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Abstract  In this paper, investigations on vibrations of cracked beam structures and methodology for crack 

identification have been addressed. Here, the crack is modelled as transverse crack and it is considered as a small 

element and is later assembled with the other discretized elements using FEM techniques. Using this model, 

vibration analysis of simply supported, fixed-fixed, free-free and cantilever solid rectangular beams, with crack is 

carried out. The fundamental vibration modes of damaged beam are analyzed using Hilbert-Huang transform (HHT). 

The location of crack is determined by the sudden changes in the spatial variation of the transformed response. The 

results in both the simulation mode as well as experimental mode show that, HHT is an effective tool for the crack 

detection. The proposed technique is validated both analytically and experimentally thus the results shown have a 

good agreement with the established model. 
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1. Introduction 

Any changes to the material and geometric properties of 

a system, comprisingof changes to the boundary 

conditions and system connectivity, which adversely 

affect the current and future performance of that system is 

considered as damage. The occurrence of damage in a 

structure produces changes in its global dynamic 

characteristics such as its natural frequencies, mode 

shapes, modal damping, modal participation factors, 

impulse response and frequency response functions 

thereby weakening the structural strength. 

Structural damage identification using dynamic 

parameters of the structure has become an important 

research area. M. Bezhad et al. [1] in their paper presented 

a simple method for crack detection of multiple edge 

cracks in Euler – Bernoulli beams having two different 

types of cracks based on energy equations. Crack were 

modelled as a massless rotational springs using Linear 

Elastic Fracture Mechanics. X. B. Lu et al. [2] introduced a 

two-step approach based on mode shape curvature and 

response sensitivity analysis for crack identification in 

beam structure. The difference between the mode shape 

curvature of cracked beam before and after crack 

determines crack location. A. P. Adewuyi et al. [3] 

analyzed performance evaluation for practical civil 

structural health monitoring by using displacement modes 

from accelerometers and long gauge distributed strain 

measurements through computer simulation and 

experimental investigation. P. F. Rizo et al. [4] described 

about the measurement of flexural vibrations of a 

cantilever beam with rectangular cross section having a 

transverse surface crack extending uniformly along the 

width of the beam to relate the measured vibration modes 

to the crack location and depth. M. Cao et al. [5] studied 

fundamental mode shape and static deflection for damage 

identification in cantilever beams. The results proposed 

provides a theoretical basis for optimal use for damage 

identification in cantilever beams.  

The dynamic responses of the system are used for crack 

prediction. D. Guo et al. [6] discussed startup transient 

response of a rotor with a propagating transverse crack 

using Hilbert-Huang transform. The rotor with a growing 

crack was modelled by finite element method. The 

rotating frequency vibration components were studied 

when the frequency was reached peak and decayed during 

startup process. The demonstration of HHT in unsteady 

transient case gave an idea of HHT and its limits. T. R. 

Babu et al. [7] analyzed Hilbert-Huang transform being 

applied to transient response of a cracked rotor. It was 

established that, HHT is comparatively better than 

continuous wavelet transform and fast Fourier transform. 

B. Li et al. [8] developed the novel crack identification 

method, HHT and its algorithm. The validity of mentioned 

method was confirmed with an experiment. The 

conclusion was quite helpful in carrying this research 

work. N. E. Huang, S. S. P. Shen [9] in their book 

explained the evolution of HHT and the algorithm for the 

transform. The development of HHT and procedure of 

applying the transform to any data was found by the 

author himself, N. E. Huang. 
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In the current research, a number of research papers 

published till now have been studied, reviewed, and 

analyzed. It is felt that, the results presented by the 

researchers till date, has not been utilized so far in a 

systematic way for engineering applications and much 

work is not done so far using Hilbert-Huang transform. A 

systematic attempt has been made in the present study to 

investigate the dynamic behavior of cracked beam 

structure using finite element analysis and experimental 

investigation for damage identification of cracked 

structure. 

2. Crack - Model and Theory 

2.1. Finite Element Model for Single-cracked 

Beam and Damage Detection Algorithm 

Beam is one of the most commonly used structural 

elements. It is a major part of many types of construction 

projects, be they residential, commercial or public 

buildings, bridges, and factories. It has also been observed 

that the presence of cracks in machine elements like 

beams also lead to operational problem as well as 

premature failure. A beam is a means of transferring 

energy; therefore any type of failure in one, such as 

fatigue cracks, causes serious damage to the system. The 

damage may lead to plant shutdown and great financial 

loss. Existence of structural damage in structural elements 

like beams and shafts leads to the modification of the 

vibration modes. Thus, an analysis of periodical frequency 

measurements can be used to monitor the structural 

condition. Furthermore, as frequency measurements can 

be acquired at minimal cost and are consistently accurate, 

thus, this approach could provide an inexpensive structural 

assessment technique.  

Considering the crack as a significant form of damage, 

its modeling is an important step in studying the behavior 

of damaged structure. Knowing the effect of crack on 

stiffness, a beam or shaft can be modeled using either 

Euler-Bernoulli or Timoshenko beam theories. The beam 

boundary conditions are used along with the crack 

compatibility relations to derive the characteristic equation. 

Using finite element technique beam was modelled in 

MATLAB
®
. Following parameters were used density, 

Young‟s modulus, length of beam, area and moment of 

inertia to compute element stiffness matrix and element 

mass matrix. 
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where, „k‟ is element stiffness matrix, „E‟ is Young‟s 

modulus, „I‟ is moment of inertia, „le‟ is element length, 

„A‟ is area of cross section, „ρ‟ represents density of 

material and „e‟ represents the element number. 

Hereafter, the crack is taken into consideration while 

assembling the global stiffness matrix. 

 

Figure 1. model for single crack 

(where, „W‟ is the width of the beam, „l1‟ is the distance of crack from 

one end and „k1‟ is the stiffness of the spring assumed) 

The element stiffness matrix is later assembled into 

global stiffness matrix according to the order of elements 

discretized. In broad-spectrum the value of damping that 

is considered for general purpose computation was 

considered in this case as well, damping coefficient was 

assumed as 0.01 N-S/m. Then the final equation is 

assembled as sin( )mx cx kx F t    . 

The equation thus obtained is of higher order and 

becomes a herculean task to solve a modestly large matrix. 

Thus, according to the type of support conditions applied 

to the beam, equivalent boundary conditions are imposed. 

For diverse supporting condition different type of 

boundary conditions are applicable. 

Consider a beam element of unit length and two nodes 

at the end. 

 

Figure 2. Representation of boundary conditions 

Here, „V‟ represents the vertical displacement and „θ‟ 

represents rotation, both are combined and represented as 

nodal displacement vector. Thus, in case of boundary 

condition either of the term is chosen accordingly to solve 

the equation. The type of constraints applied are as 

follows: 

  Free – free: no constraint at any node. The beam can 

rotate and displace freely. 

  Fixed – free: both displacement and rotation are zero 

at fixed node. V1=0 and θ1=0. 

  Fixed –fixed: both displacement and rotation at first 

and last node are zero.V1=0 and θ1=0 and V2=0 and 

θ2=0 

  Simple supported: Displacement at initial node is 

zero and rotation at last node is zero. V1=0 and θ2=0. 

From the above formulation, the matrix size gets bigger 

and bigger thereby, integration becomes time consuming 

when the bandwidth of the matrices becomes large. To 

improve the computational efficiency, the governing 

differential equation is transformed into a convenient form 

by mode superposition method, thereby reducing the 

bandwidth of the matrix. The differential equations gets 

decoupled from each other and each of the differential 

equation is of the second order (linear) and hence it is easy 

to get their solutions in the closed form. 

From the governing differential equation given by, 

     [ ] sin( )M x C x K x F t     (1) 

{where [M] is mass matrix, [C] is damping matrix and [K] 

is global stiffness matrix of size n x n.} 
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    If    [ ]u X p  (2) 

{where [X] is matrix of size n x m of the first m eigen 

vector (m<<n) and [p] is a generalized displacement 

vector of size m x 1.} 

Then, substituting equation 2 in equation 1 and pre-

multiplying with [X]
T
, we obtain, 

 2
1 1 1 1 1 1 12 ( )p p p f t      (3) 

 2
2 2 2 2 2 2 22 ( )p p p f t      (4) 

 2
3 3 3 3 3 3 32 ( )p p p f t      (5) 

 …     …     … 

 22 ( )m m m m m m mp p p f t      (6) 

{as [X]
T
[M][X] is a diagonal matrix of size (m x m) with 

unity in the principal diagonal, [X]
T
[C][X] is a diagonal 

matrix of size m x m whose diagonal elements are 

2 i i ip   (i = 1, 2, 3.., m), [X]
T
[K][X] is a diagonal matrix 

with 2 2 2
1 2, , n    (square of natural frequency) in the 

diagonal and lastly, [X]
T
[F (t)] of size m x 1 has its 

elements as       
1 2, , ( ).mf t f t f t   

When the system is excited, it responds in one or more 

of its natural modes of vibration, Fundamental or first 

frequency is represented as the lowest frequency, this 

gives the start point of the modes. Generally, low 

frequency waves are the once considered as catastrophic, 

hence we are generally interested in seeing the first few 

natural frequencies, and modes associated with it, which 

carry potential of resonance due to their low frequencies. 

Besides, other higher order modes are neglected because 

they are gradually diminishing in the due progress.  

By choosing „m‟ modes only, we are restricting the 

contribution to first „m‟ modes assuming that the rest do 

not contribute to the response. Thus, impact of only first, 

second and third mode is only considered here. 

2.2. HILBERT – HUANG TRANSFORM 

Hilbert-Huang Transform (HHT) is an algorithm in 

which the fundamental part is the empirical mode 

decomposition (EMD) method. Using the EMD method, 

any complicated data set can be decomposed into a finite 

and often small number of components, which is a 

collection of intrinsic mode functions (IMF).  

An IMF represents a generally simple oscillatory mode 

as a counterpart to the simple harmonic function. By 

definition, an IMF is any function with the same number 

of extreme points and zero crossings or at most differ by 

one in whole data set, and with its envelopes being 

symmetric with respect to zero or mean value of the 

envelope defined by local maxima and the envelope 

defined by the local minima is zero at every point, IMF is 

complete, adaptive and orthogonal representation. 

This decomposition method operating in the time 

domain is adaptive and highly efficient. Since the 

decomposition is based on the local characteristic time 

scale of the data, it can be applied to nonlinear and non-

stationary processes.  

The EMD algorithm can be summarized as follows: 

1. Initialize r0 = x(t) and i = 1; 

2. Extract the i
th 

IMF 

a. initialize hi(k-1) = ri, k = 1; 

b. extract the local maxima and local minima of hi(k-1); 

c. interpolate the local maxima and minima by cubic 

spline to form upper and lower envelopes of hi(k-1); 

d. calculate mean mi(k-1) of the upper and lower 

envelopes of hi(k-1); 

e. let hik = hi(k-1) - mi(k-1); 

f. if hik is IMF then set IMFi = hik, else go to step „b‟ 

with k = k + 1; 

3. Define ri+1 = ri – IMFi; 

4. If ri+1 still has two extreme points then go to step „2‟ 

else decomposition process is completed with ri+1 as 

residue of the signal. 

After obtaining IMF, Hilbert transform is applied to 

each IMF data, Hilbert transform is defined as the 

convolution of a signal x(t) with 1/t and can emphasize the 

local properties of x(t), as follows: 

 
( )

y t
P x

t









   {where „P‟ is the Cauchy principal 

value} 

Coupling x(t) with y(t), we get analytic signal z(t) as: 

        iφ(t)Z t x t iy t a t e    {where, a(t) = [x(t) + 

y(t)]
1/2

 and φ(t) = arc(tan(y(t)/x(t))) 

a(t) is the instantaneous amplitude of x(t) and φ(t) is the 

instantaneous phase of x(t). 

2.3. Assumptions and Limitations of Present 

Study 

Certain assumptions are made in the present analysis 

while treating joint dynamics. They are: 

1) Each layer of the beam undergoes the same 

transverse deflection. 

2) There is no displacement and rotation of the beam at 

the clamped end. 

3) The crack is a non-propagating crack. 

3. Numerical Results 

Results involve calculation of natural frequencies and 

rotational mode shapes for cantilever beam, simply 

supported beam, free – free beam and fixed – fixed beam. 

The first, second and third natural frequencies 

corresponding to various crack locations are calculated. 

The fundamental normalized rotational mode shapes for 

transverse vibration of cracked beams are plotted and 

compared. All the HHT plots show the results for 

discretized elements. When the element length (le) is 

multiplied with the total number of elements (N), we 

obtain the total length (L) of the beam or alternatively, if 

the cracked element number is found out, then by 

multiplying the element length (le) we obtain the distance 

from either end. 

3.1. Theoritical Results 

3.1.1. Free - Free Beam (Single Crack) 

Input conditions: Aluminum beam E= 6.9e10 Pa, I= 

160e-12 m
4
, L = 0.6m, A= 12e-5m

2
, rho=2600 Kg/m

3
,le = 

0.015m, N = 40, Crack location is at 18
th

 element, 

ω1=170.8 rad/sec, ω2= 480.9rad/sec, 



 Journal of Mechanical Design and Vibration 90 

 

Figure 3. first mode shape of single crackedfree - free beam 

 

Figure 4. second mode shape of single cracked free - free beam 

 

Figure 5. third mode shape of single cracked free -beam 

 

Figure 6. HHT plot of first mode of single cracked free - free beam 

This proves the location of crack at 18
th

 element in 

HHT plot, alternatively, from the element length it can be 

concluded that the location is 0.27m from left end. 

3.1.2. Cantilever Beam (Single Crack) 

Input conditions Aluminum beam E= 6.9e10 Pa, I= 

312.5e-12 m
4
, L = 0.4m, A= 15e-5m

2
, rho=2600 Kg/m

3
, le 

= 0.01m, N = 40,ω1=126.6 rad/sec, ω2= 1019.9rad/sec, 

ω3=2523.4 rad/sec, crack is present at element no 10, 

 

Figure 7. first mode shape of a single cracked cantilever beam 

 

Figure 8. second mode shape of a single cracked cantilever beam 

 

Figure 9. third mode shape of a single crackedcantilever beam 
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Figure 10. HHT plot of first mode of single cracked cantilever beam 

The presence of crack is clearly visible at element 10 in 

HHT plot. The corresponding location of crack is 0.1m 

from left side. 

3.1.3. Fixed - Fixed Beam (Single Crack) 

Input conditions: Aluminum beam E= 6.9e10 Pa, I= 

312.5e-12 m
4
, L = 0.4m, A= 15e-5m

2
, rho=2600 Kg/m

3
, le 

= 0.01m, N = 40, ω1=1025.733 rad/sec, ω2= 

2642.52rad/sec, ω3=5355.328 rad/sec, crack is present at 

15
th

 element 

 

Figure 11. first mode shape of fixed – fixedsingle cracked beam 

 

Figure 12. second mode shape of fixed – fixed single cracked beam 

 

Figure 13. third mode shape of fixed – fixed single cracked beam 
 

 
 

Figure 14. HHT of first mode of single cracked fixed – fixed beam 

Hence, the location of crack is proved at 15
th
 

elementthe location of crack is 0.15m from left end, 

3.1.4. Simply Supported (Single Crack Beam) 

Input conditions Aluminum beam E= 6.9e10 Pa, I= 

160e-12 m
4
, L = 0.6m, A= 12e-5m

2
, rho=2600 Kg/m

3
, le = 

0.01m, N = 40, ω1 = 72.2 rad/sec, ω2 = 444.3 rad/sec, ω3 = 

1274.1 rad/sec. the crack is present at 20
th 

element. 

 

Figure 15. first mode shape of single cracked simply supported beam 
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Figure 16. second mode shape of single cracked simply supported beam 

 

Figure 17. third mode shape of simply supportedsingle cracked beam 

 

Figure 18. HHT plot of first mode of simply supported single cracked 

beam 

Thus, the crack can be located at 20
th

 element or 0.2m 

from the left end. 

3.2. Experimental Results 

The pictorial view of experimental setup is shown in 

pictures. A free- free beam is suspended with the aid of a 

support. Accelerometers are firmly placed on the beam 

which in turn are connected to SCADA, this leads to 

computer that uses LMS test lab software for vibration 

analysis. 
The piezoelectric transducers have a micro integrated 

circuit present which converts the measured force into 

voltage. This voltage signal when received by SCADA 

undergoes three stage process, firstly it is amplified, then 

later the analog signal is converted into digital signal, and 

lastly, an on-board computer in the SCADA applies fast 

Fourier transform to the digital signal and this input is 

given to a computer connected to the SCADA. The 

computer coupled to SCADA uses LMS test lab software 

to view the fast Fourier transform and extract vibration 

modes from it. The beam is excited with the help of a 

vibration exciter, an impact hammer. The natural 

frequencies are measured from the function generator at 

the point of resonance under the excitation. The specimen 

is allowed vibrate under 1
st
 and 2

nd
 mode of vibration. The 

corresponding amplitudes from the experimental results 

are recorded in computer along the length of the beam. 

Experimental results for natural frequency, mode shape 

and frequency response functions (FRF) of transverse 

vibration at various locations along the length of the beam 

are recorded. 

 

Figure 19. experimental set-up 

3.2.1. Free – Free Beam (single Crack) 

Input conditions: Aluminum beam E= 6.9e10 Pa, I= 

160e-12 m
4
, L = 0.6m, A= 12e-5m

2
, rho=2600 

Kg/m
3
,ω1=170.177 rad/sec, ω2= 471.258rad/sec, the crack 

is present at 4
th

 node 

 

Figure 20. first mode shape of a single crack free - free beam for 

experimental case 
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Figure 21. second mode shape of a single crack free - free beam for 

experimental case 

 

Figure 22. HHT plot of first mode of a single-cracked free – free beam 

for experimental case 

For Free – Free Beam: 

 1
st
 nat freq 2

nd
 nat freq 

Un-cracked 175 484.06 (Theoretical) 

 174.249 484.53 (Experimental) 

Single cracked 170.8 480.9 (Theoretical) 

 170.177 471.25(Experimental) 

First natural frequency of Free- Free beam in theoretical 

and experimental case matches accurately and second 

natural frequency is within 5% range of acceptance. 

4. Concluding Remarks 

In this thesis two main contributions were made, firstly, 

to use a new approach for crack detection and next, to 

locate crack accurately and swiftly.  

It was observed that the natural frequency changes 

substantially due to the presence of cracks and increase or 

decrease in the value depends upon the location of crack. 

The location of the cracks can be predicted from the 

sudden changes in the spatial variation of the transformed 

response deviation of the HHT plot. 

The experimental analysis shows the effectiveness of 

the proposed method using HHT towards the 

identification of location and extent of damage in 

vibrating structures. And, it is observed that the changes in 

the vibration signatures become more prominent as the 

crack grows bigger. 

It was learnt while simulating the results that 

normalized slope mode shapes yield quick and accurate 

results when compared to the displacement mode shapes 

and the same has been implemented in this thesis. 
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