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Abstract

We introduce a shape-maintaining method for interpo-
lating between sampled surfaces. This method works sam-
ple by sample and requires correspondence between the ref-
erence and target surfaces’ samples, which henceforth we
call vertices. This method is based on the assumption that
a frame for orientation is available at each vertex. In the
plane, each oriented vertex moves locally along a circular
arc as if it were rotating to its destination. The generaliza-
tion of this interpolation to three dimensions causes each
oriented vertex to move along a helical path that combines
in-plane rotation with translation along the axis of rotation.

We show that the planar flows provide shape-
maintaining interpolations when the reference and target
objects are similar. Moreover, the interpolations are size
maintaining when the reference and target objects are con-
gruent. In three dimensions, similarity transformations are
interpolated by an affine transformation that generally pre-
serves shape better than the alternative of interpolating ver-
tices along linear paths irrespective of changes in orienta-
tion. In both two and three dimensions we have experimen-
tal evidence that when non-shape-preserving deformations
are applied to template shapes, the interpolation tends to
be visually satisfying with each intermediate object appear-
ing to belong to the same class of objects as the end points.
We have extended this method to interpolate medially rep-
resented shape models of anatomical objects in 3D.

1. Introduction
There are many interesting applications for surface inter-

polation. Perhaps the most direct application is to generate
animations to visualize the differences between objects. In
the general realm of shape analysis, a surface interpolation
scheme can be used to measure the difference between ob-
jects which in turn can be used to align objects or calculate a
mean. In the more specialized field of medical image analy-
sis the paths that boundary points follow during the interpo-
lation can be used to drive a registration process which then
enables morphometry and atlas-based segmentation. It is

these latter problems, registration and atlas-based segmen-
tation, that have inspired this research.

The graphics community has been interested in creating
visually pleasing morphs between objects. For example, the
work by Breen and Whitaker [2] can be used to interpolate
between implicitly represented shapes. The implicit shape
representation allows for changes in topology. Although
this feature is valued in the context of general purpose ani-
mation, in our target applications it is undesirable.

Recent work by Vaillant and Glaunes [11] and by
Glaunes and Joshi [5] has used the concept of currents from
differential geometry to define a metric on shapes. This
metric is then used to drive an optimization that produces a
diffeomorphic warp under the large deformation framework
[8]. This warp can then be used to bring the reference shape
forward, through a series of interpolating shapes, and into
its target configuration. However, the computation needed
to produce this warp can be expensive.

Pizer et al. [10] advocate the use of medial shape repre-
sentations (m-reps) because of their ability to describe non-
linear shape changes such as bending, twisting, and widen-
ing. Fletcher et al. [4] showed that each medial atom in an
m-rep object lies on a manifold, and that geodesics on this
manifold can be defined using a standard Riemannian met-
ric [3]. A pair of m-rep objects can be interpolated by inter-
polating each pair of corresponding medial atoms along the
geodesic between them. However, as a medial atom follows
such a geodesic, it moves along a linear path in R3 indepen-
dent of the changes to its orientation and size. Due to the
straight-line nature of these paths, a pair of medial atoms
could collide during the interpolation, creating an undesired
fold in the image space. Even if no atoms collide during the
interpolation, an interpolated surface may not appear to be-
long to the intended object class.

In this work we propose a novel interpolation that uses
orientation information to move the vertices along curved
paths. The path for each vertex is computed from infor-
mation that is local to that vertex. These paths are easy to
compute and easy to understand. Although our method is
not guaranteed to produce a diffeomorphism, it does tend to
produce visually satisfying interpolations that under certain

1

kkjones
Text Box
Conference Submission 2008



Figure 1. (Left) Examples of planar points: x0 and x1 and the corresponding frames: E0 and E1. The solid line indicates the e0,t basis
direction, and the dotted line indicates e1,t. The interpolation provided by our method is indicated by a lighter color. Note that the frame
rotates concurrently with the point. (Center) The geometry of rotational-flows interpolation in two dimensions. The rotation required to
bring E0 onto E1 (inset) defines the angle θ swept out by the interpolating path from x0 to x1. The path lies on a circle whose geometry
can be derived from the positions of the points and the angle θ. (Right) The point xt is reached after interpolating t fraction of the way
from x0 to x1. If we then interpolate from xt to x1 out method continues along the original circular arc.

circumstances have shape-preserving properties.
We describe our methods for interpolating point-normal

pairs in a plane, point-frame pairs in three dimensions, and
m-rep shape models in Section 2. We show interpolations
produced by our method on synthetic data in two and three
dimensions, and on m-rep models of a lung during the res-
piratory cycle in Section 3. We conclude with a summary
of these results and a discussion of future work.

2. Methods
Throughout this paper we will use the following nota-

tion. Let x = (x, y) ∈ R2 denote a point in the plane.
Let E = {e1, e2} ∈ SO (2) denote an orthogonal ba-
sis for a frame in two dimensions. The reference curve,
S [0] = {(xi,0,Ei,0)} is a discrete set of points, indexed by
i, with each oriented by its frame. The target curve, S [1] is
defined similarly, and a correspondence is assumed between
(xi,0,Ei,0) and (xi,1,Ei,1). A similar definition applies in
three dimensions, with x ∈ R3 and E ∈ SO (3) discrete
samples of a surface.

The rotational-flows interpolation for a set of oriented
points indexed by i in N ∈ {2, 3} dimensions will define a
set of functions fi : (0, 1)→ RN ×SO (N) with the prop-
erty that fi (0) = (xi,0, Ei,0), fi (1) = (xi,1, Ei,1),
and fi (t) smoothly interpolates along the time axis t.

As a convention, we will discuss a single function f
which interpolates between point-frame pairs (x0,E0) and
(x1,E1). The full interpolation is given by applying the set
of fi to the corresponding data.

2.1. Interpolation in two dimensions

Our method interpolates between a pair of oriented
points by sweeping out a circular arc between x0 and x1

that covers an angle equal to the angular distance between
the frames E0 and E1. An example of such an interpolation
can be seen in the left pane of Fig. 1.

Let x̄ = 1
2 (x0 + x1), ∆x = x1 − x0, and x⊥ be a

unit vector in the direction found by rotating ∆x counter-
clockwise by 90 degrees. The geometry of the circular path
defined by our method is illustrated in the center pane of
Fig. 1. The center c is equidistant to x0 and x1, so it must
lie on their perpendicular bisector: the line x̄ + αx⊥ for
some parameter α. The angle θ ∈ (−π, π] is defined as the
angle between e0,0 and e0,1 with a positive sign indicating
counterclockwise rotation. Our method identifies a center
of rotation, c such that the angle subtended by x0, c, and x1

is θ. From the geometry in Fig. 1, it follows that

c = x̄ +
cos θ2‖∆x‖

2 sin θ
2

x⊥ (1)

f (t) = (c + Rtθ (x0 − c) ,RtθE0) (2)

where Rtθ denotes rotation by tθ degrees.
The denominator in (1) is 0 when θ = 0. We use the lim-

iting behavior to define the interpolation in this case. When
θ = 0, E0 = E1, so it is natural to think of f (t) as not
having a rotational component. If we consider limθ→0 (1)
then c is infinitely far from the data points, and the circular
arc connecting them is a straight line.

lim
θ→0

f (t) = (x0 + t (x1 − x0) ,E) , (3)

where E = E0 = E1.

2.1.1 Invariance to similarity transformations

Let (x0,E0) and (x1,E1) be a pair of oriented points whose
rotational-flows interpolation is found by f (t) = (xt,Et).



Figure 2. The centers of rotation implied by a pair of similar objects is itself similar to those objects. (Left) S [0] and S [1] (in black) and
their center of rotation C (in purple). (Center) A set of curves (black) produced by rotating the points in S [0] about the corresponding
point in C (purple) . (Right) The interpolated curve S [0.5] (dashed line) for this example.

Suppose that R defines a rotation, σ a uniform scaling and
τ a translation. Let g (·) denote the rotational-flows inter-
polation from (σRx0 + τ,RE0) to (σRx1 + τ,RE1). It
can be shown that

g (t) = (σRf (t) + τ,REt) (4)

2.1.2 Resumption of an interpolation

Let f (·) be the rotational-flows interpolation such that
f (0) = (x0,E0) and f (1) = (x1,E1). For any t : 0 < t <
1 let gt (·) be the rotational-flows interpolation between the
interpolated oriented point f (t) and (x1,E1). It is a simple
proof to show that gt (s) = f (t+ s (1− t)) and thus each
interpolated point gt (s) lies on the path swept out by f (·).
Note that c is equidistant to xt and x1 so it lies on their per-
pendicular bisector. The angle ∠ (xt; c; x1) is (1 − t) · θ.
This is precisely the amount of rotation needed to bring Et

to E1. This property is illustrated in the right pane of Fig. 1

2.1.3 Interpolation of a global similarity transforma-
tion

Suppose that the curve S [0] is similar to S [1]. The local in-
terpolations defined by (2) will produce interpolated objects
S [t] that are also similar to S [0], as we will now demon-
strate.

It is an easily proven consequence of (3), that if S [1] can
be produced by a similarity transformation of S [0] that has
no rotational component, the rotational-flows interpolation
will interpolate that transformation such that every S [t] is
related to S [0] by a similarity transformation of that form.
The following theorems prove that this behavior also holds
when S [0] and S [1] are related by a similarity transforma-
tion with a non-trivial rotation component.

Theorem 1 (Rotational centers for two similar sets) Let
C = {ci} be the set of rotational centers defined in (1).

Suppose that S [1] can be produced by applying a simi-
larity transform to S [0] with the following components:
rotation by an angle φ, uniform scaling by a factor σ, and
translation by the vector (∆x,∆y). C is similar to S [0].

Let i, j index two distinct points xi,0, xj,0 in S [0] and their
corresponding centers of rotation ci, cj .

‖ci − cj‖2

‖xi,0 − xj,0‖2
=

(σ − 1)2

4
(

sin φ
2

)2 (5)

∠ (xi − xj ; 0; ci − cj) =
π + φ

2
(6)

Let σ′ = (σ − 1) /
(

2 sin φ
2

)
and φ′ = (π + φ) / 2.

When σ > 1, the formula for ci is given in (7).
Substituting 1

σ → σ into (5) and−φ→ φ into (6), shows
that the size and orientation of C are independent of which
curve is given the name S [0] and which is S [1].

The left panel of Fig. 2 shows an example of a pair of
similar shapes and the centers of rotation identified by our
method. Here the curve S [0] was taken from a manual con-
tour of a bladder on its mid-axial slice in CT. S [1] was pro-
duced by applying a known similarity transform to S [0].

When φ = 0, the denominator of (5) is 0. This is con-
sistent with (3). Because there is no rotational component
to our similarity transform, the method provides a straight-
line interpolation which can be interpreted as rotation about
points that are infinitely far away from the original data and
from each other.

When σ = 1, (5) is 0 as C has collapsed into a single
point that truly is the center for a rigid rotation. C is not
strictly similar to S [0] since there is no inverse transform
which can recover the curve from the point in this case.
However, collapsing to a point is the limiting behavior for
similarity transforms as the scaling factor approaches 0.



ci = σ′Rφ′xi,0 +
1
2

(
∆x (σ + 1) + ∆y(σ − 1) cot

φ

2
,∆y (σ + 1)−∆x

(
σ − 1) cot

φ

2

))
(7)

‖xi,t − xj,t‖2

‖xi,0 − xj,0‖2
= 1 +

(σ − 1)2

2
(

sin φ
2

)2 −
σ − 1
sin φ

2

(
sin
(
φ

2
− tφ

)
− sin

(
φ

2

)
+

σ − 1
2 sin φ

2

(cos tφ)

)
(8)

Theorem 2 (Rotation about a similar set) Let {µ·} de-
note a set of points in R2. Let {ν·} denote a set of similar
points such that for each i, νi is formed by rotating µi by an
angle of φ about the origin, scaling the result by σ, and then
translating by (∆x,∆y). Now let µψi be found by rotating
µi an angle of ψ about νi.

‖µψi − µ
ψ
j ‖2

‖µi − µj‖2
= 1 + 2σ2 − (9)

2σ (cos (φ)− cos (φ− ψ) + σ cos (ψ))

Equation (9) is a general statement: the new shape
formed by rotating a shape about another similar shape, in
the manner we have defined, is also similar to the original
shape. When σ is 0, (9) simplifies to a well known truth:
rotation about a single point is a rigid transformation.

The center pane of Fig. 2 shows the result of various
rotations of a curve about a similar curve.

Theorem 3 (Rotational flows between similar objects)
Suppose again that S [0] and S [1] are related by a similar-
ity transform with rotational component φ, scaling factor
σ, and an arbitrary translational factor. Any S [t] is similar
to S [0]. The square of scaling factor from S [0] to S [t] is
given by (8).

Equation (8) follows from substituting (5, 6) into (9)
and from (2) which states that ∠ (xi,0; ci; xi,t) = tφ. The
rotational-flows interpolation between two similar curves is
shape maintaining. An example of this property can be seen
in the right pane of Fig. 2.

The special case of (8) when σ = 1 shows that
the rotational-flows interpolation between two congruent
curves is shape and size maintaining. When σ > 1, the
derivative of (8) with respect to t is strictly positive over
the interval t ∈ [0, 1]. Likewise, when 0 < σ < 1, d

dt (8)
is strictly negative over that interval. Although (9) allows
the set of points to collapse onto a single point, the mono-
tonicity of scale when (8) is restricted to t ∈ [0, 1] guaran-
tees that the interpolation between similar, but non-trivial,
shapes will not pass through the degenerate configuration.

2.2. Interpolation in three dimensions

Let (x0,E0) and (x1,E1) be corresponding oriented
points in R3. There exists a unit vector z that defines the

axis of rotation from E0 to E1. Let the magnitude of this
rotation be denoted by 0 ≤ φ ≤ π. The three dimen-
sional rotational-flows interpolation between these points is
designed to rotate x0 by φ about the z axis as well.

Since x0 and x1 may lie in different planes that are nor-
mal to z we cannot assume that the desired rotational path
between them exists. If we project x0 and x1 along z into
a common plane, we can form a path that combines rota-
tion about z with translation along z. Let z0 = (x0 · z) and
x′0 = x0− z0z. Let z1 and x′1 be defined in a similar fash-
ion. Let f2 (t) = (x′t, ·) be the two-dimensional rotational-
flows interpolation between these projected points. The
three-dimensional rotational-flows interpolation is given by
(10) and is illustrated in Fig. 3.

f (t) = (x′t + (z0 + t (z1 − z0)) z,Rz,tφE0) (10)

Figure 3. Three-dimensional rotational-flows interpolation. xt lies
on a helix whose axis is the axis of rotation between E0 and E1.

When the surfaces S [0] and S [1] are similar, the
rotational-flows interpolation produces a transformation
that is linear with respect to the vertex positions in homoge-
neous coordinates. The interpolated shapes are not neces-
sarily similar to the end points since the scaling within the
z = 0 plane per (8) and the scaling due to the translation
along the the z axis have different scale factors. In Sec-
tion 3.2 we argue that rotational-flows interpolation is more
shape preserving than a straight-line interpolation.

2.3. Interpolation of m-rep shape models

The discrete m-rep [10] provides a sampled medial rep-
resentation for a shape in three dimensions. This represen-
tation has been used for a variety of applications in medical
image analysis including shape modeling [7], image seg-
mentation [9], and statistical shape analysis [6].

Each shape instance (referred to as an object or an m-rep
for convenience) consists of a 2-D lattice of medial atoms



consisting of the following parameters: a position in the
interior of the object, x (u, v), also known as a hub; a radius,
r (u, v) of an inscribed ball that is bitangent to the surface
of the object and centered at the hub; and two spoke vectors
U−1 (u, v) and U+1 (u, v). The inscribed ball intersects
the object’s boundary at x (u, v) + r (u, v) U±1 (u, v).

The medial atoms on the edges of the lattice have an ad-
ditional (implied) spoke U0 (u, v) that is the unit vector in
the direction of (U−1 (u, v) + U+1 (u, v)). and an ad-
ditional scaling factor, η (u, v) which is known as the elon-
gation. The elongated implied spoke intersects the surface
at x (u, v) + r (u, v) η (u, v) U0 (u, v).

Fletcher [4] defined a metric on the space of medial
atoms, but it measures changes in hub position indepen-
dently from changes in spoke orientation. Consequently the
geodesics under this metric are characterized by linear hub
paths. Interpolation of medial atoms along such a geodesic
produces a straight-line interpolation of the hubs.

We now describe rotational-flows interpolation between
corresponding medial atoms (i.e., those with the same (u, v)
coordinates) on different instances of the same shape. As a
notational shortcut we will omit the (u, v) indices. We use
the orientation of the medial axis at x to define the following
frame that is used to interpolate the hubs using the method
described in Section 2.2.

The e1 basis is chosen to be in the direction of U+1 −
U−1 because the difference between the spoke vectors is
known to be normal to the medial axis. The e2 basis is
in the direction of δx/ δu − (δx/ δu · e1) e1. Because the
directional derivative can only be estimated from the dis-
cretely sampled hub positions, it needs to be corrected to
truly be tangent to the medial axis. The remaining basis is
defined by e3 = e1 × e2.

The radius and elongation of the m-rep are interpolated

geometrically: rt = r0

(
r1
r0

)t
and ηt = η0

(
η1
η0

)t
. The

spoke vectors are interpolated geodesically after accounting
for rotation of the hubs. Let U′+1 represent the U+1 spoke
in frame relative coordinates:

U′+1 = (U+1 · e1,U+1 · e2,U+1 · e3)T .
Let U′+1,0 and U′+1,1 represent those vectors at times

0 and 1 respectively. We define the axis b and angle φ as

φ = cos−1 (U′+1,0 ·U′+1,1) (11)
b = (U′+1,0 ×U′+1,1) (12)

The spoke is interpolated geodesically in frame coordinates,

U′+1,t = Rb,tφU′+1,0 (13)

U+1,t =
3∑
i=1

(U′+1,t · ei,t) ei,t (14)

The other spoke, U−1 is interpolated in the same way.
One desirable property of this interpolation is that it pre-
serves the normality of the spoke difference to the medial

sheet. This difference is collinear with e1, the direction nor-
mal to the interpolated medial axis.

3. Results

3.1. Interpolations of planar curves

Rotational-flows interpolations of planar curves are
shown in Fig. 4. In each of these examples, S [0] is drawn
with the thinnest line. The line thickens at each time step
with S [1] drawn with the heaviest line.

The top row shows interpolations between pairs of sim-
ilar ellipses. In pane 1, the reference and target curves are
congruent. Their size and shape are maintained during the
interpolation. In pane 2, the reference and target curves dif-
fer only in scale. None of the interpolated shapes have been
rotated or translated. Pane 3 shows a full similarity transfor-
mation. Note that the centers of rotation are similar to the
original and interpolated shapes. Pane 4 shows the interpo-
lation between congruent ellipses after their correspondence
has deliberately been corrupted. The interpolated shape are
no longer ellipses.

The center row shows rotational-flows interpolation be-
tween shapes that are not similar. In panes 1 and 2, the in-
terpolation is between two ellipses with different eccentric-
ity. In the third pane the interpolation is between an ellipse
and a bent curve. In these three sequences the interpolated
curves are visually satisfying. Pane 4 shows an indentation
forming during the interpolation between ellipses. It ap-
pears that this problem is related to poor correspondences
between S [0] and S [1].

The bottom rows shows an interpolation where a con-
cave region becomes convex. The curves S [0] and S [1]
were formed by applying a bending transformation to an
ellipse. Pane 1 is unsatisfactory because the interpolated
shape S [0.5] has two protrusions at each end: one from
the downward bend and one from the upward bend. Pane
2 shows the rotational-flows interpolation using the stan-
dard ellipse as a key frame. This use of an intermediate key
frame is a well known technique in the graphics literature.
Another corrective technique from the graphics literature is
to prealign shapes prior to the morph. In our experience, a
translational alignment between shapes can lead to a more
satisfying interpolation. In pane 3, the shapes have been
prealigned and the interpolation is forced to pass through
the standard ellipse. Our method is sensitive to the corre-
spondences between the oriented points in S [0] and S [1].
The fourth pane shows our interpolation on the original
curves, after correspondences have been improved so that
the curves are understood as rotated copies of each other.



(1) (2) (3) (4)
Figure 4. Rotational-flows interpolation in two dimensions. In each example the time axis is denoted by line thickness. (Top) Interpolations
between pairs of similar ellipses. (1) A rigid transformation. (2) Uniform scaling only. (3) A full similarity transformation. (4) A rigid
transformation with poor correspondence between S [0] and S [1]. (Center) Interpolation between non-similar curves. (1) Affine scaling
and translation of the ellipse. (2) Affine scaling and rotation of the ellipse. (3) Bending of the ellipse. (4) A full affine transformation.
In this case the interpolations deviate from the desired shape spaces of ellipses. (Bottom) Interpolation between shapes where a concave
region becomes convex. (1) The original interpolation, note the pair of protrusions at each end of S [0.5]. (2) The interpolation has been
forced to pass through an ellipse at t = 0.5. A single protrusion still exists at the ends of S [0.25] and S [0.75]. (3) The shapes have been
prealigned and S [0.5] is forced to be the ellipse. Each S [t] appears to be a bent version of the ellipse. (4) Correspondences have been
redefined so that the interpolation is a shape-preserving rotation.

3.2. Shape preservation during three-dimensional
interpolation

The top row of Fig. 5 shows the rotational-flows inter-
polation between two similar surfaces. As predicted, S [0]
is not similar to S [t] for almost all 0 < t < 1. However,
we demonstrate that interpolated S [t]’s produced by rota-
tional flows are more like S [0] than the intermediate shapes
produced by a linear interpolation.

Let S [0] and S [1] be similar shapes, and let M be the
4× 4 matrix such that when the points in S [0] and S [1] are
expressed in homogeneous coordinates, S [1] = MS [0].
Let M3 denote the upper 3 × 3 block of M. We use the
fractional anisotropy (FA) [1] of M3, to measure the degree
to which the transformation preserves shape. Let, λ1 ≥
λ2 ≥ λ3 be the square roots of the eigenvalues of M3M3

T .
Let λ̄ = 1

3

∑3
i=1 λi. FA is defined as

fa (λ1, λ2, λ3) =

√√√√ 1
2

∑
i

(
λi − λ̄

)2
1
3

∑
i λ

2
i

(15)

The value of fa (·) ranges from 0 for a shape-preserving
transformation to 1 for a transformation that collapses the
shape onto a single axis.

Using S [0] and S [1]] as defined in the top row of Fig.
5, we compared the fractional anisotropy of the transfor-
mation from S [0] to S [t] for straight-line and rotational-
flows interpolations. The left pane of Fig. 6 shows that
the rotational-flows interpolation between similar shapes is
more shape preserving than straight-line interpolation.

To further understand the performance of rotational-
flows interpolation versus straight-line interpolation, we ran
the following experiments. We took the known similarity
transformation that took S [0] to S [1] in the previous exam-
ple, and generated new target surfaces, Sφ [1] by setting the
angle of rotation in the transformation to be φ while hold-
ing the other parameters constant. For each φ we measured
the maximum fractional anisotropy of the transformation
from S [0] to Sφ [t] over t ∈ [0, 1] for rotational-flows and
straight-line interpolations. We performed a similar experi-
ment varying the scale parameter of the similarity transfor-



mation while holding the rotation and translation constant.
The results of these experiments are plotted in the central
panes of Fig. 6.

In both experiments, the rotational-flows interpolation
was more shape preserving than straight-line interpolations.
Moreover, the level of fractional anisotropy was quite low
for all scales we considered and for the majority of rota-
tion angles we explored. However, as the angle of rotation
approached 180 degrees, our method lost its ability to main-
tain the shape of the interpolated objects.

In the general case, when S [0] and S [1] are not simi-
lar, the three-dimensional rotational-flows interpolation fre-
quently produces intermediate shapes that appear reason-
able. An example of such is shown in the bottom row of
Fig. 5. Although there is no linear transformation from
S [0] to S [t] in this example, the fractional anisotropy of the
least squares estimates of such a transformation is a mono-
tonic function with maximum at t = 1. As shown in the
right pane of 6, this compares favorably with interpolation
by linear paths. In that case, there is a spurious maximum
of fractional anisotropy for an interpolated shape.

3.3. An example using m-reps

We fit m-rep models to a time series of lung segmenta-
tions using the method of Han et al. [7]. Figure 7 shows
the rotational-flows interpolation from our model at peak
inspiration to our model at peak expiration. Informally, our
interpolated surfaces exhibit the behavior we expect from a
lung during exhalation. The lung is decreasing in volume,
and the most visible motion is where the inferior portion
rises away from the diaphragm.

4. Discussion
We have proposed a novel method for shape interpola-

tion that moves oriented points along easily computed and
understood rotational paths that combine changes in po-
sition and orientation. This interpolation offers superior
shape maintenance when compared with the linear interpo-
lation of the points without regard for changes in orienta-
tion. We have demonstrated our method with interpolations
of synthetic data sets in two and three dimensions and with
interpolations of medial shape models derived from patient
data.

Our method cannot guarantee that it will produce diffeo-
morphic transformations. Our future work includes devel-
oping a better understanding of conditions on our target and
reference objects that lead to two interpolated points occu-
pying the same position at some intermediate time. Simi-
larly we need to develop a method to automatically modify
the interpolation to overcome such a failure. Once we have
these failures and their recovery is better understood, we
will be able to explore extrapolating the paths from our in-

terpolation to deform an entire image volume.
A second line of future work that we plan to pursue is us-

ing this interpolation scheme to define a metric on shapes.
Initially such a metric would be used for alignment and
computation of a Fréchet mean shape. Further work is
needed to compute higher order statistics using this metric.
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Figure 5. Rotational-flows interpolation in three dimensions. (Top) between similar shapes. (Bottom) between non-similar shapes.
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Figure 6. Comparing fractional anisotropy for transformations produced by rotational flows with those produced by straight-line interpo-
lation. (Left) FA of the linear transformation from S [0] to S [1] for the top example of Fig. 5. (Inner-Left) As scale varies, max0<t<1 FA
of the transformation from S [0] to S [t]. (Inner-Right) As angle of rotation varies, max0<t<1 FA of the transformation from S [0] to S [t].
(Right) FA of the linear approximation of the transformation from S [0] to S [1] for the example in the bottom row of Fig. 5.
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Figure 7. Rotational-flows interpolation of m-rep lung models. S [0] corresponds with peak inspiration. S [1] corresponds with peak
expiration. (Top) The m-rep object. (Bottom) The implied surface boundary.




