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Abstract— This paper presents a Steady State Visual Evoked 

Potential (SSVEP) based Brain Computer Interface (BCI) system 

to control a wheelchair in forward, backward, left, right and in 

stop positions. Four different flickering frequencies in low 

frequency region were used to elicit the SSVEPs and were 

displayed on a Liquid Crystal Display (LCD) monitor using 

LabVIEW. The Electroencephalogram (EEG) signals recorded 

from the occipital region were first segmented into 1 second 

window and features were extracted by using Fast Fourier 

Transform (FFT). Three different classifiers, two based on 

Artificial Neural Network (ANN) and one based on Support 

Vector Machine (SVM) were designed and compared to yield 

better accuracy. Ten subjects were participated in the experiment 

and the accuracy was calculated by considering the number of 

correct detections produced while performing a predefined 

movement sequence. One-Against-All (OAA) based multiclass 

SVM classifier showed better accuracy than the ANN classifiers. 

 

Index Terms—ANN; Brain Computer Interface; Steady State 

Visual Evoked Potential; Support Vector Machines 

I. INTRODUCTION 

  Brain Computer Interface (BCI) is a system, that can acquire 

and translate the brain signals to provide a direct 

communication channel between the brain and a computer.  

For people suffering from severe neuromuscular disorders, 

such as spinal cord injury, brain stem stroke or Amyotrophic 

Lateral Sclerosis (ALS), a BCI system can provide an 

alternative, augmentative communication and control options 

to restore the interaction with their surrounding environment, 

without using peripheral nerves and muscles [1].   

 Electroencephalography (EEG) is a non-invasive way of 

acquiring brain signals from the surface of human scalp. It is 

widely accepted in the BCI systems due to its low cost, simple 

and safe approach. Some of the brain activities that can be 

effectively recorded from the scalp by using EEG are Event 

Related Potentials (ERPs), Slow Cortical Potentials (SCPs), 

P300 potentials and Steady-State Visual Evoked Potentials 

(SSVEPs) [3]. Among them SSVEPs are attracted due to its 

advantages of requiring less or no training, high Information 

Transfer Rate (ITR) and ease of use [4]. 
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SSVEPs are the responses that are elicited in the brain 

when the person is visually focusing his/her attention on a 

Repetitive Visual Stimulus (RVS) that is flickering at 

frequency 6Hz or above [4].  

These signals are strong in occipital region of the brain and 

are nearly sinusoidal waveform having the same fundamental 

frequency as the stimulus and including some of its 

harmonics. By matching the fundamental frequency of the 

SSVEP to one of the stimulus frequencies presented, it is 

possible to detect the target selected by the user.  

 Many research groups are developing SSVEP based BCI 

systems. Lalor et al. [5] developed the control for an 

immersive 3D game using SSVEP signal. Muller and 

Pfurtscheller [6] used SSVEPs to control two-axis electrical 

hand prosthesis. Cecotti [7] developed a self paced and 

calibration less BCI speller based on SSVEP detection. 

Recently, Lee et al. [8] proposed a SSVEP based BCI system 

to control a small robotic car in three directions. 

 Some of the main factors that can determine the 

performance of a BCI system include the type of the brain 

signal used to transfer the intentions, feature extraction 

methods, classification algorithms to get the control 

commands etc.  In this study, we investigate the effect of three 

different classification methods in enhancing the performance 

of a SSVEP based wheelchair control system. This system can 

control a wheelchair in forward, right, left, backward and in 

stop positions. The classifiers, two based on Artificial Neural 

Network (ANN) and one based on Support Vector Machine 

(SVM) are compared with each other. 

II. MATERIALS AND METHODS 

A. System Configuration 

 Fig. 1 illustrates the block diagram of the proposed SSVEP 

based wheelchair control system, which includes visual 

stimuli developed using LabVIEW and displayed on a Liquid 

Crystal Display (LCD) monitor, EEG acquisition unit, signal 

processing unit with feature extraction and classification 

algorithms, hardware interface and a wheelchair prototype. 

B. Subject 

Ten right handed healthy subjects (seven males and three 

females, aged 22-27 years), with normal or corrected to 

normal vision participated in the experiment. None of them 

had previous BCI experience. Prior starting, subjects were 

informed about the procedure of the experiment and required 

to sign a consent form.   
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 Fig.1. Conceptual block diagram of the proposed SSVEP based wheelchair 

control system. 

C. Visual Stimuli 

The RVS for eliciting SSVEP responses can be presented 

on a set of Light Emitting Diodes (LEDs) or on a Liquid 

Crystal Display (LCD) monitor [9]. In this study RVS was 

designed by using LabVIEW software (National Instrument 

Inc., USA) and displayed using LCD monitor. The visual 

stimuli were square (4cm×4cm) in shape and were placed on 

four corners of the LCD screen. Four frequencies 7, 9, 11 and 

13 Hz, in the low frequency range were selected, as the 

refreshing rate of LCD monitor is 60 Hz [10] and the high 

amplitude SSVEPs are obtained at lower frequencies [11].  

D. Experimental setup 

 The subjects were seated 60cm in front of the visual 

stimulator as shown in Fig.2. EEG signals were recorded 

using RMS EEG-32 Super Spec system (Recorders and 

Medicare System, India). The SSVEP potential recorded 

from occipital region using Ag/AgCl electrodes were 

amplified and connected to the adaptor box through head box. 

Adaptor box consist the circuitry for signal conditioning and 

further connected to the computer via USB port. This system 

can record 32 channels of EEG data. The electrodes were 

placed as per the international 10-20 system. The 

skin-electrode impedance was maintained below 5KΩ. The 

EEG signals were filtered by using a 3-50 Hz band pass filter 

and a 50 Hz notch filter. Signals were sampled at 256 Hz and 

the sensitivity of the system was selected as 7.5µV/mm. 

 In training session the electrodes were placed at the O1, O2 

and Oz regions of the scalp. The reference electrodes were 

placed on the right and left earlobes (A1 and A2) and ground 

electrode on Fpz. The subjects were required to close their 

eyes for recording 2 minutes of baseline signal and then given 

5 minutes to adapt to the flickering stimulus placed in front of 

them.  

 The subjects were directed to focus on a particular 

frequency for 5 second duration followed by 5 second rest 

period. During focusing the subjects were instructed to avoid 

eye movements or blinking. The event markers were used to 

indicate the starting and ending time of each frequency. In a 

single trial, each of the four frequencies was performed three 

times and the same procedure was repeated for another three 

trials. 5 minutes break was given in between each trial. The 

time for completing the whole session was about 30 minutes. 

 
 

Fig.2. Subject participating in SSVEP data acquisition (Courtesy- 

Department of Instrumentation and Control Engineering, National Institute 

of Technology, Jalandhar) 

 
Fig.3. Amplitude spectra of SSVEP in response to 11 Hz, recorded from Oz 

-A2 channel of subject 4. First and second harmonics can be found clearly. 

 

E. Feature Extraction 

 The frequency features of SSVEPs can be extracted using 

Fast Fourier Transform (FFT) [12]. The EEG signals 

recorded from each channel were digitized and segmented 

into 1 second time window in every 0.25 seconds. MATLAB 

was used for developing the FFT algorithm. Fig. 3 shows the 

amplitude spectra of SSVEP induced by 11 Hz stimulation. 

From the FFT of all the connected channels, the data from Oz 

–A2 was selected for further system development as strongest 

SSVEP was observed at Oz. The coefficients of the 

fundamental and second harmonics of all the four target 

frequencies from the amplitude spectra were considered as the 

feature vector for classification. 

F. Classification 

 ANN and SVM classifiers were implemented to classify 

the feature vectors. Two multilayer ANN models, 

Feed-forward Backpropagation (FFBP) and Cascade-forward 

Backpropagation (CFBP) were designed. Backpropagation 

[13] is a supervised learning algorithm which can be used in 

multilayer ANN. In FFBP, neurons are connected in feed 

forward   fashion from the input layer to the output layer 

through the hidden layers according to backpropagation 

algorithm. CFBP is similar to FFBP in backpropagation 

algorithm; with an exception that in CFBP each layer has a 

weight connection from the input and previous layers and thus 

each layer neuron relates all previous layer neurons including 

input layer neurons.  
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 Modeling of the ANN was done by using MATLAB neural 

network training tool.  Different combinations of internal 

parameters like number of hidden layers, number of neurons 

in each hidden layer, transfer function of hidden layers and 

output layer etc were tried. By considering the eight input 

parameters i.e. the first and second harmonics of each of the 

four frequencies, eight neurons were fixed in the input layer of 

the ANN models. Four neurons were fixed in the output layer 

to get a four digit data output for each class. Gradient descent 

with momentum weight and bias learning function was used in 

both ANN models. Different variants of the backpropagation 

algorithm were tried like Bayesian regularization, 

Levenberg-Marquardt backpropagation, Fletcher-Powell 

conjugate gradient backpropagation, and Gradient descent 

with momentum backpropagation.  

 Performance measure of the ANN models was done by 

Mean Square Error (MSE) function. The Cross Validation 

(CV) procedure [13] evaluates the training and learning of the 

ANN model. The CV is executed at the end of training epoch 

and uses two independent data sets: the training set and the 

validation set for evaluating the training and learning errors.  

  SVM introduced by Vapnik, [14] is basically a binary 

classifier that can separate two classes by using an optimal 

hyperplane. Kernel functions provide a convenient method 

for mapping the data space into a high-dimension feature 

space without computing the non-linear transformation [15]. 

Linear, quadratic, polynomial and radial basis function (rbf) 

kernels are some of the common kernel functions. 

  SVM training and classification was done by using 

Bioinformatics toolbox in MATLAB. As four visual stimuli 

were used, it was necessary to develop a multiclass SVM. 

One-Against-All (OAA) strategy [14], a multiclass SVM, was 

adopted in our experiment. The formulation of this mode 

states that a data point would be classified   under a certain 

class if that class‟s SVM accepted it while rejected by all 

other classes SVMs. In this mode four binary SVMs were 

trained, one for each frequency.  After training, a structure 

was developed having the details of the SVM, indicating the 

number of support vectors, alpha, bias etc. 

G. Hardware Implementation 

 The wheelchair prototype is shown in Fig. 4. Motor driver 

IC (IC L293D) was used to control two motors (M1 and M2) of 

the wheelchair. By changing the polarity of the signal given to 

the motors, through the motor driver IC, it is possible to move 

the motors in both forward and backward directions.  

 The parallel port of the computer was used to send out eight 

data bits. The first four data pins i.e. D0, D1, D2, and D3 were 

used to interface the control signal to the motor IC. Positive 

and negative of the right motor was given through D0 and D1 

and that of left motor was by using D2 and D3. Rest of the data 

pins was not used. Interfacing program was developed using 

MATLAB. 

 The control commands used to change the polarity of the 

motors for each movement of the wheelchair were presented 

in Table I. Forward movement of both right (M1) and left (M2) 

motor results in the forward direction motion. Left motor 

forward and stop position of right motor will provide right 

movement of the wheelchair. Left motor stopped and a 

forward movement of right motor results left rotation of the 

wheelchair. The backward movement of both motor together 

provides the device to move backward. The stop positions of 

both the motor together results in the stopping of wheelchair. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig.4. Wheelchair prototype for SSVEP based BCI control  

 

TABLE I CONTROL LOGIC FOR WHEELCHAIR MOVEMENTS 

 

Right Motor 

(M1) 

Left Motor 

(M2) 
Movement 

Direction 
+ - + - 

1 0 1 0 Forward (F) 

0 1 0 1 Backward (B) 

0 0 1 0 Right (R) 

1 0 0 0 Left (L) 

0 0 0 0 Stop 

 

 

 The classifier outputs for each of the four frequencies and 

relax state were assigned to the five different movements of 

the wheelchair. For 7 Hz detection, the output of the parallel 

port is [1 0 1 0] and will move the wheelchair in forward 

direction. 9 Hz would give [0 0 1 0] and will cause a right 

movement. 11 Hz detection delivers an output of [1 0 0 0] and 

will result in the left movement of the wheelchair. For 13 Hz 

the parallel port output is [0 1 0 1] which results in a backward 

movement of the wheelchair. The classifier result for the relax 

state of the user is [0 0 0 0] and it will stop the wheelchair. 

III. RESULTS AND DISCUSSIONS 

A. Classifier training 

 The training dataset consist 150 samples (30 samples for 

each of the four frequencies and 30 for rest signal) from each 

subject data. The data were normalized in the range of [-1, 

+1]. After dozens of training sessions, a network 

configuration having one hidden layer with 10 neurons was 

selected. Levenberg-Marquardt backpropagation algorithm 

gave better results as compared to other training algorithms. 

For SSVEP classification, pure linear and tangent sigmoid 

functions were found better for hidden and output layer 

neurons respectively.   

 FFBP network was trained in 18 seconds and CFBP in 33 

seconds. Fig. 5 presents the MSE performance measures for 

FFBP and CFBP during CV. The CFBP algorithm converges 

at a faster rate than FFBP. The best validation performance of 

FFBP is 0.08988 at epoch 7 and that of CFBP is 0.05514 at 

epoch 5. It is clear that the performance of CFBP is better than 

FFBP. 

 



                                                                               

BCI Based Wheelchair Control Using Steady State Visual Evoked Potentials and Support Vector Machines 

  

49 

 

 Individual SVMs were trained with different kernel 

functions and their accuracies and required numbers of 

support vectors are shown in Table II. For discriminating 7 Hz 

from other classes, both the 3
rd

 and 4
th

 order polynomial 

kernels are giving an accuracy of 100% with a requirement of 

23 and 38 support vectors respectively. The polynomial 

kernel with less number of support vectors is selected to 

reduce the complexity of the SVM structure. For 9 Hz, 

quadratic kernel provides an accuracy of 90.84%. The 

accuracy for 11 Hz is 86.60% and that of 13 Hz is 100% by 

using linear kernel. SVM was trained in a fraction of the 

second and is much faster than the ANN models. The 

OAA-SVM designed with optimal kernels provides an overall 

accuracy of 94.36% for the training data set.  

 Fig. 6 presents the regression plots for FFBP, CFBP and 

OAA-SVM classifiers during classifier testing using a 

separate dataset with 50 samples from each subject. The 

regression value for CFBP is 0.90346 and that of FFBP is 

0.84839. The OAA-SVM got a regression value of 0.94019. 

This proves the superior performance of OAA-SVM over 

FFBP and CFBP for SSVEP classification. 

 

 

 

 

 

 

 

  

a. Regression plot of FFBP 

b. Regression plot of CFBP c. Regression plot of OAA-SVM 

Fig.6. Comparison of regression plots of FFBP, CFBP and OAA-SVM models obtained during SSVEP data classification. 

Plot shows the linear regression of Targets (T) relative to outputs (Y) 

 

 

 

Fig.5.   MSE performance measure of FFBP and CFBP 

during training. CFBP got better result than FFBP. 
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B. Wheelchair Interface 

 In testing session the subjects were directed to perform two 

different sequences i.e. path A and path B, each one with 8 

movements including stop command. Each of the sequence 

was performed three times, thus each subject performed a 

total of 48 movements. The shape of the paths is shown in Fig. 

7. Table III presents the sequences required to complete the 

paths and corresponding frequencies. The SSVEP data 

recorded from Oz–A2 channel was filtered, digitized and 

segmented into one second window in every 0.25 seconds and 

transformed into frequency domain using FFT. The 

predefined parameters obtained from the amplitude spectra of 

the SSVEP signal were classified using optimal FFBP, CFBP 

and OAA-SVM classifiers. To reduce the number of wrong 

selections, a requirement of three continuous detection of the 

same target was set to produce the particular command to the 

wheelchair.  

 Accuracy of the system is measured with the accurate 

detections made by the subject out of the total number of the 

detections. The number of correct detections and the accuracy 

of all the 10 subjects are presented in Table IV. Out of 10 

subjects, eight got higher accuracy by using CFBP as 

compared to FFBP. One subject got equal number of correct 

detections by using both FFBP and CFBP. Only one subject 

shows a higher accuracy for FFBP than CFBP.  These results 

show that for SSVEP classification, CFBP can provide a 

better accuracy than FFBP. 

 Compared to FFBP and CFBP, OAA-SVM shows a better 

result for all the 10 subjects. Subject S4 got 100% accuracy by 

using OAA-SVM classifier. The average detection rate during 

OAA-SVM classifier is 43.4 and it is higher than the detection 

rates obtained by using FFBP and CFBP methods.  

TABLE II COMPARISON OF VARIOUS KERNEL FUNCTIONS 

 

 

Kernel 

Function 

 

7 Hz 
9 Hz 11 Hz 13 Hz 

Accuracy 

(%) 

Support 

Vectors 

Accuracy 

(%) 

Support 

Vectors 

Accuracy 

(%) 

Support 

Vectors 

Accuracy 

(%) 

Support 

Vectors 

Linear 94.14 14 78.65 25 86.60 16 100 18 

Quadratic 96.86 23 90.84 25 82.22 20 35.6 21 

Polynomial 

(order 3) 
100 23 69.66 37 80.17 22 66.16 22 

Polynomial 

(order 4) 
100 38 86.11 37 80.17 34 17.02 25 

Radial Basis 

Function 
34.41 118 35.27 117 66.16 119 35.17 116 

                

 

TABLE III SEQUENCE OF MOVEMENTS AND CORRESPONDING FREQUENCIES 

 

Path A 

Movement F R F R F L F Stop 

Frequency (Hz) 7 9 7 9 7 11 7 Relax 

Path B 

Movement F R F L F L F Stop 

Frequency (Hz) 7 9 7 11 7 11 7 Relax 

 

  

 
 

a. Path A             b. Path B 

 

Fig. 7 Shape of the paths used in testing session 
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 It can be concluded from Table V that the SSVEP based 

wheelchair control using OAA-SVM classifier gives a 

promising result. The wheelchair control developed by S. M. 

T. Muller et al. [16] provided an average classifier accuracy 

of 73% for four volunteers with hit rate of 60-100% during 

online experiment with visual feedback. A Sensorimotor 

Rhythm based wheelchair control developed by Carra and 

Balbinot [17] resulted in an average hit rate of 65.7% in three 

series of experiments participated by a single subject. SSVEP 

based wheelchair control with OAA-SVM developed in this 

study is able to control in five different positions (forward, 

backward, left, right and stop) and this system has got an 

average accuracy of 90.42% for ten subjects.  

IV. CONCLUSIONS 

 This work presented the development of a prototype of BCI 

based wheelchair control. The SSVEPs elicited by four 

different flickering frequencies were used to control a 

wheelchair prototype in four different directions. A total of 

ten subjects, seven males and three females participated in 

this study. EEG signals were recorded from Oz-A2 channels 

by using RMS EEG-32 Super Spec system and SSVEP 

features were extracted using FFT. In this research three 

classifier models (FFBP, CFBP and OAA-SVM) were used 

for SSVEP feature classification. All the subjects participated 

in the experiment showed a better accuracy with OAA-SVM 

method. The results illustrated the superiority of OAA-SVM 

over FFBP and CFBP models for classifying SSVEP features. 

Also the results of the developed prototype indicate that the 

SSVEP based BCI with OAA-SVM classifier can give a 

promising way to develop a wheelchair control for disabled 

persons.  
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