environment. This is a control condition to check whether the effects of random variations

are equal or different from the mechanisms of self-organization described above.

In previous work (Floreano & Mondada, 1998) we used only Synapse Encoding and showed

that evolution of Adaptive synapses produces in less generation better controllers than evolu-

tion of Genetically-determined synapses for simple reactive navigation. In this paper we wish

to go one step further and investigate whether Adaptive Synapses can use Node Encoding

which is a much more compact representation. In the next set of experiments, we will com-

pare evolution of Adaptive synapses with Node Encoding to other types of genetic encoding

for a non-trivial sequential task.

2.2 A Sequential Task: The “Light-Switching” Problem

A mobile robot Khepera equipped with a vision module is positioned in the rectangular en-

vironment shown in figure 3. A light bulb is attached on one side of the environment. This

light is normally off, but it can be switched on when the robot passes over a black-painted

area on the opposite side of the environment. A black stripe is painted on the wall over the

light-switch area. Each individual of the population is tested on the same robot, one at a time,
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Figure 3: A mobile robot Khepera equipped with a vision module gains fitness by staying on the
gray area only when the light is on. The light is normally off, but it can be switched on if the
robot passes over the black area positioned on the other side of the arena. The robot can detect
ambient light and the color of the wall, but not the color of the floor.
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Figure 4: The Khepera robot used in the experiments. Infrared sensors (a) measure object prox-
imity and light intensity. The linear vision module (b) is composed of 64 photoreceptors covering
a visual field of 36◦ (center). The output of the controller generates the motor commands (c) for
the robot. Right figure shows the sensory disposition of the Khepera robot.

for 500 sensory motor cycles, each cycle lasting 100 ms. At the beginning of an individual’s

life, the robot is positioned at a random position and orientation and the light is off.

The fitness function is given by the number of sensory motor cycles spent by the robot

on the gray area beneath the light bulb when the light is on divided by the total number of

cycles available (500). In order to maximize this fitness function, the robot should find the

light-switch area, go there in order to switch the light on, and then move towards the light

as soon as possible, and stand on the gray area. Since this sequence of actions takes time

(several sensory motor cycles), the fitness of a robot will never be 1.0. Also, a robot that

cannot manage to complete the entire sequence will be scored with 0.0 fitness. A light sensor

placed under the robot is used to detect the color of the floor—white, gray, or black— and

passed to a host computer in order to switch on the light bulb and compute fitness values. The
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Figure 5: The neural controller is a fully-recurrent discrete-time neural network composed of 12
neurons giving a total of 12 x 12= 144 synapses (here represented as small squares of the unfolded
network). 10 sensory neurons receive additional input from one corresponding pool of sensors
positioned around the body of the robot shown on the left (l=left; r=right; f=front; b=back).
�IR=Infrared Proximity sensors; �L=Ambient Light sensors; �V=vision photoreceptors. Two motor
neurons �M do not receive sensory input; their activation sets the speed of the wheels (Mi > 0.5
forward rotation; Mi < 0.5 backward rotation)

output of this sensor is not given as input to the neural controller. After 500 sensory motor

cycles, the light is switched off and the robot is repositioned by applying random speeds to

the wheels for 5 seconds.

Notice that the fitness function does not explicitly reward this sequence of actions (which

is based on our external perspective), but only the final outcome of the sequence of behaviors

chosen by the robot. We shall come back to the issue of fitness design later on in section 3. The

controller we have used in our experiments is a fully-recurrent discrete-time neural network.

It has access to three types of sensory information from the robot (figures 4 and 5):

1. Infrared light : the active infrared sensors positioned around the robot (figure 4, a) mea-

sure the distance from objects. Their values are pooled into four pairs and the average

reading of each pair is passed to a corresponding neuron.

2. Ambient light : the same sensors are used to measure ambient light too. These readings

are pooled into three groups and the average values are passed to the corresponding three

light neurons.

3. Vision: the vision module (figure 4, b) consists of an array of 64 photoreceptors covering

a visual field of 36◦ (figure 4, center). The visual field is divided up in three sectors and
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Figure 6: Fitness values across generations of controllers evolved with Adaptive synapses and Node
Encoding (left), Genetically-determined synapses and Synapse Encoding (center), and Genetically-
determined synapses and Node Encoding (right). The last graph looks empty because the fitness
values are always zero. Thick line=best individual; thin line=population average. Each data point
is an average over 10 replications with different random initializations. Population size is 100
and 20 best individuals reproduce by making 5 copies. Crossover probability is 0.2 and mutation
probability is 0.05 (per bit).

the average value of the photoreceptors (256 gray levels) within each sector is passed to

the corresponding vision neuron.

Two motor neurons are used to set the rotation speeds of the wheels (figure 4, c). Neurons

are updated every 100 ms.

The fitness data recorded during evolution and reported in figure 6 show two main results.

The first is that Genetically-determined synapses with Node encoding (graph on the right)

report zero fitness. This is due to the fact that all incoming synapses to a node have always

the same strength and cannot change. Therefore, Adaptive Synapses with Node Encoding

(graph on the left) must be compared to Genetically-determined synapses with Synapse En-

coding (graph on the center). The second result is that evolved individuals with Adaptive

Synapses report higher fitness values (0.6 against 0.5) and reach the best value obtained by

Genetically-determined individuals in less than half generations (40 against more than 100).

In the condition of Noisy synapses with Synapse Encoding and Node Encoding, all best indi-

viduals report fitness values in the range 0.1-0.2 (data not shown). This result indicates that

the changes induced by the adaptive rules are not equivalent to some random changes.

Figure 7 shows the behaviors of two best individuals evolved with adaptive synapses and

Node Encoding (left), and with genetically-determined weights and Synapse Encoding (right).
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Figure 7: Behaviors of two best individuals (from last generation) with adaptive synapses and
Node Encoding (left) and with genetically-determined synapses and Synapse Encoding (right).
When the light is turned on, the trajectory line becomes thick. The corresponding fitness value
is printed on the top of each box along with the average fitness of the same individual tested ten
times from different positions and orientations.

In both cases individuals aim at the area with the light switch4 and, once the light is turned on,

they move towards the light and remain there. The better fitness of the adaptive controllers

(given on the top of each box, see figure caption) is given by straight and faster trajectories

showing a clear behavioral change between the first phase where they go towards the switching

area and the second phase where they become attracted by the light. Instead, genetically-

determined individuals display always the same looping trajectories around the environment

with some attraction towards the stripe and the light. This minimalist behavior, which depends

on invariant geometrical relations of the environment, gives them a chance to accomplish the

task but with a lower performance.

Additional behavioral tests and network analyses clearly indicated that evolved adaptive

individuals achieve higher fitness because they rapidly modify their weights in ways that reflect

the subtask at hand and functionally related to the survival criterion (Floreano & Urzelai, 1999;

Urzelai & Floreano, 2000a).

2.3 Cross-platform Adaptation

Cross-platform transfer is a very useful feature, but we are not aware of any control system

that can be transferred across different robots without changes. Cross-platform becomes useful

in adaptive and evolutionary systems where initial training experiences can cause the robot

4Their performance is badly affected if the vision input is disabled, indicating that they do not use random search
to locate the switch (data not shown).
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Figure 8: A mobile robot Koala equipped with a vision module gains fitness by staying near the
lamp (right side) only when the light is on. The light is normally off, but it can be switched on if
the robot passes near the black stripe (left side) positioned on the other side of the arena. Position
of the robot is controlled by an external positioning system and passed to the computer in order
to control the light and to compute the fitness.

to produce harmful actions. One may train (or evolve) control systems for a desktop sturdy

robot like the miniature Khepera and then download them to larger and consequently more

fragile robots5. In this case, it would be desirable that the control system self-adapts to the

new sensory-motor characteristics and morphology.

In previous work we have shown that this can be achieved by using incremental evolution

of genetically-determined networks (Floreano & Mondada, 1998). However, even for a simple

reactive navigation behavior it took additional 20 generations to re-adapt to the new robot.

Here we test the adaptive properties of the evolutionary adaptive strategy by transferring onto

a physical Koala robot (figure 8) the best individuals of the last generation evolved on the

miniature Khepera robot. A mobile robot Koala equipped with a vision module is positioned

in the rectangular environment shown in figure 8. As in the previous experiment with the

Khepera robot, the Koala robot must find the light-switching area, go there in order to switch

the light on, and then move towards the light as soon as possible and stay there in order to

score fitness points.

The Koala robot has six wheels driven by two motors (one on each side) and 16 infrared

sensors (figure 9) with a different and stronger detection range than those used on the Khepera

robot. An external positioning system emitting laser beams at predefined angles and frequen-

cies is positioned on the top of the environment and the Koala robot is equipped with an

5Obviously, the two robots must share some characteristics, such as type of sensors and actuators used, that
allow a suitable interfacing of the control system.
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Figure 9: The Koala robot used in the experiments. Infrared sensors (a) measure object proximity
and light intensity. The linear vision module (b) is the same as used in the experiments with
the Khepera robot. The localization module (c) provides the position of the robot at every time
step. Right figure shows the sensory layout of the Koala robot. Only 8 equally-spaced sensors are
selected as input to the network.
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Figure 10: Behaviors of individuals with adaptive synapses (left) and genetically-determined
synapses (right) tested on the Koala robot. Individuals belong to the last generation evolved
in simulation for the Khepera robot.

additional turret capable of detecting laser and computing in real-time the robot displace-

ment. This information is used in order to control the light and to compute the fitness. The

performance of adaptive individuals is not affected by the transfer from the Khepera robot to

the Koala robot whereas genetically-determined individuals report a significative fitness loss

(for more details see (Urzelai & Floreano, 2000b)).

Adaptive individuals correctly approach the light-switching area and are clearly attracted

by light (figure 10, left). As in the case of real Khepera robot, once arrived under the light

the Koala robot moves around the fitness area while remaining close to it until the testing

time is over. On the other hand, genetically-determined individuals (right) perform spiralling

trajectories around the environment and do not display any attraction by the black stripe or
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Figure 11: Genetic representation used for the experiments on evolution of encoding. The figure
shows a piece of chromosome that stands for a node with three incoming synapses. The genetic
representation consists of three parts: one bit that tells how to read the remaining parts, 5 bits
that encode the adaptive properties of the node, and 5*3 bits that encode the weight strengths
for each of the three sysnapses. If the first bit is zero, only the node properties are read and the
rest is skipped; otherwise the node properties are skipped and all the remaining weight strengths
of the synapses are read and mapped into the neural controller.

the light. They eventually manage to pass through the light-switching area, turn the light

on, and occasionally score some fitness points passing over the fitness area. In several cases,

genetically-determined individuals get stuck against the walls of the environment (behaviors

not shown).

2.4 Evolution of Genetic Encoding

In the experiments described above we have compared different encoding strategies. In other

words, for each experimental condition the system was constrained to use only a predefined

encoding strategy, but it was not possible to tell whether a combination of different encoding

strategies may have generated better results, and what type of combination would that be. In

this section we investigate these questions by encoding adaptive and genetically-determined

strategies and evolving what parts of the genetic string are read and mapped into the neural

controller. In particular, we are interested in evolving combinations of Synapse encoding of

genetically-determined synapses with Node encoding of adaptive synapses, which respectively

represent the conventional approach to neural evolution and the approach that reported best

results in the experiments described above.6

6Notice that comparing genetically-determined and adaptive synapses both with Node encoding would not be a
fair comparison because we have already shown that the genetically-determined synapses with Node encoding report
zero fitness (rightmost graph of figure 6).
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Figure 12: Experimental results for evolution of encoding. Left : Best (thick line) and average (thin
line) fitness across generations. Right : Percentage of nodes in the networks of the best individuals
that use node encoding of adaptive properties. Each data point is an average over 10 replications
with different random initializations. Population size is 100 and 20 best individuals reproduce by
making 5 copies. Crossover probability is 0.2 and mutation probability is 0.05 (per bit).

For each node in the network (figure 11), the artificial chromosome encodes both the

adaptive properties of the node and the genetically-determined weight strengths of all incoming

synapses to that node. These two encoding strategies are identical to those already described

in the previous sections. In addition, a single bit is added to the beginning of the genetic string

for each node. If that bit value is off, only the node properties are read and the rest of the

genes is skipped. In this case, the incoming synapses of that node will be randomly initialized

and will be updated using the node adaptive rules. Instead, if the bit value is on, the node

properties are skipped and the remaining bits for that node specifying the weight strengths

of each synapse are read. In this case, the incoming synapses of that node will be assigned

genetically-determined strengths and won’t be updated during the life of the individual.

The experimental results indicate that individuals evolved under this condition reach the

same fitness levels (figure 12, left) reported in the case of evolution of node encoding (figure 6,

left). This result answers our first question, that is node encoding of adaptive mechanisms is

not worse than a combination of different encoding strategies. Furthermore, the percentage of

nodes that resort to node encoding of adaptive rules in the networks of the best individuals

increases across generations and remains significantly higher than the percentage of nodes

that resort to synapse encoding of genetically-determined weights (figure 12, right). In other

words, when evolution can select what type of genetic encoding is used to generate the neural

controller, it tends to select node encoding of adaptive rules.
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2.5 Discussion

The results described in this paper show that genetic encoding of mechanisms of adaptation

supports evolution of more performant controllers than genetic encoding of the parameters

themeselves. Furthermore, cross-platform tests indicate that these evolved individuals can

perform the same task in conditions that were not experienced during evolution.7 Instead,

individuals evolved using genetic encoding of the synaptic weights become tuned to the evo-

lutionary conditions and do not perform well in new environments. Finally, we have shown

that when the genetic encoding is evolved, artificial evolution systematically selects encoding

of adaptive mechanisms.

Evolution of learning rules for neural networks has been investigated also by Chalmers

(Chalmers, 1991) in the framework of supervised learning. Chalmers encoded in the artificial

chromosome the coefficients of a polynomial function of synaptic variables and applied the

corresponding learning rule to all the weights of a neural network trained on a set of pattern

classification problems. He showed that artificial evolution often re-discovered the Delta rule

(Widrow & Hoff, 1999). The main differences between his approach and ours—beside differ-

ences in the application domain—are that in our case: a) we are not attempting to optimize

rules for specific learning modalities and architectures, but consider encoding of rules as a

general way to improve the dynamics of the controller; b) the same network can host a variety

of different local adaptation mechanisms whose combined effect may (or may not) produce the

appearance of a learning behavior; c) we investigate different encoding strategies, compare the

results with conventional techniques, and also investigate evolution of the genetic encoding

itself; d) the fitness function is based on the behavior of the system along the whole “life du-

ration” (whereas in Chalmers’ case the fitness was based on the performance of the networks

after training), which puts intrinsic selection pressure for architectures that self-organize on-

line and quickly in order to reduce adaptation costs. We shall discuss the choice of fitness

functions in more detail in the next section.

7In other papers, we show evidence for such robustness also in the case of changes due to sensory stimulation
and to transfer from simulations to physical robots (Urzelai & Floreano, 2000c), and in the case of re-arrangements
of the geometrical layout of the environment (Urzelai & Floreano, 2000b).
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Since adaptive encoding can operate at the level of node encoding, this strategy may

become useful for artificial evolution of network morphology. Some methods already exist

for evolution of network architectures ((Kitano, 1990; Gruau, 1994; Nolfi & Parisi, 1995), for

example), but these strategies often need quite complex specifications of node types to ensure

diverse connectivity, require much domain-specific knowledge (such as whether symmetries

exist), and have not yet been shown to be competitive with conventional synapse-encoding

methods. Instead, evolution of adaptive mechanisms and node encoding is a simple and

compact schema that leaves the specification of synaptic strengths to the adaptive mechanisms

and may potentially lead to specification of complex architectures. Initial investigations in

this direction show that this encoding strategy scales up very well for very large network

architecture (Floreano & Urzelai, 1999).

The reader may have noticed that we have never used the term learning to describe the

behavior of individuals with changing synapses.8 The reason is that we have no evidence that

evolved individuals are effectively learning something in the cognitive sense of acquiring new

competences and storing knowledge. Instead, we used the term “self-organization” and “adap-

tation” to indicate that the modifications induced by the genetically evolved combination of

rules produce behavioral changes that are functionally related to the fitness criterion. In an-

other current project related to the evolution of morphologies described above, we are looking

at ways in which architectural constraints (e.g., synapse-to-synapse mechanisms (Körding, K.

and König, P., 2000) and lateral modulatory connections (Kay, Floreano, & Phillips, 1997))

may induce incremental and long-lasting modifications that may be described as learning.

3 Fitness Space

The fitness function decides which individuals are selected for reproduction. If there is no

fitness function and individuals are randomly selected, the effects of reproduction amount to

genetic drift.

8Except when we referred to the Hebbian learning rules and to the learning rate η to be consistent with most of
the connectionist literature.
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Figure 13: Fitness Space is a framework for describing and comparing fitness functions along three
dimensions. It provides a nominal and ordinal scaling of functions. The diagonal between the
lower-left corner and the upper-right corner defines a continuum of functions between conventional
optimization approaches and generation of autonomous self-organizing systems.

In Evolutionary Robotics, the choice of fitness function has strong consequences on the

applicability of the approach to physical robots, evolvability of the robot, dynamics of the

evolutionary process, and ultimately on the outcome of the evolutionary process. Most people

struggle with the choice of suitable functions using a trial-and-error strategy. People using

artificial evolution for Automated Engineering are most affected by this process because they

often have precise expectations about the desired result. Unfortunately, there is not a way

to infer a fitness function from a description of the expected result. Typically, one comes up

with a function based on one’s own experience, tries it out, and then gradually modifies it

to accomodate additional constraints. Although conceiving a fitness function suitable for a

desired behavior is often easier than designing the corresponding program (Dorigo & Colom-

betti, 1998), the widespreading use of Evolutionary Robotics requires a better understanding

of the decisions involved in setting up a fitness function.

In this section we propose Fitness Space as a framework to describe, assess, and compare

fitness functions. Fitness Space can be used as a guideline to choose among alternative fitness

functions according to one’s goals, but it does not provide a recipe to design specific fitness
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functions for specific problems. Fitness Space is defined by three dimensions9 (figure 13).

3.1 Functional-Behavioral Dimension

The first dimension is given by the continuum between Functional and Behavioral fitness.

A purely functional fitness is based only on components that directly measure the way in

which the system functions. For example, in an early attempt to evolve a neural controller

for a walking robot, Lewis et al. used a functional fitness that measured the frequency and

amplitude of the oscillations of the evolutionary controller (Lewis, Fagg, & Solidum, 1996).

The closer these two components were to the desired pattern, the higher the fitness of the

individual.10 This implies that the authors knew what type of oscillatory dynamics were

required for producing a certain behavior. On the other hand, a purely behavioral fitness is

based only on components that measure the behavior of the individual’s behavior. To stay

with the example of the walking robot, a behavioral function would be proportional to the

distance covered by the robot in a given amount of time. Another way of describing the

difference between these two fitness extremes is that functional fitness evaluates the causes of

behavior whereas behavioral fitness evaluate the effects of behavior. Either choice has strong

implications. A functional fitness can ensure the highest match between evolved and desired

behavior, but it is quickly compromised as soon as the functional components of the controller

do not match any longer mechanical or environmental factors. For example, a wheel may

gradually wear out and induce a direction bias in the trajectory of the robot that would go

undetected by a purely functional fitness function. Instead, behavioral fitness can produce

viable results even in the presence of some mechanical and sensory defects because the control

system will implicitly accommodate them, but the results may not match the expectations.

For example, the evolved robot may crawl instead of walk. The position of a given fitness

function along the Functional-Behavioral dimension depends on the number of these two types

of components and their relative weights.

9Fitness Space should not be confused with Fitness Landscape which instead describes the distribution of fitness
values for all possible combinations of the bits that compose the artificial chromosome.

10Functional fitness was used mainly in an early stage of evolution. In later stages, the authors added further
behavioral components to the fitness.
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The fitness function used in the experiments described in this paper is completely behav-

ioral because it is based on the effects of the robot behavior, that is the amount of time spent

under the light when this is on.

3.2 External-Internal Dimension

The dimension along the External-Internal continuum refers to availability—with respect to

the robot—of the variables that compose the function. An external fitness component is one

that cannot be measured directly by the robot. For example, the exact distance between a

robot and an obstacle can be measured only by external positioning devices or by an external

observer.11 An internal fitness component instead is one that can be measured by the robot

itself, such as the energy level or the state of its own sensors. The difference is subtle, but

very important for Evolutionary Robotics. For example, external fitness functions are often

used in software simulations of robots where all aspects of the system are directly available to

the programmer. Here the distinction between internal and external variables is only formal

because both types of variables are readily available. External fitness functions are popular

because they allow a detailed and precise assessment of the robot performance and also because

they naturally conform to the perspective of an external observer (in other words, it is easier

to design a function that fits one’s perspective of the expected behavior). However, real

robots cannot always be evolved using external fitness components and, when feasible, this

implies resorting to ad hoc and expensive devices, such as a Global Positioning System or an

external camera with tracking software. Therefore, the choice of an external function should

be carefully evaluated when devising an evolutionary robotic system. For example, external

fitness functions are not recommended if one decides to start evolving the robot in simulation

and later wishes to incrementally carry on evolution on a physical robot. Similarly, one should

be careful about making strong claims on results obtained using external fitness functions

because these results might not be easily applicable to many real-world situations where the

necessary measuring devices are not available.

11Notice that distances cannot be reliably estimated by odometry and proximity sensors on the robot (such as
sonar and active infrared).
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In the context of autonomous robots, we think that external fitness functions do not give

a higher probability of obtaining desired results than internal fitness functions because they

are based on the perspective of an external observer. In other words, the robot may be forced

to display a behavior that is too difficult to implement given the characteristics of its sensory-

motor apparatus or of its control architecture. Resorting to internal fitness function thus has

the additional advantage of forcing the engineer not to rely too much on assumptions derived

from an external and potentially inaccurate perspective.

The fitness function used in the experiments of this paper was internal because the light

sensors around and underneath the platform were used to detect whether the robot was on

the gray area and whether the light was on. In other words, the system was self-contained

because it did not require external devices to assess its states and performance.

3.3 Explicit-Implicit Dimension

The Explicit-Implicit dimension refers to the quantity of constraints explicitly imposed by a

human person to select individuals for reproduction. An approximate indicator is given by the

number of components included in the fitness function. The higher the number of components,

the more explicit the fitness function is.

Artificial Life approaches (Langton, 1990) aimed at studying evolution of ecosystems tend

to use implicit fitness functions in order to ensure ecological validity because in real life there

is not an explicit fitness function. For example, artificial organisms may reproduce only if and

when their energy levels reach a certain threshold (these type of ecosystems are also known as

Latent Energy Environments (Menczer & Belew, 1993)). Compare this with a situation where

the fitness function explicitly rewards—for example—the quantity of food items gathered,

distance from predators, and the ability to recognize conspecifics.

Automated Engineering approaches (Dorigo & Colombetti, 1998) instead tend to resort to

more explicit fitness functions in the attempt to actively steer the evolutionary system towards

desired behaviors. This may sound reasonable, but in practice it can get out of control very

quickly. As the number of constraints increases, one is faced with the problem of how to weight

and combine them (addition, product, e.g.). Furthermore, a higher number of components can
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increase the probability of local minima and make the problem too hard for an initial random

population (bootstrap problem). Once again, these problems can be partly explained by the

fact that fitness constraints are chosen from an external perspective and thus they may not

be fully matched by the robotic hardware and control architecture.

We think that explicit fitness functions are in contrast with the search of emergent forms

of artificial intelligence because although the resulting evolved systems have not been pre-

programmed their abilities have largely been decided and constrained by an external observer.

Such evolved systems can hardly display unexpected abilities and under some definitions they

may not be called emergent (for example, when emergence is defined as the degree of surprise

(Ronald, Sipper, & Capcarrère, 1999)).

In the experiments described in this paper we have tried to keep the contraints as low

as possible by simply accumulating one fitness point for every sensorymotor loop spent over

the gray area when the light was on, but not rewarding the robot for abilities such as wall

avoidance, straight trajectories, visual discrimination, light following, etc.

3.4 Comparing Evolutionary Experiments

Among the four methods to compare, or scale, experimental observations (Torgerson, 1958),

Fitness Space supports only categorical and ordinal scales.12 For example, the diagonal be-

tween the lower-left corner and the upper-right corner defines a continuum between two cate-

gories: “conventional optimization” approaches and “self-organization of autonomous systems”

(figure 13). Although the point of separation between the two approaches is categories, we

can say that experiments falling in the lower-left region are concerned with automatic engi-

neering whereas experiments falling in the upper-right region are concerned with emergent

autonomous systems.

We can also order two experiments according to the components of their fitness functions.

12Categorical, also known as nominal, scales, the most primitive method, group observations into qualitative
classes. For example, one may classify approaches in robotics as “bio-inspired”, “adaptive”, “cartesian”, etc. Ordinal
scales are more informative and can be used only when one can assign to each observation a number that reflects
some quantitative property. Ordinal scale can tell only whether there is a difference between two observations and
in what direction the difference goes. For example, we may say that one mineral is softer than another because it
is damaged when they are scratched together. However, with ordinal scales we do not know the true magnitude of
oberved phenomena.
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To go back to our example of legged robots, consider two imaginary experiments aimed at

evolving walking controllers for these robots. Imagine that the components used in the fitness

functions are:

a=oscillation frequency of leg controller (functional, internal);

b=distance covered (behavioral, external);

c=state of motors (behavioral, internal);

d=state of bump sensor under the belly (behavioral, internal);

2=constant (affects relative position along implicit/explicit dimension).

Fitness function f1

f1 = (2 ∗ a) + (b ∗ d) (5)

is composed of two additive parts. The first part rewards the controller for producing pre-

determined oscillation frequencies that correspond to a desired motion pattern for each leg.

This part has a strong weight (factor 2). The second part instead adds to it rewards for the

distance covered by the robot body multiplied by the state of the sensors. In other words,

robots that move longer without creeping over the floor get higher fitness.

Fitness function f2

f2 = c + d (6)

has two parts too. The first part is maximized by the quantity of current sent to the motors

and the second is maximized when the robot does not touch the floor. In other words, robots

that keep their legs moving but do not stay on the floor will receive higher fitness.

Function f1 therefore is less implicit, less internal, and less behavioral than function f2.

Assuming that all other conditions are the same, fitness f1 may generate efficient and specific

gaits (depending on the values of a), but it may take more generations and a larger population

because the number of constraints are likely to make the fitness lansdcape very hard. Also,

it requires the use of additional hardware to measure the distance covered by the robot. An

experiment of this type falls in the category of “automated engineering” and its validity should

be assessed accordingly.

Fitness f2 instead is not guaranteed to generate efficient gaits, in fact it may well generate
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robots that dance without covering much forward distance. However, the evolved solutions

will be more dependent on the interactions between the robot and its environment. Also,

this function does not require additional devices and is portable to a range of different robots

with unknown dynamics and kinematics because it does not require functional knowledge of

the system. This type of experiment is closer to the category of “emergent self-organization”.

We believe that Fitness Space can help to compare apparently similar experiments and better

assess the significance of their results.

As a final note, it should be noticed that the fitness function is not the only factor that

determines the outcomes and evolvability of a system. Although it plays an important role,

other determinant factors include the type of sensors used, the environmental setup, the type

of challenge that is being addressed, and various aspects of the controller architecture and

genetic encoding. Although our analysis is valid only when all these factors are kept constant,

we believe that it provides a more general framework for reading through the growing literature

in Evolutionary Robotics.

4 Conclusions

In this paper we have addressed two key aspects of artificial evolution in robotics, namely the

genetic encoding and the fitness function, and described an experiment that summarizes our

approach to Evolutionary Robotics. This approach consists of evolving controllers for physical

robots that display intrinsic adaptation abilities and are based on behavioral and internal

fitness functions.

We believe that these are two important features for the next generation of robotic ap-

plications, that is personal and service robotics. Personal robots are machines that interact

with humans and are used for entertainment, education, and assistance. Service robots are

machines used to carry out work in unstructured environments, such as demining, cleaning,

space exploration. Personal and service robots entice an entirely new set of applications which

will become more requested in the years to come in industrialized nations. Aging population,

increasing education levels, and a health-conscious culture will demand for robots that are
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capable of assisting us in hard work, extend the autonomy of ill people, entertain and educate,

and provide increasing levels of comfort.

In both cases, what matters most is the necessity to adapt to new and unpredictable

situations, react quickly, display behavioral robustness, and operate in close interaction with

human beings. Traditional robotic controllers designed for factory automation are not suitable

for these types of applications. Evolutionary Robotics represent a powerful methodology to

conceive robots that adapt to a changing environment with limited and sparse feedback. These

applications demand relatively fast adaptation time and care-free operation. We think that

the solutions suggested here of evolving adaptive controllers and use behavioral and internal

fitness functions represent a step in this direction.
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