
From Pixels to Policies: A Bootstrapping Agent
Jeremy Stober and Benjamin Kuipers

Department of Computer Sciences
The University of Texas at Austin

1 University Station, Austin, TX 78712, USA
Email: {stober, kuipers}@cs.utexas.edu

Abstract—An embodied agent senses the world at the pixel level
through a large number of sense elements. In order to function
intelligently, an agent needs high-level concepts, grounded in the
pixel level. For human designers to program these concepts and
their grounding explicitly is almost certainly intractable, so the
agent must learn these foundational concepts autonomously.

We describe an approach by which an autonomous learn-
ing agent can bootstrap its way from pixel-level interaction
with the world, to individuating and tracking objects in the
environment, to learning an effective policy for its behavior.
We use methods drawn from computational scientific discovery
to identify derived variables that support simplified models
of the dynamics of the environment. These derived variables
are abstracted to discrete qualitative variables, which serve as
features for temporal difference learning. Our method bridges the
gap between the continuous tracking of objects and the discrete
state representation necessary for efficient and effective learning.

We demonstrate and evaluate this approach with an agent ex-
periencing a simple simulated world, through a sensory interface
consisting of 60,000 time-varying binary variables in a 200 x 300
array, plus a three-valued motor signal and a real-valued reward
signal.

I. INTRODUCTION

A central goal of developmental robotics is to show how
an autonomous robot can go from the “blooming, buzzing
confusion” of raw sensory experience to useful high-level
knowledge. For common sensor configurations, a situated
robot’s experience of the real world is continuous and high-
dimensional. For many tasks, the robot only needs access
to a small set of state variables derived from this sensory
signal, and by extension from the environment. A key part
of this process is learning to track and act on objects in the
environment.

To accomplish these basic tasks requires that an agent first
develop a primitive understanding of its own sensorimotor
capabilities, including the geometry of its sensor space. Pre-
vious work on sensorimotor reconstruction [1], [2] provides
methods for generating geometric models of sensor arrays
based on data collected during undirected experience. Even
with known sensor geometry the agent faces a considerable
challenge in extracting a useful model of world interaction
from uninterpreted changes in its sensor field.

Our learning agent attempts to meet this challenge through a
sequence of progressively more informative models of sensor
state (Figure 1). The agent does not have access to the
laws governing state evolution. It only has access to a high-
dimensional visual signal representing the current sensory
image of the environment (Figure 2).

Fig. 1. Our agent generates a policy over high level states that are a
result of bootstrapping from clusters in raw sensory space. Our primary
contribution (boxed) is a method of qualitative abstraction over derived
terms that bridges the gap between the continuous state representation of
the underlying environment provided by trackers and discrete decisions that
constitute a policy. We refine the state representation by evaluating the
individual policy contributions of qualitative variables.

Inspired by the use of trackers to anchor perceptual symbols
in the sensor stream [3], [4], we build and maintain a low-
dimensional representation of the world state in terms of
connected components in the visual image provided by the
environment. To accomplish this, we adapt a method for
tracking and categorization of objects used in [5]. The tracker
model provides a low-dimensional description of the state of
the environment in terms of the dynamic properties of objects
that change over time, which we refer to as surface variables.

From a developmental robotics perspective, a low-
dimensional, high-level representation of the world state pro-
vided by trackers and associated perceptual functions provides
a non-task-specific abstraction. To test the efficacy of this
abstract representation we consider the resulting worldstate
representation in the context of a natural reward signal. The
resulting domain is a reinforcement learning problem. Since
each sensor image contains no velocity information, the raw
state signal is not Markov.

We treat the dynamic properties (surface variables) of
trackers in this domain as continuous. Reinforcement learning
agents in continuous state spaces experience a limited subset
of possible states during training. In order to extend a learning
agent’s policy to novel states, the agent must generalize from
previous experience. Algorithm designers incorporate function

approximation, and its attendant state representation, into algo-
rithms in order to accomplish this needed generalization. With
existing methods of function approximation, a certain amount
of design is required to marshall the state representation into a
form that is both convenient and harmonious with the chosen
method of function approximation.

Without a designer in the loop, a bootstrapping agent faces
the difficult problem of autonomously determining the best
state representation given the available methods of function
approximation. In order to evaluate the efficacy of a rep-
resentation, the agent must attempt policy search using the
representation. The success of this policy search provides the
feedback needed for representation search.

Given a set of continuous surface variables describing the
behavior of the environment at a high level, we apply the
classic methods of BACON [6] to generate new derived
variables by simple algebraic transformations of the available
surface variables. Then, in order to transform the continuous
description into a discrete form convenient for policy learning,
we apply methods from qualitative reasoning [7] to form
qualitative variables using natural landmarks.

We demonstrate how the resulting state representation can
be evaluated in terms of the policy contributions of the derived
qualitative state variables, and how, if necessary, qualitative
state variables can be pruned from the representation. With au-
tonomous methods both for generating representations and for
pruning those representations, our agent can couple its search
for a good policy with its search for a good representation.

Methods for clustering and tracking are varied and well
studied [8]. Solving reinforcement learning problems through
temporal difference methods are also explored extensively in
the literature [9], [10]. Our main contribution is providing a
method of autonomously bridging the gap between knowledge
of state grounded in object tracking and the state representation
required for effective temporal difference learning. We divide
this contribution into two components drawn from existing lit-
erature, computational scientific discovery [6] and qualitative
abstraction [7], which generate new candidate state features,
and a novel component, representation refinement, that seeks
to refine the choice of state representation for the bootstrapping
agent.

II. AGENT ARCHITECTURE

A. Formation of Trackers

In the simulated domain shown in Figure 2, the agent begins
the bootstrapping process by learning a pixel-based static-
world model. During the learning period, the agent determines
the mode (most common value) z̄i for each pixel zi in the pixel
vector z based on observational experience. Using this static-
world model of the environment, the agent defines a stochastic
model of its experience. The pixel vector at time t is given by

zt = z̄ + ε1 (1)

where ε1 is a random variable describing the discrepancy
between the prediction z̄ and the observation zt. An active
pixel is any pixel which violates the static world model, i.e.

Fig. 2. We evaluate our approach using a simulated video game environment
whose primary sensory output is a grid of 300x200 binary pixels. The agent
must discover some low-dimensional representation of the environment state
based on this visual image. The agent controls both paddles, which it can
synchronously move up, down, or hold steady. The puck bounces off the top
and bottom walls, and exits through the ends. The agent receives a reward
of +1 every time the agent hits the puck with a paddle and a reward of −1
every time the puck leaves the playing surface. When the puck leaves the field
it is reset to the center with an x velocity of 3.0 and a random y velocity in
the range (−0.5,+0.5).

zit 6= z̄i. In this model, dynamic change is treated as noise,
described only by the ε1 term.

During the next step of bootstrapping, the agent must
account for the discrepancy between the background model z̄
and present state of the agent’s sensors. By finding connected
components of active pixels, the agent constructs a model that
accounts for the current active pixels. From each connected
component, the agent extracts a set of properties, including
the centroid position, area, and perimeter for each component
[11]. We denote functions that extract properties from active
pixel clusters perceptual functions and the resulting properties
percepts.

The percepts for each component provide the agent with
a model which accounts for some active pixel discrepancies.
Each new timestep, however, results in a new set of discrep-
ancies, and therefore a new set of connected components. To
account for temporal discrepancy, the agent associates con-
nected components by identifying clear successor components
in subsequent timesteps. Temporal association of component
feature sets gives rise to the notion of trackers.

Each tracker maintains a set of static and dynamic percepts.
For a new tracker τ , all percepts for a connected component
are in the the set of static percepts Sτ . The set of dynamic
percepts Dτ is initially empty. The tracker maintains a set of
percepts ∆τ,t that change at timestep t. At time T , the set of
static and dynamic tracker percepts are given by

Sτ =
T⋂
t

(P −∆τ,t) and Dτ =
T⋃
t

∆τ,t

where P denotes the set of all percepts.
At each time-point, the percepts of each newly-identified

component are associated with an existing tracker if there is a
clear best match within a threshold δ. Otherwise, a new tracker
is created. We extend this by allowing a tracker to lose sensory
support for a short time period, provided that the tracker
reacquires sensory support within the same threshold. The
current time-limit for tracker persistence is two timesteps. This
method of temporal association is based on resource allocating

TABLE I
THREE CONNECTED COMPONENTS EMERGE FROM CLUSTERING ACTIVE
PIXELS. WE USE THE STATIC PERCEPTS TO IDENTIFY THE ORDERING OF
DYNAMIC STATE AT THE BEGINNING OF EACH EPISODE. THE DYNAMIC

PERCEPTS ARE surface variables.

Percepts
Object Static Dynamic
Puck areap, perimeterp xp, yp

Left Paddle areal, perimeterl, xl yl

Right Paddle arear, perimeterr, xr yr

TABLE II
THE DERIVED VARIABLES RESULTING FROM APPLICATION OF DERIV AND

DIFF TO SURFACE VARIABLES FROM TABLE I.

DERIV d(xp), d(yp), d(yl), d(yr)

DIFF
yl − xp, yl − yp, yl − yr

yr − xp, yr − yp, xp − yp

vector quantization [12], though we expect that other forms of
unsupervised clustering would work equally well [13], [14].

Between episodes in the reinforcement learning problem de-
scribed below, the puck and paddles are reset to their respective
starting positions. This discontinuous change results in new
trackers. We use static percepts to establish a correspondence
between new and old tracker state variables. Table I describes
the distinguishing characteristics of dynamic objects in the
environment.

By using trackers, the agent can create a model

zt = z̄ +
∑
τ

φ(τ) + ε2 (2)

that combines the previous static model z̄ with the projection
into pixel space φ of each currently active tracker τ . Pixels that
are not explained by the tracker or static models are treated
as noise, described by the ε2 term.

B. Computational Scientific Discovery

As a result of tracking and categorization, the agent has
access to a stable set of four continuous dynamic state vari-
ables corresponding to the puck coordinates (xp, yp) and the
vertical locations yl and yr of the two paddles. In order to
evaluate this state representation, we appeal to the natural
reward structure of the simulated video game, and examine
how well a reinforcement learning algorithm performs given
this state representation.

Since applying temporal difference methods to continuous
state spaces directly is problematic, our agent must first
generate a discrete representation of game state. Inspired by
the results of computational scientific discovery [6], and the
observation that good representations may require concepts
that are not apparent from surface variables alone, the agent
uses two heuristics to generate a set of derived variables.
The first heuristic, DERIV, calculates the derivative d(si) of
each continuous surface variable. The second heuristic, DIFF,
adds to this set the differences si − sj between every pair
of continuous surface variables. The complete set of derived
variables appears in Table II.

We note that for this scenario, the continuous state repre-
sentation is Markov when we include derivative terms to the
set of variables describing the game state.

C. Qualitative State

Due to the difficulty of learning from the continuous state
space directly, we adopt a method of discretization drawn
from qualitative reasoning [7]. After application of DERIV and
DIFF, we generate qualitative values based on the resulting set
of derived terms. These terms have natural landmark values at
zero, indicating the steady state in the case of derivative terms
and equality in the case of difference terms. Each landmark
value divides the domain of each derived variable into three
qualitative values, [−], [0], [+], which serve as features for
reinforcement learning.

Since the surface variables offer no natural landmarks, we
do not include them in the set of qualitative features for
reinforcement learning. Extensions to this method that allow
for landmark distinctions based on experience are discussed
later.

D. Reinforcement Learning

The process described above constitutes a method of state
abstraction, taking 60,000 binary pixels (or 260,000 possible
states) to ten qualitative variables consisting of three values
each (or 310 possible states). In every state, the agent has
three choices for actions A = {up, down, steady}. To apply
a method for solving the reinforcement learning problem
described below, we consider each qualitative variable as
a feature which can take on three values. We then apply
linear gradient descent Sarsa(λ) over the qualitative feature set
QF by associating each element of QF × A with a weight
θ : QF ×A −→ < (Algorithm 3). The value of a given state
and action is the sum of the currently active weights indexed
by QF ×A.

E. Representation Refinement

Complete cognitive architectures that utilize temporal dif-
ference methods for reinforcement learning need to generate
expressive representations over which value function estima-
tion via temporal difference learning can take place. However,
some of the generated features may not be necessary when
learning an optimal policy. In fact, additional features increase
the size of the search space and so can slow or disrupt learning.
We utilize a method we term representation refinement (Figure
4) in order to prune the features generated in the application
of DERIV, DIFF and qualitative abstraction.

By running with only subsets of the qualitative feature set
enabled, an agent can evaluate the contribution of individual
qualitative state variables to its overall performance. We refer
to this as the effective policy contribution of a variable. We
evaluate two heuristics for determining the effective policy
contribution of a qualitative variable. The first, termed leave
one out, disables the weights associated with the qualitative
variable under consideration for removal. If the performance
of the agent policy, e.g. the reward accumulated over the

θ ←− 0̄
for all episodes do
e←− 0
s, a←− initial state and action of episode
QFs ←− qualitative values present in s
repeat

for i ∈ QFs do
e(i, a)←− e(i, a) + 1

end for
Take action a, observe reward r and state s
δ ←− r −

∑
i∈QFs

θ(i, a)
QFs ←− qualitative values present in s
for b ∈ A do
Qs(b)←−

∑
i∈QFs

θ(i, b)
end for
a←− argmaxb∈A(Qs(b))
δ ←− δ + γQs(a)
θ ←− θ + αδe
e←− γλe

until episode ends
end for

Fig. 3. Linear gradient-descent Sarsa(λ) with qualitative features as applied
to the simulated Pong domain. The set of weights θ and the eligibility traces
ē are indexed by the set of active qualitative values in the current state and
action being considered. Note that the set of active qualitative values QFs is
updated after δ is initialized, since δ needs to be initialized using the weights
associated with the state and action from the previous iteration. The argmax
of the action-value function Qs determines the best action in the current
state. γ = 0.9 is the discount factor used to determine the present value of
future reward. α = 0.01 is the learning rate, which determines the extent that
temporal difference error affects the feature weights. λ = 0.9 determines the
decay rate of the eligibility traces ē, modulating the amount of credit a past
action should receive for a current reward. Adapted from [9].

episode, remains the same, we remove the qualitative variable
from the representation. The second heuristic, termed leave
one in, enables only the weights associated with the variable
being evaluated. If the reward accumulated over the episode
remains the same, indicating that the enabled weights encode
a good policy, we keep the qualitative variable as part of the
representation.

We note that the leave one in heuristic optimistically as-
sumes that good policies do not depend on the interaction of
two or more variables. The leave one out heuristic addresses
this concern, but in practice seems to result in a more conser-
vative refinement process, one that does not remove as many
features. This method demonstrates correspondingly weaker
performance in our experiments below.

Representation refinement uses the reward signal to evaluate
the effective contribution of each state, though instead of
updating a value function, we use reward received as a
criteria for refining the state representation. This reduces the
expressive power of our agent’s representation, thus limiting
the search space to only those states that demonstrate policy
relevance. Our method of discovering irrelevant features falls
into the class of π∗-irrelevant (policy irrelevant) abstraction
methods [15].

F ←− set of state features
refined←− false
for all episodes do
train policy over F ×A
if episodic reward ≥ threshold and !refined then

for all f ∈ F do
if contribution(f) ≤ threshold then
remove f from F

end if
end for
refined←− true

end if
end for

Fig. 4. A pseudo-code description of the representation refinement process.
This process requires a method for evaluating the policy contribution of a
state feature and a method for measuring cumulative reward over an episode.

III. EVALUATION

Using this qualitative state representation, and a reward
signal that is +1 when the puck hits a paddle, −1 when the
puck leaves the playing surface, and 0 otherwise, we train
an agent using Sarsa(λ) linear gradient descent with greedy
action selection (Algorithm 3) using parameters λ = 0.9, γ =
0.9, α = 0.01. At the beginning of an episode, both paddles
and the puck are reset to their center positions. The x velocity
of the puck is set to 3.0 and the y velocity is uniformly drawn
from (−0.5,+0.5). An episode ends when the puck leaves
the playing surface. To limit computation time, episodes are
capped at 1000 timesteps.

We compared four agents: a motor-babbling (random action)
agent, an agent using Sarsa(λ) and the full learned state
representation (Table II), and two agents using Sarsa(λ) with
variants of representation refinement (Figure 4). We set the
reward threshold to five. When an agent using representation
refinement passes the threshold, it halts training and evaluates
the effective policy contribution of each variable with either
the leave one in or leave one out methods.

We evaluate the performance of the agent over 30 episodes,
where performance is measured by the number of hits per
episode. Out of 200 random trials, 168 of the agents using the
entire state representation learn policies that reach the episode
cap in at least one episode. In the aggregate, these agents
clearly demonstrate policy improvement over the course of 30
episodes. Agents using representation refinement to improve
their state representation perform better than agents using
the entire state representation, since these agents limit their
search for better policies to the state space most relevant to
maximizing reward.

We found that representation refinement using the leave one
out method resulted in refined representations that preserved,
on average, more features than the leave one in method. We
expect that the differing sizes of the resulting refined spaces
explains the difference in performance between the two meth-
ods of refinement, and the agent that does no refinement. We
also note that though refinement is a policy preserving process,

0 5 10 15 20 25 30

2
4

6
8

Average Number of Hits per Episode

Episode

A
ve

ra
ge

 N
um

be
r

of
 H

its

Agent Type

Sarsa (leave in)
Sarsa (leave out)
Sarsa
Random

Fig. 5. We ran 200 trials of an agent using Sarsa(λ = 0.9) for 30 episodes
each. The mean performance per episode is shown, along with 95% confidence
intervals. With each representation refinement strategy, the agent tested the
policy contribution of each state variable after it achieves at least 5 hits in
an episode, discarding those with minimal contribution. We omit the episodes
used for representation refinement since no policy improvement takes place
while testing the effective policy contribution of each state variable. We
include a random agent for comparison. In this experiment, all learning agents
perform significantly better than random, and agents that employ some form of
representation refinement perform better than agents that do no representation
refinement.

it is not a value function preserving process. High temporal
difference error after refinement may serve to reinforce the
refined policy, again resulting in a performance benefit.

We ran an additional experiment to compare the relative
contributions of discovery and qualitative reasoning to learning
performance over relevant state variables (Figure 6). We found
that agents using tile coding and qualitative representations of
ypaddle − ypuck performed significantly better than the agents
using tile coding over the original (ypaddle, ypuck) space.
The use of a qualitative representation provided an additional
learning performance increase over tile coding in the derived
(discovered) state space.

As Figure 7 illustrates, the number of potential states in a
naive tile coding representation of the state space of surface
variables far exceeds the number required to capture useful
policy components in this domain. Successful policies in our
domain seek to maintain an invariant ypaddle − ypuck = 0
in the derived qualitative state of the game. We expect that
synergies between the choice of state representation and ef-
fective policies may arise in many domains where rewards
correlate with maintaining (possibly derived) invariants in the
underlying dynamical system.

A bootstrapping agent autonomously generating its own
state representation prior to reinforcement learning has no
guarantee that all the qualitative states it generates are rel-
evant to reward-maximizing policies. Through representation
refinement, an agent is able to refine the state representation.
In Figure 6, we see that the qualitative state [ypaddle − ypuck]
has the most impact on policy effectiveness in this domain.

dyl dyr dxp dyp yl −− yr yl −− xp yl −− yp yr −− xp yr −− yp xp −− yp

Effective Policy Contribution by Qualitative State

Qualitative State Variable

A
ve

ra
ge

 H
its

 p
er

 E
pi

so
de

0
2

4
6

8
10

12

2 4 6 8 10

1
2

3
4

5
6

7

Average Number of Hits per Episode

Episode

A
ve

ra
ge

 N
um

be
r

of
 H

its

Agent Type
QRpaddle−−puck

CMACpaddle−−puck

CMAC(paddle,, puck)

Fig. 6. The left chart shows the average number of hits over 40 episodes
for each qualitative state variable using the leave one in method. The policy
contributions of yr−yp and yl−yp generate significantly better performance
than any other qualitative state variables. We view the “simplicity” of the
best policy’s state representation as indicating that our agent is employing the
correct primitive operations to bridge the gap between surface variables and
state features. On the right we compare a Sarsa(λ) agent using a qualitative
representation of ypaddle−ypuck space to an agent using tile coding (CMAC
[16]) over the same space and over (ypuck, ypaddle). The number of hits for
the first 10 episodes of training were averaged over 50 trials. We note that the
discovery of the derived term ypaddle−ypuck provides a significant increase
in learning performance over the agent using tile coding in (ypuck, ypaddle)
space. In addition, agents using a qualitative representation show increased
performance over tile coding in the derived ypaddle − ypuck space.

IV. DISCUSSION AND FUTURE WORK

The qualitative state representation presented above pro-
vides an alternative to parametrized methods of sparse coding
[17] and is similar to methods of defining discrete state in
terms of distinguished values [18], [19]. A bootstrapping
agent, however, cannot depend on a prior specification of
“distinguished” values, or a highly-parametrized task-specific
representation, since the continuous state space and task are
unknown prior to the application of bootstrapping.

Our method relies on heuristics to generate derived terms
and to define natural landmarks for the qualitative state repre-
sentation. Scaling to larger physical domains will likely require
the application of more heuristics for generating derived
variables [6]. In addition, the division of qualitative variables
into [−], [0], [+] may not include the most useful underlying
qualitative distinctions in other domains. Even if these simple
qualitative distinctions are sufficient for representing good
policies, they may not be sufficient for learning them [20].
We expect that methods of landmark identification [21], which
have shown utility in planning over qualitative states [22],
would allow this approach to extend to domains with non-
zero qualitative landmarks.

The discovery of derived terms through data-driven explo-
ration of the relationships between continuous state variables
can potentially lead to a large number of state representations.
We presented two methods above of evaluating the effective
contribution of individual qualitative state variables (or subsets
of variables). Pruning the state representation using these
methods leads to better policies (Figure 5).

We expect that the heuristics we present for generating
derived variables, and the qualitative distinctions we impose
on those variables, would apply equally well to other scenarios
involving high dimensional inputs, Newtonian physics and

Fig. 7. Almost all successful policies employed to some extent the simple
skill of tracking the y position of the puck with the paddles. Such policies
attempt to minimize ypaddle − ypuck . We note in the above diagram that
a naive tiling of (ypaddle, ypuck) space, unlike the derived qualitative state
representation, would result in many more states than are required to represent
this policy. We expect that methods which subdivide the ranges of existing
variables in order to bridge the gap between surface variables and state features
(e.g. tile coding) would require more experience to learn proper policies than
the approach presented here.

complete observability. More complex domains may require
improved heuristics for generating derived terms. The BACON
system, which served as inspiration for our discovery method,
was able to derive many complex physical laws (e.g. the ideal
gas law [23]) from observations of surface variables.

In addition to a wider array of derived variables, we also
expect that more complex domains would require more sophis-
ticated methods of dividing the ranges of derived variables
(e.g. parti-game [24], U-Trees [20], G Algorithm [25]). As
we illustrate in Figure 7, such methods are not necessarily
sufficient for generating efficient state representations, as they
do not generate new state variables.

We also intend to explore extended coupling of represen-
tation refinement with the discovery of new derived terms,
leading to the notion of representation iteration. The work
above can be seen as one iteration of representation iteration,
where we first generate a set of hypothesis state variables, then
refine that set by attempting to train policies using TD learning
over that set. An agent may repeat these two steps when, for
example, new objects enter into the agent’s perceptual field.

In much of the theoretical work on algorithms for rein-
forcement learning, the state representation is assumed to be
fixed and given. In applications, however, the proper choice
of state representation (and function approximation method)
is a critical component of successful solutions to many re-
inforcement learning problems. Designers face a wide array
of choices for both state and value function representations,
choices that a bootstrapping agent must make autonomously.
Though different domains may require the inclusion of differ-
ent perceptual functions, clustering, and tracking algorithms,
the work presented here provides a principled, automated
method of going from pixel level observations to policies.

ACKNOWLEDGMENTS

This work has taken place in the Intelligent Robotics Lab
at the Artificial Intelligence Laboratory, The University of
Texas at Austin. Research of the Intelligent Robotics lab is
supported in part by grants from the Texas Advanced Re-
search Program (3658-0170-2007), from the National Science
Foundation (IIS-0413257, IIS-0713150, and IIS-0750011), and

from the National Institutes of Health (EY016089).

REFERENCES

[1] D. Pierce and B. Kuipers, “Map learning with uninterpreted sensors and
effectors,” Artificial Intelligence, vol. 92, no. 1-2, pp. 169–227, 1997.

[2] L. Olsson, C. Nehaniv, and D. Polani, “From unknown sensors and
actuators to actions grounded in sensorimotor perceptions,” Connection
Science, vol. 18, no. 2, pp. 121–144, 2006.

[3] Z. Pylyshyn, “The Role of Location Indexes in Spatial Perception:A
Sketch of the FINST Spatial Index Model,” Cognition, vol. 32, pp. 65–
97, 1989.

[4] S. Coradeschi and A. Saffiotti, “An introduction to the anchoring
problem,” Robotics and Autonomous Systems, vol. 43, no. 2-3, pp. 85–
96, 2003.

[5] J. Modayil and B. Kuipers, “Autonomous development of a grounded
object ontology by a learning robot,” in Proceedings of the Twenty-
Second National Conference on Artificial Intelligence (AAAI-07), 2007.

[6] P. Langley, H. Simon, G. Bradshaw, and J. Zytkow, Scientific Discovery:
Computational Explorations of the Creative Processes. MIT Press,
1987.

[7] B. Kuipers, Qualitative Reasoning: Modeling and Simulation with
Incomplete Knowledge. MIT Press, 1994.

[8] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” ACM
Computing Surveys (CSUR), vol. 38, no. 4, 2006.

[9] R. Sutton and A. Barto, Reinforcement Learning: An Introduction. MIT
Press, 1998.

[10] L. Kaelbling, M. Littman, and A. Moore, “Reinforcement Learning: A
Survey,” Journal of Artificial IntelligenceResearch, vol. 4, pp. 237–285,
1996.

[11] W. Snyder and H. Qi, Machine Vision. Cambridge University Press,
2004.

[12] F. Linaker and L. Niklasson, “Sensory Flow Segmentation using a Re-
source Allocating Vector Quantizer,” Advances in Pattern Recognition:
Joint IAPR International Workshops SSPR2000 and SPR2000, pp. 853–
862, 2000.

[13] B. Fritzke, “A growing neural gas network learns topologies,” Advances
in Neural Information Processing Systems, vol. 7, pp. 625–632, 1995.

[14] J. Platt, “A resource-allocating network for function interpolation,”
Neural Computation, vol. 3, no. 2, pp. 213–225, 1991.

[15] L. Li, T. Walsh, and M. Littman, “Towards a unified theory of state ab-
straction for MDPs,” Proceedings of the ninth international symposium
on AI and mathematics, 2006.

[16] J. Albus et al., “A new approach to manipulator control: The cerebellar
model articulation controller (CMAC),” Journal of Dynamic Systems,
Measurement and Control, vol. 97, no. 3, pp. 220–227, 1975.

[17] R. S. Sutton, “Generalization in reinforcement learning: Successful
examples using sparse coarse coding,” Advances in Neural Information
Processing Systems, vol. 8, pp. 1038–1044, 1996.

[18] D. Michie and R. A. Chambers, “BOXES: An Experiment in Adaptive
Control,” in Machine Intelligence 2. Edinburgh University Press, 1968,
pp. 137–152.

[19] A. Barto, R. Sutton, and C. Anderson, “Neuronlike adaptive elements
that can solve difficult learning control problems,” IEEE Computer
Society Neural Networks Technology Series, pp. 81–93, 1990.

[20] A. McCallum, “Reinforcement Learning with Selective Perception and
Hidden State,” Ph.D. dissertation, University of Rochester, 1996.

[21] U. Fayyad and K. Irani, “Multi-interval discretization of continuous-
valued attributes for classification learning,” Proceedings of the Thir-
teenth International Joint Conference on Artificial Intelligence, vol. 2,
1993.

[22] J. Mugan and B. Kuipers, “Learning distinctions and rules in a contin-
uous world through active exploration,” in 7th International Conference
on Epigenetic Robotics (Epirob-07), 2007.

[23] P. Langley, G. Bradshaw, and H. Simon, “Rediscovering chemistry with
the BACON system,” Machine Learning: A Multistrategy Approach,
1994.

[24] A. Moore and C. Atkeson, “The parti-game algorithm for variable
resolution reinforcement learning in multidimensional state-spaces,”
Machine Learning, vol. 21, no. 3, pp. 199–233, 1995.

[25] D. Chapman and L. Kaelbling, “Input generalization in delayed re-
inforcement learning: An algorithm and performance comparisons,”
Proceedings of the Twelfth International Joint Conference on Artificial
Intelligence, pp. 726–731, 1991.

