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Abstract

These informal notes deal with some very basic objects in functional

analysis, including norms and seminorms on vector spaces, bounded linear

operators, and dual spaces of bounded linear functionals in particular.
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1 Norms on vector spaces

Let V be a vector space over the real numbers R or the complex numbers C.
A norm on V is a nonnegative real-valued function ‖v‖ defined for v ∈ V such
that

‖v‖ = 0(1.1)

if and only if v = 0,
‖t v‖ = |t| ‖v‖(1.2)

for every v ∈ V and t ∈ R or C, as appropriate, and

‖v + w‖ ≤ ‖v‖ + ‖w‖(1.3)

for every v, w ∈ V . Here |t| is the absolute value of t when t ∈ R, and the
modulus of t when t ∈ C. For example, if V is the one-dimensional vector space
R or C, then the absolute value or modulus defines a norm on V , and every
norm on V is a positive multiple of this norm.

More generally, let n be a positive integer, and let V be the space Rn or
Cn of n-tuples v = (v1, . . . , vn) of real or complex numbers. As usual, this is a
vector space with respect to coordinatewise addition and scalar multiplication.
The standard Euclidean norm on V is given by

‖v‖ =
( n∑

j=1

|vj |
2
)1/2

.(1.4)

It is well-known that this is a norm, although the triangle inequality (1.3) is not
immediately obvious. A couple of ways to show the triangle inequality in this
case will be reviewed in the next sections.

It is easy to see directly that

‖v‖1 =

n∑

j=1

|vj |(1.5)

satisfies the triangle inequality. Hence ‖v‖1 defines a norm on Rn, Cn. Similarly,

‖v‖∞ = max(|v1|, . . . , |vn|)(1.6)
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defines a norm on Rn, Cn. The standard Euclidean norm on Rn, Cn is some-
times denoted ‖v‖2.

If ‖v‖ is a norm on a real or complex vector space V , then

d(v, w) = ‖v − w‖(1.7)

defines a metric on V . For instance, the standard Euclidean metric on Rn or Cn

is the same as the metric associated to the standard Euclidean norm in this way.
The metrics on Rn or Cn associated to the norms ‖v‖1, ‖v‖∞ determine the
same topology as the standard Euclidean metric, and we shall say more about
this soon. The main point is that ‖v‖1, ‖v‖2, and ‖v‖∞ are equivalent norms

on Rn and Cn for each positive integer n, in the sense that each is bounded by
constant multiples of the others.

2 Convexity

Let V be a real or complex vector space. As usual, a set E ⊆ V is said to be
convex if for every x, y ∈ E and real number t with 0 < t < 1, we have that

t x+ (1 − t) y(2.1)

is also an element of E. If ‖v‖ is a norm on V , then the closed unit ball

B1 = {v ∈ V : ‖v‖ ≤ 1}(2.2)

is a convex set in V . Similarly, the open unit ball

{v ∈ V : ‖v‖ < 1}(2.3)

is also a convex set in V .
Conversely, suppose that ‖v‖ is a nonnegative real-valued function on V

which is positive when v 6= 0 and satisfies the homogeneity condition (1.2). If
the corresponding closed unit ball B1 is convex, then one can check that ‖v‖
satisfies the triangle inequality, and is thus a norm. For if v, w are nonzero
vectors in V , then

v′ =
v

‖v‖
, w′ =

w

‖w‖
(2.4)

have norm 1, and the convexity of B1 implies that

‖v‖

‖v‖ + ‖w‖
v′ +

‖w‖

‖v‖ + ‖w‖
w′(2.5)

has norm less than or equal to 1. Equivalently,

v + w

‖v‖ + ‖w‖
∈ B1,(2.6)

which implies (1.3).
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Let n be a positive integer, let p be a positive real number, and consider

‖v‖p =
( n∑

j=1

|vj |
p
)1/p

(2.7)

for v ∈ Rn or Cn. This is the same as the standard Euclidean norm when
p = 2, and is easily seen to be a norm when p = 1, as in the previous section.
Let us check that the closed unit ball associated to ‖v‖p is convex when p > 1,
so that ‖v‖p defines a norm in this case. This does not work for p < 1, even
when n = 2.

Suppose that v, w ∈ Rn or Cn satisfy ‖v‖p, ‖w‖p ≤ 1, which is the same as

n∑

j=1

|vj |
p,

n∑

j=1

|wj |
p ≤ 1.(2.8)

If p ≥ 1 and 0 < t < 1, then

|t vj + (1 − t)wj |
p ≤ (t |vj | + (1 − t) |wj |)

p ≤ t |vj |
p + (1 − t) |wj |

p(2.9)

for each j, because of the convexity of the function f(x) = xp on the positive
real numbers. Summing over j, we get that

n∑

j=1

|t vj + (1 − t)wj |
p ≤ t

n∑

j=1

|vj |
p + (1 − t)

n∑

j=1

|wj |
p ≤ 1.(2.10)

This implies that
‖t v + (1 − t)w‖p ≤ 1,(2.11)

as desired.

3 Inner product spaces

An inner product on a real or complex vector space V is a real or complex-valued
function 〈v, w〉 defined for v, w ∈ V , as appropriate, which satisfies the following
conditions. First, 〈v, w〉 is linear as a function of v for each w ∈ V . Second,

〈w, v〉 = 〈v, w〉(3.1)

for every v, w ∈ V in the real case, while

〈w, v〉 = 〈v, w〉(3.2)

in the complex case. Here z denotes the complex conjugate of z ∈ C, defined
by

z = x− y i(3.3)
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when z = x + y i and x, y ∈ R. It follows from this symmetry condition that
〈v, w〉 is linear in w in the real case, and conjugate-linear in w in the complex
case. It also follows that

〈v, v〉 ∈ R(3.4)

for every v ∈ V , even in the complex case. The third requirement of an inner
product is that

〈v, v〉 > 0(3.5)

for every v ∈ V with v 6= 0, and of course the inner product is equal to 0 when
v = 0.

If 〈v, w〉 is an inner product on V , then the Cauchy–Schwarz inequality states
that

|〈v, w〉| ≤ 〈v, v〉1/2 〈w,w〉1/2(3.6)

for every v, w ∈ V . Because of homogeneity, it suffices to show that

|〈v, w〉| ≤ 1(3.7)

when
〈v, v〉 = 〈w,w〉 = 1,(3.8)

since the inequality is trivial when v or w is 0. To do this, one can use the fact
that

〈v + t w, v + t w〉 ≥ 0(3.9)

for every t ∈ R or C, and expand the inner product to estimate 〈v, w〉.
The norm on V associated to the inner product is defined by

‖v‖ = 〈v, v〉1/2.(3.10)

This clearly satisfies the positivity and homogeneity requirements of a norm. In
order to verify the triangle inequality, one can use the Cauchy–Schwarz inequal-
ity to get that

‖v + w‖2 = 〈v + w, v + w〉(3.11)

= 〈v, v〉 + 〈v, w〉 + 〈w, v〉 + 〈w,w〉

≤ ‖v‖2 + 2 ‖v‖ ‖w‖+ ‖w‖2 = (‖v‖ + ‖w‖)2

for every v, w ∈ V .
The standard inner product on Rn is defined by

〈v, w〉 =

n∑

j=1

vj wj .(3.12)

Similarly, the standard inner product on Cn is defined by

〈v, w〉 =

n∑

j=1

vj wj .(3.13)

The corresponding norms are the standard Euclidean norms.
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4 A few simple estimates

Observe that
‖v‖∞ ≤ ‖v‖p(4.1)

for each v ∈ Rn or Cn and p > 0. If 0 < p < q <∞, then

n∑

j=1

|vj |
q ≤ ‖v‖q−p

∞

n∑

j=1

|vj |
p(4.2)

for every v ∈ Rn or Cn, and hence

‖v‖q ≤ ‖v‖1−(p/q)
∞ ‖v‖p/q

p ≤ ‖v‖p.(4.3)

Thus ‖v‖p is monotone decreasing in p.
In the other direction,

‖v‖p ≤ n1/p ‖v‖∞(4.4)

for each v ∈ Rn or Cn and p > 0. If 0 < p < q <∞, then

‖v‖p ≤ n(1/p)−(1/q) ‖v‖q.(4.5)

To see this, remember that f(x) = xr is a convex function of x ≥ 0 when r ≥ 1,
so that ( 1

n

n∑

j=1

aj

)r

≤
1

n

n∑

j=1

ar
j(4.6)

for any nonnegative real numbers a1, . . . , an. Applying this with r = q/p, we
get that

( 1

n

n∑

j=1

|vj |
p
)q/p

≤
1

n

n∑

j=1

|vj |
q,(4.7)

or ( 1

n

n∑

j=1

|vj |
p
)1/p

≤
( 1

n

n∑

j=1

|vj |
q
)1/q

,(4.8)

as desired.
The fact that

‖v‖1 ≤ ‖v‖p(4.9)

when 0 < p < 1 and n = 2 can be re-expressed as

(a+ b)p ≤ ap + bp(4.10)

for every a, b ≥ 0. It follows that

n∑

j=1

|vj + wj |
p ≤

n∑

j=1

|vj |
p +

n∑

j=1

|wj |
p(4.11)

for every v, w ∈ Rn or Cn when 0 < p < 1, and hence

‖v + w‖p
p ≤ ‖v‖p

p + ‖w‖p
p.(4.12)

This is a natural substitute for the triangle inequality in this case.
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5 Summable functions

Let E be a nonempty set, and let f(x) be a nonnegative real-valued function
on E. If E has only finitely many elements, then the sum

∑

x∈E

f(x)(5.1)

is defined in the usual way. Otherwise, (5.1) is defined to be the supremum of

∑

x∈E1

f(x)(5.2)

over all finite subsets E1 of E, which may be +∞. If there is a finite upper bound
for the subsums (5.2), so that (5.1) is finite, then we say that f is summable on
E. Note that f is summable on E if there is a nonnegative summable function
F on E such that f(x) ≤ F (x) for every x ∈ E.

If f1, f2 are nonnegative functions on E, then

∑

x∈E

(f1(x) + f2(x)) =
∑

x∈E

f1(x) +
∑

x∈E

f2(x).(5.3)

This is easy to see, with the standard convention that

a+ ∞ = ∞ + a = ∞, 0 ≤ a ≤ ∞.(5.4)

In particular, f1 + f2 is summable on E when f1 and f2 are summable on E.
Similarly, if f is a nonnegative function on E and t ≥ 0, then

∑

x∈E

t f(x) = t
∑

x∈E

f(x).(5.5)

This uses the conventions that t · ∞ = ∞ when t > 0, and 0 · ∞ = 0.
A real or complex-valued function f on E is said to be summable on E

if |f(x)| is summable on E. It follows from the previous remarks that the
summable functions on E form a linear subspace of the vector space of real or
complex-valued functions on E, with respect to pointwise addition and scalar
multiplication. If f is a summable function on E and ǫ > 0, then the set

Eǫ(f) = {x ∈ E : |f(x)| ≥ ǫ}(5.6)

has only finitely many elements, and hence

E(f) = {x ∈ E : f(x) 6= 0}(5.7)

has only finitely or countably many elements. More precisely,

|Eǫ(f)| ≤
1

ǫ

∑

x∈E

|f(x)|,(5.8)
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where |Eǫ(f)| denotes the number of elements of Eǫ(f).
If f is a real or complex-valued summable function on E, then the sum (5.1)

can be defined in various equivalent ways. One way is to express f as a linear
combination of nonnegative summable functions, and then use the definition of
the sum in that case. Another way is to enumerate the elements of E(f) in a
sequence, and treat the sum as an infinite series. A basic property of the sum
is that ∣∣∣∣

∑

x∈E

f(x)

∣∣∣∣ ≤
∑

x∈E

|f(x)|(5.9)

for any summable function f on E. As usual, the sum of a summable function
is also linear in the function.

6 p-Summable functions

Let E be a nonempty set, and let p be a positive real number. A real or complex-
valued function f on E is said to be p-summable if |f(x)|p is a summable function
on E. Thus p-summability is the same as summability when p = 1. One can
check that the spaces

ℓp(E,R), ℓp(E,C)(6.1)

of p-summable real and complex-valued functions on E are linear subspaces of
the vector spaces of all such functions on E. This can be extended to p = ∞ by
taking ℓ∞(E,R), ℓ∞(E,C) to be the spaces of bounded real and complex-valued
functions on E.

If f is a p-summable function on E for some p, 0 < p <∞, then we put

‖f‖p =
( ∑

x∈E

|f(x)|p
)1/p

.(6.2)

Here the sum over E is defined to be the supremum over all finite subsums, as
in the previous section. Similarly, if f is a bounded function on E, then we put

‖f‖∞ = sup{|f(x)| : x ∈ E}.(6.3)

It is easy to see that
‖f1 + f2‖p ≤ ‖f1‖p + ‖f2‖p(6.4)

when f1, f2 ∈ ℓp(E,R) or ℓp(E,C) and 1 ≤ p ≤ ∞, so that ‖f‖p defines a
norm on these spaces in this case. This is quite straightforward when p = 1,∞,
and can be obtained from the corresponding statement for finite sums when
1 < p <∞. If 0 < p < 1 and f1, f2 are p-summable functions on E, then

‖f1 + f2‖
p
p ≤ ‖f1‖

p
p + ‖f2‖

p
p.(6.5)

This can be derived using the same argument as for finite sums.
If f is p-summable, 0 < p <∞, then f is bounded, and

‖f‖∞ ≤ ‖f‖p.(6.6)
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Moreover, f is q-summable for each q > p, and

‖f‖q ≤ ‖f‖p.(6.7)

This can be shown in the same way as for finite sums.
A function f on E is said to “vanish at infinity” if for each ǫ > 0 there are

only finitely many x ∈ E such that |f(x)| ≥ ǫ. The spaces

c0(E,R), c0(E,C)(6.8)

of real and complex-valued functions vanishing at infinity on E are linear sub-
spaces of the corresponding spaces of bounded functions on E. These are proper
linear subspaces when E has infinitely many elements, and otherwise every func-
tion on E is bounded and vanishes at infinity when E has only finitely many
elements. As in the previous section, p-summable functions vanish at infinity
for each 0 < p <∞.

7 p = 2

It is well known that

a b ≤
a2 + b2

2
(7.1)

for every a, b ≥ 0, since

0 ≤ (a− b)2 = a2 − 2 a b+ b2.(7.2)

If f1, f2 are square-summable functions on a nonempty set E, then it follows
that

|f1(x)| |f2(x)| ≤
|f1(x)|2

2
+

|f2(x)|2

2
(7.3)

for every x ∈ E, and hence

∑

x∈E

|f1(x)| |f2(x)| ≤
1

2

∑

x∈E

|f1(x)|
2 +

1

2

∑

x∈E

|f2(x)|
2 <∞.(7.4)

This implies that the product f1(x) f2(x) is summable on E. Alternatively, one
can get the same conclusion using the Cauchy–Schwarz inequality for finite sums
to show that

∑

x∈E

|f1(x)| |f2(x)| ≤
( ∑

x∈E

|f1(x)|
2
)1/2 ( ∑

x∈E

|f2(x)|
2
)1/2

.(7.5)

At any rate, this permits us to define an inner product on ℓ2(E,R) by

〈f1, f2〉 =
∑

x∈E

f1(x) f2(x),(7.6)

10



and on ℓ2(E,C) by

〈f1, f2〉 =
∑

x∈E

f1(x) f2(x).(7.7)

These are basically the same as the standard inner products on Rn and Cn

when E is a finite set with n elements. The norms associated to these inner
products are the same as ‖f‖2 defined in the previous section.

8 Bounded continuous functions

Let X be a topological space, and let

Cb(X,R), Cb(X,C)(8.1)

be the spaces of bounded continuous real or complex-valued functions on X . As
usual, these are vector spaces with respect to pointwise addition and scalar mul-
tiplication. If X is compact, then every continuous function on X is bounded,
and we may drop the subscript b. The supremum norm of a bounded continuous
function f is defined by

‖f‖∞ = sup{|f(x)| : x ∈ X}.(8.2)

It is easy to see that this defines a norm on these vector spaces. Of course,
constant functions on X are automatically bounded and continuous. If X is
equipped with the discrete topology, then every function on X is continuous.

Locally compact Hausdorff spaces form a nice class of topological spaces. If
X is such a space, K ⊆ X is compact, and V ⊆ X is an open set with K ⊆ V ,
then it is well known that there is a continuous real-valued function f on X
such that

f(x) = 1(8.3)

when x ∈ K,
f(x) = 0(8.4)

when x ∈ X\V , and
0 ≤ f(x) ≤ 1(8.5)

for every x ∈ X . In particular, there are plenty of bounded continuous functions
on X in this case.

A continuous function f on X is said to “vanish at infinity” if for every ǫ > 0
there is a compact set K ⊆ X such that

|f(x)| < ǫ(8.6)

for every x ∈ X\K. If X is equipped with the discrete topology, then the
compact subsets of X are the same as the finite sets, and this definition reduces
to the previous one in the context of summable functions. For any X , the space
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of real or complex-valued continuous functions on X that vanish at infinity may
be denoted

C0(X,R), C0(X,C).(8.7)

It is easy to see that these are linear subspaces of the corresponding spaces of
bounded continuous functions on X , since continuous functions are bounded on
compact sets. If X is compact, then every continuous function on X vanishes
at infinity trivially.

The support of a continuous function f on X is the closure of the set where
f 6= 0, i.e.,

supp f = {x ∈ X : f(x) 6= 0}.(8.8)

The spaces of real or complex-valued continuous functions on X with compact
support may be denoted

C00(X,R), C00(X,C).(8.9)

These are linear subspaces of the corresponding spaces of continuous functions
on X that vanish at infinity, and are the same as the spaces of all continuous
functions on X when X is compact. There are a lot of continuous functions
with compact support on locally compact Hausdorff spaces, as before.

9 Integral norms

Let f be a continuous real or complex-valued function on the closed unit interval
[0, 1] in the real line. For each positive real number p, put

‖f‖p =
(∫ 1

0

|f(x)|p dx
)1/p

.(9.1)

This obviously satisfies the triangle inequality when p = 1, and one can show
that it also holds for p > 1 using the same argument as for finite sums. Thus
‖f‖p defines a norm on the vector space of continuous functions on [0, 1] when
p ≥ 1. If 0 < p < 1, then

‖f1 + f2‖
p
p ≤ ‖f1‖

p
p + ‖f2‖

p
p(9.2)

for all continuous functions f1, f2 on [0, 1]. We also have that

‖f‖p ≤ ‖f‖∞(9.3)

for each continuous function f on [0, 1] and every p > 0, where ‖f‖∞ is the
supremum norm of f , as in the previous section. If 0 < p < q < ∞, then one
can check that

‖f‖p ≤ ‖f‖q,(9.4)

using convexity as in Section 4.
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Now let f be a continuous real or complex-valued function on the real line
with compact support. For each p > 0, consider

‖f‖p =
(∫ ∞

−∞

|f(x)|p dx
)1/p

.(9.5)

More precisely, the integral here can be reduced to one on a bounded interval,
since f has compact support. As before, this defines a norm on the vector space
of continuous functions on R with compact support when p ≥ 1, and satisfies
the usual substitute for the triangle inequality when 0 < p < 1. However, ‖f‖p

is normally neither monotone increasing nor decreasing in p in this case.
If p = 2, then these norms associated to suitable inner products. On the

unit interval, these inner products are given by

〈f1, f2〉 =

∫ 1

0

f1(x) f2(x) dx(9.6)

in the real case, and

〈f1, f2〉 =

∫ 1

0

f1(x) f2(x) dx(9.7)

in the complex case. The inner products on continuous functions with compact
support on R are defined similarly.

Of course, there are analogous norms and inner products for other situations
in which integration is defined. This includes sums over discrete sets as another
special case.

10 Completeness

Remember that a metric space (M,d(x, y)) is said to be complete if every Cauchy
sequence in M converges to an element of M . If M is complete and N ⊆ M ,
then N is complete with respect to the restriction of d(x, y) to x, y ∈ N if and
only if N is a closed set in M .

Let V be a real or complex vector space equipped with a norm and hence a
metric, as in Section 1. If V is complete with respect to this metric, then V is
said to be a Banach space. If the norm is also associated to an inner product,
then V is said to be a Hilbert space.

It is well known that the real line is complete with respect to the standard
metric, and that consequently Rn and Cn are complete for each n. One can use
this to show that the ℓp(E) spaces are complete with respect to the p-norm ‖f‖p

for every nonempty set E and 1 ≤ p ≤ ∞. For if {fj}
∞
j=1 is a Cauchy sequence

of functions on E with respect to the p-norm for some p, then {fj(x)}∞j=1 is a
Cauchy sequence of real or complex numbers for each x ∈ E. Hence {fj}∞j=1

converges pointwise to a function f on E, and one can use the fact that the
norms ‖fj‖p are uniformly bounded in j to show that f ∈ ℓp(E). Using the
Cauchy condition for {fj}∞j=1 in ℓp(E), one can also show that {fj}∞j=1 converges
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to f in ℓp(E). Similarly, ℓp(E) is complete when 0 < p < 1, with respect to the
metric

‖f1 − f2‖
p
p.(10.1)

In addition, one can check that c0(E) is a closed subspace of ℓ∞(E), and is thus
complete with respect to the supremum norm.

The space Cb(X) of bounded continuous functions on any topological spaceX
is complete with respect to the supremum norm. As in the previous paragraph,
one can first show that a Cauchy sequence in Cb(X) converges pointwise, and
then use the Cauchy condition with respect to the supremum norm to check
that the sequence converges uniformly, and that the limit is also bounded and
continuous. The space C0(X) of continuous functions that vanish at infinity on
X is a closed subspace of Cb(X), and hence also complete with respect to the
supremum norm. However, the space of continuous functions on the unit interval
is not complete with respect to the integral norm ‖f‖p for any p, 1 ≤ p < ∞,
nor with respect to the metric ‖f1 − f2‖p

p when 0 < p < 1. The completions of
these spaces can be described in terms of the Lebesgue integral.

11 Bounded linear mappings

Let V and W be vector spaces, both real or both complex, and equipped with
norms ‖ · ‖V , ‖ · ‖W , respectively. A linear mapping T : V → W is said to be
bounded if there is an A ≥ 0 such that

‖T (v)‖W ≤ A ‖v‖V(11.1)

for every v ∈ V . It is easy to see that every linear mapping is bounded when V
is Rn or Cn for some positive integer n. If V = W with the same norm, then
the identity mapping I(v) = v is bounded, with A = 1.

If T is a linear mapping from V into W that satisfies (11.1), then

‖T (v1) − T (v2)‖W ≤ A ‖v1 − v2‖V(11.2)

for every v1, v2 ∈ V , and it follows that T : V → W is uniformly continuous.
Conversely, if a linear mapping T : V → W is continuous at the origin, then it
is bounded. For if there is a δ > 0 such that

‖T (v)‖W < 1(11.3)

when v ∈ V satisfies ‖v‖V < δ, then (11.1) holds with A = 1/δ.
A linear mapping from a real or complex vector space V into the real or

complex numbers, as appropriate, is also known as a linear functional on V .
A linear functional on a vector space V with a norm ‖ · ‖V is bounded if it is
bounded with respect to the standard norm on R or C.

Remember that the kernel of a linear mapping T : V → W is the linear
subspace of V consisting of the v ∈ V such that T (v) = 0. By continuity, the
kernel of a bounded linear mapping is a closed subspace of V . Conversely, one
can show that a linear functional on V is bounded when its kernel is closed.

14



12 Continuous extensions

Let (M,d(x, y)) and (N, ρ(u, v)) be metric spaces. If N is complete, then every
uniformly continuous mapping from a dense subset of M into N has a unique
extension to a uniformly continuous mapping from M into N . Ordinary con-
tinuity is sufficient for uniqueness of the extension, but uniform continuity is
needed for its existence.

Now let V and W be vector spaces, both real or both complex, and equipped
with norms. If W is complete, then every bounded linear mapping from a
dense linear subspace of V into W has a unique extension to a bounded linear
mapping from V into W . Bounded linear mappings are automatically uniformly
continuous, as in the previous section, and the remaining point to check is that
the extension is also linear in this case. One can use the same constant A as in
(11.1) for the extension as for the initial mapping too.

For example, let E be an infinite set, and let V be the space of real or
complex-valued summable functions on E. It is easy to see that the space of
functions f on E such that f(x) 6= 0 for only finitely many x ∈ E is dense in
ℓ1(E) with respect to the ℓ1 norm. For each f in this subspace, the sum

∑

x∈E

f(x)(12.1)

can be defined in the obvious way, and satisfies

∣∣∣∣
∑

x∈E

f(x)

∣∣∣∣ ≤
∑

x∈E

|f(x)| = ‖f‖1.(12.2)

Hence there is a unique extension of (12.1) to a bounded linear functional on
ℓ1(E). This gives another approach to the definition of the sum of a summable
function, as in Section 5.

13 Bounded linear mappings, 2

Let V and W be vector spaces, both real or both complex. The space L(V,W )
of linear mappings from V into W is also a vector space in a natural way, since
the sum of two linear mappings from V into W is also a linear mapping, as is
the product of a linear mapping with a real or complex number, as appropriate.
If V and W are equipped with norms ‖ · ‖V and ‖ · ‖W , respectively, then one
can check that the space BL(V,W ) of bounded linear mappings from V into W
is a linear subspace of L(V,W ).

The operator norm of a bounded linear mapping T : V →W is defined by

‖T ‖op = sup{‖T (v)‖W : v ∈ V, ‖v‖V ≤ 1}.(13.1)

Equivalently,
‖T (v)‖W ≤ ‖T ‖op ‖v‖V(13.2)
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for every v ∈ V , and ‖T ‖op is the smallest number with this property, which is
to say the smallest value of A for which (11.1) holds. It is easy to see that the
operator norm defines a norm on the vector space BL(V,W ). For example, if
V = W with the same norm, then the identity mapping I(v) = v has operator
norm equal to 1.

Suppose that V1, V2, and V3 are vector spaces, all real or all complex, and
equipped with norms. If T1 : V1 → V2 and T2 : V2 → V3 are bounded linear
mappings, then their composition T2 ◦ T1 : V1 → V3, defined by

(T2 ◦ T1)(v) = T2(T1(v)), v ∈ V,(13.3)

is also a bounded linear mapping. Moreover,

‖T2 ◦ T1‖op,13 ≤ ‖T1‖op,12 ‖T2‖op,23,(13.4)

where the subscripts indicate which spaces are involved in the operator norms.
If W is complete, then one can show that the space of bounded linear map-

pings from V into W is complete with respect to the operator norm. For if
{Tj}∞j=1 is a Cauchy sequence in BL(V,W ), then {Tj(v)}∞j=1 is a Cauchy se-
quence in W for each v ∈ V , and hence converges in W . The limit determines
a linear mapping T : V →W , and one can use the boundedness of the operator
norms of the Tj ’s to show that T is bounded too. Using the Cauchy condi-
tion again, one can show that {Tj}∞j=1 converges to T in the operator norm, as
desired.

14 Bounded linear functionals

Let V be a real or complex vector space equipped with a norm ‖ · ‖. As in
Section 11, a bounded linear functional on V is a bounded linear mapping from
V into the real or complex numbers, as appropriate. The dual space V ∗ of
bounded linear functionals is thus the same as BL(V,R) or BL(V,C), and the
dual norm ‖ · ‖∗ on V ∗ is defined to be the corresponding operator norm, using
the standard norm on R or C. In particular, V ∗ is automatically complete with
respect to the dual norm, as in the previous section.

Suppose that the norm ‖v‖ on V is associated to an inner product 〈v, w〉.
Each w ∈ V determines a linear functional λw on V , defined by

λw(v) = 〈v, w〉.(14.1)

The Cauchy–Schwarz inequality implies that λw is a bounded linear functional
on V , and that

‖λw‖∗ = ‖w‖.(14.2)

If V has finite dimension, then every linear functional on V is of the form λw

for some w ∈ V . If V is a Hilbert space, then every bounded linear functional
on V is of this form.
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To see this, let λ be a bounded linear functional on V , which we may as well
suppose is not identically equal to 0. Thus λ(z) = 1 for some z ∈ V , and we
can put

ρ = inf{‖z‖ : z ∈ V, λ(z) = 1}.(14.3)

Let {zj}∞j=1 be a sequence of elements of V such that λ(zj) = 1 for each j and

lim
j→∞

‖zj‖ = ρ.(14.4)

We would like to show that {zj}∞j=1 is a Cauchy sequence in V , and hence
converges when V is a Hilbert space. Because the norm is associated to an
inner product, we have the parallelogram law

∥∥∥
v + w

2

∥∥∥
2

+
∥∥∥
v − w

2

∥∥∥
2

=
‖v‖2

2
+

‖w‖2

2
(14.5)

for every v, w ∈ V . We want to apply this to terms of the sequence in order to
show that

‖zj − zl‖ → 0 as j, l → ∞.(14.6)

For each j, l ≥ 1, λ(zj) = λ(zl) = 1, which implies that

λ
(zj + zl

2

)
= 1,(14.7)

and hence ∥∥∥
zj + zl

2

∥∥∥ ≥ ρ.(14.8)

Using the parallelogram law, this implies in turn that

ρ2 +
∥∥∥
zj − zl

2

∥∥∥
2

≤
‖zj‖2

2
+

‖zl‖2

2
.(14.9)

It follows that {zj}∞j=1 is a Cauchy sequence, since ‖zj‖, ‖zl‖ → ρ as j, l → ∞.
Assuming that V is a Hilbert space, we get that {zj}

∞
j=1 converges to an

element z of V . By construction, λ(z) = 1, and ‖z‖ = ρ is minimal among
vectors with this property. If v ∈ V is in the kernel of λ, so that λ(v) = 0, then
v is orthogonal to z, which is to say that

〈v, z〉 = 0.(14.10)

This is because
λ(z + t v) = 1(14.11)

for every t ∈ R or C, as appropriate, and hence

‖z + t v‖ ≥ ‖z‖(14.12)

by minimality, which implies orthogonality, as in calculus. If w = z/‖z‖2, then
it follows that

λ(v) = 〈v, w〉 = λw(v)(14.13)

for every v ∈ V , as desired.
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15 ℓ1(E)∗

Let E be a nonempty set, and let h be a bounded real or complex-valued function
on E. If f is a summable function on E, then f h is a summable function on E,
and we can put

λh(f) =
∑

x∈E

f(x)h(x).(15.1)

This defines a bounded linear functional on ℓ1(E), since

|λh(f)| ≤
∑

x∈E

|f(x)| |h(x)| ≤ ‖h‖∞ ‖f‖1.(15.2)

For each y ∈ E, let δy be the function on E defined by δy(x) = 0 when x 6= y
and δy(y) = 1. Thus ‖δy‖1 = 1 and

λh(δy) = h(y)(15.3)

for each y ∈ E, and one can use this to show that

‖λh‖1,∗ = ‖h‖∞,(15.4)

where ‖ · ‖1,∗ denotes the dual norm with respect to the norm ‖f‖1 on ℓ1(E).
Conversely, suppose that λ is a bounded linear functional on ℓ1(E). For each

y ∈ E, put
h(y) = λ(δy).(15.5)

Thus
|h(y)| ≤ ‖λ‖1,∗(15.6)

for each y ∈ E, since ‖δy‖1 = 1. Equivalently, h is bounded on E, and

‖h‖∞ ≤ ‖λ‖1,∗.(15.7)

It remains to show that λ = λh as linear functionals on ℓ1(E).
More precisely, we want to show that for each f ∈ ℓ1(E),

λ(f) = λh(f)(15.8)

If f(x) 6= 0 for only finitely many x ∈ E, then f is a linear combination of
finitely many δy’s, and this holds by linearity. Because these functions are
dense in ℓ1(E), the same conclusion holds for every f ∈ ℓ1(E), by continuity.

16 c0(E)∗

Let E be a nonempty set, and let h be a summable real or complex-valued
function on E. If f is a bounded function on E, then f h is a summable function
on E, and we can put

λh(f) =
∑

x∈E

f(x)h(x).(16.1)
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This defines a bounded linear functional on ℓ∞(E), since

|λh(f)| ≤
∑

x∈E

|f(x)| |h(x)| ≤ ‖h‖1 ‖f‖∞.(16.2)

If we choose f so that ‖f‖∞ = 1 and

f(x)h(x) = |h(x)|(16.3)

for each x ∈ E, then
λh(f) = ‖h‖1,(16.4)

at it follows the dual norm of λh on ℓ∞(E) is equal to ‖h‖1.
We can also restrict λh to a bounded linear functional on c0(E) with dual

norm less than or equal to ‖h‖1. If E1 ⊆ E has only finitely many elements,
then we can choose a function f on E such that f(x) = 0 on E\E1, ‖f‖∞ = 1,
and (16.3) holds on E1. Thus f ∈ c0(E) and

λh(f) =
∑

x∈E1

|h(x)|,(16.5)

and one can use this to show that the dual norm of the restriction of λh to c0(E)
is still equal to ‖h‖1, by taking the supremum over all finite subsets E1 of E.

Now let λ be any bounded linear functional on c0(E). As in the previous
section, we can define a function h on E by

h(y) = λ(δy).(16.6)

By construction,

λ(f) =
∑

x∈E

f(x)h(x)(16.7)

when f(x) 6= 0 for only finitely many x ∈ E. If E1 ⊆ E has only finitely many
elements, then we can choose f as in the preceding paragraph to get that

∑

x∈E1

|h(x)|(16.8)

is less than or equal to the dual norm of λ on c0(E). It follows that h is a
summable function on E, and that ‖h‖1 is less than or equal to the dual norm
of λ on c0(E).

It remains to check that
λ(f) = λh(f)(16.9)

for every f ∈ c0(E). We already know that this holds when f(x) 6= 0 for only
finitely many x ∈ E, and it holds for every f ∈ c0(E) by continuity, since these
functions are dense in c0(E).
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17 Hölder’s inequality

Let 1 < p < ∞ be given, and let 1 < q < ∞ be the conjugate exponent,
characterized by

1

p
+

1

q
= 1.(17.1)

If a and b are nonnegative real numbers, then

a b ≤
ap

p
+
bq

q
.(17.2)

This can be seen as a consequence of the convexity of the exponential function,
and the p = q = 2 case is elementary, as in Section 7.

Suppose that f , h are real or complex-valued functions on a nonempty set
E. As in the previous paragraph,

|f(x)| |h(x)| ≤
|f(x)|p

p
+

|h(x)|q

q
(17.3)

for every x ∈ E. If f is p-summable and h is q-summable, then it follows that
f h is summable on E, with

∑

x∈E

|f(x)| |h(x)| ≤
1

p

∑

x∈E

|f(x)|p +
1

q

∑

x∈E

|h(x)|q.(17.4)

Equivalently,

‖f h‖1 ≤
‖f‖p

p

p
+

‖h‖q
q

q
.(17.5)

If ‖f‖p = ‖h‖q = 1, then we get that

‖f h‖1 ≤ 1.(17.6)

This implies for any f ∈ ℓp(E) and h ∈ ℓq(E) that

‖f h‖1 ≤ ‖f‖p ‖h‖q,(17.7)

by homogeneity. This is Hölder’s inequality.
The analogous statement also holds for p = 1 and q = 1, and was implicitly

used in the previous two sections.

18 ℓp(E)∗

Let 1 < p, q < ∞ be conjugate exponents again, and let h be a q-summable
function on a nonempty set E. If f is a p-summable function on E, then f h is
summable, and we can put

λh(f) =
∑

x∈E

f(x)h(x).(18.1)
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This defines a bounded linear functional on ℓp(E), since

|λh(f)| ≤ ‖h‖q ‖f‖p,(18.2)

by Hölder’s inequality.
If we choose f so that

f(x)h(x) = |h(x)|q(18.3)

for every x ∈ E, and f(x) = 0 when h(x) = 0, then

|f(x)| = |h(x)|q−1,(18.4)

and
|f(x)|p = |h(x)|q ,(18.5)

since p(q − 1) = q. In this case,

λh(f) = ‖h‖q
q = ‖h‖q ‖f‖p,(18.6)

and it follows that the dual norm of λh on ℓp(E) is ‖h‖q.
Now let λ be any bounded linear functional on ℓp(E), and let h be the

function on E defined by h(y) = λ(δy), so that

λ(f) =
∑

x∈E

f(x)h(x)(18.7)

when f(x) 6= 0 for only finitely many x ∈ E. If E1 ⊆ E has only finitely many
elements, then we can choose f so that f(x) = 0 when x ∈ E\E1 or h(x) = 0
and (18.3) holds for every x ∈ E1, and we get that

λh(f) =
∑

x∈E1

|h(x)|q.(18.8)

We also have that

‖f‖p =
( ∑

x∈E1

|h(x)|q
)1/p

,(18.9)

which implies that ( ∑

x∈E1

|h(x)|q
)1/q

(18.10)

is bounded by the dual norm of λ on ℓp(E). It follows that h is q-summable,
and that ‖h‖q is less than or equal to the dual norm of λ on ℓp(E).

The remaining point is that λ(f) = λh(f) for every f ∈ ℓp(E). This holds
by construction when f(x) 6= 0 for only finitely many x ∈ E, and it is easy
to see that these functions are dense in ℓp(E). Thus λ(f) = λh(f) for every
f ∈ ℓp(E) by continuity.
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19 Separability

Remember that a metric space is said to be separable if it contains a dense set
with only finitely or countably many elements. For example, the real line is
separable, because the rationals are countable and dense. Similarly, Rn and Cn

are separable for each positive integer n.
Let V be a real or complex vector space equipped with a norm. If there is a

set A ⊆ V with only finitely or countably many elements whose span is dense
in V , then V is separable. In the real case, the set of linear combinations of
elements of A with rational coefficients is a countable dense set in V . In the
complex case, one can use coefficients with rational real and imaginary parts.

For example, ℓp(E) is separable when E is countable and 1 ≤ p <∞, because
the linear span of the functions δy, y ∈ E, is dense. The same argument applies
to c0(E) equipped with the supremum norm, and to ℓp(E) with 0 < p < 1, using
the metric ‖f1 − f2‖p

p. The space of continuous functions on the unit interval is
separable with respect to the supremum norm, because polynomials are dense.

One can show that the space of continuous functions on any compact metric
space is separable with respect to the supremum norm. This uses the fact
that continuous functions on compact metric spaces are automatically uniformly
continuous.

20 An extension lemma

Let V be a real vector space, let W be a linear subspace of codimension 1 in
V , and let z be an element of V \W . Thus every v ∈ V can be expressed in a
unique way as

v = w + t z,(20.1)

where w ∈ W and t ∈ R. If λ is a linear functional on W , then any extension
of λ to a linear functional µ on V is uniquely determined by its value α ∈ R at
z, since

µ(w + t z) = λ(w) + t α.(20.2)

Any choice of α ∈ R defines an extension µ of λ in this way.
Suppose now that V is equipped with a norm ‖ · ‖, and that λ is a bounded

linear functional with respect to the restriction of ‖ · ‖ to W . Thus there is an
L ≥ 0 such that

|λ(w)| ≤ L ‖w‖(20.3)

for every w ∈W . We would like to choose α ∈ R and hence µ so that

|µ(v)| ≤ L ‖v‖(20.4)

for every v ∈ V , which is the same as

|λ(w) + t α| ≤ L ‖w + t z‖(20.5)
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for every w ∈ W and t ∈ R. This holds by hypothesis when t = 0, and for t 6= 0
it is enough to show that

|λ(w) + α| ≤ L ‖w + z‖(20.6)

for every w ∈W , since otherwise we can replace w by t w and then take out |t|
from both sides by homogeneity.

Equivalently, we would like to choose α ∈ R such that

−L ‖w + z‖ − λ(w) ≤ α ≤ L ‖w + z‖ − λ(w)(20.7)

for every w ∈W . To do this, it suffices to show that

−L ‖w1 + z‖ − λ(w1) ≤ L ‖w2 + z‖ − λ(w2)(20.8)

for every w1, w2 ∈ W . By hypothesis, we know that

λ(w2 − w1) ≤ L ‖w2 − w1‖(20.9)

for every w1, w2 ∈ W , which implies that

λ(w2 − w1) ≤ L ‖w2 + z‖ + L ‖w1 + z‖,(20.10)

because of the triangle inequality. This gives the desired estimate.

21 The Hahn–Banach theorem

Let V be a real vector space equipped with a norm ‖ · ‖, and let W be a linear
subspace of V . The Hahn–Banach theorem asserts that every bounded linear
functional λ on W has an extension to a bounded linear functional µ on V with
the same norm.

If W has finite codimension in V , then one can apply the procedure described
in the previous section finitely many times. If V is separable, then one can apply
this procedure repeatedly to extend λ to a dense linear subspace of V , and then
to all of V by continuity. Otherwise, there is an argument based on the axiom
of choice.

As an application, it follows that for every v ∈ V there is a bounded linear
functional µ on V with norm 1 such that

µ(v) = ‖v‖.(21.1)

To see this, one can start with the linear functional on the 1-dimensional sub-
space spanned by v defined by

λ(r v) = r ‖v‖, r ∈ R.(21.2)

This has norm 1, and a norm-1 extension to V has the desired properties.
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Similarly, if W0 is a closed linear subspace of V and v ∈ V \W0, then there
is a bounded linear functional µ on V such that

µ(v) 6= 0(21.3)

and
µ(w) = 0(21.4)

for every w ∈ W0. For it is easy to find a bounded linear functional on the span
of W0 and v with these properties, which can then be extended to V .

22 Complex vector spaces

Let V be a complex vector space, which is then also a real vector space, since
we can simply forget about multiplication by i. If λ is a linear functional on V
as a complex vector space, then the real part of λ is a linear functional on V
as a real vector space. The imaginary part of λ can be recovered from the real
part, by the formula

Imλ(v) = i Reλ(−i v).(22.1)

Similarly, any linear functional on V as a real vector space can be expressed as
the real part of a linear functional on V as a complex vector space.

Suppose that V is equipped with a norm ‖ · ‖, which is also a norm on V
as a real vector space. If λ is a bounded linear functional on V as a complex
vector space, then one can show that the norm of λ is equal to the norm of the
real part of λ as a bounded linear functional on V as a real vector space. This
uses the fact that the norm of any v ∈ V is equal to the norm of c v for every
complex number c with |c| = 1. Also, the modulus of a complex number z is the
same as the maximum of the real parts of the complex numbers c z with c ∈ C

and |c| = 1. Every bounded linear functional on V as a real vector space is the
real part of a bounded linear functional on V as a complex vector space, as in
the previous paragraph.

This permits questions about linear functionals on complex vector spaces
to be reduced to questions about linear functionals on real vector spaces. In
particular, the Hahn–Banach theorem also applies to complex vector spaces.

23 The weak∗ topology

Let V be a real or complex vector space equipped with a norm ‖v‖, and let
V ∗ be the dual space of bounded linear functionals on V with the dual norm
‖λ‖∗. As usual, the dual norm determines a metric on V ∗, and hence a topology
on V ∗. We are also interested in another topology on V ∗, known as the weak∗

topology.
A set U ⊆ V ∗ is an open set in the weak∗ topology if for every λ ∈ U there

are finitely many vectors v1, . . . , vn ∈ V and positive real numbers r1, . . . , rn
such that

{µ ∈ V ∗ : |µ(vj) − λ(vj)| < rj , 1 ≤ j ≤ n} ⊆ U.(23.1)
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Equivalently,
{µ ∈ V ∗ : |µ(vj) − λ(vj)| < rj , 1 ≤ j ≤ n}(23.2)

is an open set in V ∗ with respect to the weak∗ topology for every λ ∈ V ∗,
v1, . . . , vn ∈ V , and r1, . . . , rn > 0, and these sets form a base for the weak∗-
topology.

If U ⊆ V ∗ is an open set with respect to the weak∗ topology, then U is
also an open set with respect to the topology determined by the dual norm.
However, open balls in V ∗ with respect to the dual norm are not open sets in
the weak∗ topology, unless V is finite-dimensional.

For each v ∈ V ,
λ 7→ λ(v)(23.3)

defines a linear functional on V ∗. More precisely, this is a bounded linear
functional on V ∗ with respect to the dual norm, since

|λ(v)| ≤ ‖λ‖∗ ‖v‖,(23.4)

by definition of the dual norm. The norm of this linear functional on V ∗ is
actually equal to ‖v‖, by the Hahn–Banach theorem. These linear functionals
are also continuous on V ∗ with respect to the weak∗ topology, by definition
of the weak∗ topology. The weak∗ topology can be described as the weakest
topology on V ∗ in which these linear functionals are continuous.

24 Seminorms

A nonnegative real-valued function N(w) on a real or complex vector space W
is said to be a seminorm if

N(t w) = |t|N(w)(24.1)

for every w ∈W and t ∈ R or C, as appropriate, and

N(w + z) ≤ N(w) +N(z)(24.2)

for every w, z ∈ W . These are the same conditions as for a norm, except that
N(w) = 0 may occur when w 6= 0.

Suppose that N is a collection of seminorms on W which satisfies the posi-
tivity condition that for every w ∈W with w 6= 0,

N(w) > 0(24.3)

for some N ∈ N . As in the case of a single norm, there is a nice topology on
W determined by N , Specifically, U ⊆ W is an open set in this topology if for
every u ∈ U there are finitely many seminorms N1, . . . , Nl ∈ N and positive
real numbers r1, . . . , rl such that

{w ∈W : Nj(w − u) < rj , 1 ≤ j ≤ l} ⊆ U.(24.4)
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Equivalently,
{w ∈W : Nj(w − u) < rj , 1 ≤ j ≤ l}(24.5)

is an open set in W with respect to this topology for every u ∈ W , N1, . . . , Nl

in N , and r1, . . . , rl > 0, and these sets form a base for the topology. The
positivity condition ensures that this topology is Hausdorff.

For example, if µ is a linear functional on W , then

N(w) = |µ(w)|(24.6)

is a seminorm on W . The weak∗ topology on the dual V ∗ of a vector space V
corresponds to the family of seminorms

Nv(λ) = |λ(v)|, v ∈ V.(24.7)

If N consists of only finitely many seminorms N1, . . . , Nk on W , then their
maximum

N(w) = max(N1(w), . . . , Nk(w))(24.8)

is a norm on W , and the topology on W corresponding to N is the same as the
usual one determined by N .

If N consists of an infinite sequence N1, N2, . . . of seminorms on W , then
the corresponding topology on W can be described by a metric. For each j ≥ 1,
one can check that

ρj(u,w) = min(Nj(u − w), 1/j)(24.9)

is a semimetric on W . This means that ρj(u,w) satisfies the same conditions as
a metric, except that ρj(u,w) = 0 can occur when u 6= w. One can also check
that

ρ(u,w) = max{ρj(u,w) : j ≥ 1}(24.10)

is a metric on W , and that the topology on W determined by this metric is the
same as the topology corresponding to the sequence of seminorms as before.

25 The weak∗ topology, 2

Let V be a real or complex vector space with a norm ‖v‖, and let V ∗ be the
dual space of bounded linear functionals on V with the dual norm ‖λ‖∗. Also
let

B∗ = {λ ∈ V ∗ : ‖λ‖∗ ≤ 1}(25.1)

be the closed unit ball in V ∗.
As in the previous section, the weak∗ topology on V ∗ is the same as the

topology corresponding to the family of seminorms

Nv(λ) = |λ(v)|, v ∈ V.(25.2)

For A ⊆ V , consider the family of seminorms NA on V ∗ consisting of Nv with
v ∈ A. If the linear span of A is dense in V , then the topology on B∗ induced
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by the weak∗ topology on V ∗ is the same as the topology induced by the one
corresponding to NA. This is easy to see, and it works just as well for any subset
of V ∗ which is bounded with respect to the dual norm.

If V is separable, then we can take A to be a countable set. As in the
previous section, the topology corresponding to NA is then determined by a
metric. Thus the topology on B∗ or other bounded subsets of V ∗ induced by
the weak∗ topology can be described by a metric in this case.

Technically, the term “weak∗ topology” on V ∗ should perhaps only be used
when V is complete. If V is not complete, then V can be isometrically embedded
as a dense linear subspace of a Banach space. Although V and its completion
have the same dual space, the additional elements of the completion can affect
the weak∗ topology on the dual. However, this does not matter for the topology
on bounded subsets of the dual induced by the weak∗ topology, by the earlier
remarks.

26 The Banach–Alaoglu theorem

Let V be a real or complex vector space equipped with a norm ‖v‖, and let V ∗

be the dual space with dual norm ‖λ‖∗. The Banach–Alaoglu theorem states
that the closed unit ball B∗ in V ∗ is compact with respect to the weak∗ topology.

As usual, each v ∈ V determines a linear functional

λ 7→ λ(v)(26.1)

on V ∗. This defines a mapping from V ∗ into the Cartesian product of copies
of R or C, as appropriate, parameterized by v ∈ V . One can check that this
mapping is a homeomorphism from V ∗ onto its image in the Cartesian product
with respect to the topology induced by the product topology, because of the
way that the weak∗ topology is defined. One can also check that the image of
B∗ under this mapping is a closed set with respect to the product topology.
The image of B∗ is also contained in the product of closed intervals or disks, as
appropriate, which implies compactness.

If V is separable, then one can argue more directly that every sequence
{λj}∞j=1 in B∗ has a subsequence that converges to an element of B∗ in the
weak∗ topology. For each v ∈ V , one can use the compactness of closed and
bounded subsets of R or C to get a subsequence {λjl

}∞l=1 of {λj}∞j=1 such that
{λjl

(v)}∞j=1 converges. By standard arguments, this can be refined to show that
there is a subsequence which converges pointwise on a countable subset of V .
Hence there is a subsequence that converges on a dense set in V when V is
separable. Using the fact that these linear functionals all have norm less than
or equal to 1, one can show that this subsequence actually converges pointwise
everywhere on V , and that the limit is also a linear functional with norm less
than or equal to 1.
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27 The weak topology

Let V be a real or complex vector space equipped with a norm ‖v‖. As in
Section 24 each bounded linear functional λ on V determines a seminorm on V ,
given by

Nλ(v) = |λ(v)|.(27.1)

The topology on V defined by the family of seminorms Nλ, λ ∈ V ∗, is called the
weak topology. Note that for each v ∈ V there is a λ ∈ V ∗ such that λ(v) 6= 0
and hence Nλ(v) > 0, by the Hahn–Banach theorem, so that this family of
seminorms satisfies the usual positivity condition.

If U ⊆ V is an open set with respect to the weak topology, then U is also
an open set with respect to the topology associated to the norm. However, an
open ball in V is not an open set with respect to the weak topology, unless
V has finite dimension. If W is a linear subspace of V which is closed in the
norm topology, then W is also closed in the weak topology, by the Hahn–Banach
theorem. Each bounded linear functional on V is also continuous with respect
to the weak topology, and the weak topology is the weakest topology on V with
this property.

The weak topology can also be defined on the dual V ∗ of V , using bounded
linear functionals on V ∗ with respect to the dual norm. As in Section 23,

λ 7→ λ(v)(27.2)

defines a bounded linear functional on V ∗ for each v ∈ V , which implies that
every open set in V ∗ with respect to the weak∗ topology is also an open set in
the weak topology on V ∗. If every bounded linear functional on V ∗ is given by
evaluation at an element of V in this way, then V is said to be reflexive. Thus
the weak and weak∗ topologies on V ∗ are the same when V is reflexive.

Hilbert spaces are automatically reflexive, because of the way that they can
be identified with their dual spaces. If E is a nonempty set and 1 < p < ∞,
then ℓp(E) is also reflexive. As in Section 18, the dual of ℓp(E) can be identified
with ℓq(E), where q is the conjugate exponent corresponding to p. For the same
reasons, the dual of ℓq(E) can be identified with ℓp(E). As in Sections 15 and
16, the dual of c0(E) can be identified with ℓ1(E) and the dual of ℓ1(E) can
be identified with ℓ∞(E), which is not the same as c0(E) when E has infinitely
many elements.

28 Seminorms, 2

Let W be a real or complex vector space, and let N be a family of seminorms
on W that satisfies the positivity condition that for each w ∈ W there is an
N ∈ N such that

N(w) > 0.(28.1)

As in Section 24, this leads to a nice topology on W . Let us say that a linear
functional ψ on W is bounded with respect to N if there are finitely many
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seminorms N1, . . . , Nl ∈ N and A ≥ 0 such that

|ψ(w)| ≤ A max(N1(w), . . . , Nl(w))(28.2)

for each w ∈ W . This implies that

|ψ(u) − ψ(w)| ≤ A max(N1(u− w), . . . , Nl(u− w))(28.3)

for every u,w ∈ W , and it is easy to see that ψ is therefore continuous with
respect to the topology on W corresponding to N .

Conversely, suppose that ψ is a linear functional on W which is continuous
with respect to the topology corresponding to N . This implies that

U = {w ∈ w : |ψ(w)| < 1}(28.4)

is an open set in this topology. Since 0 ∈ U , this means that there are finitely
many seminorms N1, . . . , Nl ∈ N and positive real numbers r1, . . . , rl > 0 such
that

{w ∈ w : Nj(w) < rj , 1 ≤ j ≤ l} ⊆ U,(28.5)

by definition of the topology onW corresponding to N . Equivalently, |ψ(w)| < 1
when

N1(w) < r1, . . . , Nl(w) < rl,(28.6)

which implies that

|ψ(w)| ≤ max(r−1
1 N1(w), . . . , r−1

l Nl(w)),(28.7)

and hence that ψ is bounded with respect to N .
For example, let Φ be a collection of linear functionals on W with the prop-

erty that for each w ∈ W there is a φ ∈ Φ such that φ(w) 6= 0. Let NΦ be the
family of seminorms

Nφ(w) = |φ(w)|(28.8)

on W , φ ∈ Φ, which satisfies the positivity condition by hypothesis. Each
φ ∈ Φ is a continuous linear functional on W with respect to the topology
corresponding to NΦ, as well as any finite linear combination of elements of Φ.

Conversely, any linear functional ψ on W which is continuous with respect
to the topology associated to NΦ can be expressed as a linear combination of
finitely many elements of Φ. For if ψ is continuous, then it is bounded with
respect to NΦ, and there are φ1, . . . , φl ∈ Φ and A ≥ 0 such that

|ψ(w)| ≤ A max(|φ1(w)|, . . . , |φl(w)|)(28.9)

for each w ∈ W . In particular, ψ(w) = 0 when

φ1(w) = · · · = φl(w) = 0.(28.10)

It follows from standard arguments in linear algebra that ψ is a linear combi-
nation of φ1, . . . , φl, as desired.
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29 Convergent sequences

Let (M,d(·, ·)) be a metric space. By definition, a sequence {xj}∞j=1 of elements
of M converges to x ∈M if and only if

lim
j→∞

d(xj , x) = 0(29.1)

as a sequence of real numbers. In particular, if W is a vector space with a norm
‖ · ‖W , then a sequence of vectors {wj}∞j=1 converges to w ∈W with respect to
the norm if and only if

lim
j→∞

‖wj − w‖W = 0.(29.2)

If instead the topology on W is determined by a family N of seminorms on W ,
then one can check that {wj}∞j=1 converges to w if and only if

lim
j→∞

N(wj − w) = 0(29.3)

for each N ∈ N .
Let V be a real or complex vector space equipped with a norm ‖ · ‖, and

let V ∗ be the dual space of bounded linear functionals on V equipped with the
dual norm ‖ · ‖∗. A sequence {vj}∞j=1 of vectors in V converges to v ∈ V in the
weak topology if and only if

lim
j→∞

λ(vj) = λ(v)(29.4)

as a sequence of real or complex numbers for each λ ∈ V ∗. Similarly, a sequence
{λj}

∞
j=1 of bounded linear functionals on V converges to λ ∈ V ∗ in the weak∗

topology if and only if
lim

j→∞
λj(v) = λ(v)(29.5)

as a sequence of real or complex numbers for each v ∈ V .
In a metric spaceM , the topology is determined by convergence of sequences,

because closed subsets of M can be characterized in terms of convergent se-
quences. This also works in topological spaces which satisfy the first count-
ability condition, for which there is a countable local base for the topology at
every point, but it does not work in arbitrary topological spaces. In some cir-
cumstances, the induced topology on interesting subsets of a topological space
X may satisfy the first countability condition, even if X does not enjoy this
property itself. For example, this is the case for bounded subsets of the dual V ∗

of a separable vector space V with a norm, with respect to the weak∗ topology
on V ∗.

Suppose that {λj}∞j=1 is a sequence of bounded linear functionals on a vector
space V with a norm which is uniformly bounded in the sense that

‖λj‖∗ ≤ L(29.6)

for some L ≥ 0 and each j ≥ 1. If {λj(v)}
∞
j=1 converges as a sequence of real or

complex numbers for a set of v ∈ V whose linear span is dense in V , then one
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can show that {λj(v)}∞j=1 is a Cauchy sequence in R or C for every v ∈ V , and
hence converges. If we put

λ(v) = lim
j→∞

λj(v)(29.7)

for each v ∈ V , then it is easy to see that λ is a bounded linear functional on
V , with

‖λ‖∗ ≤ L,(29.8)

and {λj}∞j=1 converges to λ in the weak∗ topology.

30 Uniform boundedness

Let V be a real or complex vector space with a norm ‖·‖, and let V ∗ be the dual
space of bounded linear functionals on V with the dual norm ‖ · ‖∗. Suppose
that {λj}∞j=1 is a sequence in V ∗ such that {λj(v)}∞j=1 converges in R or C for
every v ∈ V , which implies that {λj(v)}∞j=1 is bounded for each v ∈ V . If V
is complete, then a theorem of Banach and Steinhaus implies that {λj}∞j=1 is
bounded in V ∗, so that

‖λj‖∗ ≤ L(30.1)

for some L ≥ 0 and every j ≥ 1.
To see this, put

A(n) = {v ∈ V : |λj(v)| ≤ n for every j ≥ 1}(30.2)

for each positive integer n. Because λj is bounded and hence continuous for
every j, A(n) is a closed set in V for each n, while

∞⋃

n=1

A(n) = V,(30.3)

by hypothesis. Hence A(n) contains a nonempty open set in V for some n, by
the Baire category theorem, since V is complete. Thus the λj ’s are uniformly
bounded on a nonempty open set in V , and one can use this and linearity to
show that their dual norms are bounded.

Similarly, if {vj}∞j=1 is a sequence in V such that {λ(vj)}∞j=1 converges in R

or C for every λ ∈ V ∗, then one can show that the vj ’s have bounded norm. As
in the previous case, it is actually sufficient to know that {λ(vj)}

∞
j=1 is bounded

for each λ ∈ V ∗. More precisely, one can first use the Baire category theorem
to show that there is an L′ ≥ 0 such that

|λ(vj)| ≤ L′ ‖λ‖∗(30.4)

for every λ ∈ V ∗ and j ≥ 1, as before, and then the Hahn–Banach theorem
implies that

‖vj‖ ≤ L′(30.5)

for each j ≥ 1, as desired.
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31 Examples

Let E be a nonempty set, and let 1 ≤ p, q ≤ ∞ be conjugate exponents. As
in Sections 15, 16, and 18, the dual of ℓp(E) can be identified with ℓq(E) when
1 ≤ p < ∞, and the dual of c0(E) with the ℓ∞ norm can be identified with
ℓ1(E). Hence the weak∗ topology can be defined on ℓq(E) for 1 ≤ q ≤ ∞ using
these identifications.

By definition, a sequence {fj}∞j=1 of functions on E in ℓq(E) converges to
another function f ∈ ℓq(E) in the weak∗ topology if

lim
j→∞

∑

x∈E

fj(x)h(x) =
∑

x∈E

f(x)h(x)(31.1)

for every h ∈ ℓp(E) when 1 ≤ p < ∞, and every h ∈ c0(E) when p = ∞. This
implies that

lim
j→∞

fj(x) = f(x)(31.2)

for every x ∈ E, by taking h to be equal to 1 at x and 0 elsewhere. Moreover,
weak∗ convergence implies that there is an L ≥ 0 such that

‖fj‖q ≤ L,(31.3)

as in the previous section.
Conversely, (31.2) and (31.3) imply that f ∈ ℓq(E), with

‖f‖q ≤ L.(31.4)

This is a straightforward consequence of the definitions when q = ∞, while for
1 ≤ q <∞ one can observe first that

( ∑

x∈E1

|f(x)|q
)1/q

= lim
j→∞

( ∑

x∈E1

|fj(x)|
q
)1/q

≤ L(31.5)

for every set E1 ⊆ E with only finitely many elements. Of course, (31.2) implies
(31.1) when h(x) 6= 0 for only finitely many x ∈ E. One can extend this to all
h ∈ ℓp(E) when 1 ≤ p <∞ and to all h ∈ c0(E) when p = ∞ by approximation,
using the uniform bound (31.3).

Similarly, a sequence {fj}
∞
j=1 of summable functions on E converges to a

summable function f on E in the weak topology on ℓ1(E) if (31.1) holds for
every h ∈ ℓ∞(E). In particular, this implies that

lim
j→∞

∑

x∈E

fj(x) =
∑

x∈E

f(x).(31.6)

For instance, if {fj}∞j=1 is a sequence of nonnegative real-valued functions on E
which converges weakly to 0, then (31.6) implies that

lim
j→∞

‖fj‖1 = 0.(31.7)

However, it is easy to give examples of sequences of nonnegative real-valued
summable functions that converge to 0 in the weak∗ topology and not in the ℓ1

norm.
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32 An embedding

Let V be a vector space with norm ‖v‖, and let V ∗ be its dual space with dual
norm ‖λ‖∗. Also let X be the closed unit ball in V ∗, consisting of λ ∈ V ∗ with
‖λ‖∗ ≤ 1, equipped with the weak∗ topology. Thus X is a compact Hausdorff
space, by the Banach–Alaoglu theorem.

As usual, each v ∈ V determines a bounded linear functional ηv on V ∗,
defined by

ηv(λ) = λ(v).(32.1)

The restriction of ηv to the unit ball of V ∗ defines a continuous function on X
for each v ∈ V , so that we get a linear mapping from V into the space C(X)
of continuous real or complex-valued functions on X , as appropriate. This
mapping is an isometry, since for each v ∈ V ,

‖ηv‖∞ = ‖ηv‖∗ = ‖v‖.(32.2)

Here ‖η‖∞ denotes the supremum norm of a continuous function η on X .
If V is separable, then the topology on X can be described by a metric,

as in Section 25. In particular, X is separable, since it is compact. If E is a
countable dense set in X , then there is a natural isometric embedding of C(X)
into ℓ∞(E), defined by restricting continuous functions on X to E. Hence we
get an isometric embedding of C(X) into ℓ∞(E) too.

33 Induced mappings

Let X , Y be topological spaces, and let φ : X → Y be a continuous mapping
between them. If f is a continuous function on Y , then

Φ(f) = f ◦ φ(33.1)

is a continuous function on X , and Φ determines a linear mapping from Cb(Y )
into Cb(X). Moreover,

‖Φ(f)‖X,∞ ≤ ‖f‖Y,∞,(33.2)

where the subscripts indicate on which space the supremum norm is defined,
so that Φ : Cb(Y ) → Cb(X) is a bounded linear operator with norm ≤ 1. It is
easy to see that Φ actually has operator norm equal to 1, since Φ takes constant
functions on Y to constant functions on X .

If φ(X) is dense in Y , then

‖Φ(f)‖X,∞ = ‖f‖Y,∞(33.3)

for each bounded continuous function f on Y . Thus Φ is an isometric embed-
ding of Cb(Y ) into Cb(X) in this case. For example, one can apply this to the
coordinate projections from the unit square [0, 1] × [0, 1] onto the unit interval
[0, 1] to get isometric embeddings of C([0, 1]) into C([0, 1]× [0, 1]). One can also
apply this to a continuous mapping φ from the unit interval [0, 1] onto the unit
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square [0, 1] × [0, 1], which is to say a space-filling curve, to get an isometric
embedding of C([0, 1]× [0, 1]) into C([0, 1]).

There are sometimes linear operators which send continuous functions on a
closed set A ⊆ X to continuous extensions on X , which can lead to embeddings
of Cb(A) into Cb(X). For example, if X is the unit interval [0, 1], then a con-
tinuous function f on a closed set A ⊆ [0, 1] can be extended to a continuous
function on [0, 1] which is linear on the intervals in [0, 1]\A. If A does not con-
tain 0 or 1, then the extension can be taken to be constant on the corresponding
interval in the complement. This leads to an isometric linear embedding of C(A)
into C(0, 1).

In particular, this applies to the middle-thirds Cantor set. If X is a compact
metric space, then there is a continuous mapping from the Cantor set onto X .
It follows that there is an isometric linear embedding of C(X) into C(A), and
hence into C([0, 1]). Using also the embedding described in the previous section,
any separable Banach space can be isometrically embedded into C([0, 1]).

34 Continuity of norms

Let V be a real or complex vector space equipped with a norm ‖v‖. By the
triangle inequality,

‖v‖ ≤ ‖w‖ + ‖v − w‖(34.1)

and
‖w‖ ≤ ‖v‖ + ‖v − w‖(34.2)

for each v, w ∈ V , and therefore

∣∣‖v‖ − ‖w‖
∣∣ ≤ ‖v − w‖(34.3)

for every v, w ∈ V . This implies that ‖v‖ is a continuous function on V , with
respect to the topology determined by the norm. Similarly, if N is a family of
seminorms on V , then each seminorm N ∈ N is continuous with respect to the
topology determined by N .

It is easy to show that any norm on Rn or Cn is bounded by a constant
multiple of the standard norm, by expressing vectors as linear combinations
of the standard basis and applying the triangle inequality. Hence the norm
is continuous with respect to the standard topology on Rn or Cn. Because
the unit sphere with respect to the standard norm is compact, any continuous
function on the sphere attains its minimum, which is positive in the case of
another norm. It follows that any norm on Rn or Cn is also bounded from
below by a positive multiple of the standard norm, so that they are equivalent.
If V is a finite-dimensional real or complex vector space, then V is isomorphic
to Rn or Cn for some n, and the preceding remarks imply that any two norms
on V are equivalent.

If V is an infinite-dimensional vector space equipped with a norm ‖v‖, then
‖v‖ is not a continuous function with respect to the weak topology, because open
balls are not open subsets of V in the weak topology. However, closed balls are
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closed sets in the weak topology, which means that ‖v‖ is lower semicontinuous
with respect to the weak topology. Similarly, closed balls in the dual space
V ∗ relative to the dual norm ‖λ‖∗ are closed sets with respect to the weak∗

topology, so that the dual norm is lower semicontinuous with respect to the
weak∗ topology.

Every linear functional on Rn or Cn is bounded relative to the standard
norm, as one can see using the standard basis again. Thus every linear functional
on a finite-dimensional vector space V is bounded relative to any norm on
V , by the earlier remarks, and the weak topology on V is the same as the
topology determined by the norm. In this case, the dual space V ∗ has the
same finite dimension as V , and the weak∗ topology on V ∗ is the same as the
topology determined by the dual norm. Of course, finite-dimensional spaces are
automatically reflexive.

35 Infinite series

Let V be a real or complex vector space equipped with a norm ‖v‖V . An infinite
series

∞∑

j=1

vj(35.1)

with terms in V is said to converge if the corresponding sequence of partial sums

n∑

j=1

vj(35.2)

converges in V . In this case, the value of the sum (35.1) is defined to be the
limit of the sequence of partial sums.

Similarly, (35.1) is said to converge absolutely if

∞∑

j=1

‖vj‖(35.3)

converges in the usual sense as an infinite series of nonnegative real numbers.
As in the case of infinite series of real or complex numbers, absolute convergence
of an infinite series in V implies that the corresponding sequence of partial sums
is a Cauchy sequence. If V is complete, then absolute convergence of a series in
V implies that the series converges in V .

Conversely, if every absolutely convergent series in V converges, then V is
complete. For let {wj}∞j=1 be a Cauchy sequence in V , which we would like to
show converges. By the definition of a Cauchy sequence, there is a subsequence
{wjl

}∞l=1 such that
‖wjl+1

− wjl
‖ ≤ 2−l(35.4)

for each l ≥ 1. Thus
∞∑

l=1

(wjl+1
− wjl

)(35.5)
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converges absolutely, and so it also converges in V by hypothesis. Of course,

n∑

l=1

(wjl+1
− wjl

) = wn − w1(35.6)

for each n, so that convergence of the series implies that

lim
n→∞

wjn
= w1 +

∞∑

l=1

(wjl+1
− wjl

).(35.7)

In any metric space, a Cauchy sequence converges as soon as any of its subse-
quences converge, and to the same limit. It follows that {wj}∞j=1 also converges
in V , as desired.

Convergence of infinite series in a vector space can also be defined when the
topology on the vector space is determined by a family of seminorms, in terms
of the convergence of the corresponding sequence of partial sums. In particular,
this applies to convergence with respect to the weak and weak∗ topologies.

36 Some examples

Let us consider vector spaces of real or complex-valued functions on the set Z+

of positive integers. For each j ≥ 1, let δj be the function on Z+ equal to 1 at
j and 0 elsewhere, as usual. If f is any function on Z+, then

∞∑

j=1

f(j) δj(36.1)

converges to f pointwise on Z+.
If f ∈ ℓp(Z+), 1 ≤ p < ∞, then (36.1) converges to f in the ℓp norm. If

f ∈ c0(Z+), then (36.1) converges to f in the ℓ∞. Conversely, if f ∈ ℓ∞(Z+) and
(36.1) converges to f in the ℓ∞ norm, then f ∈ c0(Z+). For any f ∈ ℓ∞(Z+),
(36.1) converges to f in the weak∗ topology, where ℓ∞(Z+) is identified with
the dual of ℓ1(Z+).

If f ∈ ℓ1(Z+), then (36.1) converges absolutely in ℓ1(E). This does not work
when p > 1, but there is a version of absolute convergence in the weak topology
when 1 < p < ∞, and in the weak∗ topology when p = ∞. More precisely, let
1 ≤ p, q ≤ ∞ be conjugate exponents, and put

λh(f) =
∑

x∈Z+

f(x)h(x)(36.2)

when f ∈ ℓp(Z+) and h ∈ ℓq(Z+), which makes sense by Hölder’s inequality.
Thus

∞∑

j=1

|λh(f(j) δj)| =

∞∑

j=1

|f(j)| |h(j)| ≤ ‖f‖p ‖h‖q,(36.3)
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and in particular the series on the left converges absolutely when f ∈ ℓp(Z+)
and h ∈ ℓq(Z+).

If f ∈ ℓp(Z+) and 0 < p < 1, then the partial sums of (36.1) converge
to f with respect to the usual metric ‖f1 − f2‖p

p. The appropriate version of
absolute convergence for a series of functions

∑∞
j=1 aj in ℓp(E) on any set E

when 0 < p < 1 is that
∞∑

j=1

‖aj‖
p
p(36.4)

converges as a series of nonnegative real numbers. This is satisfied by (36.1)
when f ∈ ℓp(Z+), as in the p = 1 case.

37 Quotient spaces

Let V be a real or complex vector space, and let W be a linear subspace of V .
The quotient space V/W is defined by identifying v, v′ ∈ V when

v − v′ ∈ W.(37.1)

More precisely, this defines an equivalence relation on V , and the elements of
V/W represent equivalence classes associated to this equivalence relation. The
operations of addition and scalar multiplication on V lead to similar operations
on V/W , so that V/W is also a real or complex vector space, as appropriate.
By construction, there is a quotient map

q : V → V/W,(37.2)

that assigns to each v ∈ V the element q(v) of V/W corresponding to the
equivalence class in V containing v, and which is a linear mapping from V onto
V/W with kernel W .

Let ‖v‖V be a norm on V . For each z ∈ V/W , put

‖z‖V/W = inf{‖v‖V : v ∈ V, q(v) = z}.(37.3)

It is easy to check that this defines a seminorm on V/W which is a norm exactly
whenW is a closed linear subspace of V with respect to the topology determined
by ‖ · ‖V .

If V is complete with respect to ‖ ·‖V and W is a closed subspace of V , then
V/W is complete with respect to the quotient norm. To see this, it suffices to
show that any absolutely convergent series

∞∑

j=1

zj(37.4)

of elements of V/W converges in V/W , as in Section 35. For each j ≥ 1, let vj

be an element of V such that q(vj) = zj and

‖vj‖V < ‖zj‖V/W + 2−j .(37.5)
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Thus
∞∑

j=1

vj(37.6)

converges absolutely in V , and hence converges in V by completeness. This
implies that (37.4) converges in V/W , with

∞∑

j=1

zj = q
( ∞∑

j=1

vj

)
.(37.7)

If V has finite dimension dim V , then W and V/W have finite dimensions
as well, and

dimV = dimW + dim V/W.(37.8)

For if v1, . . . , vn is a basis for V such that v1, . . . , vl is a basis for W , where

l = dimW ≤ dim V = n,(37.9)

then one can check that q(vl+1), . . . , q(vn) is a basis for V/W . As an extension
of this to infinite dimensions, one can say that if V is separable, then V/W is
separable, because q maps a countable dense set in V to a countable dense set
in V/W .

38 Quotients and duality

Let V be a real or complex vector space equipped with a norm ‖ · ‖V , let W
be a closed linear subspace of V , and let V/W be the corresponding quotient
space with quotient norm ‖ · ‖V/W . Consider also the linear subspace of the
dual space V ∗ defined by

W⊥ = {λ ∈ V ∗ : λ(w) = 0}.(38.1)

Note that W⊥ is closed with respect to the topology on V ∗ determined by the
dual norm, and even with respect to the weak∗ topology.

If µ is a bounded linear functional on V/W , then

λ = µ ◦ q(38.2)

is a bounded linear functional on V . By construction, λ ∈ W⊥, and one can
check that every λ ∈ W⊥ corresponds to a µ ∈ (V/W )⊥ in this way. One can
also check that the dual norm of λ on V is equal to the dual norm of µ on V/W .
This leads to a natural isometric equivalence

W⊥ ∼= (V/W )∗.(38.3)

Similarly, if φ is a bounded linear functional on V , then the restriction of φ
to W defines a bounded linear functional ψ on W whose dual norm is less than
or equal to the dual norm of φ. Every bounded linear functional ψ on W is the
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restriction of a bounded linear functional φ on V to W with the same norm,
by the Hahn–Banach theorem. Of course, the restriction of φ to W is 0 exactly
when φ ∈W⊥. This leads to another natural isometric equivalence

W ∗ ∼= V ∗/W⊥.(38.4)

39 Dual mappings

Let V , W be vector spaces, both real or both complex, and equipped with norms
‖v‖V , ‖w‖W . If T : V → W is a bounded linear mapping, then the operator
norm of T is equal to

sup{|λ(T (v))| : v ∈ V, λ ∈W ∗, ‖v‖V ≤ 1, ‖λ‖W∗ ≤ 1}.(39.1)

Here ‖λ‖W∗ denotes the dual norm of the bounded linear functional λ on W .
It is clear from the definitions that (39.1) is less than or equal to the operator
norm of T , and equality follows from the Hahn–Banach theorem.

The dual mapping T ∗ sends a bounded linear functional λ on W to the
bounded linear functional on V defined by

T ∗(λ) = λ ◦ T.(39.2)

It is easy to see that T ∗ : W ∗ → V ∗ is a bounded linear operator with respect
to the dual norms on W ∗, V ∗, whose operator norm is less than or equal to the
operator norm of T . The operator norms of T and T ∗ are actually the same,
because of the characterization (39.1) of the operator norm of T .

For example, if V = W and T is the identity mapping on V , then T ∗ is the
identity mapping on V ∗. In the previous section, we saw that inclusion and
quotient mappings are dual to each other.

Let V1, V2, and V3 be vector spaces, all real or all complex complex, and
equipped with norms. Also let T1 : V1 → V2 and T2 : V2 → V3 be bounded
linear mappings, so that T2 ◦ T1 is a bounded linear mapping from V1 into V3.
It follows easily from the definitions that

(T2 ◦ T1)
∗ = T ∗

1 ◦ T ∗
2(39.3)

as bounded linear mappings from V ∗
3 into V ∗

1 .

40 Second duals

Let V be a real or complex vector space with a norm ‖ · ‖, let V ∗ be its dual
space with the dual norm ‖ · ‖∗, and let V ∗∗ be the dual of V ∗ with its dual
norm ‖ · ‖∗∗. As before, each v ∈ V determines a bounded linear functional ηv

on V ∗, defined by
ηv(λ) = λ(v)(40.1)
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for each λ ∈ V ∗, and the linear mapping v 7→ ηv is an isometric embedding
from V into V ∗∗. Note that the weak topology on V corresponds exactly to the
topology induced on the copy of V in V ∗∗ by the weak∗ topology on V ∗∗ as the
dual of V ∗. A Banach space V is said to be reflexive if this embedding maps V
onto V ∗∗, and finite-dimensional spaces are automatically reflexive.

Let λ1, . . . , λn be finitely many bounded linear functionals on V , and con-
sider

W = {v ∈ V : λ1(v) = · · · = λn(v) = 0}.(40.2)

This is a closed linear subspace of V of codimension ≤ n, which is to say that

dim V/W ≤ n.(40.3)

The spaceW⊥ of bounded linear functionals µ on V that vanish onW is spanned
by λ1, . . . , λn, and can be identified with (V/W )∗, as in Section 38.

Let φ be a bounded linear functional on V ∗, and let ψ be its restriction to
W⊥. Since V/W is reflexive, ψ can be expressed by evaluation at an element of
V/W whose quotient norm is equal to the norm of ψ as a linear functional on
W⊥, which is less than or equal to ‖φ‖∗∗. It follows from the definition of the
quotient norm that for each ǫ > 0 there is a v ∈ V such that

‖v‖ < ‖φ‖∗∗ + ǫ(40.4)

and φ(µ) = µ(v) for each µ ∈ W⊥. In particular, the copy of V in V ∗∗ is dense
in V ∗∗ with respect to the weak∗ topology on V ∗∗ as the dual of V ∗, with control
on the norms involved in the approximation of elements of V ∗∗ by elements of
the copy of V .

For example, let E be an infinite set, and let V be c0(E). Thus V ∗ can be
identified with ℓ1(E), and V ∗∗ can be identified with ℓ∞(E). The natural em-
bedding of V into V ∗∗ corresponds to the obvious inclusion of c0(E) in ℓ∞(E).
In this case, the approximation of elements of ℓ∞(E) by elements of c0(E) can
be seen quite concretely. It is a bit more convenient to think in terms of approx-
imating f ∈ ℓ∞(E) by functions of the form fA, where A ⊆ E has only finitely
many elements, fA = f on A, and fA = 0 on E\A. These approximations
satisfy

‖fA‖∞ ≤ ‖f‖∞(40.5)

automatically. If h1, . . . , hn are summable functions on E, then

∣∣∣∣
∑

x∈E

f(x)hj(x) −
∑

x∈E

fA(x)h(x)

∣∣∣∣(40.6)

can be made arbitrarily small for j = 1, . . . , n, by making

‖f‖∞
∑

x∈E\A

|hj(x)|(40.7)

arbitrarily small.

40



41 Continuous functions

Let X be a locally compact Hausdorff topological space, and let

C(X,R), C(X,C)(41.1)

be the vector spaces of continuous real or complex-valued functions on X . If K
is a nonempty compact set in X , then

‖f‖K = sup
x∈K

|f(x)|(41.2)

defines a seminorm on these vector spaces. The collection of these seminorms
satisfies the positivity condition that for each nonzero continuous function f
on X there is a nonempty compact set K ⊆ X such that ‖f‖K 6= 0, and thus
determines a nice topology on these vector spaces, as in Section 24. A sequence
{fj}∞j=1 of continuous functions on X converges to another continuous function
f on X in this topology if and only if {fj}∞j=1 converges to f uniformly on
compact subsets of X .

If λ is a bounded linear functional on one of these vector spaces with respect
to this collection of seminorms, then there is a nonempty compact set K ⊆ X
and an A ≥ 0 such that

|λ(f)| ≤ A ‖f‖K(41.3)

for every continuous function f on X . This uses the fact that the union of
finitely many compact subsets of X is a compact set to reduce finitely many
seminorms to a single seminorm in this situation. In particular,

λ(f) = 0(41.4)

when f = 0 on K.
Suppose that X is also σ-compact, so that there is a sequence of nonempty

compact subsets K1,K2, . . . of X such that

X =

∞⋃

j=1

Kj.(41.5)

We may as well ask in addition that

Kl ⊆ Kl+1(41.6)

for each l ≥ 1, since otherwise we can replace Kl with

l⋃

j=1

Kj(41.7)

for each l. Using the fact that X is locally compact, one can improve this to
get that

Kl ⊆ K◦
l+1(41.8)
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for each l, where E◦ denotes the interior of a set E ⊆ X . More precisely, local
compactness implies that any compact set in X is contained in the interior of
another compact set, and this can be applied repeatedly to get the previous
condition. In particular,

X =
∞⋃

j=1

K◦
j .(41.9)

If K ⊆ X is compact, then it follows that

K ⊆ K◦
j ⊆ Kj(41.10)

for some j. Indeed, K is contained in the union of finitely many K◦
j ’s, by

compactness, and therefore in a single K◦
j , by monotonicity. In this case,

‖f‖K ≤ ‖f‖Kj
(41.11)

for each continuous function f onX . This shows that the sequence of seminorms
corresponding to this sequence of compact sets suffices to determine the same
topology on the space of continuous functions on X . For example, if X = Rn,
then one can take Kj to be the closed ball in Rn with respect to the standard
metric centered at the origin and with radius j. Of course, if X is compact,
then it suffices to take K = X , for which the corresponding seminorm is the
supremum norm.

If X is equipped with the discrete topology, then every function on X is
continuous, and only the finite subsets of X are compact. In this case, X is σ-
compact if and only if X has only finitely or countably many elements. For any
X , it is easy to see that the continuous functions on X with compact support
are dense among all continuous functions on X with respect to the topology
described above. Indeed, if f is any continuous function on X and K ⊆ X
is compact, then there is a continuous function g on X with compact support
such that f = g on K. This follows from the fact that there is a continuous
function h on X with compact support such that h = 1 on K, so that g = f h
has compact support and is equal to f on K.

42 Bounded sets

Let W be a real or complex vector space. A set E ⊆ W is said to be bounded

with respect to a seminorm N on W if N(w) is bounded for w ∈ E. Similarly,
E is bounded with respect to a collection N of seminorms on W if E is bounded
with respect to each N ∈ N .

Let V be a real or complex vector space equipped with a norm ‖v‖, let V ∗

be the dual space of bounded linear functionals on V with the dual norm ‖λ‖∗,
and consider the collection of seminorms on V ∗ given by

N∗
v (λ) = |λ(v)|, v ∈ V.(42.1)

Any bounded set in V ∗ with respect to the dual norm is automatically bounded
with respect to this collection of seminorms. Conversely, if V is a Banach space,
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then any bounded set in V ∗ with respect to this collection of seminorms is a
bounded set with respect to the dual norm, as in Section 30. In the same way,
a set in V is bounded with respect to the norm if and only if it is bounded with
respect to the seminorms

Nλ(v) = |λ(v)|, λ ∈ V ∗.(42.2)

Let X be a locally compact Hausdorff topological space, and consider the
vector space W of continuous real or complex-valued functions on X , as in the
previous section. A set E ⊆ W is bounded with respect to the supremum
seminorms over compact subsets of X if and only if for each nonempty compact
set K ⊆ X there is a nonnegative real number C(K) such that

|f(x)| ≤ C(K) for every f ∈ E and x ∈ K.(42.3)

This does not mean that the functions f ∈ E have to be uniformly bounded on
X , since C(K) depends on K.

The convex hull Ê of a set E in a real or complex vector space W consists
of all finite sums of the form

n∑

j=1

tj wj ,(42.4)

where t1, . . . , tn are nonnegative real numbers such that
∑n

j=1 tj = 1, and

w1, . . . , wn ∈ E. Thus Ê is a convex set, E ⊆ Ê, and Ê is contained in any
convex set that contains E. If E is bounded with respect to a seminorm N on
W , then it is easy to see that Ê is also bounded with respect to N . Hence Ê is
bounded with respect to a collection N of seminorms on W when E is bounded
with respect to N .

43 Hahn–Banach, revisited

Let V be a real or complex vector space, let W be a linear subspace of V , and
let λ be a linear functional on W . Suppose that there is a nonnegative real
number L and a seminorm N on V such that

|λ(w)| ≤ LN(w)(43.1)

for every w ∈ W . Under these conditions, there is an extension of λ to a linear
functional µ on V such that

|µ(v)| ≤ LN(v)(43.2)

for every v ∈ V . This is the same as the earlier formulation of the Hahn-Banach
theorem, except that N is allowed to be a seminorm instead of a norm. It is
easy to see that the same arguments work in this case. Alternatively, if

Z = {z ∈ V : N(z) = 0},(43.3)
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then Z is a linear subspace of V . The intersection of W and Z is contained in
the kernel of λ, by (43.1), and one can first extend λ to the linear span of W
and Z by setting equal to 0 on Z. This permits the problem to be transferred
to the quotient space V/Z, on which N becomes a norm in an obvious way.

Suppose that N is a collection of seminorms on V that satisfies the usual
positivity condition, so that for each v ∈ V with v 6= 0 there is an N ∈ N such
that N(v) > 0. Let V ∗ be the vector space of continuous linear functionals on
V with respect to the topology determined by N . If N consists of a single norm
on V , then this is the same as the dual space defined in Section 14.

Let u be a nonzero vector in V , and fix N ∈ N such that N(u) > 0. If
W is the 1-dimensional linear subspace of V spanned by u, and λ is the linear
functional on W that satisfies λ(u) = N(u), then (43.1) holds with L = 1.
Hence there is an extension of λ to a linear functional µ on V such that (43.2)
holds with L = 1. In particular, µ ∈ V ∗ and µ(u) 6= 0.

Now let W0 be a closed linear subspace of V , and let u be a vector in V
not in W0. By the definition of the topology on V determined by N , there are
finitely many seminorms N1, . . . , Nl ∈ N and a positive real number r such that

max(N1(u − w), . . . , Nl(u− w)) ≥ r(43.4)

for every w ∈W0. Put

N(v) = max(N1(v), . . . , Nl(v)),(43.5)

which is also a seminorm on V . Let W be the linear subspace of V spanned by
W0 and u, and let λ be the linear functional on W defined by

λ(t u+ w) = t r(43.6)

for t ∈ R or C, as appropriate, and w ∈W0. Thus (43.4) implies that

|λ(t u + w)| ≤ N(t u+ w)(43.7)

for every t ∈ R or C, as appropriate, and w ∈ W0. This is the same as saying
that (43.1) holds with L = 1. It follows that there is an extension of λ to a
linear functional µ on V that satisfies (43.2) with L = 1.
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