

Computing Science Group

FULL ABSTRACTION FOR NOMINAL EXCEPTIONS
AND GENERAL REFERENCES

Nikos Tzevelekos
nikt@comlab.ox.ac.uk

CS-RR-07-08

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, OX1 3QD

Abstract

Game semantics has been used with considerable success in formulating fully
abstract semantics for languages with higher-order procedures and a wide range of
computational effects. Recently, nominal games have been proposed for modeling
functional languages with names and nominal general references. Here we make a
step further by developing a fully abstract semantics for a language with nominal
exceptions and nominal general references.

1 Introduction

A prevalent feature of programming languages is the use of exceptions for raising and
handling eccentric program behavior, and more generally for manipulating the flow
of control. It is a key feature, for example, of ML, Java and C++. The raising of an
exception forces a program to escape out of its context and to the nearest available exception-
handler.1 The effect of overriding nested behavior, while of fundamental importance
to the programmer, is very difficult to capture semantically with full-abstraction. The
semanticist’s task becomes even more daunting if general references are added in the
specification, and hence phenomena of dynamic update and interference come into the
picture.

The first (and only) fully abstract model of a language with exceptions was presented
by Laird in [10]. It formed part of a series of works that, starting in the mid 90’s with full-
abstraction for PCF (appearing in print somewhat later in [2, 8]), provided fully abstract
denotational semantics for programming languages with higher-order procedures and
a wide range of computational effects via game semantics. The calculus examined and
modeled in [10] contains also general references, and it encodes exceptions as product
terms of raise/handle type, and references as read/write types. With this convention,
however, and in order to achieve full-abstraction, one needs to include in the language
non-exception terms of exception type (bad exceptions) and non-reference terms of refer-
ence type (bad variables). This allows for unwanted behaviors and, amongst other things,
prohibits the use of equality tests for references.

In this paper we obtain the first full-abstraction result for a statically-scoped language
with (dynamically bound, locally declared) good exceptions, general references and good vari-
ables, which faithfully reflects the practice, and reaches the expressivity, of real program-
ming languages such as ML. We follow the alternative –nominal– approach of treating
exceptions and references separately from variables, as names, extending the ν-calculus
of Pitts and Stark [16]. The ν-calculus is a paradigmatic λ-calculus with names, in which
names are constant terms of ground type that “...are created with local scope, can be
tested for equality and can be passed around via function application, but that is all”.
Here we use two sorts of names: exception-names and reference-names. All names are
created locally; exception-names can also be raised and handled, and reference-names

1at least as long as dynamically bound, locally declared exceptions are concerned, which are the type of
exceptions we examine in this paper.

1

can also be tested for equality, passed around, dereferenced and updated. We call the
resulting calculus νερ.

Nominal games were introduced in [1] as the basis for the first fully abstract model of
the ν-calculus,2 and were further developed in [17] to provide a fully abstract semantics
for νρ, the calculus extending ν by use of names for general references. They constitute a
version of Honda-Yoshida CBV-games [7] with local state [14], built inside the universe
of nominal sets [6, 15]. On the other hand, a major contribution in the study of seman-
tics for languages with computational effects was the introduction of monads [13] as a
generic tool for effect-modeling. The passage from the model of the ν-calculus to that
of νρ was based on the use of a store-monad. The next logical step would be to examine
whether the use of an additional exception-monad could yield a model of νερ, and this
step we take here. The use of an exception-monad involves the introduction of excep-
tions without use of exception types: any computation type includes an exception by
means of the monad, but in order for a term to be raised as an exception it must evaluate
to an exception-name.

We have deviated from the model of [17] also in another aspect. In that work a
model was constructed as a family of categories, one category for each local state in the
language. Here, instead, we present everything in a single category and use comonads to
model local state. This description not only provides a succinct and intuitive description
of what constitutes an abstract model of νερ, but also makes the construction of the actual
model in nominal games easier.

Summarising, the contributions of this paper are: a) the introduction of a λ-calculus
with nominal (good) exceptions and nominal general (good) references; b) the descrip-
tion of abstract categorical models of the language in a monadic-comonadic setting; c)
the construction of a fully abstract model using nominal games. We think that (b) should
be further examined, with the objective of fully understanding the abstract categorical
structure of nominal languages, and of cleanly describing the nominal feature as a com-
putational effect.

2 Theory of Nominal Sets

We give a short overview of nominal sets, which will be used as the basis for all construc-
tions presented in this paper. Intuitively, nominal sets are sets whose elements are built
over a finite number of names, and which are acted upon by finite name-permutations.

Assume a countably infinite set TY of types denoted byA,B,C and variants, and for
each type A assume a countably infinite set of names AA. Moreover, assume another set
of names AE . The elements of AA are reference-names to type A, while the elements ofAE are exception-names. We let A , AE ⊎

⊎

A∈TY

AA
2A different version of nominal games was introduced in [11].

2

be the set of (general) names. Names will be generally denoted by a, b, c and variants;
reference-names will be specifically denoted by ä, b̈, c̈ and variants, and exception-names
will be denoted by ȧ, ḃ, ċ and variants. We write PERM(AA) for the group of finite per-
mutations of AA, and similarly for PERM(AE). We take PERM(A) to be the direct sum of
the PERM(AX)’s,

PERM(A) ,
⊕

X∈{E}⊎TY

PERM(AX)

that is elements of PERM(A) are those permutations of A that can be described as finite
sequences of permutations from the PERM(AX)’s. (a b) denotes the permutation that
only swaps names a and b (of same type) and id denotes the identity permutation; per-
mutations in general are denoted by π and variants.

A nominal set X is a set equipped with an action from PERM(A), that is a function[: PERM(A) ×X → X such that, for any π, π′ ∈ PERM(A) and x ∈ X,

π [(π′ [x) = (π ◦ π′) [x id [x = x

Moreover, all x ∈ X have finite support S(x) ⊆ A, which is the least set S ⊆ A satisfying:

∀π∈PERM(A). (∀a∈S. π(a) = a) =⇒ π [x = x

For x ∈ X and a ∈ A we say that a is fresh for x, and write a#x, if a /∈ S(x).
We can see that A in particular is a nominal set with each name a having support {a}.

If Y is a nominal set and X ⊆ Y then X is a nominal subset of Y if X is closed under
permutations, these acting as on Y . If X ⊆ Y is a nominal subset then so is X̄ , Y \X.
If X,Y are nominal sets then their cartesian product X × Y is also a nominal set, with
permutations defined componentwise. Similarly, A#, the set of finite lists of distinct

names, is a nominal set; we denote its elements by ~a,~b,~c and variants. Moreover, a
relation R ⊆ X × Y is a nominal relation if it is a nominal subset of X × Y . Concretely,
R is nominal iff, for any permutation π and (x, y) ∈ X × Y , xR y ⇐⇒ (π[x)R (π[y).
Accordingly, f : X → Y is a nominal function if f(π [x) = π [f(x) , for any x ∈ X and
π. For example, cartesian product projections are nominal functions.

In nominal sets we can succinctly define name-abstraction: for each a ∈ A and x ∈ X
let

〈a〉x , {(b, y) ∈ A×X | (b = a ∨ b#x) ∧ y = (a b) [x}
We can show S(〈a〉x)= S(x)\ {a}. Another form of abstraction involves equivariancia-
tion, that is abstracting the whole support of an element by forming its orbit under all
permutations: for any x ∈ X let

[x] , {π [x | π ∈ PERM(A)}

Clearly, S([x]) = ∅. For example, for names ä ∈ AA and ȧ ∈ AE , [äȧ] is the set of all lists of
names comprising precisely a reference-name of typeA followed by an exception-name,
that is,

[äȧ] = {b̈ḃ | b̈ ∈ AA ∧ ḃ ∈ AE}
3

Alternatively, [äȧ] can be seen as a generic list of a reference-name of type A followed by
an exception-name.

The notion of support can be strengthened as follows. We say that an element x of a
nominal set X has strong support if

∀π∈PERM(A). (∀a∈S(x). π(a) = a) ⇐⇒ π [x = x

We say X is a strong nominal set if all its elements have strong support. We can see that
all constructions of the two previous paragraphs are inherited by strong nominal sets.
We let sNomTYE be the category of strong nominal sets (on A) and nominal functions.

3 νερ-calculus

The νερ-calculus extends the ν-calculus of Pitts and Stark [16] by using names for general
references and exceptions.

Definition 1 The νερ-calculus is a functional calculus of nominal references and excep-
tions. Its types are given as follows.

TY ∋ A,B ::= 1 | N | [A] | A→ B | A⊗B

Terms of type 1 are commands, type N is for natural numbers, type [A] for references
to type A, and the rest are arrow and product types. Terms are given as elements of
sNomTYE, as follows.

TE ∋M,N :: = x | λx.M |M N λ-calculus

| skip return

| n | predM | succN arithmetic

| if0M thenN1 elseN2 if then else

| 〈M,N〉 | fstM | sndN pair/ projections

| ä | [M = N] reference/ ref. equality

|M := N | !M update/ dereferencing

| raise ȧ raise exception

| tryM handle ȧ =>N try/handle exception

| νa.M ν-abstraction

Each name ä is taken from
⊎
A∈TY AA, and each name ȧ is taken from AE .

Of the terms above, the values are:

VA ∋ V,W ::= n | skip | ä | x | λx.M | 〈V,W 〉

4

The typing system involves terms in environments~a^Γ, where~a a list of (distinct) names
and Γ a finite set of variable-type pairs. Some of its rules are the following.

ȧ ∈ S(~a)
~a ^Γ_ raise ȧ : A

ä ∈ S(~a) ∩ AA

~a ^Γ_ ä : [A]

~aa ^Γ_M : B

~a ^Γ_ νa.M : B

~a ^Γ_M : [A] ~a ^Γ_N : [A]

~a ^Γ_ [M = N] : N
~a ^Γ_M : [A]

~a ^Γ_ !M : A

~a ^ Γ_M : [A] ~a ^ Γ_N : A

~a ^Γ_M := N : 1
~a ^Γ_M : A ~a ^Γ_N : A

ȧ ∈ S(~a)
~a ^Γ_ tryM handle ȧ => N : A

N

Permutations act on TE componentwise, that is, for any π ∈ PERM(A),

π [a = π(a) π [νa.M = ν(π [a).(π [M) π [x = x π [λx.M = λ(π [x).(π [M) etc.

Note that there are two types of binding in the syntax, variable-binding and name-
binding, and each of these yields its own notion of α-equivalence. The set of free vari-
ables of a term is defined as,

fv(x) , {x} fv(λx.M) , fv(M) \ {x} fv(n) = fv(a) , ∅

plus standard rules for the other non-binding constructs. A term M is closed if fv(M) is
empty. Similarly, the set of free names of a term is defined as,

fn(a) , {a} fn(νa.M) , fn(M) \ {a} fn(n) = fn(x) , ∅

plus standard rules for the other non-binding constructs. α-equivalence for variable-
binding, henceforth called αV -equivalence and written =αV

, is defined as usually.3 α-
equivalence for name-binding, henceforth called αN -equivalence and written =αN

, is
defined by recursion (on term size) as follows,

M = x, a, n
M =αN

M

for cofinitely many b. (a b) [M =αN
(a′ b) [M ′

νa.M =αN
νa′.M ′

M =αN
M ′

λx.M =αN
λx.M ′

3Since the formality of definitions of αV -equivalence available out there varies considerably (with oc-
casional occurrences of incorrect definitions) perhaps it is worthwhile providing a quick definition, taken
from [9].

First we define angle-brackets substitution to be the simple (i.e. not capture-avoiding) var-for-var substi-
tution with (λx.M) < y/x > , λx.M . Then we define =αV

by recursion (on term size) as:

M = x, a, n
M =αV

M

for cofinitely many y. M < y/x >=αV
M ′ < y/x′ >

λx.M =αV
λx′.M ′

M =αV
M ′

νa.M =αV
νa.M ′

plus standard rules for the other non-binding constructs. Note the similarity with the definition of =αN
.

5

plus standard rules for the other non-binding constructs. The definition is taken from
[6], and it captures the usual notion of α-equivalence, i.e. it equates terms up to choice
of bound names (v. [6, proposition 2.2]).

The casting of our calculus in nominal sets equips us with a well-behaved action of
name-permutation on terms. We trivially have that a, b # M =⇒ (a b) [M = M , any
term M and a, b ∈ A. Moreover, the following hold.

Proposition 2 For all terms M,N and a, b ∈ A,

• M =αN
N =⇒ (a b) [M =αN

(a b) [N ,

• a, b /∈ fn(M) =⇒ (a b) [M =αN
M .

Proof: By induction on M . �

The above proposition implies that the second rule for =αN
reduces to

M =αN
M ′

νa.M =αN
νa.M ′

for a = a′. Now, we take the usual step of equating terms up to α-equivalence.

We assume the set of terms is quotiented by α-equivalence for both binding
mechanisms, that is we equate terms up to choice of bound variables and
bound names.

We proceed in defining reduction in νερ, which is call-by-value. The reduction calculus
is defined in exceptional store environments, S, which may also enlist exception-names.

Definition 3 We define exceptional store environments by:

S ::= ǫ | a, S | ä :: V, S

For each S we define its domain to be the list of names enlisted in S. We only consider
environments whose domains are lists of distinct names, and write S `Γ,A M , or simply

6

S `M , only if dom(S) ^Γ_M : A is derivable. Reduction rules are as below,

LAM
S `!ä −→ S, ä :: V, S′ ` V

DRF
S, ä :: V, S′ `!ä −→ S, ä :: V, S′ ` V

UPD
S, ä(:: W), S′ ` ä := V −→ S, ä :: V, S′ ` skip

CHK n=1 if ä#b̈

n=0 if ä=b̈S ` [ä = b̈] −→ S ` n

NEW (b#S)

S ` νa.M −→ S, b` (a b) [M
HL

S ` try (raise ȧ) handle ȧ => N −→ S ` N

VHL
S ` try V handle ȧ => N −→ S ` V

NHL ȧ#ḃ

S ` try (raise ḃ) handle ȧ =>N −→ S ` raise ḃ

XPN
S ` Z[raise ȧ] −→ S ` raise ȧ

CTX
S `M −→ S′ `M ′

S ` E[M] −→ S′ ` E[M ′]

plus standard CBV rules for fst , snd , if0, pred and succ . Unhandled evaluation
contexts Z[] are of the forms:

[= N] , [ä =] , ! , := N , ä := ,

(λx.N) , N , if0 then N else N ′,

fst , snd , pred , succ , 〈 , N〉 , 〈V, 〉

and (general) evaluation contexts E[] are of the forms:

Z[] , try handle ȧ => N
N

Observe the fact that exceptions carry only their names. This, although very intuitive, could
be seen as a restriction in the language, as usually one wants exceptions to carry some
secondary data. Nevertheless, in the presence of local references such data can be easily
carried through the store, so we don’t think there is any expressivity loss here.

We take observable terms to be the constants of type N, and around them we build the
notion of observational equivalence.

7

Definition 4 For typed terms ~a ^Γ_M : A and ~a ^Γ_N : A , define ~a ^Γ_M / N
to be the assertion:

for any variable- and name-closing context C[] : N,
∃S′.(` C[M] −→→ S′ ` 0) =⇒ ∃S′′.(` C[N] −→→ S′′ ` 0)

We usually omit ~a and Γ and write simply M / N . N

3.1 Semantics

We examine sufficient conditions for a fully-abstract semantics of νερ, specifying thus
λνερ-models. Translating each termM into an object JMK of a λνερ-model M and assum-
ing a preorder . in M, full-abstraction amounts to the assertion:

M / N ⇐⇒ JMK . JNK (FA)

3.1.1 Monads and Comonads

The semantics we use is a monadic and comonadic one, over a computational monad T (v.
[13]) and a family of local-state comonads Q = 〈Q~a〉~a∈A# (v. [4]), so that the morphism
related to each typed term ~a ^Γ_M :A is of the form JMK : Q~aJΓKA T JAK.

Recall that a strong monad over a category C with binary products is a quadruple
(T, η, µ, τ) where:

• T : C A C is an endofunctor,

• η, µ, τ are natural transformations,

ηA : AA TA (unit)

µA : T 2AA TA (composition)

τA,B : A× TB A T (A×B) (strength)

satisfying certain coherence conditions (v. [13]). We write

τ ′ : T × A T (×)

for the strength transformation derived from τ and product symmetries, and take

ψA,B : TA× TBA T (A×B) , τ ′ ;Tτ ;µ

ψ′
A,B : TA× TBA T (A×B) , τ ;Tτ ′ ;µ

A comonad over a category C is a triple (T, ε, δ) where:

• T : C A C is an endofunctor,

8

• ε, δ are natural transformations,

εA : TAA A (counit)

δA : TAA T 2A (duplication)

satisfying the (dualised) monadic conditions (with strengths excluded). In case C
has binary products, we can define a natural transformation z̄z̄A,B : T (A×B)

〈Tπ1, Tπ2〉PPPPPPPPA TA× TB
εA × idBPPPPPPPA A× TB

so that (T, ε, δ, z̄) satisfies the strong monadic conditions.

Stronger comonads are obtained by stipulating a transformation z on the other direc-
tion, as in the case of strong commonads (v. [5]). In our case, we stipulate even stronger
conditions.

Definition 5 (Product comonad) A comonad (T, ε, δ) with transformation z̄ defined as
above is called a product comonad if z̄ is a natural isomorphism. N

We write z : × T () A T (×) for the inverse of z̄ . Moreover, and as in the case
of monadic strengths, we let z ′, z̄ ′ be their symmetric counterparts. Note that a product
comonad T over a category with finite products can be written as

T ∼= T1 ×

hence the name. We say that T1 is the basis of the comonad.

3.1.2 Precompound monads

Computation in νερ is exception-raising, store-update and fresh-name creation. Hence,
our computational monad T can be described as a two-component monad containing a
store- and fresh-name-monad on top of an exception-monad. Instead of giving T explic-
itly as the composition of two monads we will stipulate that T satisfies certain properties
of compound monads. These properties define precompound monads and do suffice for
describing abstractly the two-component structure of our monad.

Definition 6 (Precompound monad) A strong monad (T, η, µ, τ) is precompound if there
exists a natural transformation θ : T → T 2 such that, for each object A,

• θA ;µA = idTA

• θTA ;TµA ;TθA ;µTA = µA ; θA

Moreover, each ηA is an inner- and outer-component arrow, where an arrow f : AA TB
is said to be

• an inner-component arrow if f ; θB = f ; ηTB

9

• an outer-component arrow if f ; θB = f ;TηB

We write T as (T, η, µ, τ, θ). N

So θ is in essence separating the two components in T , so that the morphism θA :
TA A T 2A sends the outer T -component of TA to the outer T of T 2A, and the inner
T -component of TA to the inner T of T 2A. From this viewpoint, inner-component ar-
rows can be seen as involving computation in the inner-component of T , and similarly
for outer-component arrows.

3.1.3 λνερ-models

We proceed in introducing abstract models for νερ. Note first some notation for name-

lists: for name-lists ~a,~b we write

• ~a ≤ ~b when ~a is a prefix of~b,

• ~a � ~b when ~a is a (not necessarily initial) sublist of~b.

Definition 7 A λνερ-model M is a triple 〈M, T,Q〉 where,

I. M is a category with finite products, with 1 being the terminal object and A × B
the product of A and B.

II. T is a precompound monad (T, η, µ, τ, θ) and forms a λc-model over M (v. [13]).
The T -exponentialTBA is denoted byA

b
⇒TB, T -currying by ΛT , and T -evaluation

by ev
T .

III. M contains a natural numbers object N equipped with successor/predecessor ar-
rows and n : 1→ N, each n∈N.

IV. M contains, for each A ∈ TY, an A-names object AA and a symmetric name-
equality arrow eqA : AA×AAA N.

V. Q is a family of product comonads 〈Q~a, ε, δ, z 〉~a∈A# on M such that,

(a) Q~a = Q~a
′

if [~a] = [~a′], Q ǫ ∼= IdM, and Qä ∼= AA × if ä ∈ AA,

(b) for any ~a′�~a there is a comonad morphism ~a
~a′ : Q~aA Q~a

′

such that ~aǫ = ε and,
whenever ~a′�~a′′� ~a,

~a

~a′′
;
~a′′

~a′
=
~a

~a′

(c) for each type A and ä, b̈ ∈ AA the following commute,AA ∆ //

!

��

AA × AA
eqA

��
1

0
// N Qäb̈1

〈 äb̈
ä
, äb̈

b̈
〉
//

!

��

AA × AA
eqA

��
1

1
// N (N1)

10

(d) there exists a natural transformation new~aa : Q~a A TQ~aa such that, for each
B ∈ Ob(M), new~aaB is an outer-component arrow and the following diagrams
commute.

Q~aB

newB

��

〈id,newB〉
// Q~aB × TQ~aaB

τ

��

TQ~aaB
T 〈~aa

~a
,id〉

// T (Q~aB ×Q~aaB)

A×Q~aB
id×newB//z

��

A× TQ~aaB

τ ;Tz
��

Q~a(A×B) newA×B

// TQ~aa(A×B)

(N2)

VI. Taking

J1K , 1 , JNK , N , J[A]K , AA , JA×BK , JAK × JBK , JA→ BK , JAK
b
⇒ T JBK

M contains, for each A ∈ TY, outer-component arrows

drfA : AAA T JAK and updA : AA × JAKA T1

such that the following diagrams (which describe the specifications for dereferenc-
ing and update) commute,AA × JAK

〈π1,updA〉;τ
//

〈π2,updA〉;τ
((PPPPPPPPPPPPPPP
TAA

TdrfA;µ

��

T JAK

(NR)

AA × JAK × JAK

∆×id;∼=

��

AA × JAK

updA

��AA × JAK × AA × JAK
updA×updA;ψ

//

π2

66lllllllllllllll

T1

Qäb̈1 × JAK × JBK

〈 äb̈
ä
, äb̈

b̈
〉×id;∼=

��

AB × JBK × AA × JAK

updB×updA;ψ

��AA × JAK × AB⊗JBK
updA×updB ;ψ

//

∼=

55jjjjjjjjjjjjjjjjjjj

T1

and also update and fresh-name are independent effects, that is,

newA × updB ;ψ = newA × updB ;ψ′ (SNR)

VII. M contains a natural transformation inx : KQȧ1 A T for exception-inclusion,
where KQȧ1 the constant Qȧ1 functor, such that each inxB is an inner-component
arrow and the following diagrams commute.

A×Qȧ1
id×inxB //

π2

��

A× TB

τ

��

Qȧ1
inxA×B

// T (A×B)

Qȧ1
inxTB //

inxB
""EEEEEEEEE
T 2B

µ

��
TB

(NE1)

11

and for each object B an arrow hdlB : TB × Qȧ1 × TB A TB for exception-
handling such that the following commutes.

Qȧḃ1⊗TB
〈 ȧḃ

ȧ
, ȧḃ

ḃ
〉×id

//

π1

��

Qȧ1⊗Qȧ1 × TB

inxB×id

��

Qȧ1 × TB
∆×idoo

π2

{{
{{

{{
{{

{{
{{

{{
{{

{

}}{{
{{

{{
{

Qȧḃ1

ȧḃ
ȧ

��

TB ×Qȧ1 × TB

hdlB

��
Qȧ1

inxB

// TB B ×Qȧ1 × TB

η×id

hhQQQQQQQQQQQQQQQQ

π1;η
oo

(NE2)

N

The new transformation induces the following notion of name-abstraction for arrows.
For any f : Q~aaAA TB we set\a℄f : Q~aAA TB , Q~aA newPPA TQ~aaA

TfPPA T 2B
µPA TB

We now give the semantics of νερ in a λνερ-model.

Definition 8 Let 〈M, T,Q〉 be a λνερ-model. A typed term ~a ^Γ_M :A is mapped to an

12

arrow JMK~a^Γ :Q~aJΓK A T JAK, which we write simply as JMK, in M as follows,

JskipK : Q~aΓ
Q~a!; ~a

ǫPPPPA 1
ηPA T1 JnK : Q~aΓ

Q~a!; ~a
ǫPPPPA 1 nPA N ηPA TN

JäK : Q~aΓ
Q~a!; ~a

äPPPPA AA ηPA TAA Jraise ȧK : Q~aΓ
Q~a!; ~a

ȧPPPPA Qȧ1
inxAPPPPA TA

JMK : Q~a(Γ ×A)A TB

Jλx.MK : Q~aΓ
ΛT (z ′ ; JMK)PPPPPPPPPA A

b
⇒ TB

ηPA T (A
b
⇒ TB)

JMK : Q~aΓA T (A
b
⇒ TB) JNK : Q~aΓA TA

JM NK : Q~aΓ
〈JMK, JNK〉;ψPPPPPPPPPPA T ((A

b
⇒ TB) ×A)

T ev
T ;µPPPPPA TB

JMK : Q~aaΓA TA

Jνa.MK = \a℄JMK : Q~aΓA TA

JMK : Q~aΓA TAA JNK : Q~aΓA TAA
J[M = N]K : Q~aΓ

〈JMK, JNK〉;ψPPPPPPPPPPA T (AA × AA)
TeqPPPA TN

JMK : Q~aΓA TAA JNK : Q~aΓA TA

JM := NK : Q~aΓ
〈JMK, JNK〉;ψPPPPPPPPPPA T (AA ×A)

TupdA;µPPPPPPA T1

JMK : Q~aΓA TAA
J!MK : Q~aΓ

JMKPPPA TAA TdrfAPPPPPA T 2A
µPA TA

JMK : Q~aΓA TA JNK : Q~aΓA TA

JtryM handle ȧ => NK :Q~aΓ
〈JMK, Q~a! ; ~a

ȧ
, JNK〉PPPPPPPPPPPPPA TA×Qȧ1 × TA

θ × id ; τ ′PPPPPPPA T (TA×Qa1 × TA)
ThdlA;µPPPPPPA TA

plus standard translations for other term constructs. N

Observe the use of θ in the semantic translation of handling; the intuition is the follow-
ing. θ separates the two components of the computation JMK, and channels the outer
component to the output and the inner component to the exception-handler.

The specifications of the λνερ-model are tailored towards correctness. Let us write
S ` M rPA S′ ` M ′ with r being a reduction rule different from CTX, if the last non-
CTX rule in the related derivation is r. We write M ;N for (λd.N)M , some d not in N ,
and relate to any store S the term S̄ of type 1, by:

ǭ , skip , a, S , S̄ , ä :: V, S , (ä := V ; S̄)

13

Proposition 9 (Correctness) For any typed term ~a ^Γ_M : A, any S with dom(S) = ~a and
any r /∈ {NEW,UPD,DRF},

• S `M rPA S `M ′ =⇒ JMK = JM ′K

• S `M
UPD/DRFPPPPPPPPA S′ `M ′ =⇒ JS̄ ;MK = JS̄′ ;M ′K

• S `M NEWPPPPA S, a`M ′ =⇒ JS̄ ;MK = \a℄JS̄ ;M ′K

Therefore, S `M A S′ `M ′ =⇒ Jν~a.(S̄ ;M)K = Jν~a′.(S̄′ ;M ′)K , with dom(S′) = ~a′.�

Soundness doesn’t follow from correctness; we also need computational adequacy. The
latter is added as a specification.

Definition 10 (Adequacy) Let M be a λνερ-model and J K the respective translation of

νερ. M is adequate if, for any typed term ~a ^∅_M :N, if JMK = \~b℄JS̄ ; 0K , some S, then
there exists S′ such that ~a`M −→→ S′ ` 0 . N

Assuming now our running M is an adequate λνερ-model we can easily show the fol-
lowing.

Proposition 11 (Equational Soundness)

JMK = JNK =⇒ M / N
�

3.1.4 Completeness

To achieve completeness we need to introduce a preorder in the semantics to match
the observational preorder of the syntax, as in (FA). This step, which is essentially a
quotienting procedure, is found in many (but by no means all) fully abstract models
based on game semantics.

Definition 12 (p-Observationality) An adequate λνερ-modelM = 〈M, T,Q〉 is p(reorder)-
observational if, for all ~a:

(I) There is an O~a⊆M(Q~a1, TN) such that for all ~a ∅̂_M :N,

JMK∈O~a ⇐⇒ ∃S,~b. JMK= \~b℄JS̄ ; 0K

(II) The induced intrinsic preorder on arrows in M(Q~aA,TB) defined by f .~a g ⇐⇒

∀ρ : Q~a(A
b
⇒ TB)A TN. (ΛQ~a

(f) ; ρ ∈ O~a =⇒ ΛQ
~a

(g) ; ρ ∈ O~a)

with ΛQ
~a

(f) : Q~a1
δA Q~aQ~a1

Q~aΛT (z ′ ; f)J Q~a(A
b
⇒ TB) , satisfies, for all a # ~a and

relevant f, f ′,

f .~aa f ′ =⇒ \a℄f .~a \a℄f ′
f .~a f ′ =⇒

~aa

~a
; f .~aa ~aa

~a
; f ′

14

We write M as 〈M, T,Q,O,.〉. N

So, O~a contains those arrows that have a specific observable behavior in the model, and
the semantic preorder is built over this notion. In particular, terms that yield 0 have
observable behavior. The specifications of part (II) in the previous definition ensure that
the intrinsic preorder is a congruence, i.e.

JMK . JNK =⇒ JC[M]K . JC[N]K

for all M,N and contexts C. Thus, assuming our running M is p-observational we can
easily get one direction of (FA).

Lemma 13 (Inequational Soundness)

JMK . JNK =⇒ M / N
�

In order to achieve completeness, and hence full-abstraction, we need to be able to ex-
press the intrinsic preorder solely by use of definable test-arrows.

Definition 14 (p-Definability) Let 〈M, T,Q,O,.〉 be a p-observational λνερ-model and
let J K be the semantic translation of νερ to M. M satisfies p-definability if, for any
~a,A,B, there exists D~a

A,B ⊆ M(Q~aJAK, T JBK) such that:

• For each f ∈ D~a
A,B there exists term M such that JMK = f ,

• For each f, g ∈ M(Q~aA,TB), f . g iff

∀ρ ∈ D~a
A→B,N . (ΛQ~a

(f) ; ρ ∈ O~a =⇒ ΛQ
~a

(g) ; ρ ∈ O~a)
N

For such a model M we achieve full abstraction; the proof of completeness is done by
induction on the size of Γ, and the methodology is more or less standard.

Proposition 15 (FA) For typed terms ~a ^Γ_M,N : A,

JMK . JNK ⇐⇒ M / N
�

4 The nominal games model

We build a model of νερ in a category of nominal arenas and strategies, following a route
similar to that of [17]. The basic construction is Vt, the category of nominal arenas and
total strategies. Vt is constructed in sNomTYE, and there are:

• for each type A an arena AA for references to type A,

15

• an arena AE for exceptions.

The translation JAK of a general type will make use of a store arena ξ =
⊗

A∈TY(AA⇒JAK) ,
which will literally serve as a reference-store, and of the exception-arena AE . This will
naturally lead us to a monadic semantics, with computation monad T defined on arenas
by TA = ξ⇒ (A+AE)⊗ ξ. Since arrow types involve the monad in their translation and
the monad involves all types, we will have to first solve the domain equation:

JA→ BK = JAK
b
⇒ (ξ⇒ (JBK + AE) ⊗ ξ)

ξ =
⊗

A
(AA ⇒ JAK)

(SE)

4.1 The category of nominal games

We assume a set of types TY and build our constructions inside sNomTYE. We start
with nominal arenas.

Definition 16 A nominal arena A , (MA, IA,⊢A, λA) is given by:

• a strong nominal set MA of moves,

• a nominal subset IA ⊆MA of initial moves,

• a nominal justification relation ⊢A⊆MA × ĪA,

• a nominal labeling function λA : MA → {O,P} × {A,Q}.

Moves in MA are denoted by mA and variants, and initial moves by iA and variants. By
ĪA we denote MA \ IA. λA labels moves as Opponent or Player moves, and as Answers
or Questions.
An arena A satisfies also the conditions:

(f) For each m ∈ MA, there exists unique k ≥ 0 such that IA ∋ m1 ⊢A · · · ⊢A mk ⊢A m ,
for some ml’s in MA.
k is called the level of m, so initial moves have level 0.

(l1) Initial moves are P-answers.

(l2) If m1,m2 ∈MA are at consecutive levels then λA assigns them complementary OP-
labels.

(l3) Answers may only justify Questions.

A prearena is an arena with its initial moves labeledOQ. Given arenasA andB, construct
the prearena A→ B as:

MA→B , MA +MB

IA→B , IA

λA→B , [(iA 7→ OQ , mA 7→ λA(mA)) , λB]

⊢A→B , {(iA, iB)} ∪ {(m,n) |m ⊢A,B n}
N

16

Because of condition (f), arenas can be represented by directed connected graphs with
no directed cycles. From arenas A,B we can construct the following arenas.

A B

A ⊗ B

A

∗
∗

A⊥

A B

A
b
⇒ B

A B

A⇒ B

∗

A B

A+B

Figure 1: Basic arena constructions

The constructions are defined formally in [17]; for example,

MA⊗B , IA×IB + ĪA + ĪB (A⊗B)

IA⊗B , IA×IB

λA⊗B , [((iA, iB) 7→ PA) , λA , λB]

⊢A⊗B , {((iA, iB),m) | iA ⊢A m ∨ iB ⊢B m} ∪ (⊢A↾ ĪA 2) ∪ (⊢B↾ ĪB 2)

MA+B , MA +MB (A+B)

IA+B , IA + IB

λA+B , [λA , λB]

⊢A+B , ⊢A ∪ ⊢B

The simplest arena is 0 , (∅,∅,∅,∅). Other (flat) arenas are 1, N and A~a, for any~a ∈ A#,
defined as follows.

MN = IN , N M1 = I1 , {∗} MA~a = IA~a , A~a
In case ~a is singleton, the last construction above yields arenas AA, each type A, andAE . We will usually identify graph-isomorphic arenas related by isomorphisms which
simply manipulate ∗’s; for example, for any A,B,

0 +A = A+ 0 = A , 1
b
⇒A = A , A⇒B = A

b
⇒B⊥

Of the previous constructors all look familiar apart from
b
⇒. The latter can be seen as a

function-space constructor merging the contravariant part of its RHS with its LHS. For
example, for any A,B,C , we have

A
b
⇒ N = N and A

b
⇒ (B⇒ C) = (A⊗B) ⇒ C

17

In the first case we see that the N which appears on the RHS of
b
⇒ has no contravariant

part, and hence A is redundant. In the second case, the contravariant part of B⇒ C , i.e.
B, is merged with A.

We move on to describe nominal games. Nominal games are played in prearenas
using moves which are attached with name-lists capturing name-environments.

Definition 17 A move-with-names of a (pre)arena A is a pair, written m~a, where m is a
move of A and ~a is a finite list of distinct names, a name-list. We set nlist(m~a) , ~a. N

Note that moves-with-names have strong support. We need to introduce some further
notation for sequences.

Notation 18 (Sequences) A sequence s will be usually denoted by xy . . . , where x, y, ...
are the elements of s. For sequences s, t,

• if s ≤ t then t = s(t− s) ,

• s− denotes s with its last element removed,

• if s = s1 · · · sn then s1 is the first element of s and sn the last. Moreover,

◦ n is the length of s, and is denoted by |s|,

◦ s.i denotes si and s.-i denotes sn+1−i , that is the i-th element from the tail of s
(for example, s.-1 in sn),

◦ s≤si
denotes s1 · · · si , and so does s<si+1 .

• if s is a sequence of moves-with-names then we denote by s its underlying sequence,
that is the sequence retrieved from s by deleting all of its name-lists, in which case
s = snlist(s). N

We proceed to defining plays. A justified sequence over a prearena A is a finite sequence
s of OP-alternating moves such that, except for s.1 which is initial, every move s.i has a
justification pointer to some s.j such that j < i and s.j ⊢A s.i ; we say that s.j (explicitly)
justifies s.i . The P-view, psq, of a justified sequence s is:

psxq , psqx if x a P-move

pxq , x if x is initial

psxs′yq , psqxy if y an O-move justified by x

Definition 19 Let A be a prearena. A legal sequence on A is a justified sequence of
moves-with-names that satisfies Visibility and Well-Bracketing (v. [12, 8]). A legal se-
quence s is a play if s.1 has empty name-list and s also satisfies the following Name
Change Conditions:

(NC1) The name-list of a P-move x in s contains as a prefix the name-list of its preceding
O-move. It possibly contains some other names, all of which are fresh for s<x.

18

(NC2′) Any name in the support of a P-move x in s that is fresh for ps<xq is contained in
the name-list of x.

(NC3) The name-list of a non-initial O-move in s is that of the P-move explicitly justify-
ing it.

The set of plays on a prearena A is denoted by PA. N

Thus, here we take plays to be innocent ǫ-plays in terms of [17]. A name a is introduced
(by Player) in a play s, written a ∈ L(s), if there exist consecutive moves yx in s such
that x is a P-move and a ∈ S(nlist(x) − nlist(y)).

From plays we move on to (innocent) strategies.

Definition 20 A strategy σ is a set of equivalence classes [s] of plays satisfying prefix
closure, contingency completeness, determinacy and innocence:

• If [su] ∈ σ then [s] ∈ σ.

• If even-length [s] ∈ σ and sx is a play then [sx] ∈ σ.

• If even-length [s1x1], [s2x2] ∈ σ and [s1] = [s2] then [s1x1] = [s2x2].

• If [s1x1], [s2] ∈ σ, s1 odd-length and [ps1q] = [ps2q] then there exists some [s2x2] ∈ σ
such that [ps1x1q] = [ps2x2q]. N

Some basic strategies are the following.

Definition 21 For any ~b � ~a ∈ A#, any n ∈ N and any arena B, define the following
strategies.

• (~a~b
)1 : A~aA A~b , {[~a~b]}

• eqA : AA⊗AAA N , {[(ä, ä) 0], [(ä, b̈) 1] | ä# b̈}

• n : 1 → N , {[∗n]}

• !B : BA 1 , {[iB ∗]}

• idB : BA B , {[s x x] | [s] ∈ idB ∧ s x ∈ PB→B} N

Plays are composed as usually in game semantics, that is by parallel composition and
hiding, with some extra care taken for fresh names.

Definition 22 (Composable plays) For any s∈PA→B, t∈PB→C , s and t are almost com-
posable, s ` t, if s ↾ B = t ↾ B.
s and t are composable, s ≍ t, if s ` t and, for any s′ ≤ s, t′ ≤ t with s′ ` t′,

(C1) If s′ ends in a P-move in A introducing some name a then a# t′ ; dually, if t′ ends
in a P-move in C introducing some name a then a# s′.

19

(C2) If both s′, t′ end inB and s′ ends in a P-move introducing some name a then a#t′− ;
dually, if t′ ends in a P-move introducing some name a then a# s′−. N

If s ∈ PA→B and t ∈ PB→C with s ` t then either s ↾ B = t = ǫ, or s ends in A and t in B,
or s ends in B and t in C , or both s and t end in B (Zipper Lemma). Hence, composable
plays are composed as below.

Definition 23 (‖ • ;) Let s ∈ PA→B and t ∈ PB→C with s ≍ t . Their parallel interaction
s ‖ t and their mix s • t, which returns the final name-list in s ‖ t, are defined as below.

sm
~b
A ‖ t , (s ‖ t)m

sm
~b
A
• t

A sm
~b
B ‖ tm~c

B , (s ‖ t)m
sm

~b
B
• tm~c

B

B

s ‖ tm~c
C , (s ‖ t)m

s • tm~c
C

C ǫ ‖ ǫ , ǫ ǫ • ǫ , ǫ

sm
~b
A(O) • t , ~b′ sm

~b
B(P) • tm

~c
B(O) , (s • t),~b′′

sm
~b
A(P) • t , (s • t),~b′′ sm

~b
B(O) • tm

~c
B(P) , (s • t),~c′′

s • tm~c
C(P) , (s • t),~c′′ s • tm~c

C(O) , ~c′

where~b′′ is~b− nlist(s.-1) and~b′ is the name-list of mA(O)’s justifier in s ‖ t, and similarly
for ~c′,~c′′.
The composite of s and t is: s ; t , (s ‖ t) ↾ AC .

For strategies σ : A → B and τ : B → C , their composition is: σ ; τ , { [s ; t] | [s] ∈
σ ∧ [t] ∈ τ ∧ s ≍ t }. N

We can prove the following.

Proposition 24 If s ∈ PA→B and t ∈ PB→C with s ≍ t, then s ; t ∈ PA→C .
If σ : A → B and τ : B → C are strategies then so is σ ; τ . Moreover, strategy-composition is
associative and composition with id is identity. �

Hence, strategies compose and form a category.

Definition 25 V is the category having nominal arenas as objects and (innocent nominal)
strategies as arrows. N

An easy construction in V is that of coproducts.

Proposition 26 For any objects A,B in V , the triple (in1, in2, A+B), where

in1 : AA A+B , {[iA iA s] | [iA iA s] ∈ idA}

in2 : BA A+B , {[iB iB s] | [iB iB s] ∈ idB}

is a coproduct. For any A
fPA C

gQP B we have

[f, g] : A+B A C , {[iA iC s] | [iA iC s] ∈ f} ∪ {[iB iC s] | [iB iC s] ∈ g}
�

20

We find useful to represent strategies by their viewfunctions.

Definition 27 A viewfunction f is a set of equivalence classes of plays that are even-
length P-views, which satisfies even-prefix closure and single-valuedness:

• If [s] ∈ f and t is an even-length prefix of s then [t] ∈ f .

• If [s1x1], [s2x2] ∈ f and [s1] = [s2] then [s1x1] = [s2x2]. N

There are maps viewf and strat from strategies to viewfunctions and viceversa such
that

f = viewf(strat(f)) ∧ σ = strat(viewf(σ))

From now on, will be defining strategies via their viewfunctions.

4.2 Semantics in Vt

We define several subclasses of innocent strategies, with regard on initial and level-1
moves. For an arena A we write JA for its set of level-1 moves, and we denote the latter
by jA and variants.

Definition 28 An innocent strategy σ : A A B is total if for any [iA] ∈ σ there exists
[iA iB] ∈ σ.
A total strategy σ : AA B is ttotal if for any [iA iB jB] ∈ σ there exists [iA iB jB jA] ∈ σ,
and whenever [s x j′~a

′

A] ∈ f then x ∈ JB .
Vt is the lluf subcategory of V whose arrows are total strategies, and Vtt the lluf subcat-
egory of Vt of ttotal strategies. N

Henceforth, by strategies we shall mean total strategies, unless stated otherwise. Now,
the constructions of figure 1 have arrow-counterparts. Let f : A → A′, g : B → B′ in Vt

and h : B → B′ in Vtt, then

in f⊥ : A⊥ → A′
⊥ Player initially plays a sequence of asterisks [∗1 ∗′1 ∗′2 ∗2] and then

continues playing like f .

in f⊗g : A⊗B → A′⊗B′ Player answers initial moves [(iA, iB)] with f ’s answer to [iA]
and g’s answer to [iB]. Then, according to whether Opponent plays in JA′ or in
JB′ , Player plays like f or like g respectively.

in f
b
⇒ h : A′ b⇒ B → A

b
⇒B′ Player answers initial moves [iB] like h and then responds

to [iB iB′ (iA, jB′)] with f ’s answer to [iA] and h’s response to [iB iB′ jB′] (hence the
need for ttotality of h). It then plays like f or like h, according to Opponent’s next
move.

We can also define infinite tensor products of pointed arenas, where an arena A is
pointed if IA is singleton (in which case the unique initial move is necessarily equivari-
ant). For pointed arenas {Ai}i∈ω construct their product

⊗
iAi by ‘gluing them together’

21

at their initial moves. Since these are equivariant, the resulting initial move is also equiv-
ariant, and we denote it by “∗”. For any pointedAi’s andBi’s and any {fi : Ai → Bi}i∈ω
define: ⊗

i
fi , strat{[∗ ∗ s] | ∃k. [iAk

iBk
s] ∈ viewf(fk)}

Take Vt∗ to be the full subcategory of Vt of pointed arenas.
Our constructions enjoy the following properties.

Proposition 29 All of the following are functors.

⊗ : Vt × Vt → Vt ,
b
⇒ : (Vt)

op × Vtt → Vtt

()⊥ : Vt → Vtt ,
⊗

:
∏
i∈ωVt∗ → Vt∗

Moreover, Vt is a symmetric monoidal category under ⊗ , and is partially closed in the following
sense. For any object B, the functor ⊗B : VtA Vt has a partial right adjoint B

b
⇒ : Vt∗A

Vt, that is for any object A and any pointed object C there exists a bijection

ΛBA,C : Vt(A⊗B,C)
∼=PA Vt(A,B

b
⇒ C)

natural in A,C . Moreover, 1 is a terminal object and ⊗ is a product constructor in Vt, so Vt has
finite products. Finally, Vt inherits coproducts from V and is distributive. �

Now, the full form of the store equation (SE) is the following.

J1K = 1 JNK = N J[A]K = AA JA⊗BK = JAK⊗JBK

JA→ BK = JAK
b
⇒ (ξ⇒ (JBK + AE) ⊗ ξ) ξ =

⊗
A(AA ⇒ JAK)

We solve it by upgrading it to a recursive functor equation and then recurring to minimal-
invariants theory for games (v. [12]). The method is more or less standard and is applied
in some length in [17]. Restricting our attention to objects, the solution we get is the
least fixpoint of the function on arenas induced by (SE), if we order arenas by the subset
ordering.

Definition 30 (ξ, ⊛ and JAK) ξ and JAK, for each type A, are defined via the least fix-
point solution of (SE).
ξ is pointed; we denote its unique initial move by ⊛ . N

We proceed in constructing a λνερ-model Vt = 〈Vt, T,Q〉 . First we define the family of
local-state comonads Q~a.

Definition 31 (Local-state comonads) For each ~a ∈ A# take (Q~a, ε, δ) to be the product
comonad with basis A~a, that is

• Q~a : Vt → Vt , A~a⊗
• ε : Q~aA IdVt

, {εA : A~a⊗A π2PPA A}

22

• δ : Q~aA (Q~a)2 , {δA : A~a⊗A ∆⊗idPPPPPA A~a⊗A~a⊗A}
For each ~a � ~a define the natural transformation ~a

~a′ : Q~aA Q
~~a′ by taking,

• (~a~a′)A : A~a⊗AA A~a′⊗A , (~a~a′)1⊗idA

• (~a~a′)1 : A~aA A~a′ , {[~a~a′]} N

Proposition 32 For each ~a ∈ A#, the triple (Q~a, ε, δ) forms a comonad over Vt. Moreover,
items (Va,b,c,d) of definition 7 are satisfied. �

We proceed to constructing the monad T , by composing a store monad T̈ with an excep-
tion monad Ṫ . For the composition to be a strong monad, a distributivity law (v. [3]) is
needed.

Definition 33 Let (T̈ , η̈, µ̈, τ̈) and (Ṫ , η̇, µ̇, τ̇) be monads over a category C. A distribu-
tive law of Ṫ over T̈ is a natural transformation ℓ : Ṫ T̈ A T̈ Ṫ such that, for any A,B,

• Ṫ η̈A ; ℓA = η̈ṪA and η̇T̈A ; ℓA = T̈ η̇A,

• Ṫ µ̈A ; ℓA = ℓT̈A ; T̈ ℓA ; µ̈ṪA and µ̇T̈A ; ℓA = Ṫ ℓA ; ℓṪA ; T̈ µ̇A

• τ̇A,T̈B ; Ṫ τ̈A,B ; ℓA⊗B = id⊗ℓB ; τ̈A,ṪB ; T̈ τA,B

If such a distributive law exists then we can define the compound monad (T, η, µ, τ) as,

• T , T̈ Ṫ

• ηA : A
η̈APPA T̈A

T̈ η̇APPPA TA

• µA : T 2A
T̈ ℓ

ṪAPPPPA T̈ 2Ṫ 2A
µ̈

Ṫ2APPPPA T̈ Ṫ 2A
T̈ µ̇APPPA TA

• τA,B : A⊗TB
τ̈
A,ṪBPPPPA T̈ (A⊗ ṪB)

T̈ τ̇A,BPPPPPA T (A⊗B) N

In [3] it is shown that if there exists a distributive law of Ṫ over T̈ satisfying the first two
equations then T̈ Ṫ is a monad. It is straightforward to see that the equation diagram
makes T̈ Ṫ a strong monad. We can also show the following.

Lemma 34 Let T be a compound monad as above. T is precompound with θ defined by

θA : TAA T 2A , T̈ η̇ṪA ;T η̈ṪA
�

The inner component Ṫ of our computational monad T is an exception monad, defined
by use of coproducts.

Definition 35 Define the quadruple (Ṫ , η̇, µ̇, τ̇) as follows.

• Ṫ : Vt → Vt , + AE
23

• η̇A : AA ṪA , in1

• µ̇A : Ṫ 2AA ṪA , [id, in2]

• τ̇A,B : A⊗ ṪBA Ṫ (A⊗B) , dstA,B,E ;(id + π2) N

The outer component T̈ is a store monad, defined by use of currying and of the lifting
monad. The lifting monad is a strong monad (()⊥, up, dn, st) given by a standard
construction. It yields a λc-model by taking, for each A,B,C ,

(C⊥)B , B
b
⇒ C⊥ and Λ⊥(A⊗B,C⊥) , Λ(A⊗B,C⊥)

Definition 36 Define the quadruple (T̈ , η̈, µ̈, τ̈) as follows.

• T̈ : Vt → Vt , ξ⇒ (⊗ξ) = ξ
b
⇒ (⊗ξ)⊥

• η̇A : AA ṪA , Λ(η̃A)

• η̃A : A⊗ξ
upPPA (A⊗ξ)⊥

• µ̇A : Ṫ 2AA ṪA , Λ(µ̃A)

• µ̃A : T̈ 2A⊗ξ evPA (T̈A⊗ξ)⊥
ev⊥PPPA (A⊗ξ)⊥⊥

dnPPA (A⊗ξ)⊥

• τ̇A,B : A⊗ ṪBA Ṫ (A⊗B) , Λ(τ̃A,B)

• τ̃A,B : (A⊗ T̈B)⊗ξ
∼=; id⊗evPPPPPPPA A⊗(B⊗ξ)⊥

st;∼=PPPPA ((A⊗B)⊗ξ)⊥. N

For example, η̈ and µ̈ are given concretely as below.4

Aη̈A : // T̈A
iA

∗
⊛

(iA,⊛)

T̈ 2Aµ̈A : // T̈A
∗

∗
⊛

⊛

(∗,⊛)

⊛

(iA,⊛)

(iA,⊛)

It is not difficult to show the following.

4In the diagrams we use curved lines for justification pointers; polygonic lines denote that the strategy
copycats between the connected moves.

24

Proposition 37 Both (Ṫ , η̇, µ̇, τ̇) and (T̈ , η̈, µ̈, τ̈) are strong monads over Vt. Moreover, Ṫ
distributes over T̈ , with distributivity transformation ℓA : Ṫ T̈AA T̈ ṪA , Λ(ℓ̃A), where,

ℓ̃A : ((ξ⇒ A⊗ξ) + AE)⊗ξA ((A+ AE)⊗ξ)⊥

, dst ; ev+id ;[in1⊥, in2; up] ;(dst−1)⊥

and dst the distributivity transformation of ⊗ over +.
Hence, by composing Ṫ with T̈ we obtain a strong monad (T, η, µ, τ), as in definition 33. T
yields a λc-model over Vt by taking,

(TC)B , B
b
⇒ TC and ΛT (A⊗B,TC) , Λ(A⊗B,TC)

since TC is always pointed. �

We proceed in defining the new transformation.

Definition 38 For each ~aa ∈ A# define the transformation new~aa : Q~a A TQ~aa as fol-
lows,

• new~aaA : Q~aAA TQ~aaA , A~a⊗A new~aa
1 ⊗id; τ ′PPPPPPPPPA T (A~aa⊗A)

• new~aa1 : Q~a1A TQ~aa1 , strat{[(~a, ∗) ∗ ⊛ (~aa,⊛)a s] | [⊛ ⊛ s] ∈ viewf(idξ)}. N

Following the convention described right after definition 7 we can define an arrow \a℄f :
Q~aAA TB for each f : Q~aaAA TB. Concretely, the construction is given by taking\a℄f , strat{[(~a, iA) ∗ ⊛ma~bs] | [(~aa, iA) ∗ ⊛m

~bs] ∈ viewf(f) ∧ a# iA}

More than that, the above construction generalises to f : Q~aaAA B′ for any pointed B′,
in a straightforward manner. We can then show the following.

Proposition 39 If C pointed and f : Q~aa(A⊗B) A C then Λ(z̄ ′ ; \a℄f) = \a℄Λ(z̄ ′ ; f).
Moreover, the (N2) diagrams of definition 7 commute. �

We proceed to update and dereferencing maps.

Definition 40 For any type A we define ¨updA : AA⊗JAK A T̈1 and ¨drfA : AA A T̈ JAK
as follows. AA⊗JAK // T̈1

(a, iA)

∗
⊛

(∗,⊛)

b

b

a

iA

AA // T̈ JAK

a

∗

⊛
a

iA

(iA,⊛)

25

From these obtain:

• updA : AA⊗JAK
¨updAPPPPA T̈1

T̈ η̇PPA T1

• drfA : AA ¨drfAPPPPA T̈ JAK
T̈ η̇PPA T JAK N

The following proposition is shown by first proving the ¨ -versions of the (NR) and
(SNR) diagrams and then deriving the original ones.

Proposition 41 The (NR,SNR) diagrams of definition 7 commute for upd, drf defined as above.
�

Finally, we proceed to the exception-related morphisms of the λνερ-specifications.

Definition 42 For each object A and each name ȧ ∈ AE , define the morphisms:

• inxA : Qȧ1
in2PPA ṪA

η̈PA TA

• hdlA : TA⊗Qȧ1⊗TA τ̈ ′PA T̈ (ṪA⊗Qȧ1⊗TA)
T̈ ˙hdlA; µ̈PPPPPPA TA

• ˙hdlA : ṪA⊗Qȧ1⊗TA // TA

(ȧ, ȧ, ∗)

∗

(ḃ, ȧ, ∗)

∗
⊛

(ḃ,⊛) (ȧ# ḃ)

(iA, ȧ, ∗)

∗
⊛

(iA,⊛)
N

Proposition 43 The above defined arrows make the (NE) diagrams commute. �

The above constructions are sufficient for a λνερ-model. For adequacy we need the fol-
lowing property of values and exceptions.

Lemma 44 (Values and Exceptions) Let ~a ^∅_M :A be a typed term. For any store S, if
S `M is non-reducing then

I. if M is a non-value then for no~b, iA do we have [(~a, ∗) ∗ ⊛ (iA,⊛)
~b] ∈ JS̄ ;MK,

26

II. if M is a non-exception then for no~b, ȧ do we have [(~a, ∗) ∗ ⊛ (ȧ,⊛)
~b] ∈ JS̄ ;MK. �

Proposition 45 (Vt a model) 〈Vt, T,Q〉 is an adequate λνερ-model.

Proof: We show each point of definition 7.

I. Shown in proposition 29.

II. Shown in proposition 37.

III. Standard.

IV. Straightforward, using constructions from definition 21.

V. Shown in propositions 32,39.

VI. Shown in proposition 41.

VII. Shown in proposition 43.

Finally, adequacy follows fromO-adequacy (lemma 56) which is proven using lemma 44.
�

Hence, Vt is a sound model for νερ. The next question to consider is whether it is fully
abstract, that is whether it satisfies some definability requirement. The answer to this
question is negative: in our game semantics we have included store- and exception-
related behaviors that are disallowed in the operational semantics.

Firstly, our strategies treat the store ξ like any other arena, while in the reduction
calculus the treatment of store follows some basic guidelines. For example, if a store
S is updated to S′ then the original store S is not accessible any more. In strategies
we do not have such a condition: in a play there may be several ξ’s opened, yet
there is no discipline on which of these are accessible to Player whenever he makes
a move. Another condition involves the fact that a store either ‘knows’ the value of a
name or it doesn’t know it. Hence, when a name is asked, the store either returns its
value or it deadlocks; there is no third option. In a play, however, when Opponent
asks the value of some name, Player is free to evade answering and play somewhere
else.

Moreover, our strategies may well handle fresh (or unknown) exceptions, whereas this
is not possible in the operational semantics: there, a fresh exception always escapes
out of its context.

In order to obtain a fully abstract semantics we will have to constrain strategies.

27

4.3 A fully abstract semantics in x-tidy strategies

We constrain total strategies be imposing two forms of discipline: one concerning the
good use of store (tidiness), and one concerning the non-handling of fresh exceptions.
For this discipline to be applicable we also need to constrain the available arenas to
those that may appear in the domain or codomain of a term’s translation. For these
arenas we can specify which moves are related to the store and which are exceptions.

Definition 46 Consider Vνερ , the full subcategory of Vt with objects defined as follows.

Ob(Vνερ) ∋ A,B ::= 1 | N | A~a | A⊗B | A
b
⇒ TB

For each such arena A we define its set of store-Handles, HA, and its set of Exception-
moves, XA, as follows.

H1 = HN = HA~a , ∅ HA⊗B , HA ∪HB

HA
b
⇒TB , {(iA,⊛A), (iB ,⊛B), (ȧ,⊛B)} ∪HA ∪HB ∪HξA ∪HξB

Hξ ,
⋃
C HJCK if ξ =

⊗
C(AC ⇒ JCK)

X1 = XN = XA~a , ∅ XA⊗B , XA ∪XB

XA
b
⇒TB , {(ȧ,⊛B)} ∪XA ∪XB ∪XξA ∪XξB

Xξ ,
⋃
C XJCK if ξ =

⊗
C(AC ⇒ JCK)

where we writeA
b
⇒TB asA

b
⇒(ξA⇒(B+AE)⊗ξB). In an arenaA, a store-handle justifies

(all) questions of the form ä, which we call store-Questions. Answers to store-questions
are called store-Answers. N

Note in particular that JAK, Q~aJAK, T JAK ∈ Ob(Vνερ), for each type A, where we assume
T JAK = 1

b
⇒ T JAK. There is a circularity in HA

b
⇒TB and XA

b
⇒TB in the above definition;

what is hidden is a definition by induction on the level of moves.
Below we give an example of how the above classes of moves are related.

T1 = ξ⇒ (1 + AE)⊗ξ

∗ Exceptions

store-H’s ⊛

store-Q’s ä (∗,⊛) (ȧ,⊛)

store-A’s iA b̈ c̈

iB iC

28

From now on we work in Vνερ , unless stated otherwise. A first property we can show is
that a move is exclusively either initial or a strore-H -Q -A.

Proposition 47 For any type A ∈ Ob(Vνερ),

MA = IA ⊎HA ⊎ {m ∈MA |m a store-Q} ⊎ {m ∈MA |m a store-A}

Proof: By induction on the level of m, l(m), inside A, and on the inductive level of A
(resulting from the inductive definition of Ob(Vνερ)), |A|. �

The notions of store-handles and exception-moves can be straightforwardly extended
to prearenas. Around these notions we define x-tidy strategies. Note that we endorse
the following notational convention. Since stores ξ may occur in several places inside
a (pre)arena we may use parenthesized indices to distinguish identical moves from dif-
ferent stores. For example, the same store-question q may be occasionally denoted q(O)

or q(P) , the particular notation denoting the OP-polarity of the moves. Moreover, by
O-store-H’s we mean store-H’s played by Opponent, etc., and by X-moves we mean
exception-moves.

Definition 48 A total strategy σ is x-tidy if whenever odd-length [s] ∈ σ then:

(TD1) If s ends in a store-Q q then [sx] ∈ σ , with x being either a store-A to q introduc-
ing no new names, or a copy of q. In particular, if q = ä~a with ä#psq− then the latter
case holds.

(TD2) If [sq(P)] ∈ σ with q a store-Q then q(P) is justified by last O-store-H in psq.

(TD3) If psq = s′q(O)q(P)t y(O) with q a store-Q then [s y(P)] ∈ σ with y(P) justified by
psq .-3 .

(xTD1) If s ends in an X-move (ȧ,⊛)~a with ȧ# psq− then [s(ȧ,⊛)~a
′

] ∈ σ.

(xTD3) If psq = s′(ȧ,⊛)~a(O)(ȧ,⊛)~a(P)q(O) with q a store-Q, (ȧ,⊛)(O) an X-move and ȧ # s′

then [s q(P)] ∈ σ. N

The (TD) conditions define tidy strategies of [17] and impose a certain store-discipline:
when a store-Q is encountered Player either answers with a value or copycats the store-Q to
the previous store-H and continues to copycat thereon; the latter happens especially when the
store-Q is a fresh one. The (xTD) conditions provide a fresh-exception-discipline: when
a fresh exception is encountered Player must copycat it. (xTD3) in particular states that no
store-updates occur when forwarding a fresh exception.

In the definition of x-tidiness, (ȧ,⊛)~a
′

(P) is an answer and hence needs to be justified
by the pending question; the following lemma shows that this is always possible.

Lemma 49 If odd-length [s] ∈ σ ends in an X-move (ȧ,⊛)~a then s has a pending-Q which is
an O-store-H, and s(ȧ,⊛)~a is a play.

29

Proof: s being odd-length implies that it has a pending question, say q. If q were a P-
move then s = s1qs2 with s1, s2 being odd-length, so an A in s2 should be justified by q,
	. Hence, q an O-move. Moreover, q cannot be initial, by totality, and neither a store-Q:
q being unanswered would mean that P copycats after it, so the move following q would
be a copy of it answered by an O-store-A y, say. After y is played, P must answer q with
a copy of y, thus y can only be the last move in s, i.e. (ȧ,⊛)~a

′

, 	as y a store-A. Hence, q an
O-store-H. Thus, s(ȧ,⊛)~a

′

satisfies well-bracketing, and it clearly satisfies NC’s. Finally,
it also satisfies visibility since s and psq have the same pending-Q. �

By close inspection on how (TD) and (xTD) conditions interact with play-composition,
we can show the following.

Proposition 50 If σ : AA B and τ : BA C are x-tidy strategies then so is σ ; τ . �

Moreover, it is straightforward to see that identity strategies are x-tidy. Hence, we can
define our category of x-tidy strategies.

Definition 51 (T) xT is the lluf subcategory of Vνερ of x-tidy strategies. Moreover, xTtt
is the lluf subcategory of xT containing ttotal strategies. N

In fact, strategies in general that mainly do copycats are easily shown to be x-tidy. With
this observation it is not difficult to show the following.

Proposition 52 (Vt to xT) xT forms an adequate λνερ-model by inheriting the necessary struc-
ture from Vt, i.e. for all ~a,

1. If f : A → B, g : A → C are x-tidy then 〈f, g〉 is. Moreover, projections and terminal
arrows are all x-tidy.

2. ηA, µA, τA,B, θA are all x-tidy, and if h is x-tidy then Th is. Moreover, f : A⊗B → TC
is x-tidy iff ΛT (f) is.

3. Successor, predecessor and natural number arrows are x-tidy.

4. Name-equality arrows for references are x-tidy.

5. εA, δA are x-tidy, and if h is x-tidy then so is Q~ah. Moreover, (~a~a′)A and new~aaA are x-tidy.

6. updA, drfA are x-tidy.

7. inxA, hdlA are x-tidy. �

Henceforth, by strategies we shall mean x-tidy strategies, unless stated otherwise. We
proceed to show p-observationality for xT . We define the following observability pred-
icate and the related semantic preorder.

Definition 53 (O, .) Expand xT to 〈xT , T,Q,O,.〉 by setting, for each ~a,

30

• O~a , {f ∈ xT (Q~a1, TN) | ∃~b. [(~a, ∗) ∗ ⊛ (0,⊛)
~b] ∈ f}

• for each f, g ∈ xT (Q~aA,TB), f .~a g if

∀ρ∈ xT (Q~a(A
b
⇒ TB), TN). (ΛQ

~a

(f) ; ρ ∈ O~a =⇒ ΛQ
~a

(g) ; ρ ∈ O~a)

with notation as in definition 12. N

We find it useful to restrict the class of test-arrows ρ that participate in the definition of
the intrinsic preorder. A total arrow f : AA B is tl4 if for any [iA iB jB] ∈ f there exists
[iA iB jB j

~a
A] ∈ f , and whenever [s x j′~a

′

A] ∈ f then x ∈ JB .

Lemma 54 (tl4 tests suffice) For each ~a and f, g ∈ xT (Q~aA,TB), f .~a g iff

∀ρ∈ xT (Q~a(A
b
⇒ TB), TN). ρ is tl4 =⇒ (ΛQ

~a

(f) ; ρ ∈ O~a =⇒ ΛQ
~a

(g) ; ρ ∈ O~a)
�

It is not difficult now to show the following.

Lemma 55 For any morphism f : Q~aa1 A B, with B pointed, and any tl4 morphism ρ :
Q~aBA TN,

δ ;Q~a\a℄f ; ρ ∈ O~a ⇐⇒ δ ;Q~aaf ;
~aa

~a
; ρ ∈ O~aa

Moreover, for each ~aa and relevant f, g,

f .~aa g =⇒ \a℄f .~a \a℄g
f .~a g =⇒

~aa

~a
; f .~aa ~aa

~a
; g

�

We proceed in proving O-adequacy, which will be crucial for showing adequacy and
p-observationality.

Lemma 56 (O-Adequacy) Let ~a ^∅_M :N be a typed term. If JMK ∈ O~a then there exists
some S such that ~a`M −→→ S ` 0.

Proof: By lemma 44 it suffices to show that, for any such M , there is a non-reducing
sequentS ` N such that~a`M −→→ S ` N , as thenN would be a closed value of typeN such that JS̄ ;NK ∈ O~a –and therefore N = 0 . But then it suffices to show that there
is no infinite reduction sequence starting from ~a ` M and containing infinitely many
DRF reduction steps: leaving DRF’s aside we are left with a ν-calculus with some non-
recursive effects, and the ν-calculus is strongly normalising for closed terms (v. [16]). To
show this we will use an operation on terms adding new-name constructors just before
dereferencings. The operation yields, for each term M , a term (M)[the semantics of
which is equivalent to that ofM . On the other hand, ~a` (M)[cannot perform infinitely
many DRF reduction steps without creating infinitely many new names.

31

So, for each term M define (M)[as follows.

(!N)[, (νa.a); !(N)[, (x)[, x , (λx.M)[, λx.(M)[, etc.
We show that J(M)[K ⋍ JMK, by induction onM ; the base cases are trivial. The induction
step follows immediately from the IH and the fact that ⋍ is a congruence, in all cases
except for M being !N . In the latter case we have that J(M)[K = new ;T ~aa~a ;T J!(N)[K ;µ ,
while the IH implies that JMK ⋍ J!(N)[K. By properties of . we have that, for any
f : Q~aA→ TB, f ⋍ \a℄(~aa~a ; f) (= new ;T ~aa~a ;Tf ;µ) , and hence J(M)[K ⋍ JMK.

Now take any ~a ^∅_M : N and assume JMK ∈ O~a, and that ~a ` M diverges
using infinitely many DRF reduction steps. Then, ~a ` (M)[diverges using infinitely
many NEW reduction steps. However, since J(M)[K ⋍ JMK, we have J(M)[K ∈ O~a and

therefore [(~a, ∗) ∗ ⊛ (0,⊛)
~b] ∈ J(M)[K for some ~b. However, ~a ` (M)[reduces to some

S `M ′ using |~b|+1 NEW reduction steps, so, by correctness, J(M)[K = \~c℄JS̄ ;M ′K with

|~c| = |~b| + 1, 	. �

We can now show p-observationality.

Proposition 57 (p-Observationality) xT is p-observational.

Proof: We only need to show that, for any ~a ^∅_M : N, JMK ∈ O~a iff ∃S,~b. JMK =\~b℄JS̄ ; 0K. The “if”-part is straightforward. Conversely, let JMK ∈ O~a. By O-adequacy

~a`M converges to some S ` 0. Hence, JMK = \~b℄JS̄ ; 0K. �

We are left to show p-definability. For this we need to isolate a class of definable ar-
rows which suffice for defining the intrinsic preorder. We say a strategy σ is finitary
if trunc(σ) is finite, where trunc(σ) is the subset of viewf(σ) which excludes all the
store-copycats, all default initial answers –the latter dictated by totality– and all fresh-
exception copycats.

Theorem 58 (Definability) Let A,B be types and σ : Q~aJAK A T JBK be finitary. Then σ is
definable.

Proof outline: The proof proceeds by first showing a Decomposition Lemma, which
states that we can decompose a strategy σ : Q~aJAKA T JBK as follows.

1. If σ is non-empty then we can decompose it to a (possibly infinite) set of strategies,
taking one strategy for each distinct initial move [(~a, iA)] for which σ has a response
[(~a, iA) ∗ ⊛x].

2. If σ has a response [(~a, iA) ∗ ⊛x] to exactly one initial move [(~a, iA)] then we can
express it as an abstraction of a 4th-move-non-introducing strategy σ′.

3. If σ has a response [(~a, iA) ∗ ⊛x] to exactly one initial move [(~a, iA)] and that re-
sponse is non-introducing then,

32

(a) if x is a store-Q ä then σ can be expressed as a composition of J!äK with a
strategy σ′,

(b) otherwise, for each ä such that σ answers [(~a, iA) ∗ ⊛x ä], σ can be expressed
as a composition of a store-update of ä and of a strategy σ′ = σ−(update of ä).

The proof of definability is then done by induction on d(σ) , (|trunc(σ)|, ‖σ‖), where
‖σ‖ measures how many names are introduced in maximum plays of σ. In the above
decomposition d decreases (note that σ being finitary implies that the above decomposi-
tion is finite), hence the problem of definability of σ is reduced to that of definability of a
finitary strategy σ0 of equal length, but with σ0 having no initial effects (i.e. fresh-name
creation, name-update or name-dereferencing). On σ0 we then apply almost verbatim
the methodology of [7]. �

Hence, setting
D~a
A,B , {f : Q~aJAKA T JBK | f is finitary}

and following a more or less standard method we can obtain p-definability, and thus full
abstraction.

Theorem 59 xT is a fully abstract model of νερ. �

References

[1] ABRAMSKY, S., GHICA, D., MURAWSKI, A., ONG, L., AND STARK, I. Nominal
games and full abstraction for the nu-calculus. In Proceedings of LICS ’04 (2004).

[2] ABRAMSKY, S., JAGADEESAN, R., AND MALACARIA, P. Full abstraction for PCF.
Information and Computation 163, 2 (2000).

[3] BECK, J. Distributive laws. In Seminar on Triples and Categorical Homology Theory,
Zürich, 1966/67, vol. 80 of LNM. 1969, pp. 119–140.

[4] BROOKES, S., AND GEVA, S. Computational comonads and intensional semantics.
In Applications of Categories in Computer Science: Proc. LMS Symp., July 1991. 1992,
pp. 1–44.

[5] BROOKES, S., AND VAN STONE, K. Monads and comonads in intensional seman-
tics. Tech. Rep. CMU-CS-93-140, Pittsburgh, PA, USA, 1993.

[6] GABBAY, M. J., AND PITTS, A. M. A new approach to abstract syntax with variable
binding. Formal Aspects of Computing 13 (2002), 341–363.

[7] HONDA, K., AND YOSHIDA, N. Game-theoretic analysis of call-by-value compu-
tation. Theoretical Computer Science 221, 1–2 (1999), 393–456.

[8] HYLAND, J. M. E., AND ONG, C.-H. L. On full abstraction for PCF: I, II, III. Infor-
mation and Computation 163, 2 (2000), 285–408.

33

[9] KRIVINE, J.-L. Lambda-calcul, types et modèles. Masson, 1990.

[10] LAIRD, J. A fully abstract games semantics of local exceptions. In Proceedings of
LICS ’01.

[11] LAIRD, J. A game semantics of names and pointers. To appear in Annals of Pure
and Applied Logic.

[12] MCCUSKER, G. Games and Full Abstraction for a Functional Metalanguage with Recur-
sive Types. Distinguished Dissertations. Springer-Verlag, London, 1998.

[13] MOGGI, E. Computational lambda-calculus and monads. In Proc. of LICS ’89 (1989),
pp. 14–23.

[14] ONG, L. Observational equivalence of third-order Idealized Algol is decidable. In
Proceedings of LICS ’02 (2002), pp. 245–256.

[15] PITTS, A. M. Nominal logic, a first order theory of names and binding. Information
and Computation 186 (2003), 165–193.

[16] PITTS, A. M., AND STARK, I. D. B. Observable properties of higher order functions
that dynamically create local names, or: What’s new? In Proceedings of MFCS ’93
(1993), pp. 122–141.

[17] TZEVELEKOS, N. Full abstraction for nominal general references. In Proceedings of
LICS ’07 (2007), pp. 399–410.

34

