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1. INTRODUCTION 

Recommender systems use the opinions of a community of users to help individuals in that community more 

effectively identify content of interest from a potentially overwhelming set of choices [Resnick and Varian 1997].  

One of the most successful technologies for recommender systems, called collaborative filtering, has been 

developed and improved over the past decade to the point where a wide variety of algorithms exist for generating 

recommendations.  Each algorithmic approach has adherents who claim it to be superior for some purpose.  Clearly 

identifying the best algorithm for a given purpose has proven challenging, in part because researchers disagree on 

which attributes should be measured, and on which metrics should be used for each attribute. Researchers who 

survey the literature will find over a dozen quantitative metrics and additional qualitative evaluation techniques.  
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Evaluating recommender systems and their algorithms is inherently difficult for several reasons.  First, different 

algorithms may be better or worse on different data sets.  Many collaborative filtering algorithms have been 

designed specifically for data sets where there are many more users than items (e.g., the MovieLens data set has 

65,000 users and 5,000 movies).  Such algorithms may be entirely inappropriate in a domain where there are many 

more items than users (e.g., a research paper recommender with thousands of users but tens or hundreds of 

thousands of articles to recommend).  Similar differences exist for ratings density, ratings scale, and other properties 

of data sets. 

The second reason that evaluation is difficult is that the goals for which an evaluation is performed may differ.  

Much early evaluation work focused specifically on the "accuracy" of collaborative filtering algorithms in 

"predicting" withheld ratings.  Even early researchers recognized, however, that when recommenders are used to 

support decisions, it can be more valuable to measure how often the system leads its users to wrong choices.  

Shardanand and Maes measured "reversals" – large errors between the predicted and actual rating [1995]; we have 

used the signal-processing measure of the Receiver Operating Characteristic curve [Swets 1963] to measure a 

recommender's potential as a filter [Konstan et al. 1997].  Other work has speculated that there are properties 

different from accuracy that have a larger effect on user satisfaction and performance.  A range of research and 

systems have looked at measures including the degree to which the recommendations cover the entire set of items 

[Mobasher et al. 2001], the degree to which recommendations made are non-obvious [McNee et al. 2002], and the 

ability of recommenders to explain their recommendations to users [Sinha and Swearingen 2002].  A few 

researchers have argued that these issues are all details, and that the bottom-line measure of recommender system 

success should be user satisfaction.  Commercial systems measure user satisfaction by the number of products 

purchased (and not returned!), while non-commercial systems may just ask users how satisfied they are.  

Finally, there is a significant challenge in deciding what combination of measures to use in comparative evaluation.  

We have noticed a trend recently -- many researchers find that their newest algorithms yield a mean absolute error of 

0.73 (on a five-point rating scale) on movie rating datasets.  Though the new algorithms often appear to do better 

than the older algorithms they are compared to, we find that when each algorithm is tuned to its optimum, they all 

produce similar measures of quality.  We – and others – have speculated that we may be reaching some "magic 

barrier" where natural variability may prevent us from getting much more accurate. In support of this, Hill et al. 

[1995] have shown that users provide inconsistent ratings when asked to rate the same movie at different times. 

They suggest that an algorithm cannot be more accurate than the variance in a user’s ratings for the same item.  

Even when accuracy differences are measurable, they are usually tiny.  On a five-point rating scale, are users 

sensitive to a change in mean absolute error of 0.01?  These observations suggest that algorithmic improvements in 

collaborative filtering systems may come from different directions than just continued improvements in mean 

absolute error.  Perhaps the best algorithms should be measured according to how well they can communicate their 

reasoning to users, or with how little data they can yield accurate recommendations.  If this is true, new metrics will 

be needed to evaluate these new algorithms.  



  

This paper presents six specific contributions towards evaluation of recommender systems.   

1. We introduce a set of recommender tasks that categorize the user goals for a particular recommender 

system.   

2. We discuss the selection of appropriate datasets for evaluation.  We explore when evaluation can be 

completed off-line using existing datasets and when it requires on-line experimentation.  We briefly discuss 

synthetic data sets and more extensively review the properties of datasets that should be considered in 

selecting them for evaluation. 

3. We survey evaluation metrics that have been used to evaluation recommender systems in the past, 

conceptually analyzing their strengths and weaknesses. 

4. We report on experimental results comparing the outcomes of a set of different accuracy evaluation metrics 

on one data set. We show that the metrics collapse roughly into three equivalence classes.  

5. By evaluating a wide set of metrics on a dataset, we show that for some datasets, while many different 

metrics are strongly correlated, there are classes of metrics that are uncorrelated.  

6. We review a wide range of non-accuracy metrics, including measures of the degree to which 

recommendations cover the set of items, the novelty and serendipity of recommendations, and user 

satisfaction and behavior in the recommender system. 

Throughout our discussion, we separate out our review of what has been done before in the literature from the 

introduction of new tasks and methods.   

We expect that the primary audience of this article will be collaborative filtering researchers who are looking to 

evaluate new algorithms against previous research and collaborative filtering practitioners who are evaluating 

algorithms before deploying them in recommender systems.  

There are certain aspects of recommender systems that we have specifically left out of the scope of this paper.  In 

particular, we have decided to avoid the large area of marketing-inspired evaluation.  There is extensive work on 

evaluating marketing campaigns based on such measures as offer acceptance and sales lift [Rogers 2001].  While 

recommenders are widely used in this area, we cannot add much to existing coverage of this topic.  We also do not 

address general usability evaluation of the interfaces.  That topic is well covered in the research and practitioner 

literature (e.g., [Helander 1988, Nielsen 1994]) We have chosen not to discuss computation performance of 

recommender algorithms.  Such performance is certainly important, and in the future we expect there to be work on 

the quality of time-limited and memory-limited recommendations.  This area is just emerging, however (see for 

example Miller et al.'s recent work on recommendation on handheld devices [Miller et al. 2003]), and there is not 

yet enough research to survey and synthesize.  Finally, we do not address the emerging question of the robustness 

and transparency of recommender algorithms.  We recognize that recommender system robustness to manipulation 

by attacks (and transparency that discloses manipulation by system operators) is important, but substantially more 



  

work needs to occur in this area before there will be accepted metrics for evaluating such robustness and 

transparency. 

The remainder of the article is arranged as follows:  

• Section 2 - We identify the key user tasks from which evaluation methods have been determined and 

suggest new tasks that have not been evaluated extensively.  

• Section 3- A discussion regarding the factors that can affect selection of a data set on which to perform 

evaluation.  

• Section 4 – An investigation of metrics that have been used in evaluating the accuracy of collaborative 

filtering predictions and recommendations. Accuracy has been by far the most commonly published 

evaluation method for collaborative filtering systems. This section also includes the results from an 

empirical study of the correlations between metrics. 

• Section 5 – A discussion of metrics that evaluate dimensions other than accuracy. In addition to covering 

the dimensions and methods that have been used in the literature, we introduce new dimensions on which 

we believe evaluation should be done.  

• Section 6 – Final conclusions, including a list of areas were we feel future work is particularly warranted.  

Sections 2-5 are ordered to discuss the steps of evaluation in roughly the order that we would expect an evaluator to 

take. Thus Section 2 describes the selection of appropriate user tasks, Section 3 discusses the selection of a dataset, 

and sections 4 and 5 discuss the alternative metrics that may be applied to the dataset chosen. We begin with the 

discussion of user tasks – the user task sets the entire context for evaluation.  

2. USER TASKS FOR RECOMMENDER SYSTEMS 

To properly evaluate a recommender system, it is important to understand the goals and tasks for which it is being 

used.  In this paper, we focus on end-user goals and tasks (as opposed to goals of marketers and other system 

stakeholders).  We derive these tasks from the research literature and from deployed systems.  For each task, we 

discuss its implications for evaluation.  While the tasks we've identified are important ones, based on our experience 

in recommender systems research and from our review of published research, we recognize that the list is 

necessarily incomplete.  As researchers and developers move into new recommendation domains, we expect they 

will find it useful to supplement this list and/or modify these tasks with domain-specific ones.  Our goal is primarily 

to identify domain-independent task descriptions to help distinguish among different evaluation measures.  

We have identified two user tasks that have been discussed at length within the collaborative filtering literature: 

Annotation in Context.  The original recommendation scenario was filtering through structured discussion 

postings to decide which ones were worth reading.  Tapestry [Goldberg et al. 1992] and GroupLens [Resnick et 

al. 1994] both applied this to already structured message databases.  This task required retaining the order and 

context of messages, and accordingly used predictions to annotate messages in context. In some cases the 

"worst" messages were filtered out.  This same scenario, which uses a recommender in an existing context, has 



  

also been used by web recommenders that overlay prediction information on top of existing links [Wexelblat 

and Maes 1999].  Users use the displayed predictions to decide which messages to read (or which links to 

follow), and therefore the most important factor to evaluate is how successfully the predictions help users 

distinguish between desired and undesired content.  A major factor is the whether the recommender can 

generate predictions for the items that the user is viewing.  

Find Good Items.  Soon after Tapestry and GroupLens, several systems were developed with a more direct 

focus on actual recommendation.  Ringo [Shardanand and Maes 1995] and the Bellcore Video Recommender 

[Hill et al. 1995] both provided interfaces that would suggest specific items to their users, providing users with a 

ranked list of the recommended items, along with predictions for how much the users would like them.  This is 

the core recommendation task and it recurs in a wide variety of research and commercial systems.  In many 

commercial systems, the “best bet” recommendations are shown, but the predicted rating values are not. 

While these two tasks can be identified quite generally across many different domains, there are likely to be many 

specializations of the above tasks within each domain. We introduce some of the characteristics of domains that 

influence those specializations in Section 3.3.  

While the Annotation in Context and the Find Good Items are overwhelmingly the most commonly evaluated tasks 

in the literature, there are other important generic tasks that are not well described in the research literature.  Below 

we describe several other user tasks which we have encountered in our interviews with users and our discussions 

with recommender system designers. We mention these tasks because we believe that they should be evaluated, but 

because they have not been addressed in the recommender systems literature, we do not discuss them further.  

Find All Good Items.  Most recommender tasks focus on finding some good items.  This is not surprising; the 

problem that led to recommender systems was one of overload, and most users seem willing to live with 

overlooking some good items in order to screen out many bad ones.  Our discussions with firms in the legal 

databases industry, however, led in the opposite direction.  Lawyers searching for precedents feel it is very 

important not to overlook a single possible case.  Indeed, they are willing to invest large amounts of time (and 

their client's money) searching for that case.  To use recommenders in their practice, they first need to be 

assured that the false negative rate can be made sufficiently low.  As with annotation in context, coverage 

becomes particularly important in this task.   

Recommend Sequence.  We first noticed this task when using the personalized radio web site Launch 

(launch.yahoo.com) which streams music based on a variety of recommender algorithms.  Launch has several 

interesting factors, including the desirability of recommending "already rated" items, though not too often.  

What intrigued us, though, is the challenge of moving from recommending one song at a time to recommending 

a sequence that is pleasing as a whole.  This same task can apply to recommending research papers to learn 

about a field (read this introduction, then that survey, …).  While data mining research has explored product 

purchase timing and sequences, we are not aware of any recommender applications or research that directly 

address this task. 



  

Just Browsing.  Recommenders are usually evaluated based on how well they help the user make a 

consumption decision.  In talking with users of our MovieLens system, of Amazon.com, and of several other 

sites, we discovered that many of them use the site even when they have no purchase imminent.  They find it 

pleasant to browse.  Whether one models this activity as learning or simply as entertainment, it seems that a 

substantial use of recommenders is simply using them without an ulterior motive.  For those cases, the accuracy 

of algorithms may be less important than the interface, the ease of use, and the level and nature of information 

provided.   

Find Credible Recommender.  This is another task gleaned from discussions with users.  It is not surprising 

that users do not automatically trust a recommender.  Many of them "play around" for a while to see if the 

recommender matches their tastes well.  We've heard many complaints from users who are looking up their 

favorite (or least favorite) movies on MovieLens—they don't do this to learn about the movie, but to check up 

on us.  Some users even go further.  Especially on commercial sites, they try changing their profiles to see how 

the recommended items change.  They explore the recommendations to try to find any hints of bias.  A 

recommender optimized to produce “useful” recommendations (for example recommendations for items that the 

user does not already know about) may fail to appear trustworthy because it does not recommend movies the 

user is sure to enjoy but probably already knows about. We are not aware of any research on how to make a 

recommender appear credible, though there is more general research on making websites evoke trust [Bailey et 

al. 2001].   

Most evaluations of recommender systems focus on the recommendations; however if users don’t rate items, then 

collaborative filtering recommender systems can’t provide recommendations. Thus evaluating if and why users 

would contribute ratings may be important to communicate that a recommender system is likely to be successful. 

We will briefly introduce several different rating tasks.   

Improve Profile is the rating task that most recommender systems have assumed.  Users contribute ratings 

because they believe that they are improving their profile and thus improving the quality of the 

recommendations that they will receive. 

Express Self. Some users may not care about the recommendations – what is important to them is that they be 

allowed to contribute their ratings. Many users simply want a forum for expressing their opinions.  We 

conducted interviews with "power users" of MovieLens that had rated over 1000 movies (some over 2000 

movies).  What we learned was that these users were not rating to improve their recommendations.  They were 

rating because it felt good.  We particularly see this effect on sites like Amazon.com, where users can post 

reviews (ratings) of items sold by Amazon. For users with this task, issues may include the level of anonymity 

(which can be good or bad, depending on the user), the feeling of contribution, and the ease of making the 

contribution.  While recommender algorithms themselves may not evoke self expression, encouraging self 

expression may provide more data which can improve the quality of recommendations.   



  

Help Others. Some users are happy to contribute ratings in recommender systems because they believe that the 

community benefits from their contribution. In many cases, they are also entering ratings in order to express 

themselves (see previous task). However, the two do not always go together.  

Influence Others. An unfortunate fact that we and other implementers of web-based recommender systems 

have encountered is that there are users of recommender systems whose goal is to explicitly influence others 

into viewing or purchasing particular items. For example, advocates of particular movie genres (or movie 

studios) will frequently rate movies high on the MovieLens web site right before the movie is released to try 

and push others to go and see the movie. This task is particularly interesting, because we may want to evaluate 

how well the system prevents this task.  

While we have briefly mentioned tasks involved in contributing ratings, we will not discuss them in depth in this 

paper, and rather focus on the tasks related to recommendation. 

We must once again say that the list of tasks in this section is not comprehensive. Rather, we have used our 

experience in the field to filter out the task categories that a) have been most significant in the previously published 

work, and b) that we feel are significant, but have not been considered sufficiently. 

In the field of Human-Computer Interaction, it has been strongly argued that the evaluation process should begin 

with an understanding of the user tasks that the system will serve. When we evaluate recommender systems from the 

perspective of benefit to the user, we should also start by identifying the most important task for which the 

recommender will be used. In this section, we have provided descriptions of the most significant tasks that have 

been identified. Evaluators should consider carefully which of the tasks described may be appropriate for their 

environment.  

Once the proper tasks have been identified, the evaluator must select a dataset to which evaluation methods can be 

applied, a process that will most likely be constrained by the user tasks identified. 

3. SELECTING DATA SETS FOR EVALUATION 

Several key decisions regarding data sets underlie successful evaluation of a recommender system algorithm.  Can 

the evaluation be carried out offline on an existing data set or does it require live user tests? If a data set is not 

currently available, can evaluation be performed on simulated data? What properties should the dataset have in order 

to best model the tasks for which the recommender is being evaluated?  A few examples help clarify these decisions: 

• When designing a recommender algorithm designed to recommend word processing commands (e.g., 

[Linton et al. 1998]), one can expect users to have experienced 5-10% (or more) of the candidates.  

Accordingly, it would be unwise to select recommender algorithms based on evaluation results from movie 

or e-commerce datasets where ratings sparsity is much worse.   

• When evaluating a recommender algorithm in the context of the Find Good Items task where novel items 

are desired,  it may be inappropriate to use only offline evaluation. Since the recommender algorithm is 

generating recommendations for items that the user does not already know about, it is probable that the data 

set will not provide enough information to evaluate the quality of the items being recommended. If an item 



  

was truly unknown to the user, then it is probable that there is no rating for that user in the database. If we 

perform a live user evaluation, ratings can be gained on the spot for each item recommended.  

• When evaluating a recommender in a new domain where there is significant research on the structure of 

user preferences, but no data sets, it may be appropriate to first evaluate algorithms against synthetic data 

sets to identify the promising ones for further study. 

 

We will examine in the following subsections each of the decisions that we posed in the first paragraph of this 

section, and then discuss the past and current trends in research with respect to collaborative filtering data sets.  

 
3.1 Live User Experiments vs. Offline Analyses 

Evaluations can be completed using off-line analysis, a variety of live user experimental methods, or a combination 

of the two.  Much of the work in algorithm evaluation has focused on off-line analysis of predictive accuracy.  In 

such an evaluation, the algorithm is used to predict certain withheld values from a dataset, and the results are 

analyzed using one or more of the metrics discussed in the following section.  Such evaluations have the advantage 

that it is quick and economical to conduct large evaluations, often on several different datasets or algorithms at once.  

Once a dataset is available, conducting such an experiment simply requires running the algorithm on the appropriate 

subset of that data.  When the dataset includes timestamps, it is even possible to "replay" a series of ratings and 

recommendations off line.  Each time a rating was made, the researcher first computes the prediction for that item 

based on all prior data; then, after evaluating the accuracy of that prediction, the actual rating is entered so the next 

item can be evaluated. 

Offline analyses have two important weaknesses.  First, the natural sparsity of ratings data sets limits the set of items 

that can be evaluated. We cannot evaluate the appropriateness of a recommended item for a user if we do not have a 

rating from that user for that item in the dataset.  Second, they are limited to objective evaluation of prediction 

results.  No offline analysis can determine whether users will prefer a particular system, either because of its 

predictions or because of other less objective criteria such as the aesthetics of the user interface.   

An alternative approach is to conduct a live user experiment.  Such experiments may be controlled (e.g., with 

random assignment of subjects to different conditions), or they may be field studies where a particular system is 

made available to a community of users that is then observed to ascertain the effects of the system.  As we discuss 

later in Section 5.5, live user experiments can evaluate user performance, satisfaction, participation, and other 

measures.   

3.2 Synthesized vs. Natural Data Sets 

Another choice that researchers face is whether to use an existing dataset that may imperfectly match the properties 

of the target domain and task, or to instead synthesize a dataset specifically to match those properties.  In our own 

early work designing recommender algorithms for Usenet News [Konstan et al. 1997, Miller et al. 1997], we 

experimented with a variety of synthesized datasets.  We modeled news articles as having a fixed number of 

“properties” and users as having preferences for those properties.  Our data set generator could cluster users 

together, spread them evenly, or present other distributions.  While these simulated data sets gave us an easy way to 



  

test algorithms for obvious flaws, they in no way accurately modeled the nature of real users and real data.  In their 

research on horting as an approach for collaborative filtering, Aggarwal et al. used a similar technique [1999], 

noting however that such synthetic data is “unfair to other algorithms” because it fits their approach too well, and 

that this is a placeholder until they can deploy their trial.   

Synthesized data sets may be required in some limited cases, but only as early steps while gathering data sets or 

constructing complete systems. Drawing comparative conclusions from synthetic datasets is risky, because the data 

may fit one of the algorithms better than the others.  

On the other hand, there is new opportunity now to explore more advanced techniques for modeling user interest and 

generating synthetic data from those models, now that there exists data on which to evaluate the synthetically 

generated data and tune the models. Such research could also lead to the development of more accurate 

recommender algorithms with clearly defined theoretical properties. 

3.3 Properties of Data Sets 

The final question we address in this section on data sets is “what properties should the dataset have in order to best 

model the tasks for which the recommender is being evaluated?” We find it useful to divide data set properties into 

three categories:  Domain features reflect the nature of the content being recommended, rather than any particular 

system.  Inherent features reflect the nature of the specific recommender system from which data was drawn (and 

possibly from its data collection practices).  Sample features reflect distribution properties of the data, and often can 

be manipulated by selecting the appropriate subset of a larger data set.  We discuss each of these three categories 

here, identifying specific features within each category.  

Domain features of interest include  

(a) the content topic being recommended/rated and the associated context in which rating/recommendation 

takes place. 

(b) the user tasks supported by the recommender 

(c) the novelty need and the quality need 

(d) the cost/benefit ratio of false/true positives/negatives 

(e) the granularity of true user preferences.  

Most commonly, recommender systems have been built for entertainment content domains (movies, music, etc.), 

though some testbeds exist for filtering document collections (Usenet news, for example).  Within a particular topic, 

there may be many contexts.  Movie recommenders may operate on the web, or may operate entirely within a video 

rental store or as part of a set-top box or digital video recorder.  

In our experience, one of the most important generic domain features to consider lies in the tradeoff between desire 

for novelty and desire for high quality. In certain domains, the user goal is dominated by finding recommendations 

for things she doesn't already know about.  McNee et al. evaluated recommenders for research papers [2002] and 

found that users were generally happy with a set of recommendations if there was a single item in the set that 



  

appeared to be useful and that the user wasn't already familiar with.  In some ways this matches the conventional 

wisdom about supermarket recommenders – it would be almost always correct, but useless, to recommend bananas, 

bread, milk, and eggs.  The recommendations might be correct, but they don't change the shopper's behavior.  

Opposite the desire for novelty is the desire for high quality. Intuitively, this end of the tradeoff reflects the user's 

desire to rely heavily upon the recommendation for a consumption decision, rather than simply as one decision-

support factor among many.  At the extreme, the availability of high-confidence recommendations could enable 

automatic purchase decisions such as personalized book- or music-of-the-month clubs.  Evaluations of 

recommenders for this task must evaluate the success of high-confidence recommendations, and perhaps consider 

the opportunity costs of excessively low confidence.   

Another important domain feature is the cost/benefit ratio faced by users in the domain from which items are being 

recommended. In the video recommender domain, the cost of false positives is low ($3 and two-three hours of your 

evening), the cost of false negatives is almost zero, and the benefit of recommendations is huge (an enormous 

quantity of movies have been released over the years, and browsing in the video store can be quite stressful – 

particularly for families). This analysis explains to a large extent why video recommenders have been so successful. 

Other domains with similar domain features, such as books of fiction, are likely to have datasets similar to the video 

domain and results demonstrated on video data may likely translate somewhat well to those other domains (although 

books of fiction are likely to have different sample features – see below). See [Konstan et al. 1997] for a slightly 

more detailed discussion of cost/benefit tradeoff analysis in collaborative filtering recommender systems. 

Another subtle but important domain feature is the granularity of true user preferences. How many different levels 

of true user preference exist? With binary preferences, users only care to distinguish between good and bad items (“I 

don’t necessarily need the best movie, only a movie I will enjoy”). In such a case, distinguishing among good items 

is not important, nor is distinguishing among bad items. Note that the granularity of user preference may be different 

than the range and granularity of the ratings (which is an inherent feature of data sets). Users may rank movies on a 

1-10 scale, but then only really care if recommendations are good (I had a good time watching the movie) or bad (I 

was bored out of my mind!) 

Overall, it would probably be a mistake to evaluate an algorithm on data with significantly different domain 

features.  In particular, it is very important that the tasks your algorithm is designed to support are similar to the 

tasks supported by the system from which the data was collected. If the user tasks are mismatched, then there are 

likely to be many other feature mismatches. For example, the MovieLens system supported primarily the Find Good 

Items user task. As the result, the user was always shown the “best bets” and thus there are many more ratings for 

good items than bad items (the user had to explicitly request to rate a poor item in most cases). So MovieLens data is 

less likely to have many ratings for less popular items.  It would probably be inappropriate to use this data to 

evaluate a new algorithm whose goal was to support Annotation In Context. Of course, if an algorithm is being 

proposed for general use, it is best to select data sets that span a variety of topics and contexts. 

Inherent features include several features about ratings: 

   



  

(a) whether ratings are explicit, implicit, or both;  

(b) the scale on which items are rated;  

(c) the dimensions of rating; and  

(d) the presence or absence of a timestamp on ratings.   
Explicit ratings are entered by a user directly (i.e. “Please rate this on a scale of 1-5”), while implicit ratings are 

inferred from other user behavior.  For example, a music recommender may use implicit data such as play lists or 

music listened to, or it may use explicit scores for songs or artists, or a combination of both.  The ratings scale is the 

range and granularity of ratings.  The simplest scale is unary—liked items are marked, all others are unknown.  

Unary is common in commerce applications, where all that is known is whether the user purchased an item or not. 

We call the data unary instead of binary because a lack of purchase of item X does not necessarily mean that the 

user would not like X.  Binary items include a separate designation for disliked.  Systems that operate on explicit 

ratings often support 5-point, 7-point, or 100-point scales.  While most recommenders have had only a single rating 

dimension (described by Miller et al. [1997] as “what predictions should we have displayed for this item?”), both 

research and commercial systems are exploring systems where users can enter several ratings for a single item.  

Zagat’s restaurant guides, for example, traditionally use food, service, and décor as three independent dimensions.  

Movie recommenders may separate story, acting, and special effects.  Data sets with multiple dimensions are still 

difficult to find, but we expect several to become available in the future.  Timestamps are a property of the data 

collection, and are particularly important in areas where user tastes are expected to change or where user reactions to 

items likely depend on their history of interaction with other items.   

Other inherent features concern the data collection practices:   

 

(e) whether the recommendations displayed to the user were recorded; and  

(f) the availability of user demographic information or item content information.   

 

Unfortunately, few datasets recorded the recommendations that were displayed, making it difficult to retrospectively 

isolate, for example, ratings that could not have been biased by previously displayed predictions.  Some logs may 

keep time stamped queries, which could be used to reconstruct recommendations if the algorithm is known and fully 

deterministic.  The availability of demographic data varies with the specific system, and with the specific data 

collected.  The EachMovie and MovieLens datasets both collected limited demographics.  Researchers speculate, 

however, that a large percentage of the demographic answers may be false (based on user suspicion of “marketing 

questions”).  We would expect greater reliability for demographic data that users believe actually serves a 

constructive purpose in the recommender (either for recommendation or for related purposes).  A film recommender 

that uses zip code to narrow the theater search, such as Miller et al.’s MovieLens Unplugged [Miller et al. 2003], 

seems more likely to provide meaningful data.   

Finally, we consider:  

 

(g) the biases involved in data collection. 



  

 

Most data sets have biases based on the mechanism by which users have the opportunity to rate items.  For example, 

Jester [Goldberg et al. 2001] asked all users to rate the same initial jokes, creating a set of dense ratings for those 

jokes which would not otherwise occur.  MovieLens has experimented with different methods to select items to have 

the first-time user rate before using the recommender system [Rashid et al. 2002], and in the process demonstrated 

that each method leads to a different bias in initial ratings. 

 

Sample features include many of the statistical properties that are commonly considered in evaluating a data set:   

 

(a) the density of the ratings set overall, sometimes measured as the average percentage of items that have been 

rated per user; since many datasets have uneven popularity distributions, density may be artificially 

manipulated by including or excluding items;  

(b) the number or density of ratings from the users for whom recommendations are being made, which 

represents the experience of the user in the system at the time of recommendation; ratings from users with 

significant experience can be withheld to simulate the condition when they were new users; and  

(c) the general size and distribution properties of the data set – some data sets have more items than users, 

though most data sets have many more users than items.   

 

Each of these sample features can have substantial effect on the success of different algorithms, and can reflect 

specific policies of the recommender.  Density (both individual and overall) reflects both the overall size of the 

recommender’s item space and the degree to which users have explored it.  One policy decision that significantly 

affects density is the level of rating required to participate in the community. Systems that either require an 

extensive level of start-up rating or require recurring ratings to maintain membership or status levels will generally 

have greater density than low-commitment recommenders in the same domain.  Density also interacts with the type 

of rating – implicit ratings are likely to lead to greater density, since less effort is needed by the user.  Finally, 

system that allow automated software “agents” to participate may have a significantly higher density than other 

systems, even if the underlying item space is similar (see for example [Good et al. 1999]). Because software agents 

are not limited in attention, they can rate much more extensively than humans.  

Two particular distribution properties are known to be highly important.  The relationship between the numbers of 

users and numbers of items can determine whether it is easier to build correlations among users or among items—

this choice can lead to different relative performance among algorithms.  The ratings distribution of items and users 

also may affect both algorithm and evaluation metric choice.  Systems where there is an exponential popularity 

curve (some items have exponentially more ratings than others) may be able to find agreement among people or 

items in the dense sub-region and use that agreement to recommend in the sparse space.  (Jester, mentioned above, 

does this directly by creating a highly dense region of jokes rated by all users.)  Systems with a more even ratings 

distribution may be more challenged to cope with sparsity unless they incorporate dimensionality reduction 

techniques.   



  

To complete the discussion of domain features, inherent features, and sample features, it is important to note that 

there are significant interactions between these categories of features. For example, the type of task supported by a 

recommender system (a domain feature) will significantly affect the distribution of ratings collected (a sample 

feature).  However, each of these features represents a dimension which may be useful in explaining differences in 

evaluation results.  

Evaluation of a recommender algorithm on a data set with features that conflict with the end goal of the 

recommender algorithm could still be useful. By explicitly identifying the features that conflict, we can reason about 

whether those conflicts will unreasonably bias the evaluation results.  

3.4 Past and Current Trends in Datasets 

The most widely used common dataset was the EachMovie Dataset (http://research.compaq.com/SRC/eachmovie/).  

This extensive dataset has over 2.8 million ratings from over 70,000 users, and it includes information such as 

timestamps and basic demographic data for some of the users. In addition to seeding our MovieLens system 

(http://www.movielens.org), the EachMovie Dataset was used in dozens of machine learning and algorithmic 

research projects to study new and potentially better ways to predict user ratings.  Examples include Canny’s factor 

analysis algorithm [2002], Domingos and Richardson’s algorithm for computing network value [2003], and Pennock 

et al’s work on recommending through personality diagnosis algorithms [2000].   

Extracts (100,000 ratings and 1 million ratings) of the MovieLens dataset have also been released for research use; 

these extracts have been used by several researchers, including Schein et al. [2001] in their investigation of cold-

start recommendations, Sarwar et al. [2001] in their evaluation of item-based algorithms, Reddy et al. [2002] in their 

community extraction research, and Mui et al. [2001] in their work on “collaborative sanctioning.” 

More recently, several researchers have been using the Jester dataset, which was collected from the Jester joke 

recommendation web site [Goldberg et al. 2001]. Statistically, the Jester dataset has different characteristics than the 

MovieLens and Eachmovie data. First of all, there is a set of training items (jokes) that are rated by every single 

user, providing complete data on that subset of items. Second, in the Jester user interface, the user clicks on a 

unlabeled scale bar to rate a joke, so the ratings are much less discrete and may suffer from different kinds of biases 

since it is hard for the user to intentionally create a ranking among their rated items.  

The majority of publications related to collaborative filtering recommender algorithms have used one of the three 

data sets described above. A few other data sets have been used, but most of them are not publicly available for 

verification. The lack of variety in publicly available collaborative filtering data sets (particularly with significant 

numbers of ratings) remains one of the most significant challenges in the field. Most researchers do not have the 

resources to build production-quality systems that are capable of collecting enough data to validate research 

hypotheses, and thus are often forced to constrain their research to hypotheses that can be explored using the few 

existing datasets.  

With the maturation of collaborative filtering recommender technology, more live systems have been built that 

incorporate recommender algorithms.  As a result, we have recently seen an increased number of studies that have 



  

used live systems.  Herlocker's explanation experiments [Herlocker et al. 2000] explored the use of 23 different 

graphical displays to “explain” why each recommendation was given. .  Schafer's MetaLens [Schafer et al. 2002] 

was built to incorporate MovieLens and other systems into a new interface; his evaluation focused entirely on the 

interface and user experience.  Other recent work has combined different evaluations.  Our work on "value of 

information" [Rashid et al. 2002] leads users through different sign-up processes, and then evaluates both the quality 

of resulting predictions and the subjective user experience. 

In the near future, we expect to see a lot more results from live experiments, as recommender algorithms make their 

way into more production systems. We also hope that new datasets will be released with data from new domains, 

causing new explosions in collaborative filtering recommender algorithm research similar to what happened with the 

release of the EachMovie data.  

4. ACCURACY METRICS 

Establishing the user tasks to be supported by a system, and selecting a data set on which performance enables 

empirical experimentation – scientifically repeatable evaluations of recommender system utility. A majority of the 

published empirical evaluations of recommender systems to date has focused on the evaluation of a recommender 

system’s accuracy.  We assume that if a user could examine all items available, they could place those items in a 

ordering of preference. An accuracy metric empirically measures how close a recommender system’s predicted 

ranking of items for a user differs from the user’s true ranking of preference. Accuracy measures may also measure 

how well a system can predict an exact rating value for a specific item.  

Researchers who want to quantitatively compare the accuracy of different recommender systems must first select 

one or more metrics. In selecting a metric, researchers face a range of questions. Will a given metric measure the 

effectiveness of a system with respect to the user tasks for which it was designed? Are results with the chosen metric 

comparable to other published research work in the field? Are the assumptions that a metric is based on true? Will a 

metric be sensitive enough to detect real differences that exist? How large a difference does there have to be in the 

value of a metric for a statistically significant difference to exist? Complete answers to these questions have not yet 

been substantially addressed in the published literature.  

The challenge of selecting an appropriate metric is compounded by the large diversity of published metrics that have 

been used to quantitatively evaluate the accuracy of recommender systems. This lack of standardization is damaging 

to the progress of knowledge related to collaborative filtering recommender systems. With no standardized metrics 

within the field, researchers have continued to introduce new metrics when they evaluate their systems. With a large 

diversity of evaluation metrics in use, it becomes difficult to compare results from one publication to the results in 

another publication. As a result, it becomes hard to integrate these diverse publications into a coherent body of 

knowledge regarding the quality of recommender system algorithms.  

To address these challenges, we examine in the advantages and disadvantages of past metrics with respect to the 

user tasks and data set features that have been introduced in Sections 2 and 3. We follow up the conceptual 

discussion of advantages and disadvantages with empirical results comparing the performance of different metrics 



  

when applied to results from one class of algorithm in one domain. The empirical results demonstrate that some 

conceptual differences among accuracy evaluation metrics can be more significant than others.  

4.1 Evaluation of Previously Used Metrics 

Recommender system accuracy has been evaluated in the research literature since 1994 [Resnick et al. 1994]. Many 

of the published evaluations of recommender systems used different metrics. We will examine some of the most 

popular metrics used in those publications, identifying the strengths and the weaknesses of the metrics. We broadly 

classify recommendation accuracy metrics into three classes: predictive accuracy metrics, classification accuracy 

metrics, and rank accuracy metrics.  

4.1.1 Predictive Accuracy Metrics 

Predictive accuracy metrics measure how close the recommender system’s predicted ratings are to the true user 

ratings. Predictive accuracy metrics are particularly important for evaluating tasks in which the predicting rating will 

be displayed to the user such as Annotation in Context. For example, the MovieLens movie recommender [Dahlen et 

al. 1998] predicts the number of stars that a user will give each movie and displays that prediction to the user. 

Predictive accuracy metrics will evaluate how close MovieLens’ predictions are to the user’s true number of stars 

given to each movie. Even if a recommender system was able to correctly rank a user’s movie recommendations, the 

system could fail if the predicted ratings it displays to the user are incorrect1. Because the predicted rating values 

create an ordering across the items, predictive accuracy can also be used to measure the ability of a recommender 

system to rank items with respect to user preference. On the other hand, evaluators who wish to measure predictive 

accuracy are necessarily limited to a metric that computes the difference between the predicted rating and true rating 

such as mean absolute error.   

Mean absolute error and related metrics 

Mean absolute error (often referred to as MAE) measures the average absolute deviation between a predicted 

rating and the user’s true rating. Mean absolute error (Equation 1) has been used to evaluate recommender systems 

in several cases [Breese et al. 1998, Herlocker et al. 1999, Shardanand and Maes 1995].  
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Mean absolute error may be less appropriate for tasks such as Find Good Items where a ranked result is returned to 

the user, who then only views items at the top of the ranking.  For these tasks, users may only care about errors in 

items that are ranked high, or that should be ranked high.  It may be unimportant how accurate predictions are for 

items that the system correctly knows the user will have no interest in.  Mean absolute error may be less appropriate 

when the granularity of true preference (a domain feature) is small, since errors will only affect the task if they result 

                                                 
1 This is a primary reason that many implementations of recommender systems in a commercial setting only display a recommended-items list 

and do not display predicted values.  



  

in erroneously classifying a good item as a bad one or vice versa; for example, if 3.5 stars is the cut-off between 

good and bad, then a one-star error that predicts a 4 as 5 (or a 3 as 2) makes no difference to the user.   

Beyond measuring the accuracy of the predictions at every rank, there are two other advantages to mean absolute 

error. First, the mechanics of the computation are simple and easy to understand. Second, mean absolute error has 

well studied statistical properties that provide for testing the significance of a difference between the mean absolute 

errors of two systems.  

Three measures related to mean absolute error are mean squared error, root mean squared error, and 

normalized mean absolute error. The first two variations square the error before summing it. The result is more 

emphasis on large errors. For example, an error of one point increases the sum of error by one, but an error of two 

points increases the sum by four. The third related measure, normalized mean absolute error [Goldberg et al. 2001], 

is mean absolute error normalized with respect to the range of rating values, in theory allowing comparison between 

prediction runs on different datasets (although the utility of this has not yet been investigated).  

In addition to mean absolute error across all predicted ratings, Shardanand and Maes [1995] measured separately 

mean absolute error over items to which users gave extreme ratings. They partitioned their items into two groups, 

based on user rating (a scale of 1 to 7). Items rated below three or greater than five were considered extremes. The 

intuition was that users would be much more aware of a recommender system’s performance on items that they felt 

strongly about. From Shardanand and Maes’ results, the mean absolute error of the extremes provides a different 

ranking of algorithms than the normal mean absolute error. Measuring the mean absolute error of the extremes can 

be valuable. However, unless users are concerned only with how their extremes are predicted, it should not be used 

in isolation.  

4.1.2 Classification Accuracy Metrics 

Classification metrics measure the frequency with which a recommender system makes correct or incorrect 

decisions about whether an item is good. Classification metrics are thus appropriate for tasks such as Find Good 

Items when users have true binary preferences.  

When applied to non-synthesized data in offline experiments, classification accuracy metrics may be challenged by 

data sparsity. The problem occurs when the collaborative filtering system being evaluated is generating a list of top 

recommended items. When the quality of the list is evaluated, recommendations may be encountered that have not 

been rated. How those items are treated in the evaluation can lead to certain biases.  

One approach to evaluation using sparse data sets is to ignore recommendations for items for which there are no 

ratings. The recommendation list is first processed to remove all unrated items. The recommendation task has been 

altered to “predict the top recommended items that have been rated.” In tasks where the user only observes the top 

few recommendations, this could lead to inaccurate evaluations of recommendation systems with respect to the 

user’s task. The problem is that the quality of the items that the user would actually see may never be measured.  

In an example of how this could be significant, consider the following situation that could occur when using the 

nearest neighbor algorithm described in [Herlocker et al. 2002]: when only one user in the dataset has rated an 



  

eclectic item I, then the prediction for item I for all users will be equal to the rating given by that user. If a user gave 

item I a perfect rating of 5, then the algorithm will predict a perfect 5 for all other users. Thus item I will 

immediately be placed at the top of the recommendation list for all users, in spite of the lack of confirming data. 

However, since no other user has rated this item, the recommendation for item I will be ignored by the evaluation 

metric, which thus will entirely miss the flaw in the algorithm.  

Another approach to evaluation of sparse data sets is to assume default ratings, often slightly negative, for 

recommended items that have not been rated [Breese et al. 1998]. The downside of this approach is that the default 

rating may be very different from the true rating (unobserved) for an item.   

A third approach that we have seen in the literature is to compute how many of the highly rated items are found in 

the recommendation list generated by the recommender system. In essence, we are measuring how well the system 

can identify items that the user was already aware of. This evaluation approach may result in collaborative filtering 

algorithms that are biased towards obvious, non-novel recommendations.  or perhaps algorithms that are over fitted 

– fitting the known data perfectly, but new data poorly. In Section 5 of this article, we discuss metrics for evaluating 

novelty of recommendations.  

Classification accuracy metrics do not attempt to directly measure the ability of an algorithm to accurately predict 

ratings.  Deviations from actual ratings are tolerated, as long as they do not lead to classification errors. The 

particular metrics that we discuss are Precision and Recall and related metrics and ROC.  We also briefly discuss 

some ad hoc metrics.  

Precision and Recall and Related Measures 

Precision and recall are the most popular metrics for evaluating information retrieval systems. In 1968, Cleverdon 

proposed them as the key metrics, and they have held ever since. For the evaluation of recommender systems, they 

have been used by Billsus and Pazzani [1998], Basu et al. [1998], and Sarwar et al. [2000a, 2000b]. 

Table I. Table showing the categorization of items in the document set with respect to a given 
information need. 

 Selected Not Selected Total 
Relevant Nrs Nrn Nr 
Irrelevant Nis Nin Ni 

Total Ns Nn N 
 

Precision and recall are computed from a 2x2 table, such as the one shown in Table I. The item set must be 

separated into two classes – relevant or not relevant. That is, if the rating scale is not already binary, we need to 

transform it into a binary scale. For example, the MovieLens dataset [Dahlen et al. 1998] has a rating scale of 1-5 

and is commonly transformed into a binary scale by converting every rating of 4 or 5 to “relevant” and all ratings of 

1-3 to “not-relevant.” For precision and recall, we also need to separate the item set into the set that was returned to 

the user (selected/recommended), and the set that was not. We assume that the user will consider all items that are 

retrieved. 



  

Precision is defined as the ratio of relevant items selected to number of items selected, shown in Equation 2.  
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Precision represents the probability that a selected item is relevant. Recall, shown in Equation 3, is defined as the 

ratio of relevant items selected to total number of relevant items available. Recall represents the probability that a 

relevant item will be selected.   
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Precision and recall depend on the separation of relevant and non-relevant items. The definition of “relevance” and 

the proper way to compute it has been a significant source of argument within the field of information retrieval 

[Harter 1996]. Most information retrieval evaluation has focused on an objective version of relevance, where 

relevance is defined with respect to a query, and is independent of the user. Teams of experts can compare 

documents to queries and determine which documents are relevant to which queries. However, objective relevance 

makes no sense in recommender systems. Recommender systems recommend items based on the likelihood that 

they will meet a specific user’s taste or interest. That user is the only person who can determine if an item meets his 

taste requirements. Thus, relevance is more inherently subjective in recommender systems than in traditional 

document retrieval.  

In addition to user tastes being different, user rating scales may also be different. One user may consider a rating of 

3 on a 5-point scale to be relevant, while another may consider it irrelevant.  For this reason, much research using 

multi-point scales (such as in [Hill et al. 1995, Resnick et al. 1994, Shardanand and Maes 1995]) has focused on 

other metrics besides Precision/Recall.  One interesting approach that has been taken to identify the proper threshold 

is to assume that a top percentile of items rated by a user are relevant [Basu et al. 1998].  

Recall, in its purest sense, is almost always impractical to measure in a recommender system.  In the pure sense, 

measuring recall requires knowing whether each item is relevant; for a movie recommender, this would involve 

asking many users to view all 5000 movies to measure how successfully we recommend each one to each user.  IR 

evaluations have been able to estimate recall by pooling relevance ratings across many users, but this approach 

depends on the assumption that all users agree on which items are relevant, which is inconsistent with the purpose of 

recommender systems.   

Several approximations to recall have been developed and used to evaluate recommender systems.  Sarwar et al 

[2000a] evaluate their algorithms by taking a dataset of user ratings which they divide into a training set and a test 

set. They train the recommender algorithm on the training set, and then predict the top N items that the user is likely 

to find valuable, where N is some fixed value. They then compute recall as the percentage of known relevant items 

from the test set that appear in the top N predicted items. Since the number of items that each user rates is much 



  

smaller than the number of items in the entire dataset (see the discussion on data sparsity at the beginning of this 

section), the number of relevant items in the test set may be a small fraction of the number of relevant items in the 

entire dataset.  While this metric can be useful, it has underlying biases that researchers must be aware of.  In 

particular, the value of this metric depends heavily on the percentage of relevant items that each user has rated.  If a 

user has rated only a small percentage of relevant items, a recommender with high “true recall” may yield a low 

value for measured recall, since the recommender may have recommended unrated relevant items.  Accordingly, this 

metric should only be used in a comparative fashion on the same dataset; it should not be interpreted as an absolute 

measure.    

We have also seen precision measured in the same fashion [Sarwar et al. 2000a] with relevant items being selected 

from a small pool of rated items and predicted items being selected from a much larger set of items. Similarly, this 

approximation to precision suffers from the same biases as the recall approximation.   

Perhaps a more appropriate way to approximate precision and recall would be to predict the top N items for which 

we have ratings. That is, we take a user’s ratings, split them into a training set and a test set, train the algorithm on 

the training set, then predict the top N items from that user’s test set. If we assume that the distribution of relevant 

items and non-relevant items within the user’s test set is the same as the true distribution for the user across all 

items, then the precision and recall will be much closer approximations of the true precision and recall. This 

approach is taken in [Basu et al. 1998].  

In information retrieval, precision and recall can be linked to probabilities that directly affect the user. If an 

algorithm has a measured precision of 70%, then the user can expect that, on average, 7 out of every 10 documents 

returned to the user will be relevant. Users can more intuitively comprehend the meaning of a 10% difference in 

precision than they can a 0.5-point difference in mean absolute error.  

One of the primary challenges to using precision and recall to compare different algorithms is that precision and 

recall must be considered together to evaluate completely the performance of an algorithm. It has been observed that 

precision and recall are inversely related [Cleverdon and Kean 1968] and are dependent on the length of the result 

list returned to the user. When more items are returned, then the recall increases and precision decreases. Therefore, 

if the information system doesn’t always return a fixed number of items, we must provide a vector of 

precision/recall pairs to fully describe the performance of the system.  While such an analysis may provide a detailed 

picture of the performance of a system, it makes comparison of systems complicated, tedious, and variable between 

different observers. Furthermore, researchers may carefully choose at which levels of recall (or search length) they 

report precision and recall to match the strengths in their system.  

Several approaches have been taken to combine precision and recall into a single metric. One approach is the F1 

metric (Equation 4), which combines precision and recall into a single number The F1 has been used to evaluate 

recommender systems in [Sarwar et al. 2000a, Sarwar et al. 2000b]. An alternate approach taken by the TREC 

community is to compute the average precision across several different levels of recall or the average precision at 

the rank of each relevant document [Harman 1995]. The latter approach was taken in all but the initial TREC 

conference. This approach is commonly referred to as Mean Average Precision or MAP. F1 and mean average 



  

precision may be appropriate if the underlying precision and recall measures on which it is based are determined to 

be appropriate.  
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1 (Eq. 4) 

Precision alone at a single search length or a single recall level can be appropriate if the user does not need a 

complete list of all potentially relevant items, such as in the Find Good Items task. If the task is to find all relevant 

items in an area, then recall becomes important as well. However, the search length at which precision is measured 

should be appropriate for the user task and content domain.   

As with all classification metrics, precision and recall are less appropriate for domains with non-binary granularity 

of true preference. For those tasks, at any point in the ranking, we want the current item to be more relevant than all 

items lower in the ranking. Since precision and recall only measure binary relevance, they cannot measure the 

quality of the ordering among items that are selected as relevant. 

ROC Curves, Swets’ A Measure, and Related Metrics 

ROC curve-based metrics provide a theoretically grounded alternative to precision & recall. There are two different 

popularly held definitions for the acronym ROC. Swets [1963, 1969] introduced the ROC metric to the information 

retrieval community under the name “relative operating characteristic”. More popular however, is the name 

“receiver operating characteristic,” which evolved from the use of ROC curves in signal detection theory [Hanley 

and McNeil 1982].  Regardless, in both cases, ROC refers to the same underlying metric. 

The ROC model attempts to measure the extent to which an information filtering system can successfully 

distinguish between signal (relevance) and noise. The ROC model assumes that the information system will assign a 

predicted level of relevance to every potential item. Given this assumption, we can see that there will be two 

distributions, shown in Figure 1. The distribution on the left represents the probability that the system will predict a 

given level of relevance (the x-axis) for an item that is in reality not relevant to the information need. The 

distribution on the right indicates the same probability distribution for items that are relevant. Intuitively, we can see 

that the further apart these two distributions are, the better the system is at differentiating relevant items from non-

relevant items.  



  

 

 

Figure 1. A possible representation of the density functions for relevant and irrelevant items. 
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With systems that return a ranked list, the user will generally view the recommended items starting at the top of the 

list and work down until the information need is met, a certain time limit is reached, or a predetermined number of 

results are examined. In any case, the ROC model assumes that there is a filter tuning value zc, such that all items 

that the system ranks above the cutoff are viewed by the user, and those below the cutoff are not viewed by the user. 

This cutoff defines the search length. As shown in Figure 1, at each value of zc, there will be a different value of 

recall (percentage of good items returned, or the area under the relevant probability distribution to the right of zc) 

and fallout (percentage of bad items returned, or the area under the non-relevant probability distribution to the right 

of zc). The ROC curve represents a plot of recall versus fallout, where the points on the curve correspond to each 

value of zc. An example of an ROC curve is shown in Figure 2. 

A common algorithm for creating an ROC curve goes as follows:  

1. Determine how you will identify if an item is relevant or non-relevant. 

2. Generate a predicted ranking of items.  

3. For each predicted item, in decreasing order of predicted relevance (starting the graph at the origin):  

a. If the predicted item is indeed relevant draw the curve one step vertically.  

b. If the predicted item is not relevant, draw the curve one step horizontally to the right. 

c. If the predicted item has not been rated (i.e. relevance is not known), then the item is simply 

discarded and does not affect the curve negatively or positively.  

An example of an ROC curve constructed in this manner is shown in Figure 2.  



  

A perfect predictive system will generate an ROC curve that goes straight upward until 100% of relevant items have 

been encountered, then straight right for the remaining items. A random predictor is expected to produce a straight 

line from the origin to the upper right corner2. 

Figure 2. An example of an ROC curve. The p-values shown on the curve represent 
different prediction cutoffs. For example if we chose to select all items with 
predictions of 4 or higher, then we experience approximately 45% of all relevant 
items and 20% of all non-relevant items. 

 

ROC curves are useful for tuning the signal/noise tradeoff in information systems. For example, by looking at an 

ROC curve, you might discover that your information filter performs well for an initial burst of signal at the top of 

the rankings, and then produces only small increases of signal for moderate increases in noise from then on. 

Similar to Precision and Recall measures, ROC curves make an assumption of binary relevance. Items 

recommended are either successful recommendations (relevant) or unsuccessful recommendation (non-relevant). 

                                                 
2 Schein et al. [Schein et al. 2002] present an alternate method of computing an ROC - a Customer ROC (CROC). A CROC measurement applied 

to a perfect recommender may not produce a perfect ROC graph as described. The reasoning is that some recommender systems may display 
more recommendations then there exist “relevant” items to the recommender, and that these additional recommendations should be counted as 
false-positives. 



  

One consequence of this assumption is that the ordering among relevant items has no consequence on the ROC 

metric – if all relevant items appear before all non-relevant items in the recommendation list, you will have a perfect 

ROC curve.  

Comparing multiple systems using ROC curves becomes tedious and subjective, just as with precision and recall. 

However, a single summary performance number can be obtained from an ROC curve. The area underneath an ROC 

curve, also known as Swet’s A measure, can be used as a single metric of the system’s ability to discriminate 

between good and bad items, independent of the search length. According to [Hanley and McNeil 1982], the area 

underneath the ROC curve is equivalent to the probability that the system will be able to choose correctly between 

two items, one randomly selected from the set of bad items, and one randomly selected from the set of good items. 

Intuitively, the area underneath the ROC curve captures the recall of the system at many different levels of fallout. It 

is also possible to measure the statistical significance of the difference between two areas [Hanley and McNeil 1982, 

Le and Lindren 1995]. 

The ROC area metric has the disadvantage that equally distant swaps in the rankings will have the same affect on 

ROC area regardless of whether they occur near the top of the ranking or near the end of the ranking. For example, 

if a good item is ranked 15 instead of 10, it will have roughly the same affect on the ROC area as if a good item is 

ranked 200 instead of 195. This disadvantage could be significant for tasks such as Find Good Items where the first 

situation is likely to have a greater negative affect on the user. This disadvantage is somewhat minimized by the fact 

that relevance is binary and exchanges within a relevance class have no affect (if items ranked 10-15 are all relevant, 

an exchange between 10 and 15 will have no affect at all). On the other hand, for tasks such as Find All Good Items, 

the discussed disadvantage may not be significant.  

Hanley and McNeil [1982] present a method by which one can determine the number of data points necessary to 

ensure that a comparison between two areas has good statistical power (defined as a high probability of identifying a 

difference if one exists). Hanley’s data suggests that many data points may be required to have a high level of 

statistical power. The number of required data points for significance becomes especially large when the two areas 

being compared are very close in value. Thus, to confidently compare the results of different algorithms using ROC 

area, the potential result set for each user must also be large. 

The advantages of ROC area metric are that it (a) provides a single number representing the overall performance of 

an information filtering system, (b) is developed from solid statistical decision theory designed for measuring the 

performance of tasks such as those that a recommender system performs, and (c) covers the performance of the 

system over all different recommendation list lengths.  

To summarize the disadvantages of the ROC area metric: (a) a large set of potentially relevant items is needed for 

each query; (b) for some tasks, such as Find Good Items users are only interested in performance at one setting, not 

all possible settings; (c) equally distant swaps in rankings have the same effect no matter where in the ranking they 

occur; and (d) it may need a large number of data points to ensure good statistical power for differentiating between 

two areas.  



  

The ROC area measure is most appropriate when there is a clear binary relevance relationship and the task is similar 

to Find Good Items, where the user wants to see as many of the relevant answers as possible within certain resource 

limitations.  

Ad Hoc Classification Accuracy Measures 

Ad hoc measures of classification accuracy have attempted to identify error rates and, in particular, large errors.  

Error rate can be measured in a manner derived from Precision and Recall.  Specifically, the error rate for a system 

is the number of incorrect recommendations it makes divided by the total number of recommendations.  If a system 

recommends only a few items, it is possible to measure error rate experimentally.  Jester, for example, which 

presents jokes to users, can evaluate the error rate based on the immediate feedback users give to each joke 

[Goldberg et al. 2001].  More commonly, the error rate computation is limited to the subset of recommended items 

for which a rating is available; this approach introduces the bias that users commonly avoid consuming (and 

therefore rating) items that don’t interest them, and therefore this approximate error rate is likely to be lower than 

the true error rate.   

Another ad hoc technique specifically identifies large errors.  Sarwar et al. measured reversals when studying agent-

boosted recommendations [1998].  Errors of three or more points on a five point scale were considered significant 

enough to potentially undermine user confidence, and therefore were tallied separately.  Such a measurement mixes 

aspects of classification and prediction accuracy, but has not been generally used by later researchers.  It might be 

particularly appropriate for the Evaluate Recommender task.   

4.1.3 Rank Accuracy Metrics 

Rank accuracy metrics measure the ability of a recommendation algorithm to produce a recommended ordering of 

items that matches how the user would have ordered the same items. Unlike classification metrics, ranking metrics 

are more appropriate to evaluate algorithms that will be used to present ranked recommendation lists to the user, in 

domains where the user’s preferences in recommendations are non-binary.   

Rank accuracy metrics may be overly sensitive for domains where the user just wants an item that is “good enough” 

(binary preferences) since the user won’t be concerned about the ordering of items beyond the binary classification. 

For example, even if the top ten items ranked by the system were relevant, a rank accuracy metric might give a non-

perfect value because the best item is actually ranked 10th.  By the same token, rank accuracy metrics can distinguish 

between the “best” alternatives and just “good” alternatives and may be more appropriate for domains where that 

distinction is important. In such domains it is possible for all the top recommended items to be relevant, but still not 

be the “best” items.  

Ranking metrics do not attempt to measure the ability of an algorithm to accurately predict the rating for a single 

item – they are not predictive accuracy metrics and are not appropriate for evaluating the Annotation in Context task. 

If a recommender system will be displaying predicted rating values, it is important to additionally evaluate the 

system using a predictive accuracy metric as described above. We examine several correlation metrics, a half-life 

utility metric, and the NDPM metric.  



  

4.1.4 Prediction-Rating Correlation 

Two variables are correlated if the variance in one variable can be explained by the variance in the second. Three of 

the most well known correlation measures are Pearson’s product-moment correlation, Spearman’s ρ, and Kendall’s 

Tau.  

Pearson correlation measures the extent to which there is a linear relationship between two variables. It is defined as 

the covariance of the z-scores, shown in Equation 5. 
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Rank correlations, such as Spearman’s ρ (Equation 6) and Kendall’s Tau, measure the extent to which two different 

rankings agree independent of the actual values of the variables. Spearman’s ρ is computed in the same manner as 

the Pearson product-moment correlation, except that the x’s and y’s are transformed into ranks, and the correlations 

are computed on the ranks. 
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Kendall’s Tau represents a different approach to computing the correlation of the rankings that is independent of the 

variable values. One approximation to Kendall’s Tau is shown in Equation 7. C stands for the number of concondant 

pairs – pairs of items which the system predicts in the proper ranked order. D stands for the number of discordant 

pairs – pairs which the system predicts in the wrong order. TR is number of pairs of items in the true ordering (the 

ranking determined by the user’s ratings) that have tied ranks (ie the same rating) while TP is the number of pairs of 

items in the predicted ordering that have tied ranks (the same prediction value).  

)))((( TPDCTRDCsqrt
DCTau

++++
−

= (Eq. 7) 

 

In spite of their simplicity, the above correlation metrics have not been used extensively in the measurement of 

recommender systems or information retrieval systems. Pearson correlation was used by Hill et al.[1995] to evaluate 

the performance of their recommender system.  

The advantages of correlation metrics are (a) they compare a non-binary system ranking to a non-binary user 

ranking, (b) they are well understood by the scientific community, and (c) they provide a single measurement score 

for the entire system.  

There may be weaknesses in the way in which the “badness” of an interchange is calculated with different 

correlation metrics. For example, Kendall’s Tau metric applies equal weight to any interchange of equal distance, no 

matter where it occurs (similar to the ROC area metric). Therefore, an interchange between recommendations 1 and 



  

2 will be just as bad as an interchange between recommendations 1000 and 1001. However, if the user is much more 

likely to consider the first five, and will probably never examine items ranked in the thousands, the interchange 

between 1 and 2 should have a more substantial negative impact on the outcome of the metric.  

The Spearman correlation metric does not handle weak (partial) orderings well. Weak orderings occur whenever 

there are at least two items in the ranking such that neither item is preferred over the other. If a ranking is not a weak 

ordering then it is called a complete ordering. If the user’s ranking (based on their ratings) is a weak ordering and 

the system ranking is a complete ordering, then the Spearman correlation will be penalized for every pair of items 

which the user has rated the same, but the system ranks at different levels. This is not ideal, since the user shouldn’t 

care how the system orders items that the user has rated at the same level. Kendall’s Tau metric also suffers the 

same problem, although to a lesser extent than the Spearman correlation. 

Half-life Utility Metric 

Breese et al. [1998], presented a new evaluation metric for recommender systems that is designed for tasks where 

the user is presented with a ranked list of results, and is unlikely to browse very deeply into the ranked list. Another 

description of this metric can be found in [Heckerman et al. 2000]. The task for which the metric is designed is an 

Internet web-page recommender. They claim that most Internet users will not browse very deeply into results 

returned by search engines.  

This half-life utility metric attempts to evaluate the utility of a ranked list to the user. The utility is defined as the 

difference between the user’s rating for an item and the “default rating” for an item. The default rating is generally a 

neutral or slightly negative rating.  The likelihood that a user will view each successive item is described with an 

exponential decay function, where the strength of the decay is described by a half-life parameter. The expected 

utility ( aR ) is shown in Equation 8. jar , represents the rating of user a  on item j  of the ranked list, d  is the 

default rating, and α  is the half-life. The half-life is the rank of the item on the list such that there is a 50% chance 

that the user will view that item. Breese et al. used a half-life of 5 for his experiments, but noted that using a half-life 

of 10 caused little additional sensitivity of results. 
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The overall score for a dataset across all users ( R ) is shown in Equation 9. max
aR is the maximum achievable utility 

if the system ranked the items in the exact order that the user ranked them. 
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The half-life utility metric is best for tasks domains where there is an exponential drop in true utility (one could 

consider utility from a cost/benefit ratio analysis) as the search length increases, assuming that the half-life α  and 



  

default vote d are chosen appropriately in the utility metric. The utility metric applies most of the weight to early 

items, with every successive rank having exponentially less weight in the measure. To obtain high values of the 

metric, the first predicted rankings must consist of items rated highly by the user. The downside is that if the true 

function describing the likelihood of accessing each rank is significantly different from the exponential used in the 

metric then the measured results may not be indicative of actual performance. For example, if the user almost 

always searches 20 items into the ranked recommendation list, then the true likelihood function is a step function 

which is constant for the first 20 items and 0 afterwards. 

The half-life utility metric may be overly sensitive in domains with binary user preferences where the user only 

requires that top recommendations be “good enough” or for user tasks such as Find All Good Items where the user 

wants to see all good items.   

There are other disadvantages to the half-life utility metric. First, weak orderings created by the system will result in 

different possible scores for the same system ranking. Suppose the system outputs a recommendation list, with three 

items sharing the top rank. If the user rated those three items differently, then depending on what order the 

recommender outputs those items, the metric could have very different values (if the ratings were significantly 

different).  

Second, due to the application of the max() function in the metric (Equation 8), all items that are rated less than the 

default vote contribute equally to the score. Therefore, an item occurring at system rank 2 that is rated just slightly 

less than the default rating (which usually indicates ambivalence) will have the same effect on the utility as an item 

that has the worst possible rating. The occurrence of extremely wrong predictions in the high levels of a system 

ranking can undermine the confidence of the user in the system.  Metrics that penalize such mistakes more severely 

are preferred. 

To summarize, the half-life utility metric is the only one that we have examined that takes into account non-uniform 

utility. Thus it could be appropriate for evaluation of the Find Good Items tasks in domains such non-uniform utility 

is believed to exist. On the other hand it has many disadvantages, in particular when considering standardization 

across different researchers. Different researchers could use significantly different values of alpha or the default vote 

– making it hard to compare results across researchers and making it easy to manipulate results. Furthermore, the 

half-life parameter is unlikely to be the same for all users (different users need/desire different numbers of results).  

The NDPM measure.  

NDPM was used to evaluate the accuracy of the FAB recommender system [Balabanovíc and Shoham 1997]. It was 

originally proposed by Yao [1995]. Yao developed NDPM theoretically, using an approach from decision and 

measurement theory.  NDPM stands for “normalized distance-based performance measure”. NDPM (Equation 10) 

can be used to compare two different weakly-ordered rankings.  
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−C  is the number of contradictory preference relations between the system ranking and the user ranking. A 

contradictory preference relation happens when the system says that item 1 will be preferred to item 2, and the user 

ranking says the opposite. uC is the number of compatible preference relations, where the user rates item 1 higher 

than item 2, but the system ranking has item 1 and item 2 at equal preference levels. iC is the total number of 

“preferred” relationships in the user’s ranking (i.e. pairs of items rated by the user for which one is rated higher than 

the other). This metric is comparable among different datasets (it is normalized), because the numerator represents 

the distance, and the denominator represents the worst possible distance.   

NDPM is similar in form to the Spearman and Kendall’s Tau rank correlations, but provides a more accurate 

interpretation of the effect of tied user ranks. However, it does suffer from the same interchange weakness as the 

rank correlation metrics (interchanges at the top of the ranking have the same weight as interchanges at the bottom 

of the ranking). 

Because NDPM does not penalize the system for system orderings when the user ranks are tied, NDPM may be 

more appropriate than the correlation metrics for domains where the user is interested in items that are “good-

enough.” User ratings could be transformed to binary ratings (if they were not already), and NDPM could be used to 

compare the results to the system ranking. 

As NDPM only evaluates ordering and not prediction value, it is not appropriate for evaluating tasks where the goal 

is to predict an actual rating value.  

4.1.5 An Empirical Comparison of Evaluation Metrics 

After conceptually analyzing the advantages and disadvantages, a natural question is: “which of these advantages 

and disadvantages have a significant effect on the outcome of a metric?” In an effort to quantify the differences 

between the above mentioned evaluation metrics, we computed a set of different evaluation metrics on a set of 

results from different variants of a collaborative filtering prediction algorithm and examined the extent to which the 

different evaluation metrics agreed or disagreed.  

We examined the predictions generated by variants of a classic nearest-neighbor collaborative filtering algorithm 

formed by perturbing many different key parameters.  We used this data for examination of evaluation metrics. 

There were 432 different variants of the algorithm tested, resulting in the same number of sets of predictions. The 

parameters of the algorithms that were varied to produce the different results included: size of neighborhood, 

similarity measure used to compute closeness of neighbors, threshold over which other users were considered 

neighbors, and type of normalization used on the ratings. (see [Herlocker et al. 2002] for more information on the 

algorithm) 

For each of these result sets, we computed mean absolute error, Pearson correlation, Spearman rank correlation, area 

underneath an ROC-4 and ROC-53 curve, the half-life utility metric, mean average precision at relevant documents 

and the NDPM metric. For several of the metrics, there are two different variants: overall and per-user. The 

                                                 
3 ROC-4 refers to an ROC curve where ratings of 4 and above are considered signal and 3 and below are considered noise.   



  

difference between these two variants is the manner in which averaging was performed. In the overall case, 

predictions for all the users were pooled together into a single file and then sorted. Likewise the ratings for those 

items were pooled into a single file and sorted. A ranking metric was then applied once to compare those two files. 

In the per-user case, predictions were computed for each user, and the ranking metric was computed for each user. 

Then the ranking metric was averaged over all users.  

The experiment was performed with data taken from the MovieLens web-based movie recommender 

(www.movielens.org). The data were sampled from the data collected over a seven-month period from September 

19th, 1997 through April 22nd, 1998. The data consisted of 100,000 movie ratings from 943 users on 1682 items. 

Each user sampled had rated at least 20 items. For each of the users, 10 rated items are withheld from the training. 

After training the system with all the other ratings, predictions are generated for the 10 withheld items. Then the 

predictions were compared to the user’s ratings, and the list ranked by predictions was compared to the list ranked 

by user ratings. The data are freely available from www.grouplens.org, and we encourage researchers using other 

families of collaborative filtering algorithms to replicate this work using the same data set for comparability.  

This analysis is performed on a single family of algorithms on a single dataset, so the results should not be 

considered comprehensive. However, we believe that the results show evidence of relationships between the metrics 

that should be investigated further. Our goal is not to provide a deep investigation of the empirical results, which 

would constitute a entire article by itself.   

Figure 3 is a scatter plot matrix showing an overview of all the results. Each cell of the matrix represents a 

comparison between two of the metrics4. Each point of the scatter plot represents a different variant of the 

recommender algorithm. In the following paragraphs (and figures), we will look more closely at subsets of the 

results. 

                                                 
4 Note that because we are displaying the complete matrix, each comparison pair appears twice. However, by having the complete matrix, we can 

easily scan one metric’s interactions with all other metrics in a single row or column.  



  

 

Figure 3. Overview of the comparative evaluation of several different evaluation metrics on 432 different 
variants of a nearest neighbor-based collaborative filtering algorithm.  

In analyzing the data in Figure 3, we notice that there is very strong linear agreement among different subsets of the 

metrics tested. One subset with strong agreement includes the per-user correlation metrics and mean average 

precision. This subset is shown expanded in Figure 4. For the data and algorithms tested, Figure 4 suggests that rank 

correlations do not provide substantially different outcomes from each other or from Pearson correlation. Figure 4 

also indicates that mean average precision is highly correlated with the per-user correlation metrics.  



  

 

Figure 4. Comparison among results provided by all the per-user correlation metrics and the mean average 
precision per user metric. These metrics have strong linear relationships with each other.  

Figure 5 shows a different, mutually exclusive subset of the evaluation metrics that includes the per-user Half-life 

Utility metric as well as the per-user ROC-4 and ROC-5 area metrics. We can see that these three metrics are 

strongly correlated, even more so that the previous subset of metrics.  



  

 

Figure 5. Comparison between results provided by the ROC-4 Area metric, the ROC-5 Area metric, and the 
Half-life Utility metric. The graphs depict strong linear correlations.  

The final subset that we shall examine contains all the metrics that are computed overall as opposed to the metrics 

depicted in Figure 4 and 5, which are per-user. Figure 6 shows that the metrics computed overall (mean absolute 

error5, Pearson Correlation, and ROC-4) have mostly linear relationships.  

                                                 
5 Note that Mean Absolute Error could produces the same result whether it is averaged per-user or overall. However, it strongly correlates with 

the overall metrics and not the per-user metrics.  



  

 

Figure 6. Comparison between metrics that are averaged overall rather than per-user. Note the linear 
relationship between the different metrics.  

To bring the analysis back to the entire set of metrics, we have chosen one representative from each of the subsets 

that were depicted in Figures 4-6. Figure 7 shows a comparison between these representatives. Pearson per-user 

represents the subset of per-user metrics and Mean Average Precision that are depicted in Figure 4. ROC-4 per user 

represents the ROC-4, ROC-5, and Half-life Utility metrics, all averaged per-user. Mean Absolute Error represents 

the subset of overall metrics depicted in Figure 6. We can see that while there is strong agreement within each subset 

of algorithms (as seen in Figures 4-6), there is little agreement between algorithms from different subsets. 

Algorithms averaged per-user do not seem to agree with algorithms averaged overall. The ROC-4, ROC-5, and Half-

life Utility metrics averaged per user do not agree with the other metrics that are averaged per user.  



  

 

Figure 7. A comparison of representative metrics from the three subsets that were depicted in Figures 4-6. 
Within each of the subsets, the metrics strongly agree, but this figure shows that metrics from different subsets 
do not correlate well 

Several interesting observations can be taken from that data in Figures 3-7.  

• Metrics that are computed per user and then averaged provide different rankings of algorithms that metrics 

that are computed overall.  

• There doesn’t appear to be a substantial difference between the Pearson correlation metrics and rank 

correlation metrics, although a good number of outliers exist. 

•  Mean Average Precision provides roughly the same ordering of algorithms as the correlation metrics that 

are computed per user and averaged.  

• The ROC area metrics (ROC-4 and ROC-5) when computed overall perform very similar to the other 

overall metrics, such as Mean Absolute Error and Pearson Overall. However, when they are averaged per 

user, they provide different rankings of algorithms than other per-user metrics, with the exception of the 

Half-life Utility metric 



  

• The Half-life utility metric, which is averaged per user provides different rankings of algorithms than the 

per-user correlation metrics and mean average precision, yet produces rankings similar to the ROC area 

metrics when computed per user.  

In support of these observations, Schein et al [2002] have also observed that overall metrics and per-user metric can 

provide conflicting results. They observed differences between an overall ROC (which they call Global ROC) and a 

per-user ROC (which they call a Customer ROC).  

One should hold in mind that these empirical results, while based on numerous data points, all represent 

perturbations of the same base algorithm. The range in rank scores do not vary that much. Future work could extend 

the comparison of these evaluation metrics across significantly different recommendation algorithms. 

4.2 Accuracy Metrics - Summary  

We have examined a variety of accuracy evaluation metrics that have been used before to evaluate collaborative 

filtering systems. We have examined them both conceptually and empirically.  The conceptual analysis suggests that 

certain evaluation metrics are more appropriate for certain tasks. Based on this analysis, there appears to be a 

potential for inaccurate measurement of certain tasks if the wrong metric is used. Our empirical analysis of one class 

of collaborative filtering algorithm demonstrates that many of the argued conceptual mismatches between metrics 

and tasks do not manifest themselves when evaluating the performance of predictive algorithms on movie rating 

data. On the other hand, we were able to demonstrate that different outcomes in evaluation can be obtained by 

carefully choosing evaluation metrics from different classes that we identified.   

The empirical analysis that we have performed represents only a sample – one class of algorithm and one dataset. A 

TREC-like environment for collaborative filtering algorithms, with different tracks (and datasets) for different tasks 

would provide algorithmic results from many different algorithms and systems. These results would provide 

valuable data for the further verification of the properties of metrics discussed in this section  

A final note is that a similar (but very brief) analysis has been performed on metrics for evaluating text retrieval 

systems. Voorhees and Harman report the strength of correlations computed between different evaluation metrics 

used in the TREC-7 analysis [Voorhees and Harman 1999]. Instead of showing scatterplots relating metrics, they 

computed correlation values between different metrics. Their results focused primarily on different variants of 

precision/recall which we do not discuss here. As the domain features of the document retrieval context are 

significantly different from the recommender systems context, we do not attempt to incorporate their results here. 

5. BEYOND ACCURACY 

There is an emerging understanding that good recommendation accuracy alone does not give users of recommender 

systems an effective and satisfying experience.  Recommender systems must provide not just accuracy, but also 

usefulness.  For instance, a recommender might achieve high accuracy by only computing predictions for easy-to-

predict items – but those are the very items for which users are least likely to need predictions.  Further, a system 

that always recommends very popular items can promise that users will like most of the items recommended – but a 



  

simple popularity metric could do the same thing.  (Recommending only very unpopular items and promising that 

users won't like them is even less useful.)  

By recalling that performance of a recommender system must be evaluated with respect to specific user tasks and 

the domain context, we can deepen the argument for moving beyond accuracy.  For example, consider the Find 

Good Items task in a domain where the user wants to select a single item whose value exceeds a threshold – and 

suppose that the system follows a typical strategy of offering a relatively small, ordered set of recommendations.  In 

this case, it may be best for the system to try to generate a few highly useful recommendations, even at the risk of 

being off the mark with the others.  If the supporting information about the items is good enough, then the user will 

be able to identify the best recommendation quickly.  Turpin & Hersh’s study of search engines [2001] provides 

support for this position.  Their subjects were divided into two sets, with half using a simple, baseline search engine, 

and the others using a state of the art engine.  While the latter returned significantly more accurate results, subjects 

in both cases were about as successful at completing their tasks (e.g., finding the answer to a question such as 

“Identify a set of Roman ruins in present-day France”).  Turpin & Hersh believed that this showed that the 

difference between (say) 3 and 5 relevant documents in a list of 10 documents was not really material to the user; 

nor did it matter much if the relevant documents were right at the top of the list or a bit further down.  Subjects were 

able to scan through the titles and brief synopses and quickly locate a relevant document. 

This section considers measures of recommender system usefulness that move beyond accuracy to include 

suitability of the recommendations to users.  Suitability includes coverage, which measures the percentage of a 

dataset that the recommender system is able to provide predictions for; confidence metrics that can help users make 

more effective decisions; the learning rate, which measures how quickly an algorithm can produce good 

recommendations; and novelty/serendipity, which measure whether a recommendation is a novel possibility for a 

user.  Finally, we explore measures of recommender system utility based on user satisfaction with and performance 

on a system.   

5.1 Coverage 

The coverage of a recommender system is a measure of the domain of items in the system over which the system 

can form predictions or make recommendations. Systems with lower coverage may be less valuable to users, since 

they will be limited in the decisions they are able to help with. Coverage is particularly important for the Find All 

Good Items task, since systems that cannot evaluate many of the items in the domain cannot find all of the good 

items in that domain. Coverage is also very important for the Annotate In Context task, as no annotation is possible 

for items where no prediction is available.  Coverage can be most directly defined on predictions by asking "What 

percentage of items can this recommender form predictions for?” This type of coverage is often called prediction 

coverage. A different sort of coverage metric can be formed for recommendations, more along the lines of "What 

percentage of available items does this recommender ever recommend to users?” For an e-commerce site, the latter 

form of coverage measures how much of the merchant's catalog of items are recommended by the recommender; for 

this reason we'll call it catalog coverage.  



  

Coverage has been measured by a number of researchers in the past [Good et al. 1999, Herlocker et al. 1999, Sarwar 

et al. 1998]. The most common measure for coverage has been the number of items for which predictions can be 

formed as a percentage of the total number of items. The easiest way to measure coverage of this type is to select a 

random sample of user/item pairs, ask for a prediction for each pair, and measure the percentage for which a 

prediction was provided. Much as precision and recall must be measured simultaneously, coverage must be 

measured in combination with accuracy, so recommenders are not tempted to raise coverage by making bogus 

predictions for every item.  

An alternative way of computing coverage considers only coverage over items in which a user may have some 

interest. Coverage of this type is not usually measured over all items, but only over those items a user is known to 

have examined. For instance, when the predictive accuracy is computed by hiding a selection of ratings and having 

the recommender compute a prediction for those ratings, the coverage can be measured as the percentage of covered 

items for which a prediction can be formed. The advantage of this metric is it may correspond better to user needs, 

since it is not important whether a system can recommend items a user has no interest in. (For instance: if a user has 

no interest in particle physics, it is not a disadvantage that a particular recommender system for research papers 

cannot form predictions for her about particle physics.)  

Catalog coverage, expressed as the percentage of the items in the catalog that are ever recommended to users, has 

been measured less often. Catalog coverage is usually measured on a set of recommendations formed at a single 

point in time. For instance, it might be measured by taking the union of the top 10 recommendations for each user in 

the population. Similarly to all coverage metrics, this metric distorts if it is not considered in combination with 

accuracy. For instance, if there is an item in the catalog that is uninteresting to all users, a good algorithm should 

never recommend it, leading to lower coverage -- but higher accuracy.  

We know of no perfect, general coverage metric. Such a metric would have the following characteristics: (1) It 

would measure both prediction coverage and catalog coverage; (2) For prediction coverage it would more heavily 

weight items for which the user is likely to want predictions; (3) There would be a way to combine the coverage 

measure with accuracy measures to yield an overall "practical accuracy" measure for the recommender system. 

Recommender systems researchers must continue to work to develop coverage metrics with these properties. In the 

meantime, we should continue to use the best available metrics, and it is crucial that we continue to report the 

coverage of our recommender systems. Best practices are to report the raw percentage of items for which predictions 

can be formed, and to also report catalog coverage for recommender algorithms. Where practical, these metrics 

should be augmented with measures that more heavily weight likely items. These metrics should be considered 

experimental, but will eventually lead to more useful coverage metrics. Comparing recommenders along these 

dimensions will ensure that new recommenders are not achieving accuracy by "cherry-picking" easy-to-recommend 

items, but are providing a wide range of useful recommendations to users.  

5.2 Learning Rate 

Collaborative filtering recommender systems incorporate learning algorithms that operate on statistical models. As a 

result, their performance varies based on the amount of learning data available. As the quantity of learning data 



  

increases, the quality of the predictions or recommendations should increase. Different recommendation algorithms 

can reach “acceptable” quality of recommendations at different rates. Some algorithms may only need a few data 

points to start generating acceptable recommendations, while others may need extensive data points. Three different 

learning rates have been considered in recommender systems: overall learning rate, per item learning rate, and per 

user learning rate. The overall learning rate is recommendation quality as a function of the overall number of ratings 

in the system (or the overall number of users in the system). The per-item learning rate is the quality of predictions 

for an item as a function of the number of ratings available for that item. Similarly the per-user learning rate is the 

quality of the recommendations for a user as a function of the number of ratings that user has contributed.  

The issue of evaluating the learning rates in recommender systems has not been extensively covered in the literature, 

although researchers such as Schein et al [2001] have looked at evaluating the performance of recommender systems 

in “cold-start” situations. “Cold-start” situations (commonly referred to as the startup problem) refer to situations 

where there are only a few ratings on which to base recommendations. Learning rates are non-linear and asymptotic 

(quality can’t improve forever), and thus it is challenging to represent them compactly. The most common method 

for comparing the learning rates of different algorithms is to graph the quality versus the number of ratings (quality 

is usually accuracy).   

The lack of evaluation of learning rates is due largely to the size of the Eachmovie, MovieLens, and Jester datasets, 

all of which have a substantial number of ratings. As recommender systems spread into the more data-sparse 

domains, algorithm learning rates will become a much more significant evaluation factor.  

5.3 Novelty and Serendipity 

Some recommender systems produce recommendations that are highly accurate and have reasonable coverage -- and 

yet that are useless for practical purposes. For instance, a shopping cart recommender for a grocery store might 

suggest bananas to any shopper who has not yet selected them. Statistically this recommendation is highly accurate: 

almost everyone buys bananas. However, everyone who comes to a grocery store to shop has bought bananas in the 

past, and knows whether or not they want to purchase more. Further, grocery store managers already know that 

bananas are popular, and have already organized their store so people cannot avoid going past the bananas. Thus, 

most of the time the shopper has already made a concrete decision not to purchase bananas on this trip, and will 

therefore ignore a recommendation for bananas. Much more valuable would be a recommendation for the new 

frozen food the customer has never heard of -- but would love. A similar situation occurs in a music store around 

very well known items, like the Beatles' famous White Album. Every music aficionado knows about the White 

Album -- and most already own it. Those who do not own it already have likely made a conscious decision not to 

own it. A recommendation to purchase it is therefore unlikely to lead to a sale. In fact, the White Album is an even 

worse recommendation than bananas, since most people only buy one copy of any given album. Much more 

valuable would be a recommendation for an obscure garage band that makes music that this customer would love, 

but will never hear about through a review or television ad.  

Bananas in a grocery store, and the White Album in a music store, are examples of recommendations that fail the 

obviousness test. Obvious recommendations have two disadvantages: first, customers who are interested in those 



  

products have already purchased them; and second, managers in stores do not need recommender systems to tell 

them which products are popular overall. They have already invested in organizing their store so those items are 

easily accessible to customers.   

Obvious recommendations do have value for new users. Swearingen and Sinha [2001] found that users liked 

receiving some recommendations of items that they already were familiar with. This seems strange since such 

recommendations do not give users any new information. However, what they do accomplish is to increase user 

confidence in the system which is very important for the Find Credible Recommender task. Additionally, users were 

more likely to say they would buy familiar items than novel ones. This contrasts with the situation when users were 

asked about downloading material for free (e.g., as is the case for many technical papers on the Web or for many 

mp3 music files). Here, users tended to prefer more novel recommendations. The general lesson to take away is that 

a system may want to try to estimate the probability that a user will be familiar with an item. For some tasks (and 

perhaps early in the course of user's experience with the system), a greater number of familiar items should be 

recommended; for others, fewer or none should be included  

We need new dimensions for analyzing recommender systems that consider the "non-obviousness" of the 

recommendation. One such dimension is novelty, which has been addressed before in information retrieval literature 

(see [Baeza-Yates and Ribiero-Neto 1999] for a brief discussion of novelty in information retrieval). Another related 

dimension is serendipity. A serendipitous recommendation helps the user find a surprisingly interesting item he 

might not have otherwise discovered. To provide a clear example of the difference between novelty and serendipity, 

consider a recommendation system that simply recommends movies that were directed by the user’s favorite 

director. If the system recommends a movie that the user wasn’t aware of, the movie will be novel, but probably not 

serendipitous. The user would have likely discovered that movie on their own. On the other hand, a recommender 

that recommends a movie by a new director is more likely to provide serendipitous recommendations. 

Recommendations that are serendipitous are by definition also novel. The distinction between novelty and 

serendipity is important when evaluating collaborative filtering recommender algorithms, because the potential for 

serendipitous recommendations is one facet of collaborative filtering that traditional content-based information 

filtering systems do not have. It is important to note that the term serendipity is sometimes incorrectly used in the 

literature when novelty is actually being discussed.  

Several researchers have studied novelty and serendipity in the context of collaborative filtering systems [Sarwar et 

al. 2001]. They have modified their algorithms to capture serendipity by preferring to recommend items that are 

more preferred by a given user than by the population as a whole. A simple modification is to create a list of 

"obvious" recommendations, and remove the obvious ones from each recommendation list before presenting it to 

users. A disadvantage of this approach is that the list of obvious items might be different for each user, since each 

person has had different experiences in the past. An alternative would combine what is known about the user's tastes 

with what is known about the community's tastes. For instance, consider a hypothetical recommender that can 

produce a list of the probabilities for each item in the system that a given user will like the item. A naive 

recommender would recommend the top 10 items in the list -- but many of these items would be "obvious" to the 



  

customer. An alternative would be to divide each probability by the probability that an average member of the 

community would like the item, and re-sort by the ratio. Intuitively, each ratio represents the amount that the given 

user will like the product more than most other users. Very popular items will be recommended only if they are 

likely to be exceptionally interesting to the present user. Less popular items will often be recommended, if they are 

particularly interesting to the present user. This approach will dramatically change the set of recommendations made 

to each user, and can help users uncover surprising items that they like.  

Designing metrics to measure serendipity is difficult, because serendipity is a measure of the degree to which the 

recommendations are presenting items that are both attractive to users and surprising to them. In fact, the usual 

methods for measuring quality are directly antithetical to serendipity. Using the items users have bought in the past 

as indicators of their interest, and covering items one by one to see if the algorithm can re-discover them, rewards 

algorithms that make the most obvious recommendations  

A good serendipity metric would look at the way the recommendations are broadening the user's interests over time. 

To what extent are they for types of things she has never purchased before? How happy is she with the items 

recommended? (Does she return a higher percentage of them than other items?) Good novelty metrics would look 

more generally at how well a recommender system made the user aware of previously unknown items. To what 

extent does the user accept the new recommendations? We know of no systematic attempt to measure all of these 

facets of novelty and serendipity, and consider developing good metrics for novelty and serendipity an important 

open problem.  

5.4 Confidence  

Users of recommender systems often face a challenge in deciding how to interpret the recommendations along two 

often conflicting dimensions. The first dimension is the strength of the recommendation: how much does the 

recommender system think this user will like this item. The second dimension is the confidence of the 

recommendation: how sure is the recommender system that its recommendation is accurate. Many operators of 

recommender systems conflate these dimensions inaccurately: they assume that a user is more likely to like an item 

predicted five stars on a five star scale than an item predicted four stars on the same scale. That assumption is often 

false: very high predictions are often made on the basis of small amounts of data, with the prediction regressing to 

the mean over time as more data arrives. Of course, just because a prediction is lower does not mean it is made 

based on more data!  

Another, broader, take on the importance of confidence derives from considering recommender systems as part of a 

decision-support system. The goal of the recommendation is to help users make the best possible decision about 

what to buy or use given their interests and goals. Different short-term goals can lead to different preferences for 

types of recommendations. For instance, a user selecting a research paper about agent programming might prefer a 

safe reliable paper that gives a complete overview of the area, or a risky, thought-provoking paper to stimulate new 

ideas. The same user might prefer the overview paper if she is looking for a paper to reference in a grant proposal, or 

the thought-provoking paper if she is looking for a paper to read with her graduate students. How can the 

recommender system help her understand which recommendation will fit her current needs?   



  

To help users make effective decisions based on the recommendations, recommender systems must help users 

navigate along both the strength and confidence dimension simultaneously. Many different approaches have been 

used in practice. E-commerce systems often refuse to present recommendations that are based on datasets judged too 

small6. They want recommendations their customers can rely on. The Movie Critic system provided explicit 

confidence visualization with each recommendation: a target with an arrow in it. The closer the arrow was to the 

center, the more confident the recommendation. Herlocker et al. [2000] explored a wide range of different 

confidence displays, to study which ones influenced users to make the right decision. The study found that the 

choice of confidence display made a significant difference in users' decision-making. The best confidence displays 

were much better than no display. The worst displays actually worsened decision-making versus simply not 

displaying confidence at all.  

Measuring the quality of confidence in a system is difficult, since confidence is itself a complex multidimensional 

phenomenon that does not lend itself to simple one-dimensional metrics. However, recommenders that do not 

include some measure of confidence are likely to lead to poorer decision-making by users than systems that do 

include confidence. If the confidence display shows users a quantitative or qualitative probability of how accurate 

the recommendation will be, the confidence can be tested against actual recommendations made to users. How much 

more accurate are the recommendations made with high confidence than those made with lower confidence? If the 

confidence display is directly supporting decisions, measuring the quality of the decisions made may be the best way 

to measure confidence. How much better is decision-making when users are shown a measure of confidence than 

when not? 

5.5 User Evaluation 

The metrics that we have discussed so far involve measuring variables that we believe will affect the utility of a 

recommender system to the user and affect the reaction of the user to the system. In this section we face the question 

of how to directly evaluate user “reaction” to a recommender system. The full space of user evaluation is 

considerably more complex than the space of the previously discussed metrics, so rather than examining specific 

metrics in detail, we broadly review the user evaluation space and past work in user evaluation of recommender 

systems. In order to better understand the space of user evaluation methods, we begin by proposing a set of 

evaluation dimensions.  We use these dimensions to organize our discussion of prior work, showing the types of 

knowledge that can be gained through use of different methods.  We close by summarizing what we consider the 

best current practices for user evaluations of recommender systems. 

Dimensions for User Evaluation 

• Explicit (ask) vs. implicit (observe).  A basic distinction is between evaluations that explicitly ask users about 

their reactions to a system and those that implicitly observe user behavior.  The first type of evaluation typically 

employs survey and interview methods.  The second type usually consists of logging user behavior, then 

subjecting it to various sorts of analyses.    

                                                 
6 E-commerce managers will say that the first rule for a recommender system is "Don't make me look stupid!" 



  

• Laboratory studies vs. field studies.  Lab studies allow focused investigation of specific issues; they are good 

for testing well-defined hypotheses under controlled conditions.  Field studies can reveal what users actually do 

in their own real contexts, showing common uses and usage patterns, problems and unmet needs, and issues that 

investigators may not have thought of to consider in a lab study.  In particular, tasks such as Evaluate 

Recommender and Express Self may require field studies because user behavior may be highly context-

sensitive. 

• Outcome vs. process.  For any task, appropriate metrics must be developed that define what counts as a 

successful outcome [Newman 1997].  From a systems perspective, accuracy may be the fundamental metric.  

From a user perspective, however, metrics must be defined relative to their particular tasks.  For most tasks 

(such as Find Good Items) a successful outcome requires users to act on the system’s recommendations, and 

actually purchase a book, rent a movie, or download a paper.  However, to simply measure whether a goal is 

achieved is not sufficient.  Systems may differ greatly in how efficiently users may complete their tasks.  Such 

process factors as amount of time and effort required to complete basic tasks also must be measured to ensure 

that the cost of a successful outcome does not outweigh the benefit. 

• Short-term vs. long-term.  Some issues may not become apparent in a short-term study, particularly a lab study.  

For example, recall that Turpin & Hersh found that subjects were able to perform information retrieval tasks 

just as successfully with a less accurate search engine.  However, if subjects continually had to read more 

summaries and sift through more off-topic information, perhaps they would grow dissatisfied, get discouraged, 

and eventually stop using the system. 

We consider several studies to illustrate the use of these methods.  Studies by Cosley et al, Swearingen & Sinha, 

Herlocker et al, and McDonald occupy roughly the same portion of the evaluation space. They are short-term lab 

studies that explicitly gather information from users.  They all do some study of both task and process, although this 

dimension was not an explicit part of their analysis.  Amento et al also did a short-term lab study, but it gathered 

both implicit and explicit user information and explicitly measured both task outcomes and process.  Finally, Dahlen 

et al did a lab study that used offline analysis to “replay” the history of user interactions, defining and measuring 

implicit metrics of user participation over the long term. 

Most recommender systems include predicted user ratings with the items they recommend.  Cosley et al. [2003] 

conducted a lab study to investigate how these predicted ratings influence the actual ratings that users enter.  They 

presented subjects with sets of movies they had rated in the past; in some cases, the predictions were identical to the 

subjects’ past ratings, in some cases, they were higher, and in some they were lower.  Cosley et al. found that the 

predicted ratings did influence user ratings, causing a small, but significant bias in the direction of the prediction. 

They also found that presenting inaccurate predictions reduced user satisfaction with the system.  Thus, the methods 

used in this study yielded some evidence that users are sensitive to the predictive accuracy of the recommendations 

they receive. 

Swearingen and Sinha [2002, 2001] carried out a study to investigate the perceived usefulness and usability of 

recommender systems.  Subjects used either 3 movie recommenders or 3 book recommenders.  They began by rating 



  

enough items for the system to be able to compute recommendations for them.  They then looked through the 

recommendations, rating each one as useful and/or new, until they found at least one item they judged worth trying.  

Finally, they completed surveys and were interviewed by the experimenters.   

The methods used in this experiment let the researchers uncover issues other than prediction accuracy that affected 

user satisfaction.  For example, users must develop trust in a recommender system, and recommendations of familiar 

items supports this process.  Explanations of why an item was recommended also helped users gain confidence in a 

system’s recommendations.  Users also face the problem of evaluating a system’s recommendations – e.g., a movie 

title alone is insufficient to convince someone to go see it.  Thus, the availability and quality of “supporting 

information” a system provided – e.g., synopses, reviews, videos or sound samples – was a significant factor in 

predicting how useful users rated the system.  A final point shows that user reactions may have multiple aspects – 

satisfaction alone may be insufficient.  For example, subjects liked Amazon more than MediaUnbound and were 

more willing to purchase from Amazon.  However, MediaUnbound was rated as more useful, most likely to be used 

again, and as best understanding user tastes.  Further analysis showed that Amazon’s greater use of familiar 

recommendations may be the cause of this difference.  The general point, however, is that for some purposes, users 

prefer one system, and for other purposes, the other. 

Herlocker et al. [2000] carried out an in-depth exploration of explanations for recommender systems.  After 

developing a conceptual model of the factors that could be used to generate an explanation, they empirically tested a 

number of different explanation types.  They used traditional usability evaluation methods, discovering that users 

preferred explanations based on how a user’s neighbors rated an item, the past performance of the recommender 

system, similarity of an item to other items the user rated highly, and the appearance of a favorite actor or actress.  

Specifically, they led users to increase their estimate of the probability that they would see a recommended movie. 

McDonald [2001] conducted a controlled study of his Expertise Recommender system.  This system was developed 

within a particular organizational context, and could suggest experts who were likely to be able to solve a particular 

problem and who were “socially close” to the person seeking help.  The notable feature of McDonald’s study was 

that subjects were given a rich scenario for evaluating recommendations, which specified a general topic area and a 

specific problem.  In other words, the study was explicit in attempting to situate users in a task context that would 

lead them to evaluate the recommendations within that context. 

Amento et al [1999, 2003] evaluated their “topic management” system, which lets users explore, evaluate, and 

organize collections of web sites.  They compared their system to a Yahoo-style interface.  They gathered 

independent expert ratings to serve as a site quality metric and used these ratings to define the task outcome metric 

as the number of high-quality sites subjects selected using each system.  In addition, they measured task time and 

various effort metrics, such as the number of sites subjects browsed.  Thus, a key feature of their methods was they 

were able to measure outcomes and process together; they found that users of their system achieved superior results 

with less time and effort.  Appropriate metrics will vary between tasks and domains; however, often effort can be 

conceived in terms of the number of queries issued or the number of items for which detailed information is 

examined during the process of evaluating recommendations.  



  

Dahlen et al [1998] studied the value of jump-starting a recommender system by including “dead data” – that is, 

ratings from users of another, inactive system.  Their experimental procedure involved “replaying” the history of 

both systems, letting them evaluate the early experience of users in terms of their participation.  This was the only 

course of action open, since it was impossible to survey users of the previous system.  They found that early users of 

the “jump-started” system participated more extensively – they used the system more often, at shorter intervals, and 

over a long period of time, and they also entered more ratings.  We believe that, in general, user contribution to and 

participation in recommender systems in the long term is quite important and relatively under-appreciated.  And we 

believe that the metrics used in the jumpstarting study can be applied quite broadly. 

To summarize our observations on user evaluation, we emphasize that accurate recommendations alone do not 

guarantee users of recommender systems an effective and satisfying experience.  Instead, systems are useful to the 

extent that they help users complete their tasks.  A fundamental point proceeds from this basis: to do an effective 

user evaluation of a recommender system, researchers must clearly define the tasks the system is intended to 

support7.  Observations of actual use (if available) and interviews with (actual or prospective) users are appropriate 

techniques, since it often is the case that systems end up being used differently than the designers anticipated.  Once 

tasks are defined, they can be used in several ways.  First, they can be used to tailor algorithm performance.  Second, 

clearly-defined tasks can increase the effectiveness of lab studies.  Subjects can be assigned a set of tasks to 

complete, and various algorithms or interfaces can be tested to find out which ones lead to the best task outcomes. 

We also recommend that evaluations combine explicit and implicit data collection whenever possible.  This is 

important because user preferences and performance may diverge: users may prefer one system to another, even 

when their performance is the same on both, or vice versa.  One advantage of gathering data about both performance 

and preferences is that the two can be correlated.  (This is analogous to work on correlating implicit and explicit 

ratings [Claypool et al. 2001, Morita and Shinoda 1994])  Having done this, future evaluations that can gather only 

one of these types of data can have some estimate of what the other type of data would show. 

6. CONCLUSION 

Effective and meaningful evaluation of recommender systems is challenging. To date, there has been no published 

attempt to synthesize what is known about the evaluation of recommender systems, nor to systematically understand 

the implications of evaluating recommender systems for different tasks and different contexts. In this article, we 

have attempted to overview the factors that have been considered in evaluations as well as introduced new factors 

that we believe should be considered in evaluation. In addition, we have introduced empirical results on accuracy 

metrics that provide some initial insight into how results from different evaluation metrics might vary. Our hope is 

that this article will increase the awareness of potential biases in reported evaluations, increase the diversity of 

evaluation dimensions examined where it is necessary, and encourage the development of more standardized 

methods of evaluation.  

                                                 
7 Whittaker, Terveen, and Nardi (2000) elaborate on this theme to develop a research agenda for Human-Computer Interaction centered around 

the notion of “reference tasks”.   



  

6.1 Future Work 

While there are many open research problems in recommender systems, we find four evaluation-related problems to 

be particularly worthy of attention. 

User sensitivity to algorithm accuracy.  We know from recent work by Cosley et al. [2003] that user satisfaction is 

decreased when a significant level of error is introduced into a recommender system.  The level of error introduced 

in that study, however, was many times larger than the differences between the best algorithms.  Key questions 

deserving attention include:  (a) for different metrics, what is the level of change needed before users notice or user 

behavior changes?  (b) to which metrics are users most sensitive?  (c) how does user sensitivity to accuracy depend 

on other factors such as the interface?  (d) how do factors such as coverage and serendipity affect user satisfaction?  

If these questions are answered, it may be possible to build a predictive model of user satisfaction that would permit 

more extensive offline evaluation.   

Algorithmic consistency across domains.  While a few studies have looked at multiple datasets, no researchers 

have systematically compared a set of algorithms across a variety of different domains to understand the extent to 

which different domains are better served by different classes of algorithms.  If such research did not find 

differences, it would simplify the evaluation of algorithms – system designers could select a dataset with the desired 

properties without needing domain-specific testing. 

Comprehensive quality measures.  Most metrics to date focus on accuracy, and ignore issues such as serendipity 

and coverage.  There are well-known techniques by which algorithms can trade-off reduced serendipity and 

coverage for improved accuracy (such as only recommending items for which there are many ratings).  Since users 

value all three attributes in many applications, these algorithms may be more accurate, but less useful.  We need 

comprehensive quality measures that combine accuracy with other serendipity and coverage, so algorithm designers 

can make sensible trade-offs to serve users better. 

Discovering the inherent variability in recommender datasets.  We speculate above that algorithms trying to 

make better predictions on movie datasets may have reached the optimal level of error given human variability.  

Such variability can be explored using test-retest situations and analyses of taste change over time.  If we can find 

effective ways to analyze datasets and learn the inherent variability, we can discover sooner when researchers have 

mined as much data as possible from a dataset, and thus when they should shift their attention from accuracy to 

other attributes of recommender systems.   
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