
The Task Matrix Framework for
Platform-Independent Humanoid Programming

Evan Drumwright
USC Robotics Research Labs

University of Southern California
Los Angeles, CA 90089-0781
drumwrig@robotics.usc.edu

Victor Ng-Thow-Hing
Honda Research Institute USA

Mountain View, CA 94041
vng@honda-ri.com

Maja Matarić
USC Robotics Research Labs

University of Southern California
Los Angeles, CA 90089-0781

mataric@robotics.usc.edu

Abstract— Programming humanoid robots is such a difficult
endeavor that the focus of the effort has recently been on semi-
automated methods such as programming-by-demonstration and
reinforcement learning. However, these methods are currently
constrained by algorithmic or technological limitations. This
paper discusses the Task Matrix, a framework for programming
humanoid robots in a platform independent manner, that makes
manual programming viable by the provision of software reuse.
We examine the Task Matrix and show how it can be used
to perform both simple and complex tasks on two simulated
humanoid robots.

I. INTRODUCTION

Programming humanoid robots is a difficult and tedious
process, requiring the simultaneous consideration of kinematic
redundancy, dynamics, balancing, and locomotion, to name
only a few challenges. Additionally, humanoid programming
has traditionally been unable to utilize one of the core tenets of
software development, that of code reuse. Programming code
for one humanoid often fails to transfer to another, even if the
kinematic and dynamic differences are minor. This situation
stands in contrast to that for programming mobile robots, for
which frameworks like Player [1] allow relatively portable
programming.

We address the above problem using the Task Matrix,
a framework for robot-independent humanoid programming.
The Task Matrix consists of multiple, interacting components
that enforce robot-independent programming. The Task Matrix
framework not only allows programs for performing tasks
on humanoids to be refined over time, but also provides
for a means to improve the performance on these tasks via
transparent upgrades; for example, if a faster algorithm for
motion-planning were to become available, humanoids that
utilize the Task Matrix would be able to reach to objects more
quickly.

This paper demonstrates the effectiveness of our approach
by introducing the development of a library of primitive
programs for performing tasks on humanoid robots. Because
this library was constructed within the Task Matrix framework,
it is robot-independent; thus, the programs in this library can
be refined over time to improve performance and increase
robustness. We also show how complex tasks can be performed
using this library of primitive task programs. Demonstrations

of two simulated humanoid robots performing multiple tasks
are presented.

II. RELATED WORK

The difficulty of programming manipulator and humanoid
robots has served to initiate and motivate research into meth-
ods for semi-automated programming, including task-level
programming [2], [3], [4], programming-by-demonstration
[5], [6], [7], and reinforcement learning [8]. Though all of
these methods are potentially promising, each is restrained
by technological or algorithmic limitations. Task-level pro-
gramming approaches are minimally PSPACE-complete; when
uncertainty is involved, for example, planning can become
EXP-hard [9]. Programming-by-demonstration currently suf-
fers from several technological limitations, including the in-
ability to reliably discern human activities. And reinforcement
learning requires sufficiently complex state abstractions and
primitive actions to avoid the “curse of dimensionality” [10].
The above difficulties make manual programming a viable
avenue for performing tasks with humanoids.

Badler et al. [11] developed a set of parametric primitive be-
haviors for “virtual” (kinematically simulated) humans; these
behaviors include balancing, reaching, gesturing, grasping,
and locomotion. Badler et al. introduced Parallel Transi-
tion Networks (PaT-Nets) for triggering behavioral functions,
symbolic rules, and other behaviors. However, Badler et al.
focus on motion for virtual humans, for which the kinematics
are relatively constant, in deterministic, known environments.
Our work is concerned with behaviors for humanoid robots
with differing kinematic properties (e.g., varying numbers of
degrees-of-freedom in the arms, varying robot heights, etc.)
that operate in dynamically changing, uncertain environments.

Gerkey, Vaughan, and Howard [1] developed Player, an
ubiquitous framework that provides common interfaces for
groups of similar devices. Player categorizes like devices into
predetermined classes (e.g., laser range-finders, planar robots,
etc.), each of which is associated with an abstract interface.
Using Player, developers are able to program robots using the
abstract interfaces, which may make the resulting programs
portable across robot platforms. Player provides a large set
of possible interfaces that robots may employ; in contrast,
the Task Matrix assumes the existence of a common set of



interfaces, which defines a set of capabilities that all robots
must implement. The result of this distinction is that a program
written for the Task Matrix will be robot independent, while a
program written for Player may not be. For example, a Player
program that utilizes a laser range-finder will fail on a robot
that lacks this sensor; programs in the Task Matrix may make
no such assumptions.

III. THE TASK MATRIX FRAMEWORK

The Task Matrix is a framework for performing tasks
with humanoids in a robot-independent manner. It consists of
four components: the common skillset, a perceptual model,
conditions, and task programs. The core of the Task Matrix
is the set of task programs; the remaining components exist
to facilitate the operation of these programs. The common
skillset serves as a constant, abstract interface between the task
programs and robots; similarly, the perceptual model presents
an interface to a representation of the environmental state.
Conditions are used to test robot and environmental states (via
the common skillset and perceptual model) to permit, halt, or
influence execution of a task program in a reusable manner.
Figure 1 depicts the interaction of components in the Task
Matrix.

The Task Matrix also provides a state-machine mechanism
to perform task programs sequentially, concurrently, or both.
The state-machine transitions using messages transmitted from
task programs at key events in their execution, including
beginning or cessation of planning, successful completion of
a program, and failure of a task program to achieve its goal.
This relatively simple mechanism allows complex tasks to be
performed, as Section IV demonstrates. A diagram of a state
machine for vacuuming a region of the environment is depicted
in Figure 4.

A. Common skill set

The common skill set is a specification that must be imple-
mented on each humanoid that is to run programs developed
for the Task Matrix; it acts as an application programming
interface (API). It consists of primitive skills such as direct
and inverse kinematics, collision-free motion planning, and lo-
comotion (see Figure 2). As Figure 1 indicates, task programs
send commands to the common skill set, which, in turn sends
commands to the robot; the task programs do not control the
robot directly.

B. Perceptual model

The Task Matrix knows nothing about sensors. Unlike the
common skill set, common elements between the different
sensing modalities are not identified; neither are like sensing
modalities categorized (e.g., depth sensor, color blob tracking
sensor, etc.). Rather, a database is maintained for representing
the state of the environment. This database is known as the
perceptual model. An external, user-defined process updates
the perceptual model at regular intervals (see Figure 1) by
accessing the sensors. Meanwhile, task programs can query
the model.

C. Conditions

Conditions are Boolean functions that allow for checking
the state of the world using symbolic identifiers. They are
frequently employed as preconditions, conditions that must
be true for a task program to begin execution. Conversely,
conditions can be utilized to determine the set of states corre-
sponding to a Boolean expression of symbols. For example, the
putdown macro task (see Section IV) utilizes the intersection
of two conditions, above and near, to determine a valid
location to place an object. The set of conditions currently
implemented in the Task Matrix is listed below.

1) near(A,B): returns true if objects A and B are suffi-
ciently close

2) above(A,B): returns true if the projections of the
bounding boxes onto the ground for objects A and B
intersect

3) postural(X): evaluates to true if a kinematic chain of
the robot is in posture X

4) grasping(A): returns true if the robot is currently grasp-
ing object A

5) graspable(A): evaluates to true if the robot is able to
grasp object A (one or more of the robot’s hands is in
the proper position and the fingers are extended)

D. Task programs

The core component of the Task Matrix is the set of task
programs. A task program is a function of time and state that
runs for some duration (possibly unlimited), performing robot
skills. Task programs may run interactively (e.g., reactively)
or may require considerable computation for planning. Addi-
tionally, users (or other task programs) can send parameters to
a task program that influences its execution. Finally, task pro-
grams run on some subset of a humanoid’s kinematic chains,
allowing programs that utilize mutually exclusive kinematic
chains to execute simultaneously.

IV. RESULTS

We implemented eight primitive task programs and four
complex task programs built from these primitives. The prim-
itive task programs were inspired from the atomic elements
of the MTM-1 system for work measurement [12]. The
MTM-1 system is proven at decomposing occupational tasks
(e.g., brick laying, assembly, construction, etc.) into its set
of atomic elements. The motivation of using MTM-1 as
inspiration is completeness: if the MTM-1 primitive elements
are implemented as task programs, there is a high likelihood
that an arbitrary occupational task can be performed using a
combination of these primitive task programs.

Each of the twelve implemented task programs was ex-
ecuted on two kinematically simulated robots with quite
different kinematic properties (depicted in Figure 6). Two
environments were utilized to vary the number and place-
ment of obstacles. Each robot employed a simulated sensor
that combines a 3D depth sensor and vision-based object
recognition, located in the head. No task program con-
tained any robot-specific code. All task programs can be



Task programs Conditions

Common skillset Perceptual model

Robot

Environment

Commands, queries /
query results

Queries (pre/inconditions, satisfying states) /
query results

Kinematic
commands

Joint
positions

Queries (robot state) /
query results

User-defined process

Sensory perceptions

Queries (objects’ states) /
query results

objects’ states,
environmental model

Queries (objects’ states) /
query results

Fig. 1. The interaction between components in the Task Matrix. The four primary components are outlined in rounded boxes. Components that must be
implemented for each humanoid platform are outlined in red.

Task program

Comon Skillset

Robot
Joint position

Degrees-of-freedom

Joint commands

Forward kinematics

Inverse kinematics

Motion planning

Grasp configuration

Collision checking

View transform

Locomotion

Attach / detach object

Queries

Commands

Fig. 2. A depiction of the interaction between robot programs and the common skill set that leads to portable programs. This diagram indicates that the
robot program neither queries nor commands the robot directly, nor does it have a priori knowledge of the robot’s degrees-of-freedom. The program is able
to make queries and send commands at run-time only via the skill layer. Note that locomotion is provided by the skill layer, but cannot be called directly by
the task programs; it can only be called by sending joint-space commands to the translational and rotational degrees-of-freedom of the base.



(a) (b) (c)

(d) (e) (f)

Fig. 3. Samples taken from the simulated robots performing the vacuum program. (a), (b), (d) and (e) depict the position program moving the vacuum tip
over the debris. (c) and (f) depict the vacuum on the table, having just been released by putdown.

Fig. 5. Samples of depicted execution of the greet macro program run on the simulated robots (the target is a simulated Asimo).



Neck (2)

Shoulder (3)

Elbow (1)

Wrist (1)

Fingers (1)

Base 
[virtual] (3)

Hip (3)

Knee (1)

Ankle (2)

1.24m

1.48m

Neck (3)

Shoulder (3)

Elbow (1)

Wrist (2)

Knee (1)

Ankle (2)

Base 
[virtual] (3)

Hip (2)

Torso] (2)

Fig. 6. The kinematically simulated robots used in this paper. Note that the heights and degrees-of-freedom vary between the robots. Both simulated robots
utilize a simulated 3D depth sensor and vision-based object recognition, located in the head.

Start

task-done

Object
(dustbuster)

Target
region

Pickup

Putdown Find

Fixate

Position

task-done

parameter-set
data: obj x

task-done

task-done

task-failed

Object
(debris)

task-done

task-failed

task-failed

Fig. 4. Depiction of the state machine used to realize the vacuum task. Black
arrows indicate transitions that cause task programs to be started. Red arrows
indicate transitions that lead to foriclbe termination of programs. The green
boxes represent parameters that are passed to the subprograms. The program
with a double outline (i.e., putdown) indicates the final state for the machine.

seen executing in various circumstances on both robots at
http://robotics.usc.edu/∼drumwrig/videos.html.

A. Primitive task programs

The MTM-1 system is composed of the following set of
atomic elements: reach, position, move, grasp, release, eye
movements, disengage, turn and apply pressure, and body,
foot, and leg movements. We implemented a set of primitive
task programs that correspond to the majority of these MTM-
1 atomic elements. The primitive task programs are described
below.

1) Reach: The reach task program utilizes motion planning
to formulate a collision-free plan for driving the humanoid
from its current configuration to one that allows grasping of a

specified object with a “hand” of the robot. The reach program
is robust in multiple ways. It utilizes motion planning for
generating collision-free paths. The program exits prematurely
if the object is graspable but not already grasped, thereby
avoiding unnecessary planning. Reach can also utilize multiple
target hand configurations for grasping. If one configuration
is unreachable due to joint limits or obstacles, another will be
attempted automatically.

2) Position: Position is analogous to reach with a tool
or object used as the end-effector of the robot, rather than
the hand. The position program corresponds to the MTM-1
elements move and position. The precision required to move
an object is not considered; thus, the two MTM-1 elements
are able to be combined into a single task program.

3) Grasp: The grasp task program is used for grasping
objects for manipulation. Grasp utilizes collision detection to
move the fingers as much toward a clenched fist configuration
(defined externally to the task in a robot-dependent manner) as
possible; each segment of each finger is moved independently
in simulation until contact is made. This grasp program is
limited by its somewhat simplistic grasping model. With
kinematically simulated robots, grasp produces convincing
behavior, though further testing within physical simulation and
on physically embodied humanoids is necessary.

4) Release: Release is used to release the grasp on an
object. It utilizes a “rest” posture for the robot hand (defined
in a robot-specific posture file), and generates joint-space
trajectories to drive the fingers from the current grasping
configuration to the rest posture. Note that release neither
secures the object in a safe location nor necessarily drops
the object; rather, the fingers only release the object from the
grasp.

5) Fixate: The fixate program focuses the robot’s view on
both moving and non-moving objects. Fixate was developed
for two purposes. First, it aims to make the appearance of



executed tasks more human-like by directing the robot to
look at objects that it is manipulating. However, the primary
objective of fixate is to facilitate updating of the robot’s
model of the environment where it is changing (i.e., at the
locus of manipulation). Fixate corresponds roughly to MTM-
1’s eye movements element; the former specifies head and
base movement, while the latter specifies only eye movement.
However, both the fixate program and the eye movements
element accomplish the same task, that of “looking” at a
specific location.

6) Explore: Explore both identifies the objects in the en-
vironment for future reference and models the environment
for use with collision avoidance. The explore program is
typically called before execution of any other task programs
so that the robot can work using an accurate model of the
environment. Explore can be informally defined as follows.
Given a region of the environment, continuously drive the
robot to new configurations such that the robot’s sensors
perceive every possible point of that region, given infinite time.
Note that not every point in this region may be perceivable due
to the given robot’s kinematics and the obstacle layout of the
environment.

7) Postural: The Postural program is used frequently
within the Task Matrix to drive one or more kinematic chains
of the robot to a desired posture. It employs motion planning
to achieve the commanded posture in a collision-free manner.
Additionally, the postural program is somewhat intelligent;
if the posture consists of a single arm or leg, the program
will mirror the posture to an alternate limb randomly (if both
limbs are free) or deterministically (if one limb is occupied
performing another task or is already in the desired posture).

8) Canned: A canned program commands the robot to
follow a set of predetermined (i.e., “canned”) joint-space
trajectories. Correspondingly, canned programs are primarily
useful for open-loop movements that do not involve interac-
tions with objects (e.g., waving, bowing, etc.).

B. Complex task programs

The remainder of this section discusses the complex task
programs pickup, putdown, greet, and vacuum composed of
the primitive task programs discussed above.

1) Pickup: The pickup program consists of a reach to an
object followed by grasping the object. Pickup employs the
fixate program to focus the robot’s gaze on the object to be
manipulated during the course of the movement.

2) Putdown: The putdown program is analogous to the
pickup program; it consists of a reach to a surface followed
by a release of a grasped object onto that surface. Note that
putdown uses a Boolean expression of two conditions, above ∩
near, to determine the valid range of target operational space
configurations for the grasped object. Using these conditions
allows the user to command the robot in a natural, symbolic
manner rather than in a machine-centric, numeric manner.

3) Greet: Greet fixates on a (possibly moving) humanoid
and waves to it (or him or her). First, the robot focuses its
gaze on the target humanoid using fixate. As soon as the gaze

is focused on the humanoid, the humanoid prepares one of
its arms to wave using the postural program. Snapshots taken
during execution of greet are seen in Figure 5.

4) Vacuum: The vacuum task program is used to vacuum
a region of the environment using a handheld vacuum, as
depicted in Figure 3. Vacuum is composed not only of the
primitive task programs position and fixate, but also the
complex task programs pickup and putdown. Thus, this pro-
gram demonstrates that it is possible to build programs with
increasing levels of complexity. When the vacuum program is
executed, the robot first picks up the vacuum. The robot then
repeatedly positions the tip of the vacuum over debris (the
vacuum tip is specified using the above condition) until the
specified region is clean. The state machine for performing
this task is depicted in Figure 4.

V. CONCLUSION

We presented the Task Matrix, a framework for program-
ming humanoid robots in a platform-independent manner.
Multiple conditions and task programs that were implemented
were described; these components contain no robot-specific
code and are thus truly robot-independent. Additionally, we
discussed the implication of designing the task programs using
a work measurement system as inspiration; specifically, we
note that if the primitive elements of the work measurement
system are implemented as task programs, then these task
programs can likely perform most occupational tasks. Finally,
we demonstrated the execution of the primitive task programs
on two simulated humanoid robots and showed how multiple
task programs can be used in sequence and concurrence to
achieve complex behavior.

REFERENCES

[1] B. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage project:
Tools for multi-robot and distributed sensor systems,” in Proc. of the Intl.
Conf. on Advanced Robotics (ICRA), Coimbra, Portugal, June 2003, pp.
317–323.

[2] T. Lozano-Pérez, “Task planning,” in Robot motion: planning and
control, M. Brady, J. M. Hollerbach, T. L. Johnson, T. Lozano-Perez,
and M. T. Mason, Eds. MIT Press, 1982, pp. 474–498.

[3] A. M. Segre, Machine learning of robot assembly plans. Kluwer
Academic Publishers, 1988.

[4] J. R. Chen, “Constructing task-level assembly strategies in robot pro-
gramming by demonstration,” Intl. Journal of Robotics Research, vol. 24,
no. 12, pp. 1073–1085, Dec 2005.

[5] A. Ude, C. G. Atkeson, and M. Riley, “Programming full-body move-
ments for humanoid robots by observation,” Robotics and Autonomous
Systems, vol. 47, no. 2–3, pp. 93–108, June 2004.

[6] R. Dillmann, “Teaching and learning of robot tasks via robot observation
of human performance,” Robotics and Autonomous Systems, vol. 47, no.
2-3, pp. 109–116, June 2004.

[7] C. G. Atkeson and S. Schaal, “Robot learning from demonstration,”
in Machine Learning: Proceedings of the Fourteenth International
Conference (ICML ’97), 1997, pp. 12–20.

[8] D. C. Bentivegna, “Learning from observation using primitives,” Ph.D.
dissertation, Georgia Institute of Technology, 2004.

[9] S. Narasimhan, “Task level strategies for robots,” Ph.D. dissertation,
Massachusetts Institute of Technology, 1994.

[10] R. E. Bellman, Dynamic Programming. Dover Publications, 1957.
[11] N. I. Badler, R. Bindiganavale, J. Bourne, J. Allbeck, J. Shi, and

M. Palmer, “Real time virtual humans,” in Proc. of Intl. Conf. on Digital
Media Futures, Bradford, UK, 1999.

[12] W. Antis, J. John M. Honeycutt, and E. N. Koch, The Basic Motions of
MTM. The Maynard Foundation, 1973.


