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Abstract— Physical interference limits the utility of large-
scale multi-robot systems. We present an empirical study of
the effects of such interference in systems with hundreds of
minimalist robots. We consider the canonical multi-robot
foraging task, and define a new parametrized controller.
This controller allows for evaluation of spatial arbitration
strategies along a continuum with the traditional homo-
geneous and bucket-brigading algorithms at each end. We
present data from thousands of simulations which suggests
that methods surprisingly close to homogeneous foraging,
but augmented with limited arbitration, can improve both
performance and reliability.

I. INTRODUCTION

Typical multi-robot systems currently consist of tens
of robots. This research explores the performance of
existing algorithms in large-scale systems with hundreds
of robots. Such systems raise several challenges that
must be overcome. One key challenge is the issue of re-
source competition: as a finite resource is shared among
an increasing number of robots, techniques are needed
to deal with contention. In particular, spatio-temporal
interference imposes limits on the number of robots
that are useful for task achievement. Since all robots
have spatial extent, this is not a problem that can be
easily bypassed. This paper presents an empirical study
of the performance effects of interference in a multi-
robot system, with hundreds of simple robots performing
a collective foraging task.

Multi-robot foraging, as studied here, involves several
robots collecting randomly distributed objects (pucks)
and transporting them back to a single location (home
region) within a planar arena. This idealization of col-
lection and transport tasks has several applications in-
cluding mine-clearing, hazardous waste clean-up, and
search and rescue. Multi-robot foraging is the problem
domain most widely used to study group size scalability
and hence the effects of inter-robot interference; see for

example Arkin et al. [1], Goldberg [4], Lerman and
Galstyan [5].

Traditional homogeneous foraging has each robot
searching for pucks and independently transporting them
to the home region. Once any of the robots searching
for a puck finds one, that robot will deliver the puck
to the home region; the robot then begins searching
anew. As one might expect, such an approach produces
spatio-temporal interference that is strongly concentrated
around the home region; many robots will attempt to
enter the same space and are forced to issue obsta-
cle avoidance commands. Thus, rather than performing
task-related actions, additional robots may hamper the
collective effort. In order to increase the effectiveness
of a system with a high density of robots, the bucket
brigading strategy has been proposed [4, 8]. This strat-
egy requires that each robot focus on a sub-region of the
total work arena. Any robot finding a puck will transport
that puck to the neighboring sub-region in the direction
of the home region. Thus, pucks are passed from robot
to robot along toward the home region and overcrowding
is reduced.

By permitting sub-regions assigned to each robot to
overlap, we are able to consider bucket brigading and
homogeneous foraging as two ends of a single strategy
continuum. We present data from simulations of forag-
ing performance along this continuum. Our experiments
compare a range of robot group sizes and differing puck
densities. The data also consider a much wider range of
system sizes than found elsewhere in the literature.

Analysis suggests that a balance exists between inter-
ference arbitration and greedy puck delivery. Our data
indicate that even large overlapping sub-regions can have
a positive effect on overall performance. Also the results
point to a trade-off between robustness and adaptability
across puck densities and maximal performance with
small groups of robots (less than 150).



II. RELATED WORK

Foraging is a canonical task in distributed robotics
and is one of the most widely studied problem domains.
Arkin et al. [1] presented the first simulation results
showing the effect of group size on robot foraging
performance, and in particular, the role of robot density
and critical group sizes. Matarić [7] performed early
physical robot experiments and described the ethological
inspirations for the task. Østergaard et al. [8] defined a
taxonomical framework in which to organize variations
on foraging, as well as related task domains of clustering
and collection (for an example of such domains, see
Beckers et al. [3]).

Parker [9] considered a hazardous waste cleanup ap-
plication in order to demonstrate the robustness of her
ALLIANCE software architecture. In that work, robots
communicated explicitly with one another. Both implicit
and explicit communication strategies have been studied
in the context of foraging [1, 2, 11, 10]. The robots in this
work do not have explicit communication capabilities
and other robots are merely perceived as obstacles.
This is in the spirit of minimalist robotics, and is in
anticipation of the types of systems expected to scale to
hundreds of robots with least effort.

Lerman and Galstyan [5] constructed a differential
equation model of foraging in a swarm of minimalist
robots. They demonstrated good qualitative agreement
between the model and experiments (including interfer-
ence effects) with up to 20 robots. This style of model
has been extrapolated to large systems with hundreds of
robots (e.g., [6, pp. 12]).

Perhaps the definitive study of interference in multi-
robot foraging was done by Goldberg [4], in which
four categories of multi-robot interactions are identified:
SPST, DPST, SPDT, and DPDT (where S ≡ same, D ≡
different and P ≡ place, T ≡ time). Goldberg notes
that interference around the foraging home region is
physical interference, a characteristic SPST interaction.
Such interference can be reduced by arbitrating resources
so that either:

1) robots are forced to stay in a different places at all
time (DPST); or

2) scheduling is done so as to ensure no location is
used by two robots simultaneously (SPDT).

Bucket brigading is arbitration of the first type, while
homogeneous foraging does not implement arbitration.

Of course, distributed resource conflicts arise in nat-
ural systems, too. Vaughan et al. [12] proposed a gen-
eral methodology for dealing with such circumstances
through a stylized aggression game. Their technique (and
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Fig. 1. Trajectories of three robots using: (i) homogeneous foraging
(T ∼ Uniform(10, 40)), and (ii & iii) bucket brigading (D = 5 and
D = 15) controllers.

the recent follow-up [13]) is applied to break symmetry
in SPST circumstances.

We measure the significance of DP arbitration on
foraging performance, by considering a progression of
bucket brigading parameterizations. Treating arbitration
as a binary property may be an over-simplification; the
present research aims to address this issue.

III. METHOD

We simulated homogeneous groups of minimalist
robots across a number of sizes. Detailed simulator and
robot controller specifications are given next, followed
by a description of the experiments themselves.

A. Simulator

We implemented a custom tool in order to efficiently
simulate the kinematics of large numbers of planar
robots. Simulated robots are rectangular with sides
35cm×10cm, pucks are circular with the radius of 3cm.
The simulated environment is an open 64m×64m arena
with a perimeter wall, and a quarter-disk with radius
3m in the North-East corner of the area represents the
foraging home region.

Each robot has forward-pointing scoop for collecting
pucks (included in the 35cm length). At most one
puck can be held at any given time. The simulator
provides a velocity control interface to the controller
software. Commanded linear (ṙc in m/sec) and angular
(θ̇c in degree/sec) velocities are corrupted by noise. Ta-
ble I contains the details. Robot positions are integrated
in random order, reshuffled for each time step, with
Pupdate giving the probability of a robot’s position being
propagated.
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Fig. 2. Performance data for homogeneous foraging with different exiting times. The exit duration is drawn from a uniform distribution
(T ∼ Uniform(10, 40)). Left plot is for low puck density, the right plot is for a higher density.

Parameter Value Comment
ṙ = (1 + ξv) ṙc + ηv + ζv Linear velocity integrated per time step in meters per second

ṙc Commanded linear velocity

ξv ∼ N(0, 0.012) Multiplicative noise, drawn each time step

ηv ∼ N(0, 0.032) Additive linear noise, drawn each time step

ζv ∼ N(0, 0.0022) Per robot linear bias, drawn each time step

θ̇ = (1 + ξr) θ̇c + ηr + ζr Angular velocity integrated per time step in degrees per second

θ̇c Commanded angular velocity

ξr ∼ N(0, 0.012) Multiplicative noise, drawn each time step

ηr ∼ N(0, 2.52) Additive rotational noise, drawn each time step

ζr ∼ N(0, 0.152) Per robot rotational bias, drawn each time step

Pupdate 0.8 Probability of robot being propagated for a given time step

TABLE I

SIMULATION INTEGRATION AND CONTROL PARAMETERS

Each robot is provided with a distance sensor. Noisy
values are returned from 12 radial rays, each giving
a distance reading to obstacles and robots (but not
pucks) up to the maximum distance of 0.5m. Each
robot is equipped with a four-bit compass with noise
added. Robots have a binary sensor that detects position
within the home-region. False negatives are returned with
probability P−

HR and false positives with probability P+
HR.

Each of the robots also has a binary sensor to detect the
presence of a puck within the scoop, but which gives
false negatives with probability P−

scoop and false positives
with probability P+

scoop. Robots are unable to detect pucks
at a distance. See Table II for complete details of noise
models.

B. Controllers

Two controllers were implemented, both used the
same low-level obstacle avoidance, odometry integration
and sensor smoothing code.

1) Homogeneous foraging: The implementation com-
prises three states. The first, called searching, is active
while the robot seeks a puck. When a puck is detected,
this triggers homing which moves the robot toward the
home region using the compass (a priori known to
be North-East). This homing strategy works without
requiring localization information on the robots. Once
over the home region, the robot enters an exiting state in
which it reverses briefly allowing the puck to leave the
scoop. The robot performs a random turn, and navigates
away from the home region (using the compass) for
some random time (described with parameter T ). The
robot then transitions to the searching state. This simple
controller means that if any robot fails, it is simply
ignored by others.

2) Parametrized bucket brigading: The controller
uses three states: searching, homing, and returning. The
key difference is in the use of integrated odometric data.
The controller is parametrized by D, the radius of each
robot’s sub-region within odometric space (in meters).
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Fig. 3. Performance of parametrized bucket brigading controller across system sizes. Top half of figure (five plots) gives data on low puck
density case (0.781 pucks/m2), bottom half the high density case (3.125 pucks/m2). Two large plots on the left give performance (number of
pucks foraged after 2000s) for robot groups ranging from 10 to 500 robots. Medium sized plots on the right give performance per robot for
each of the D parameters. The size small plots, three along the top and three along the bottom, give time series data for 100, 250 and 400
robots. All data are averages of 5 independent runs, error bars show one standard deviation. Homogeneous foraging has T ∼ Uniform(10, 40).
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Parameter Value Comment
dist ret = (1 + ξ d) dist truth + ηd + ζd Radial range reading returned after corrupted by noise

dist truth True distance between robot and obstacle

ξd ∼ N(0, 0.022) Multiplicative noise, drawn each time step

ηd ∼ N(0, 0.052) Noise (in meters) drawn for each sensor reading

ζd ∼ N(0, 0.052) Per ray bias, drawn for each ray at initialization time

comp∠ ret = comp∠ truth + ηc + ζc The compass bearing returned after corrupted by noise in degrees

comp∠ truth True angle between robot and magnetic North

ηc ∼ N(0, 15.02) Noise (in degrees) drawn for each sensor reading

ζc ∼ N(0, 2.02) Per robot bias, drawn at initialization time

P−
HR 0.15 Probability for a home region detector false negative

P+
HR 0.08 Probability for a home region detector false positive

P−
scoop 0.05 Probability for a puck scoop false negative

P+
scoop 0.05 Probability for a puck scoop false positive

TABLE II

SIMULATED SENSOR PARAMETERS

The searching state randomly explores the arena, but
once outside the disk of radius D (calculated from
odometric data), the controller transitions to returning
state. If a puck is found within the bounds of the sub-
region, the homing state is triggered. The returning state
navigates the robot back to a position within the sub-
region. Our implementation is conservative, ensuring that
the robot is within the disk of radius D/2 before transi-
tioning to searching. The homing state simply moves the
robot toward the home region. If the robot detects that it
is over the home region, the puck is deposited identically
as in homogeneous foraging; if the robot exits the D-
disk, the puck is deposited and returning commences.
Thus, bucket brigading with D = ∞ corresponds to the
homogeneous controller.

Robots have only ṙc and θ̇c values (and neither ṙ
nor θ̇) so the odometric estimates of each robot’s sub-
region drifts over time. Figure 1 shows the effect of this
drift (for a single robot) and how this compares with
homogeneous foraging. Since all robots’ estimates are
drifting, the regions themselves perform (slow) indepen-
dent random walks over the arena. This has the added
effect of ensuring coverage of otherwise neglected areas
(and adds robustness in the case of robot failures).

C. Experimental Design

1) Experiment 1: Effect of return time: An initial
experiment was conducted to compare the effect of
different return time on performance of the homoge-
neous controller. We simulated two parameter values:

T ∼ Uniform(10, 40) and T ∼ Uniform(20, 80),
and considered puck densities of 0.781 pucks/m2 and
3.125 pucks/m2 (corresponding to 3, 200 and 12, 800
total pucks, respectively). Experiments considered robot
group sizes from 10 to 500 robots in increments of 10.
Five trials were run of each case.

2) Experiment 2: Effect of parameter D:
We simulated bucket brigading with D values
{5m, 10m, 20m, 30m, 40m, 50m}, which is a wide
range of values considering that the arena was 64m
across (these values must always be interpreted relative
to the size of the environment). Again we considered
group sizes from 10 to 500 robots in increments of 10,
and low and high puck density conditions.

IV. RESULTS

A. Experiment 1

Figure 2 shows the measured performance for Experi-
ment 1. Each data point is the mean of five trial runs; the
error bars show a single standard deviation. As might be
expected, the larger mean T values result in decreased
performance. Mean T is doubled, but the performance
effect is limited. We conclude that the T parameter has
a limited effect on the qualitative characteristics of the
performance curve.

B. Experiment 2

Results from Experiment 2 are displayed in Figure 3.
The plots show the collective foraging performance for
a range of D values; homogeneous foraging is also
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shown for reference purposes. The two large plots give
collective performance across the range of robot system
sizes. The six surrounding smaller plots show time-series
data for systems with 100 robots (left two), 250 robots
(middle two), and 400 robots (right two). The upper plots
are for a low puck density; the lower plots have a higher
(by a factor of four times) puck density.

These graphs display several results. Bucket brigading
is shown to be more sensitive to puck densities than
homogeneous foraging. The robots must have sufficient
probability of finding another puck in order to drop
one at a neighbor’s sub-region. This effect depends on
puck density, and the minimalist nature of the simulated
robots, specifically the lack of puck sensing at a distance,
requires higher densities than found elsewhere (e.g.,
Goldberg [4]). Bucket brigading (especially with small
D) has gradual performance increases, and is inefficient
with few robots, where for example disks of radius D
may be insufficient to cover the arena.

With increasing D values the bucket brigading con-
troller approaches the performance of the homogeneous
controller (which is D = ∞, and as the findings of
experiment 1 suggest, an exact correspondence with a
matching T value is unnecessary). This is as expected as
it was anticipated during the design of the parametrized
controller. What is unexpected, however, is that even
large D values (40m is large, relative to the size of the
arena) can have a marked interference-reducing effect.
For large D values, several robots will still attempt to
transport a puck toward the home region, but they do not
remain in the crowded region as long as homogeneous
robots. We believe that this because, as can be seen in
Figure 1, odometric drift forces some robots to yield,
having believed to have passed outside the radius D disk.
The drift is exacerbated around the crowded home region
because much time is spent turning in place. In physical
robots, such turns often distort the odometric frame
of reference negatively, which is faithfully reproduced
in our simulation. This factor appears to be sufficient
to break deadlocks within groups of otherwise greedy
robots crowding the home region and areas surrounding
it.

For each value of D, the width of the performance
curve depends on puck density. Zhang and Vaughan
[13] provide an excellent discussion of the significance
of general performance versus population curves. For
a given minimum performance level, they interpret the
width (i.e., where the curve intersects line of constant
performance) as the range of robot groups sizes that
can achieve the task with at least the given performance.
Greater width can be useful when wanting to deploy a

system with some redundancy. A trade-off is apparent
in Figure 3; in choosing the D parameter value one
can either have high performance with few robots, or
consistent performance across a range of medium to
large numbers of robots. In the latter case, performance
depends critically on the puck density. A value like
D = 30m seems like a good compromise: steep initial
slope for between 10 and 100 robots, but gradually
decreasing performance beyond the optimal number.

The time series plots in Figure 3, particularly for
450 robots, show an initial rate of puck delivery that
is unsustainable. The initially steep performance graph
flattens out after approximately 200 seconds. This occurs
because, initially, the robots are randomly placed within
the environment. When early pucks are delivered, there
is little interference, because few robots have arrived
at the home region. Later deliveries must face exiting
robots, and if there are sufficient robots, overcrowding
results in a traffic jam scenario. This is the reason for the
performance curves flattening with increasing numbers.

V. LIMITATIONS AND FUTURE WORK

There are limits to the applicability of bucket brigad-
ing (or more generally DP arbitration). If the cost of
picking up or dropping pucks is significant, for example,
when precision manipulation is required, then bucket
brigading may not be suitable. Interference problems in
large-scale multi-robot systems remains significant and
further solutions are required.

Our study, like Goldberg [4], considers an open arena
in order to study interference caused solely by other
robots. Østergaard et al. [8] considered the role of a
complex environment which can result in high-density
choke points. Additional work is necessary to study non-
deterministic and dynamic environments.

Future work will consider significance in the rate
of odometric drift in the bucket brigading controller
because this affects the “mixing” of sub-regions that
occurs.

VI. SUMMARY AND CONCLUSION

This paper is an empirical study of physical interfer-
ence in large-scale multi-robot systems within the forag-
ing task domain. We defined a parametrized controller
that reproduces both homogeneous and bucket brigading
strategies. By exploring the parameter space between
these two known strategies, we were able evaluate impor-
tance of spatial sub-division in mitigating performance
reducing interference. Simulation experiments sample
the strategy continuum across varying numbers of robots
(up to hundreds of robots) and differing puck densities.
The data suggest that treating strategies as different in
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degree, rather than of different types, allows for interme-
diate controllers that posses desirable performance and
robustness properties. We highlight the necessary trade-
offs.
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