
THE BIEBERBACH CASE IN GROMOV'S ALMOST FLAT MANFOLD THEOREM 

Peter Buser and Hermann Karcher 

i. Introduction (and abstract) 

In 1976 M. Gromov has shown that every compact Riemannian manifold with normalized 

diameter whose sectional curvature is sufficiently close to zero is covered by a com- 

pact nilmanifold (= quotient of a nilpotent Lie group). [3] • This theorem, known 

as the almost flat manifold theorem has soon become famous not only because of its 

content but also because of the many unconventional methods Gromov has introduced to 

Riemannian geometry to get the proof. 

The aim of the present notes is to explain how the ideas from Gromov's proof of the 

almost flat manifold theorem can be specialized to give a proof of the Bieberbach 

theorem. Since this specialization is much more accessible than the almost flat mani- 

fold theorem, one can very nicely explain some of Gromov's ideas in this context. It 

is also interesting to compare this new proof with older proofs of Bieberbach's 

theorem. 

2. The Bieberbach theorem 

R n ~R n We fix some notation. A euclidean motion 5: is given by ~x = Ax+ a 

A E O(n) , a ER n . We call A = r(~) the rotational part and a = t(~) the trans- 

~lational part of the motion. To each rotation A corresponds an orthogonal decom- 

position 

R n = Eo@EI@...@E k 

such that A restricted to E i is a rotation through the angle 8 i % in the orienta- 

tion reversing case E k is eigenspace of A for the eigenvalue - i, we include this 

in the case e k = ~ • Then 

(x,Ax) = 8. for all xEE. 
1 i 

These so called main rotational angles are arranged in increasing order: 

O = 80<(91<... <8 k 
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The dimension of E 0 may be zero. The main rotational angles give rise to the fol- 

lowing hiinvariant distance function (Finsler metric) in the orthogonal group: 

IIA11:= e k = max t (~,~) , d(A,B) : 11AB-111 
llxli=l 

From this metric we derive a distance function for the entire group of motions by 

2.1 II~]: = msm[Ilr(~)[i~ const-lt(~)l] ~ d(~B) : Iic~-IIl 

There is a degree of freedom in the choice of the constant. It will be fixed later 

according to the momentary needs. 

A crystallographic group is a discrete group of euclidean motions with compact funda- 

mental domain. 

2.2 Theorem (Bieberbach) [i] . Let G be a crystallographic group in R n . 

(i) Each ~EG has either A = id or d(A~id) ~ • 

(ii) The group F of pure translations in G is a normal subgroup of finite 

index. G/F has order ~ 2.(4~) dimSO(n) 

(iii) In addition to (i): If ~EG , r(~) 6S0(n) and 0<8 I<... <e k 

are the main rotational angles of A = r(~) then 

The original version of Bieberbach's theorem consists only of the statement that 

G/F has finite index. It was used by Bieberbach to solve the 18 th Hilbert problem: 

2.3 Corollary (Bieberbach) [i]. For each n there exist only finitely many iso- 

morphism classes of crystallographic groups in R n • 

In the formulation 2.2 of the Bieberbach theorem the most important part is 2.2 (i): 

The translations in G are those motions which have a rotational part smaller than 
i 

This characterization is Gromov's discovery~ the proof depends as all other 

proofs of the Bieberbach theorem on commutator estimates~ but Gromov combines these 

with the a priori bound 2.5 on the length of nontrivial commutators. The further 

statements 2.2 (ii) and 2.2 (iii) follow rather easily in 2.9 and 2.10. In particu- 

lar the bound 2.2 (ii) on the order of G/F implies that there are only finitely 

~t~ny possibilities for the group of rotational parts~ this is the main part of the 

finiteness theorem 2.3. The remaining part is a group cohomology argument dealing 

with nonisomorphic extensions of Z n by finite groups. 
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Proof of the Bieberbach theorem (Following Gromov). 

We introduce the finite subset 

P 

1 
of G ~ where O< ¢~ ~ and p > 0 (large)~ and denote by (Gp) the smallest sub- 

group of G which contains G ¢ The working tools will be lemmas 3~4~5 in section L 
P 

The proof is divided into two parts: 

2.t For any R>O we can find some p~R ~uch that for am ~eR n with I<S~P 

there is ~ E G  e w i t h  I t ( ~ )  - x  I ~ p / 4  • 
0 

2 
2 .5  (G~) i s  d - n i l p o t e n t  w i t h  d ~ 3  n 

By d - n i l p o t e n t  we mean t h a t  a l l  d - f o l d  e o n m m t a t o r s  [ . . . [ ~ t , ~ 2 ] , . . . , B d ]  a r e  t r i -  

vial ( [~,~] : ~ ~Z~l) 

Hence instead of shc~ing that the pure translations provide a vector space basis of 

Rn , it is first sh~Ti that (the translational parts of) the almost translations 

(=G[) do~ and instead of showing commutativity one starts with nilpotency. The rea- 

son why this procedure carries over to more general situations is that both~ 2.4 

and 2.9 are proved by means of estimates rather than by equations. 

2.4 and 2.5 together suffice to show 2.2 (i) and in particular that G ¢ is in fact 
P 

a set of pure translations. 

Assume there is y 6G with r(~) = C ~ t(y) : c such that IICII = 8 E(O~) . Then 

decompose R n into E@E ± where E is an invariant plane of maximal rotation and 

let x : x E+ x ~ be the corresponding decomposition of vectors in R n . Put 

i, . 8~d 
s = ~-~<szn~) and choose p~21cl in 2.4 so that one can find ~EG with IIAIIS~ 

and la-xI~¼ for xEE~ Ixl = ~p; consequently IcI<laI<21aEl Consider 

the iterated commutators 

9~:["~'~]~''"~] (k-fold) , k= Z,...,d 

From 4. 3 we have the estimate 

llak+ltl = I I [Ak,Cl t I~2t lAkl t ' l tCl l<I IAkt tS-. .  <ttAIISe 

which we use in the decomposition 
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-- (idO){÷ (idO)<÷  O(id  ) lc 

to obtain first inductively 

l % + l l  _< (llcII + llAk+lIi) • 1%I + IIAkll-le I _<14 

Then~ since E~E ± are invariant under C we can use the last two estimates to 

obtain 

Now 

2.6 

Put 

a~l ~ ]<id-@~_J-ll[id_l,C]ll'lad_lll-llkd_lll'lcl 
E 8 

>_ 21 ad_ll sin~ - 2¢ I a I 

d-i 
>(2 ed 
_ sin~) .IaEl-2¢Ia I. Z (2sin~) k 

k=O 

laEi(sin~) d 

adl > O , which contradicts 2.5 and proves 2.2 (i) 

A pigeon hole argument (Proof of 2.4). 

Pi = (R+r)-10 i+l, i = 0,...,2"int(2~/e) dimSO(n) =N(~) , where r is the dia- 

meter of the fundamental domain of G .(This is the only point in the proof where 

compactness of Rn/G is used). Define ~i = {~EGI It(~)I <Pi ] " For each xER n , 

IxI--<~Pi choose ~.IEG with a i = t(~i) next to x ~ then la i-x l_<r and 

i -- i 
r+ pi_!<~pi imply for all SEmi_ I that It(~i°~l) -xl <~Pi and It(~io~i) l <Pi" 

Therefore if 2.4 were false for all the Pi we would have for each i some ~i EG 

with Iir(~i~l)II> ~ for all ~ 6~i_ I . In particular we get N(¢) + i elements 

r(~ i) E 0(n) with pairwise distance > • , contradicting lema 4.4. 

2.7 The short basis (Proof of 2.9) 

We fix the constant in 2.1 to be ~/p . Then II~l <¢ for all ~EG ~ 
P 

implies 

, and 4-3 

II [~,~]ll < min[llo~l,llSll} ((7,8 EGp 

A short basis [c~,...,~d] is defined inductively by choosing a nontrivial 

o~ E G c with minimal il~ll I 
p 

(~i+l EG~ - ([~i"'" '~i }) with minimal llc~i+ll I 
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(([~l,...,~i]) is the smallest subgroup of G containing [~l,...,~i].) 

The basis is finite since G e is finite. The important point is that d has an 
P 

upper bound which is independent of p and e : If we could find i<j<d such 
-1 

that d(~i~ j) <ll~jll ~ then ll~j~ I < ll~jll < ¢ hence ~j ~i 6G: and also 

~j~i6([~l,...,C~j_l]) since 11%11 is minimal in the complement. Now 

--i 
~j = (%~i)~i6([~l~...~j_l]) is impossible. Hence the elements of a short 

basis satisfy the pai~ise distance condition of 4.5 so that d<3n+ dimSO(n) 

This d is also a bound on the length of nonvanishing commutators since 

II [~i,~j]II < min(II~iIl~II~jII) implies first 

(2.s) [~ i ,~ j  I E <{~l,...,~i_l]> (i<j) 

Then use induction on the wordlength based on the formulas [@ ~y] = 

[~,y]'[[~,~]~]'[~] and [~i,~] : [Z1 [v,~]].[y,~] and an induction on 

show that ([~l~...,~i]) is i-nilpotent. 

to 

2.9 Proof of 2.2 (ii) 

The translations in G - clearly a normal subgroup~ have been described as the set 

of all ~ with IIAII < ~ • From 2.4 Rn/F is compact hence G/U is finite. The 
2 

homomorphism r: G~ O(n) induces an isomorphism between G/F and a discrete sub- 

group of O(n) whose elements satisfy the pairwise distance condition of 4.4 with 

¢ = ~ . Therefore G/F has order < N( ) (2.6.) 

2.10 Proof of 2.2 (iii) 

Consider pai r~ ise  orthogonal 2-planes R I ~ E 1 , . . . , R k G E  k through the o r ig in  such 

that A as restricted to R. is a rotation by 0. . Let S~ be the unit circle 
I l i 

in R. • Fix ~ <k - i . Then A acts isometrically on the flat torus 
i 

T = S~+--IX ... X Slk not only with respect to the Riemannian but also with respect 

to the Finsler distance d(x~y) = max[ ~ (xi~Yi) I i = ~+l~...,k] ~ (x i = orthogonal 

projection of x to Ri) . The function d(x,Ax) is constant on T~ Since each 

torus has the same volume as the Finsler ball of radius ~ in its tangent space 
i i 

and since points of pai~ise distance ~ give disjoint balls of radius ~ we have 

the volume ratio m = int(4~) k-~ as a bound on the number of such points. It 

i 
follows that for some power A TM , O<m<m , we have d(x,Amx) <~ for all x ET 

i 
which implies I ~ (x,Amx) l <~ for all x6E +I®...~E k • Therefore, if we had 
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O<e < (4~) ~-k it would follow from O<el<... <~ < m that { (x, Amx) <~ 

1 
for all xER n i.e. IIAgl <~ but A m @ i d  a contradiction to 2 .2  (i) 

3. Earlier proofs 

In this section we sketch Bieberbach's original proof [i] and the one given in Wolf's 

book [4] . Both use commutator estimates though in different form. To simplify the 

description we use 4.3. 

3.1 The structure of Bieberbach's approach consists of the following observations 

(X p. 317 and XII p. 328, Math. Ann. 70 (1911)) 

(i) All main rotation angles occurring in G are rational (E ~ Q) • 

(ii) An infinite discrete group of motions has elements without fixed points. 

The two propositions are proved independently. From (i) it follows that each infinite 

subgroup of G contains translations, and by a not too complicated induction argu- 

ment Bieberbach then concludes: 

(iii) If all translations of G are contained in a subspace E of R n , then 

also all translational parts are contained in ~ . 

At this point the proof is complete: Since G has compact fundamental domain E 

must be R n . While the proof of (ii), based on the commutator estimate (Hilfssatz 

on p. 328) makes no trouble we like to comment on (i), which is the heart of Bieber- 

bach's arguments. The way of proving (i) is by showing that irrational angles would 

imply the existence of infinitesimal sequences, i.e. sequences in G which do not 

contain the identity but which converge to it. First ~E G is chosen with the maxi- 

mal possible number of irrational angles @I,...,@K By taking powers it is achieved 

that all other angles are zero. By a change of origin there is a 2~ - dimensional 

invariant subspace E~R n such that t(~) EE ± and r(~)IE ± = id. Since G has 

compact fundamental domain there is ~ EG with t(~) ~E ± . This V does not com- 

mute with any power ~m(m# O) . Certainly one can construct a set of powers of 

such that the rotational parts form an infinitesimal sequence. The problem is to 

have the translational parts converge also. This is achieved together with y in 

the following way. 

By Minkowski's theorem on simultaneous rational approximation there exist for all 

j = i~2~.., integers xl(J),...,xx(j) and n(j) such that simultaneously 

xg(j) i 
1 2 ~ n ~  - o~1S j.n(j) ~ = 1 , . . . , k  
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Now for each fixed m (which serves as parameter) Bieberbach considers the sequence 

of m-fold commutators 

(L)_ [ [v,~ (j)] ,  ,~(J)]  j 1 ,2,  Ym . . . . . .  ~ = " "  

Due to Minkowski's inequality the powers ~( ]~'~J~ have small rotational angles, and 

from this by an involved calculation the following orders of magnitude are shown 

I !r '  (J)~ [ o ( j l -m)  ~ ~, ( j ) ~  a~+2-m) 
k~m ' = ~m ~ [ = O(~ ~ m>_2 

r (J)] ~ does Therefore the proof of (i) is complete if for m = ~+ 3 the sequence ty m j=l 

not contain the identity. Now by the particular choice of ~ and ~ one finds these 

sequences free from the identity for m = 2 and 3 - Yet there may be a minimal 

(J)] ~ is not infinitesimal. If this happens~ various cases m~4 such that [#m j=l 

must be considered. If m = 4 and 

(J) (J) ~ " < ' Y I  ~2 ] ] j = l  Y2 'Y3 ] + i ( j > j o )  then ~[~{ j )  (J) ( j )  

is infinitesimal instead. If m = 4 ~id [~J),~J)] : i then [7~J)] is infin- 

rr (J) (J) (J)]] . And finally for m>6 the itesimal. For m : 5 one can take [[~3 ~4 ~i 

c (J) . ( ( j ) ~ - l ~  sequence looked for is [~m-1 ~m-2 ) 3 

It is interesting~ how a little more information about ~ simplifies the proof of 

(i). From the pigeon hole argument 2.6 one can choose y such that in addition 

llr(~)ll < ~i . Then ~m(J) ~ i for all m ~ (J_>3) ~ for otherwise by the le~m~.a 

(J) ~j) 
below~ Y2 ~nd afortiori each further ~ is a translation which due to the 

choice of ~ and y has always a nonzero component in E , a contradiction. Hence 

(J)~ ~ is always infinitesimal, in particular for m : k + 3 . However there 
Ym Sj:l 

¢ (J)] is a still simpler argument: Look at the series t? m m=l instead of ¢ (j)~ ~ 

As mentioned, it does not contain the identity. By the co~nutator estimate (c.f. 2.7) 

it converges to the identity. Thus ~t is infinitesimal. 

3.2 Bieberbach's proof succeeded by extracting translations from G by means of 

powers (based on the non-existence of irrational angles). Thellogical structure od 

Gromov's proof is different. He first defines a subgroup ((G~)) of finite index 

(by the pigeon hole argument) in G and then proves that the subgroup is already a 
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group of translations (by the short basis trick). Wolf's proof also starts by 

defining a suitable normal subgroup G* = r-l(T) CG where TCSO(n) is the identity 

component of the closure of r(G) . G/G* is almost immediately finite: Since T 

is closed and SO(n) is compact, only finitely many different sets r(y).T occur 

as ~ runs through G • The task is again to show that G* is purely translational: 

First one observes ([4] p. iOO) 

Lemma If A , B 6 S O ( n ) ~  IIAII, l IB! I<×/2  t h e n  

[[A,m],B] = 1 Lmmlies [A,B] = 1 . 

(This lerm~a is not used by Gromov since due to occurring homotopy errors there is no 

analogue for non flat situations). Together with the cca~utator estimate (c.f. 2.7) 

one finds T total in SO(n) . Hence the subspace W = ~x ERnlT(x) = x} is charac- 

terized as the fixed point set of a single rotation r(Yo)' ~O EG* ~ and by a change 

of origin one may assume t(To) EW • Since T is abelian, one checks that t(~) 6W 

for all further ~ 6G* also. Since Rn/c * is compact this is possiblc only if 

W = R n • Hence T = r(G*) = {id}, i.e. G* is a set of translations. 

4. The group of motions. 

The lemmas of this section will be proved with differential geometric techniques. We 

recall the following facts: 

4.1 The orthogonal group O(n) is a Lie group with identity component SO(n) . Its 

Lie algebra so(n) is the space of skewsymmetric matrices X~Y~... and is canoni- 

cally identified with the space of left invariant vector fields, using that the brac- 

kets of left invariant vector fields are left invaria~t. 

( l )  a~ (Y ) :  = [x,N = xz- 

k 
x The e x p o n e n t i a l  map exp:  s o ( n )  ~ S O ( n )  , e x p X  = i d +  12 ~ r e l a t e s  t o  ad  and  con -  

k = t  

jungation KA: B~ABA -I as follows: 

(2 )  e~pY • e ~ X  . exp ( - D  = e x ~ ( ~ e x p ~ )  

(3) Ex~ (tadY): = id+ ~ i (tady)k = (d Kex~ptg)id 
k - !  k:  

Denote by D L the left invariant connection for which left invariant vector fields 

are parallel, then 

i nxY: =n~Y+~ ~x,N 
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defines a torsion free biinvariant connection with parallel curvature tensorfield 

Obviously 

R(x,Y)z = ¼[z,[x,Y]] 

R: 

D L D~ R(J): = J~ D~[~,J] = D D J+ R(J,~)~ 
c e  C C  

for vector fields J along geodesics t ~ c(t) = exptX . The solutions of R(J) = @ 

are the Jacobifields mud are either obtained as 

(4) J(t) = dLc(t)'kL(t) , kL: R~so(n) ~L , + [x,~LI = 0 , 

(LA(B): = A'B) where dLc(t] is parallel translation along c with respect to the 
k f 

connection D L ~ or as 

I 
(5) J(t) = Pt'k(t)~ k: R~so(n), k-~ (adX)~ = 0 

where 

(6) Pt: = dLc(t)°Exp(- ~adX) 

is parallel translation along c with respect to the connection D • The differen- 

tial d exp can be described with Jacobi fields as follows 

D L 
i J(t) if J(O) = O, ~t J(O) (= ~-~ J(O)) = Y (7) (dexP)txY =y 

4.2 If for S E so(n) we put 

llSii = max{ISvl; vER n , Ivl = i] , 

then from (I) 

(8) IIS,T]]I S 211sll- IITII • 

By left translating this norm to all other tangent spaces we obtain a Finsler metric 

for O(n) whose distance function 

d(A,B) = max{ ~ (v,Av) J v~R n Ivl =~ l] 

has already been introduced in section 2. The dia~eter of SO(n) and the injec- 

tivity radius of exp with respect to the Finsler metric are ~ . Since the distance 
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function is biinvariant~ (dKA) id: so(n) ~ so(n) 

from (3) 

(9) IIExp (adY) "XII : IIXII , X,Y E so(i~) 

Hence both parallel translations dkLc(t) (by definition) and 

are norm preserving. 

If J(t) = dLc(t) kL(t) is a Jacobifield (4) , then k L 

Exp (tadX).~(O) ~ ll~L(t)ll = II~(0)I 1 (9) and therefore 

D L 
IIJ(t)II = IlkL(t)ll < tll ~ J(O)II= tlIYIi 

(lO) 11(dex~)txYll S IlYI1 , 

i.e. exp does not increase lengths in the Finsler metric. 

4.3 Le~ma 

d([A,B],id) S 2d(k,id)-d(B,id), A,B CSO(n) 

Proof Let A = expX ~ B = expY and connect A with 

and (3)) 

t~7 (t) = exp (Exp (tadY).X), t ~ [071 ] 

From the biinvariance of the Finsler metric 

i 
d([A~B]~id) = d(A~BAB -I) _<,I ll~(t)lldt 

0 

Since exp does not increase lengths (i0) 

d 
II@(t)II < II ~ (Exp(t adY)-X N(3)tl~x~(t adY)-[Y,X]II 

(9) II[X,Y]II _ 211XII'II~I = 2 d(A,id)-d(B,id) 

4.4 Lemma 

For ¢>0 there exist at most N(e) = 2int(2~/¢) dimSO(n) 

with pairwise distances > ¢ . 

is a norm isometry and it follows 

Pt (by (6) ~md (9)) 

satisfies ~L(t) = 

BAB -I by the curve (c.f. (2) 

rotations in O(n) 
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Proof. It suffices to prove N(¢)/2 as upper hound on SO(n) . Since metric balls 

Be/2 of radius e/2 asotmd the considered elements have pai~ise disjoint interior 

and equal volumes, it follows from B = SO(n) that 

volB /volB/2 

is an upper bound. To get it explicitly we estimate det(dexP)tx in the standard 

Rie~qnian metric (which provides the volume function on SO(n) )~ the Levi-Civita 

connection is D . Norms with respect to the Riemannian metric are denoted by I" I " 

We use a~l orthonormal Basis [YI'''" 'Ym }C- so(n) of eigenvectors with eigenvalues 

2 k2 ~i''''' m of the nonnegative symmetric operator - (adX) 2~ m = dim so(n) . If J is 

2 t is a the Jacobifield (7) for Y = Yi ~ then in (5) obviously k(t) = ~. sin ~ ~i 
i 

solution. Therefore since the Levi-Civita parallel translation Pt perserves I. 1 

we conclude from (6) and (7) that the Jacobifields corresponding to YI:...~% are 

pairwise orthogonal along c(t) = exptX and satisfy 

t~. 
l(dexP)tx.Y I : Yllj(t) I = yllk(t ) = (-~)-isintki/2 , t<~ 

Since lladXll_< 2 IIXII_< 2~ (i)~ the emgenvalues of -(adX) 2 are ~ 4~ 2 . Hence 

det(dexP)tx 

is not increasing and 

m 
sin (t k , 

: ~ 7A-'~ i ) 
i=l 

vol B~/vol Bt < (~/t) m , q.e.d. 

4.5 Le~mla 

There exist at most 3 n+dimS0(n) 

the condition (c.f.2.1) 

euclidean motions ~,~... which pairwise satisfy 

Proof Consider m such motions ~i and corresponding pairs w i = (Si,a i) E so(n) ×R n 

where exp S i = A i = r((~i) , a i .... t((~i) • Introducing the norm ll(S,a)ll = 

max[llSll,e'l I] (the constant is irrelevant) in the vectorspase so(n) ×R n we find 

m points wi = llwiN-lwi on the unit sphere satisfying 

ITq i-wjlF > IIwjll-llb~i-wjli-llIIwjil-lwi-~il! > 1 

(if w.l.o.g, llwjll <llwiH) , since by (i0) 
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llw i - wjll ~ d(~i,~,j) >max[ll~i11, []~jll } = max [11will ,11wjll } 

It follows that the open balls of radius 

and contained in a ball of radius 3/2 • 

3 dim(s°(n) XRn) q.e.d. 

1/2 around the ~. are pairwise disjoint 
l 

Now m cannot exceed the volume ratio 

Remark. There is no finite bound if the condition is replaced by d(~) > 

zmax {ll~l~II~II} ¢ <i . In many cases as e.g. in the proof of Gramov's theorem, it 

is desirable to have an open condition. One such condition is 

d ( o ~ , 6 )  >max[llc4i - ~IIFII,II~H - ~t[~1 } 

The number of motions is then bounded above by 

s ares. 

3-a n+ dimSO(n) 
, the proof is the 
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