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Abstract

In a class of games known as Stackelberg games, one agent
(the leader) must commit to a strategy that can be observed by
the other agent (the adversary/follower) before the adversary
chooses its own strategy. We consider Bayesian Stackelberg
games, in which the leader is uncertain about the type of the
adversary it may face. Such games are important in secu-
rity domains, where, for example, a security agent (leader)
must commit to a strategy of patrolling certain areas, and an
adversary (follower) can observe this strategy over time be-
fore choosing where to attack. We present here two differ-
ent MIP-formulations, ASAP (providing approximate poli-
cies with controlled randomization) and DOBSS (providing
optimal policies) for Bayesian Stackelberg games. DOBSS is
currently the fastest optimal procedure for Bayesian Stackel-
berg games and is in use by police at the Los Angeles Inter-
national Airport(LAX) to schedule their activities.

Introduction
Many multiagent settings are appropriately modeled as
Stackelberg games (Fudenberg & Tirole 1991; Paruchuri et
al. 2007), where a leader commits to a strategy first, and
then a follower selfishly optimizes its own reward, consider-
ing the action chosen by the leader. Stackelberg games are
commonly used to model attacker-defender scenarios in se-
curity domains (Brown et al. 2006), as well as in patrolling
(Paruchuri et al. 2007; 2008). For example, security person-
nel patrolling an infrastructure commit to a patrolling strat-
egy first, before their adversaries act taking this committed
strategy into account. Indeed, Stackelberg games are be-
ing used at the Los Angeles International Airport to sched-
ule security checkpoints and canine patrols (Murr 2007;
Paruchuri et al. 2008; Pita et al. 2008). They could po-
tentially be used in many other situations such as network
routing (Korilis, Lazar, & Orda 1997), pricing in transporta-
tion systems (Cardinal et al. 2005) and many others.

This paper focuses on determining the optimal strategy
for a leader to commit to in a Bayesian Stackelberg game,
i.e. a Stackelberg game where the leader may face multiple
follower types. Such a Bayesian Stackelberg game may arise
in a security domain because for example, when patrolling
a region, a security robot may have uncertain knowledge
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about the different robber types it may face. Unfortunately,
this problem of choosing an optimal strategy for the leader
to commit to in a Bayesian Stackelberg game is NP-hard
(Conitzer & Sandholm 2006). This result explains the com-
putational difficulties encountered in solving such games.

In this paper, we present two of the fastest algorithms to
solve Bayesian Stackelberg games published as full papers
(Paruchuri et al. 2007; 2008). In particular, we present our
approximate procedure named ASAP(Agent Security via
Approximate Policies) published in AAMAS’07 and our ex-
act method named DOBSS (Decomposed Optimal Bayesian
Stackelberg Solver) published in AAMAS’08. ASAP pro-
vides policies with controlled randomization and hence are
simple and easy to use to in practice but the approach turned
out to be numerically unstable. DOBSS provides an ef-
ficient, exact solution for the Bayesian Stackelberg games
while eliminating the numerical instabilities. Both these
methods have three key advantages over earlier existing ap-
proaches: (a) Both the methods allow for a Bayesian game
to be expressed compactly without requiring conversion to
a normal-form game via the Harsanyi transformation de-
scribed below. (b) Both these methods require only one
mixed-integer linear program (MILP) to be solved, rather
than a set of linear programs as in the Multiple-LPs method
(Conitzer & Sandholm 2006), thus leading to a further per-
formance improvement. (c) They directly search for an op-
timal leader strategy, rather than a Nash (or Bayes-Nash)
equilibrium, thus allowing them to find high-reward non-
equilibrium strategies (by exploiting the advantage of being
the leader). DOBSS solves the Bayesian Stackelberg game
in the ARMOR system deployed at the Los Angeles Inter-
national Airport as mentioned above (Murr 2007).

Context and Overview
Stackelberg Game: In a Stackelberg game, a leader com-
mits to a strategy first, and then a follower optimizes its re-
ward, considering the leader’s action. To see the advantage
of being a leader in Stackelberg game, consider the game
between the leader and follower type 1 as shown in Figure 1
(left). The leader is the row player and the follower types are
column players. The only Nash equilibrium for this game is
when the leader plays a and follower type 1 plays c which
gives the leader a payoff of 2. However, if the leader com-
mits to a mixed strategy of playing a and b with equal (0.5)



Figure 1: Payoff tables for a Bayesian Stackelberg game
with 2 follower types.

probability, then follower type 1 will play d, leading to a
higher expected payoff of 3.5 for the leader. Note that in the
Stackelberg game, follower knows the mixed strategy of the
leader but not the actual action the leader takes in real time.

Bayesian Stackelberg Game: In a Bayesian game of N
agents, each agent n must be one of a given set of types.
For the two player Stackelberg game, inspired by the secu-
rity domain of interest in this paper we assume that there
is only one leader type (e.g. only one police force enforc-
ing security), although there are multiple follower types (e.g.
multiple types of adversaries), denoted by l ∈ L. There is
an a priori probability pl that a follower of type l will ap-
pear. Figure 1 shows such a game between a leader and two
follower types leading to two payoff tables. Note that the
leader does not know the follower’s type. For each agent
type (leader or follower) n, there is a set of strategies σn and
a utility function un : L× σ1 × σ2 → <. Our goal is to find
the optimal mixed strategy for the leader given that the fol-
lower knows (has perfectly observed) this leader’s strategy
and chooses an optimal response to it.

Previous Work: Previous methods to solve a Bayesian
Stackelberg game, first need the Bayesian game to be trans-
formed into a normal-form game using Harsanyi transforma-
tion (Harsanyi & Selten 1972). Once this is done, techniques
like the Multiple-LPs method for finding optimal strategies
(Conitzer & Sandholm 2006) or the MIP-Nash technique
to find the best Nash equilibrium (Sandholm, Gilpin, &
Conitzer 2005), can find a strategy in the transformed game;
this strategy from the transformed game can then be used
back in the original Bayesian game. However, the compact-
ness in structure of the Bayesian game is lost due to the
Harsanyi transformation. In addition, since Nash equilib-
rium assumes a simultaneous choice of strategies, the ad-
vantages of being the leader are not considered. We now
explain here the Harsanyi transformation.

Let us assume there are two follower types 1 and 2 as
shown in Figure 1. Follower type 1 will be active with prob-
ability α, and follower type 2 will be active with probabil-
ity 1− α. Performing the Harsanyi transformation involves
introducing a chance node, that determines the follower’s
type, thus transforming the leader’s incomplete information
regarding the follower into an imperfect information game.
The transformed, normal-form game is shown in Figure 2.
In the transformed game, the leader still has two strategies
while there is a single follower type with four (2*2) strate-
gies. For example, consider the situation in the transformed
game where the leader takes action a and follower takes ac-
tion cc’. The leader’s payoff in the new game is calculated as
a weighted sum of its payoffs from the two tables in Figure
1 i.e., α times payoff of leader when follower type 1 takes

Figure 2: Harsanyi Transformed Payoff Table.

action c plus (1 − α) times payoff of leader when follower
type 2 takes action c’. All the other entries in the new table,
both for the leader and the follower, are derived in a similar
fashion. In general, for n follower types with k strategies
per follower type, the transformation results in a game with
kn strategies for the follower, thus causing an exponential
blowup losing compactness.

Relationship to our AAAI’08 submission: Our
AAAI’08 submission relaxes the assumption of all algo-
rithms mentioned so far for Stackelberg games, including
DOBSS and ASAP, that the follower acts optimally and has
perfect observability. We present new algorithms that ad-
dress uncertainty in follower actions due to their bounded ra-
tionality and observational uncertainty. Our AAAI’08 sub-
mission focuses on experimental results with human sub-
jects: 800 games with 57 subjects. In contrast, our NECTAR
paper describes DOBSS (algorithm in use at LAX), ASAP
and the decomposition scheme that provides efficiency.

Exact Solution: DOBSS
We present here DOBSS (Paruchuri et al. 2008) first in
its more intuitive form as a mixed-integer quadratic pro-
gram (MIQP) and then show its linearization into an MILP.
DOBSS finds the optimal mixed strategy for the leader while
considering an optimal follower response for this leader
strategy. Note that we need to consider only the reward-
maximizing pure strategies of the followers, since if a mixed
strategy is optimal for the follower, then so are all the pure
strategies in the support of that mixed strategy. We denote
by x the leader’s policy, which consists of a vector of the
leader’s pure strategies. The value xi is the proportion of
times in which pure strategy i is used in the policy. For a
follower type l ∈ L, ql denotes its vector of strategies, and
Rl andCl the payoff matrices for the leader and the follower
respectively, given this follower type l. Furthermore, X and
Q denote the index sets of the leader and follower’s pure
strategies, respectively. Let M be a large positive number.
Given a priori probabilities pl, with l ∈ L, of facing each
follower type, the leader solves the following problem:

maxx,q,a

∑
i∈X

∑
l∈L

∑
j∈Q

plRl
ijxiq

l
j

s.t.
∑

i∈X xi = 1∑
j∈Q ql

j = 1

0 ≤ (al −
∑

i∈X Cl
ijxi) ≤ (1− ql

j)M
xi ∈ [0 . . . 1]
ql

j ∈ {0, 1}
al ∈ <

(1)

Where for a set of leader’s actions x and actions ql for
each follower type, the objective represents the expected re-
ward for the leader considering the a-priori distribution over



follower types pl. Constraints 1 and 4 define the set of fea-
sible solutions x as probability distributions over the action
set X . Constraints 2 and 5 limit the vector qlof actions of
follower type l to be a pure distribution over the set Q (i.e.,
each ql has exactly one coordinate equal to one and the rest
equal to zero). The two inequalities in constraint 3 ensure
that ql

j = 1 only for a strategy j that is optimal for fol-
lower type l. In particular, the leftmost inequality ensures
that for all j ∈ Q, al ≥

∑
i∈X Cl

ijxi, which means that
given the leader’s vector x, al is an upper bound on follower
type l’s reward for any action. The rightmost inequality is
inactive for every action where ql

j = 0, since M is a large
positive quantity. For the action with ql

j = 1 this inequal-
ity states that the follower’s payoff for this action must be
≥ al, which combined with previous inequality shows that
this action must be optimal for follower type l.

Notice that Problem 1 is a decomposed MIQP in the sense
that it does not utilize a full-blown Harsanyi transformation;
instead it solves multiple smaller problems using individ-
ual adversaries payoffs (indexed by l) rather than a single,
large, Harsanyi-transformed payoff. Furthermore, this de-
composition does not cause any suboptimality (Paruchuri et
al. 2008). We can now linearize the quadratic programming
problem 1 through the change of variables zl

ij = xiq
l
j , thus

obtaining the following equivalent MILP:

maxq,z,a

∑
i∈X

∑
l∈L

∑
j∈Q

plRl
ijz

l
ij

s.t.
∑

i∈X

∑
j∈Q zl

ij = 1∑
j∈Q zl

ij ≤ 1

ql
j ≤

∑
i∈X zl

ij ≤ 1∑
j∈Q ql

j = 1

0 ≤ (al −
∑

i∈X Cl
ij(

∑
h∈Q zl

ih)) ≤ (1− ql
j)M∑

j∈Q zl
ij =

∑
j∈Q z1

ij

zl
ij ∈ [0 . . . 1]

ql
j ∈ {0, 1}

al ∈ <
(2)

Proposition 1 The DOBSS procedure exponentially re-
duces the problem over the Multiple-LPs approach in the
number of adversary types (Paruchuri et al. 2008).

Approximate Solution: ASAP
We now present our limited randomization approach
(Paruchuri et al. 2007), where we limit the possible mixed
strategies of the leader to select actions with probabilities
that are integer multiples of 1/k for a predetermined integer
k. One advantage of such strategies is that they are com-
pact to represent (as fractions) and simple to understand;
therefore they can potentially be efficiently implemented in
real patrolling applications. Thus for example, when k =
3, we can have a mixed strategy where strategy 1 is picked
twice i.e., probability = 2/3 and strategy 2 is picked once
with probability = 1/3. Unfortunately, while ASAP was de-
signed to generate simple policies, our extensive experimen-
tal results surprisingly reveal that it suffers from problems of
infeasibility. Thus, DOBSS remains the method of choice.

We now present our ASAP algorithm using the mathemati-
cal framework developed in the previous section. In particu-
lar we start with problem 1 and convert x from continuous to
an integer variable that varies between 0 to k; thus obtaining
the following problem:

maxx,q,a

∑
i∈X

∑
l∈L

∑
j∈Q

pl

k
Rl

ijxiq
l
j

s.t.
∑
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∑

i∈X
1
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(3)

We then linearize problem (3) through the change of vari-
ables zl

ij = xiq
l
j , obtaining the following equivalent MILP:

maxq,z,a

∑
i∈X

∑
l∈L

∑
j∈Q
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k
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ijz
l
ij
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∑
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kql
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∑
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j = 1
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∑
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1
k
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ij(
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h∈Q zl
ih)) ≤ (1− ql

j)M∑
j∈Q zl

ij =
∑

j∈Q z1
ij

zl
ij ∈ {0, 1, ...., k}

ql
j ∈ {0, 1}

al ∈ <
(4)

Experimental Results
Our first set of experiments provide scalability results for
the four methods namely DOBSS, ASAP, Multiple-LPs
(Conitzer & Sandholm 2006) and the MIP-Nash method
(Sandholm, Gilpin, & Conitzer 2005). As mentioned earlier
the latter two methods require transformation of a Bayesian
game using Harsanyi transformation (Harsanyi & Selten
1972). We performed extensive experiments with several pa-
trolling games. We present here results for two such games.
The first game has a police patrolling 2 houses resulting in
2 strategies for the police and 2 for each of the adversary
types. The second has the police patrolling 3 houses (patrol
covers 2 of the 3 houses), resulting in 6 strategies for police
and 3 strategies for each of the robber types. Further results
on scalability are presented in (Paruchuri et al. 2008).

Figure 3 compares the runtime results of the four proce-
dures for two and three houses. Each runtime value in the
graph(s) corresponds to an average of twenty randomly gen-
erated scenarios. The x-axis shows the number of follower
types the leader faces starting from 1 to 14 adversary types
and the y-axis of the graph shows the runtime in seconds on
logscale ranging from .01 to 10000 seconds. All the experi-
ments that were not concluded in 30 minutes(1800 seconds)
were cut off. Note that DOBSS provided the optimal solu-
tion while ASAP provided the best possible solution with
randomization constraints. ASAP is numerically unstable



Figure 3: Runtimes for four algorithms on two domains.

and sometimes incorrectly classifies solutions as infeasible;
thus runtime results for ASAP are either time needed to find
the solution or to classify the solution as infeasible.

Figure 3(a) shows the trends for all these four methods for
the domain with two houses. The runtimes of DOBSS and
ASAP are themselves exponential since they show a linear
increase on a log-scale graph. Furthermore, they have an
exponential speedup over the other two procedures as seen
in the graph. Putting the result in numbers, MIP-Nash and
Multiple-LPs needed about 1000s for solving the problem
with fourteen adversary types while DOBSS and ASAP pro-
vided solutions in less than 0.1s. Similar trends are also no-
ticed for the second domain of 3 houses where both MIP-
Nash and Multiple-LPs could solve this problem only till
seven adversary types within the 1800s cutoff time while
DOBSS and ASAP could solve the problem for all fourteen
adversary types modeled, under 10s. Between DOBSS and
ASAP, DOBSS was found to have a 62% average speedup
over ASAP(over all the experiments performed) i.e., ASAP
needs 162secs for every 100secs that DOBSS takes.

Our second set of experimental results highlight the infea-
sibility issue of ASAP. We use the same settings as described
above except that the number of houses was varied between
two to seven (columns in the table). This means that the
number of agent strategies varies between 2 to 42 (n*(n-1)
where n is number of houses) while the number of strategies
for each adversary type varies between 2 to 7 (n). The num-
ber of adversary types was varied between one to fourteen
(rows in the table). For each fixed number of houses and
follower types, twenty scenarios were randomly generated.
Each number in the table represents the percentage of time
ASAP classified the problems as infeasible. From the table
in Figure 4, the general trend is that as the problem size in-
creases ASAP tends to generate more infeasible solutions.
We can calculate from the table that more than 12.5% of
the solutions are infeasible for the five house problem when
averaged over all the adversary scenarios. This number in-
creases to as high as 18% and 20% on an average for the six
and seven house problems, thus making the ASAP approach
impractical for bigger problems. The values marked with a
star are ones where ASAP ran out of time in many instances,
and hence the percentage of infeasible solutions reported is
an upper bound on the actual infeasible solutions.

Conclusion and Significance
Given the crucial importance of Bayesian Stackelberg games
in many security applications, this paper introduces two of

Figure 4: % of infeasible solutions for ASAP. Rows repre-
sent 1-14 adversary types, columns represent 2-7 houses.

the fastest algorithms: ASAP (an approximate procedure)
and DOBSS (an exact procedure). The exponential speedups
these algorithms attain over previous algorithms are criti-
cally important in real applications. For our application at
the Los Angeles Airport the leader has 784 actions and there
may be up to 4 adversary types each with 8 actions. While
DOBSS could solve the problem for all 4 adversary types
within 80s, Multiple-LPs method could not solve for even 3
adversary types within the cutoff time of 20 minutes.
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