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Abstract

The wide proliferation of the Internet has set new requirements for access control policy
specification. Due to the demand for ad-hoc cooperation between organisations, applica-
tions are no longer isolated from each other; consequently, access control policies face a
large, heterogeneous, and dynamic environment. Policies, while maintaining their main
functionality, go through many minor adaptations, evolving as the environment changes.

In this thesis we investigate the long-term administration of role-based access control
(RBAC) – in particular OASIS RBAC – policies.

With the aim of encapsulating persistent goals of policies we introduce extensions in
the form of meta-policies. These meta-policies, whose expected lifetime is longer than the
lifetime of individual policies, contain extra information and restrictions about policies.
It is expected that successive policy versions are checked at policy specification time to
ensure that they comply with the requirements and guidelines set by meta-policies.

In the first of the three classes of meta-policies we group together policy components
by annotating them with context labels. Based on this grouping and an information flow
relation on context labels, we limit the way in which policy components may be connected
to other component groups. We use this to partition conceptually disparate portions of
policies, and reference these coherent portions to specify policy restrictions and policy
enforcement behaviour.

In our second class of meta-policies – compliance policies – we specify requirements on
an abstract policy model. We then use this for static policy checking. As compliance tests
are performed at policy specification time, compliance policies may include restrictions
that either cannot be included in policies, or whose inclusion would result in degraded
policy enforcement performance. We also indicate how to use compliance policies to
provide information about organisational policies without disclosing sensitive information.

The final class of our meta-policies, called interface policies, is used to help set up
and maintain cooperation among organisations by enabling them to use components from
each other’s policies. Being based on compliance policies, they use an abstract policy
component model, and can also specify requirements for both component exporters and
importers. Using such interface policies we can reconcile compatibility issues between
cooperating parties automatically.

Finally, building on our meta-policies, we consider policy evolution and self-administra-
tion, according to which we treat RBAC policies as distributed resources to which access
is specified with the help of RBAC itself. This enables environments where policies are
maintained by many administrators who have varying levels of competence, trust, and
jurisdiction.

We have tested all of these concepts in Desert, our proof of concept implementation.
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1 Introduction

The objective of access control is to protect resources from unauthorised access, whilst ensuring
authorised access.

Resources are generally accessed through some application, which enforces access control
restrictions by allowing only authorised access. Rules, according to which access control deci-
sions are made, are often programmed into the applications. This has the disadvantage that
changes to access control requirements may require modification of the application. Further-
more, if resources are shared among many applications, the decisions to allow access to a specific
resource may differ depending on the application used. To address this inconsistency policies
are externalised. Such policies collect the rules that govern access control decisions. Since they
are separated from applications, they can be shared, and thus reused. An additional advantage
is that changes to policies can then be performed without the need to modify applications.

With the expansion of the Internet requirements for access control have changed. Instead of
having individual computers protected by local access control policies, computers are intercon-
nected, and access to resources is specified remotely as well as locally. As a result the number
of resources and the number of potential users have increased by many orders of magnitude.
This increase in complexity was reflected in policies, and has rendered them more difficult to
administer.

Role-Based Access Control (RBAC) is a relatively recent access control model that can
cope with the new, dynamically changing set of users and resources. While it simplifies certain
aspects of policy administration, it provides new means to control access decisions. Access
control decisions could thus be influenced by time, the result of database lookup, and the past
behaviour of the principals which access resources.

As policy complexity increases, additional policy administrators are required. This increases
the demand for tools to support cooperation in policy management. Furthermore, policy ad-
ministrators face a new task, viz. monitoring and controlling the policy modifications made
by their colleagues. Such requirements are common in environments where, in order to follow
organisational structure, access control policies have been distributed over many computers.

1.1 Research motivation

There are two main application scenarios that motivated our research. The first one is the
National Health Service (NHS) in the United Kingdom. The second application scenario is
access control specification to event middleware.

19



1.1. RESEARCH MOTIVATION

1.1.1 National Health Service

In the United Kingdom, similarly to many other countries, patients are associated with a general
practitioner (GP). The first contact between a patient and doctors usually starts through GPs,
who, if needed, refer patients to specialist doctors. Patient data is stored in GP surgeries,
and data about hospital treatments is located in the relevant hospitals. Through their lifetime
patients may be treated in many different hospitals. Since data about such treatments might
be vital for subsequent treatments, it is important that all medical information pertaining to a
patient is accessible.

This need is realised by the British government, which set the goal of enabling doctors to
access patients’ Electronic Health Records (EHR) independently of the locations of doctor and
patient.

Access to data is regulated by the NHS guidelines. These regulations aim to prevent fraud-
ulent data access, as well as to provide patients with control over their data.

The NHS data access guidelines could be enforced at the location of the data, i.e. the hospitals
and the GP surgeries. These enforcement points are autonomous, and have a large degree of
freedom in managing their IT infrastructure. They do not run the same applications, and are
further subdivided into semi-autonomous units, like wards (see Figure 1.1).
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Figure 1.1: The National Health Service (NHS).

Therefore, the goal is to enable cooperation between hospitals and surgeries, in an envi-
ronment where access control is specified locally, but according to some higher-level rules. We
can find such hierarchical control over access control policy specification at multiple levels, for
example between the NHS and hospitals, and between the hospitals and their wards.
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One of the challenges is the heterogeneity of the policies involved, since, due to legacy
applications and local autonomy, the deployment of applications managing patients’ data has
followed a bottom-up approach.

A further challenge is the required flexibility of the access control policies, since, for example,
the NHS “Patient’s Charter”, and its successor, “Your Guide to the NHS” [Nat02], allow patients
to restrict access to their own data. For example, a patient may prohibit access to her termination
records by her aunt. Following such a restriction the aunt must be denied access to the relevant
records, even if under normal circumstances she may be authorised to access them (e.g. she is
working as a nurse).

Regulations, such as the above, and the scale of the health care environment provide many
interesting research problems in access control management. A set of requirements, as well as
the description of interesting problems in the health care area, can be found in [Bez98] and
[WFSM02].

1.1.2 Security in event middleware

Another motivating application for our research comes from publish/subscribe event middleware.
Events are asynchronously delivered, typed messages that originate from event publishers. Such
publishers advertise the event types they intend to publish, and event subscribers may register
their interest in such event types. Event middleware manages subscriptions and advertisements,
and is responsible for delivering publications to the subscribers.

Such event architectures can span large networks. An example could be an active city, in
which events within active houses (houses in which appliances are linked to a network) are
communicated according to the above paradigm. For example, a fire sensor in a home may
publish a fire event to which the owner of the house and the local fire brigade are subscribed.

When information contained in events is sensitive, access to events needs to be controlled.
Only lately has this research area received attention [Mik02, WCEW02, BEP+03].

From the policy perspective, event middleware is similar to the scenario of the NHS; there are
many different cooperating domains, all of which may have autonomy over their administration.
For example, access control policies within an active house must comply with the rules set by
the utility providers of the active city, whose policies are also restricted at a higher-level.

Due to the communication requirement, restrictions that need to be enforced span many
autonomous domains.

In [BEP+03] we describe a way to control access to event advertisements, publishing, and
subscriptions.

1.1.3 Large-scale organisations

The main reasons for difficulties in administering large-scale organisations are bottom-up de-
ployment, legacy applications, badly designed organisational policies, heterogeneity, and local
autonomy.

Unfortunately, due to the scale of such organisations, top-down access control deployment
is an infeasible option.

1.2 Thesis contribution

Our aim in this thesis is to provide policy administrators with the means to manage RBAC
policies, in large, distributed environments, where access control policies may be specified locally.

The main contributions of this thesis are:
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Policy structure We define a policy structure that we use to express RBAC policies. This
structure serves many purposes. First of all it defines components of policies. Second,
it provides an abstract interface to policies. This interface is vital for specifying access
control to policy components.

The concept of meta-policies It is difficult to express organisational policies with the help
of available access control specification primitives, in our case the policy components.
During the conversion from organisational policies certain information is lost. This loss
is less critical for relatively static policies, but since in the long-term policies generally
undergo changes, it is vital to preserve more information. In order to encapsulate such
information we introduce meta-policies, that encapsulate some long-term properties of
organisational policies, and decouple them from the policies as they are actually enforced.

Contexts We introduce the concept of contexts to group policy components according to vari-
ous aspects, which themselves may change in time. With the help of an information flow
relation we provide a means to restrict the use of policy components alongside components
belonging to certain other groups. This helps to organise access control policies into a
hierarchical, multidimensional structure.

Compliance policies Long term policy goals and requirements are usually part of organisa-
tional policies, but often they are only implicitly present in RBAC policies. We introduce
compliance policies to fill this gap, and provide policy administrators with a way to store
persistent, global, and higher-level access control requirements.

Since compliance policies encapsulate long-term goals and requirements for access control
policies, they constitute a powerful means to control the evolution of access control policies
at a lower abstraction level.

Compliance policies can be used to control existing policies, but they are also suitable as
templates for new access control policies, thus helping conversion to a top-down policy
design.

Interface policies Cooperation between autonomous policy management domains is a growing
requirement in today’s organisations. We define interface policies that help to set up
cooperation between policy management domains. Furthermore, interface policies can set
requirements for the cooperating parties.

These interface policies help to overcome certain problems associated with bottom-up
policy design, since they help to convert between different policy representations.

Access control to policies We specify a set of privileges (or permissions) that can be used to
specify fine-grained access control to our policy specifications. Together with our meta-
policies, these privileges can be used to control access to policies from within policies.
They can also be used to set up sandboxes or playgrounds for other policy administrators,
allowing them to perform policy-limited modifications according to their trust, knowledge,
and jurisdiction.

Policy evolution We investigate the evolutionary process of policies and our meta-policies,
particularly from the aspects of life-time, self-administration, and hierarchical policy man-
agement.

Desert We present a proof of concept implementation that we have used to test the ideas
described in this thesis.
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1.3 Dissertation outline

This thesis is organised as follows:

Chapter 2 reviews research in the area of role-based access control (RBAC). It begins with a
short introduction to earlier access control models. This is followed by a description of
RBAC, in which we introduce the basic RBAC concepts. We then describe some popular
RBAC extensions.

As part of this chapter we introduce OASIS, an RBAC model and implementation we use
as the primary testbed for the concepts presented in this thesis.

Chapter 3 describes the structure of the policy components we use throughout this thesis.
It starts with the most basic constituents of our policies, such as data type and role
specifications. This is followed by the specification of rules, and a brief description of the
three meta-policy types: contexts, compliance policies, and interface policies.

Chapter 4 introduces contexts, our first meta-policy type. We first define a simple context
model, which we use to explain the basic concepts such as context elements and informa-
tion flow restrictions. We later extend this context model to include hierarchical context
elements. Finally we list potential uses for contexts.

Chapter 5 presents compliance policies, the second type of meta-policy. After describing our
motivation for developing compliance policies we incrementally define their structure.
First we introduce a simple model, which we then extend to support additional features,
such as lossy functions, implicit rules, and negation. The chapter ends with a review of
related work and a discussion of future directions.

Chapter 6 defines interface policies, our third type of meta-policy. This chapter starts with
an overview of OASIS’s support for cooperation, and explains the potential problems
that can arise in the long-term. We present interface policies as a potential solution to
these problems, and to provide a means to improve inter-policy cooperation. Finally, we
describe related work and indicate some directions for further research.

Chapter 7 considers self-administration of our access control policies. It defines a set of priv-
ileges that could be used by various policy management APIs. These privileges are later
extended to use contexts in order to support easier administration.

Chapter 8 shows how the three types of meta-policy and administration privileges fit into
policy administration and policy evolution as a whole. The second part of this chap-
ter considers policy version management. As the final part of this chapter we describe
Desert, our policy management framework.

Chapter 9 concludes this thesis by providing a summary of its main contributions.
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2 Background

This chapter examines fundamental technologies and research related to this thesis. We begin
with a brief review of early access control models. This is followed by an introduction to Role-
Based Access Control (Section 2.2), in which, after describing its core concepts, we review
the extensions that are available. Later, we describe the most popular RBAC models and
implementations. In Section 2.3 we provide an overview of OASIS, the RBAC model this thesis
primarily focuses on. Finally, we discuss some of the problems of RBAC systems.

2.1 Early access control models

Since the early 1960s access control has been a major issue, mainly in database management sys-
tems and in operating systems. Its objective was to protect system resources against undesired
or inappropriate user access, whilst permitting authorised access.

Early research on access control was dominated by two approaches [NC00, SS94]: Mandatory
Access Control (MAC) and Discretionary Access Control (DAC).

2.1.1 Mandatory Access Control

Mandatory Access Control, supported by military research and civilian government, enforces
access control by means of security labels. This model, first formalised by Bell and LaPadula
[BL75], attaches labels or security classifications to every object and user. As the many variations
of the Bell-LaPadula model led to confusion, in [San93] Sandhu introduced a minimal model,
named BLP, that encapsulates the essentials of the Bell-LaPadula model.

In both of these, access is granted based on the subject’s and the accessed object’s security
label. We shall denote the security labels of these by λ(s) and λ(o) respectively. These security
labels form a lattice with a partial order relation, ≤.

As MAC was developed with a military environment in mind, confidentiality was a major
motivating issue, which was achieved by information flow restrictions among entities (users
or objects) of different security groups. These restrictions are expressed by the following two
properties:

• The simple security property, which is also known as “no read up”, states that a subject
can only read an object if λ(o) ≤ λ(s).

• The ⋆-property, or “no write down” property, allows a subject to write an object only
if λ(s) ≤ λ(o). This property addresses information leakage by malicious programs. It
does not allow programs to write information to objects that can be read by subjects with
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a less privileged security clearance. Sometimes a different ⋆-property is used to address
the problem arising from subjects writing contaminated data to objects of higher security
class. The modified ⋆-property thus only allows the writing to objects that have the same
security label as the user, formally λ(s) = λ(o).

The system administrators are responsible for maintaining and setting security labels; ac-
cordingly, no other user may change these labels. Whenever an object is duplicated, the same
security label is attached to the duplicate object.

A similar model to BLP was published by Biba [Bib75]. Unlike BLP, Biba’s model aims to
achieve data integrity as opposed to confidentiality. It allows data flow only from high to low
integrity data, which is exactly the inverse of permitted information flow in the BLP model.

Unfortunately MAC models are rather rigid. They support a fixed set of security classes, a
fixed set of supported operations on objects, and allow only administrators to modify the access
control policy.

Nevertheless, the information flow restriction aspect of the MAC model greatly motivated
parts of our work on contexts, described in Section 4.4.

2.1.2 Chinese Wall policy

To address confidentiality breaches through insider knowledge in [BN89] Brewer and Nash intro-
duced the Chinese Wall policy. The motivating example for this policy is a financial institution
that provides corporate business services. An analyst in this institution must abide by the rules
of confidentiality, i.e. he cannot advise corporations where he holds insider knowledge about the
plans of the competitor. However, analysts are free to advise non-competing organisations. This
policy is required in the operation of many financial organisations, but it cannot be expressed
in the Bell-LaPadula model.

The general idea behind the Chinese Wall policy is to form company datasets that contain
the objects belonging to specific companies. Each of these company datasets refers to a conflict
of interest class, for example ‘Petrochemical’ or ‘Financial Services’. Based on this object
classification, analysts are not allowed to access information which could conflict with any other
information the analyst has already accessed.

The Chinese Wall policy indicates why MAC policies, although they suit military require-
ments well, cannot express important policies that are common in commercial organisations.

2.1.3 Discretionary Access Control

Discretionary Access Control originates from the academic area. It allows or denies access to
an object based on the identity of the accessing user or group. Contrary to mandatory access
control, users are allowed to control permissions to their objects. In this way, users can delegate
their own rights to other users. A classical example of DAC is Access Control Lists (ACL),
where objects are associated with a list of users or groups that are allowed access.

In a static world, where access does not depend on previous actions, a matrix can represent
access to all objects by all users. This matrix, called the access matrix [Lam71, San92], has a
row for every user and a column for every object. The elements of the matrix store the access
rights of an individual user to a specific object. This matrix can be enormous in size, although
it is usually sparsely populated. The task of access control includes developing a representation
for the storage of this matrix. In practical systems typical approaches to implement this matrix
are [SS94]:

• to store it by columns, regarding each column as a list. This leads to the access control
list model (ACL).
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• to store it by rows. These rows are known as capabilities. Such capabilities store a list of
the allowed privileges for every subject.

• to store only the filled cells of the matrix together with their position in the matrix.

These approaches have both their advantages and disadvantages. Problems usually arise
when new users are added, existing users are deleted, and when objects are created or deleted.
For example, in the case of access control lists the removal of a user would imply a check of
each access control list in the system. In organisations where users, as well as the objects to be
protected, are changing frequently, DAC proved inadequate. But the flexibility DAC provides,
namely that users can be in control of a portion of the access control policy, is an important
aspect of this model that partly motivated our research on access control to policies, including
self-administration of policies (see Chapter 7).

2.2 Role-Based Access Control

Because of the rigid nature of MAC, where users had little or no control over the access control
policy, and the problems associated with policy changes in DAC, early access control models
could not meet practical requirements of commercial organisations [CW87]. It was also realised
that in large organisations data is not owned by individual users, but by the organisation itself,
thus access to data should consider one’s position in the organisational hierarchy. This inspired
further work, a result of which was Role-Based Access Control (RBAC), the access control model
that will be discussed in this section.

Early work on role-based access control goes back to 1988, when Lochovsky and Woo defined
roles and organised them into a hierarchy [LW88]. The basic idea of role-based access control is
to include another level of indirection between the user to permission (or privileges) mapping.
Roles thus break this mapping into two, the first part maps users to roles, while the second
maps roles to privileges. This is illustrated in Figure 2.1.

Users Roles Privileges
activation rule

authorisation
rule

activation rule

Figure 2.1: The basic RBAC model.

The indirection introduced by roles is very similar to one that can be expressed by groups,
but while groups have only users as members, roles can form collections of users, permissions,
and other roles [San95]. Also, unlike the case for groups, users can act in specific roles upon
request, i.e. a user activates a role only when she needs the privileges associated with the role.
Due to this dynamic behaviour RBAC can support the concept of least privilege [JHS75], which
requires the users to hold a minimum set of privileges that is necessary only for their current
task, thus avoiding unnecessary, accidental, or malicious resource access.

RBAC is a very general model that not only solves the described problems of MAC and
DAC, but also has an expressiveness that enables it to express both MAC and DAC policies
[NO95b, SM98].

During the last decade role-based access control has received considerable attention. Sev-
eral models, like those published in [BMY02, NO99, SCFY96, FSG+01, LS99], were developed
independently. The differences between these models will be discussed later, but before that we
present the basic concepts of RBAC.

27



2.2. ROLE-BASED ACCESS CONTROL

A widely cited document [SCFY96] in the world of role-based access control distinguishes
four kinds of RBAC models. The first model – called RBAC0 – is the simplest, it serves as a basis
for the other three models. RBAC1 extends the basic model with role hierarchies. RBAC2 adds
constraints to the basic model, while the consolidated RBAC3 model combines both RBAC1 and
RBAC2, supporting both role hierarchies and role activation constraints. The relation between
these four models is shown in Figure 2.2.

RBAC

RBAC

RBACRBAC1

3

2

0

Figure 2.2: Relationship of the RBAC models.

Sandhu et al. refined these models and provided a more precise, but informal description in
[SFK00]. These models use slightly different names, RBAC{0−3} are referred to as flat RBAC,
hierarchical RBAC, constrained RBAC and symmetrical RBAC respectively.

The basic components of RBAC0 are users, roles, permissions, and sessions. RBAC0 includes
a many-to-many permission to role assignment and a many-to-many user to role assignment. To

Users Roles Privileges
activation rule rule

authorisation

activation rule

Sessions

Figure 2.3: The basic RBAC model extended with sessions.

extend the support for least privilege sessions are introduced. They correspond to a particular
occasion, when a user signs on the system to carry out some activity [SFK00]. In this way,
sessions add a layer of indirection between users and roles (see Figure 2.3), so that users activate
roles within the frame of a session. Users can have many sessions, and in each session they can
have different sets of roles active. Whenever a session is terminated the roles activated for that
session are revoked.

2.2.1 Role hierarchies

RBAC1 extends the basic model with role hierarchies. Role hierarchies were thought to be
a natural way to describe role relations reflecting organisational structure. The permissions
assigned to a junior role are inherited transitively by the more powerful senior roles. In Figure 2.4
we show an example role hierarchy from [SFK00]. This example illustrates the hierarchy relation
of ten roles, the most senior of which is the Director (DIR) role.

The argued advantage of role hierarchies was the easier management of roles, as they were
thought to reflect better the structure of an organisation. Many models support role hierarchies,
among these are [NO99, JSSS01, Lup98, AMN02].
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Figure 2.4: Example role hierarchy.

Role hierarchies have often been questioned [Awi97, San98, GB98, ML99, HV01]; it has
been shown that permission inheritance is often absent in organisational structure where junior
roles have more permissions than senior roles. Different kinds of hierarchies have been proposed
[ML99] to solve the above problem; however, this also introduced additional complexity.

Many RBAC implementations consider only RBAC1, as, especially without activity, this
model is fairly simple. For example, the work presented in [BD99] demonstrates how RBAC1

can be implemented using CORBA’s Security Service. Similarly, Didriksen looks at how RBAC1

could be implemented in active relational database management systems by translating policies
into SQL triggers [Did97].

2.2.2 Constraints

The RBAC2 model extends RBAC0 by adding constraints, which help to specify preconditions
to role entry. Chen and Sandhu distinguish two major kinds of constraints [CS95]. The first
type specifies preconditions to role entry, while the second type specifies invariants that must
be maintained by the policy enforcing system. The first constraint group can be further divided
into two sub-categories, thus we consider next the following constraint categories: prerequisites,
Separation of Duty (SoD) constraints, and cardinalities.

Prerequisites

The first type of constraint specifies a set of prerequisites a user must satisfy upon entering a
role. One such prerequisite can be the requirement for a user to hold a particular role. An
example would be to require someone to have the university student role before allowing him or
her to enter the computer science student role.

Other prerequisites can include more complex predicate evaluations, such as ones that con-
sider the time of the evaluation. There have been only a few attempts to formalise languages
to express particular types of constraints. One such research effort was carried out by Bertino,
Bonatti, and Ferrari who define expressions to specify temporal constraints [BBF00].
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Separation of Duties

The second type of constraint we discuss here is Separation of Duty (SoD). It is considered to
be among the most important constraints and it is often mentioned as the driving motivation
for role-based access control. SoD is a technique for reducing fraud by means of spreading
responsibility and authority to perform a certain task over several users. A common example is
the preparation and approval of a purchase order. In this example an order must be initiated
and approved by different persons, therefore fraud requires the conspiracy of two people, which
is less likely to happen, and is more likely to be disclosed or captured. Simon and Zurko [SZ97]
informally identified a large number of SoD types:

Static separation of duties, also known as strong separation of duties, achieves separation
of duties by specifying the role entry policies in such a way that it is impossible for any
user to assume both of the conflicting roles.

Dynamic separation of duties, also known as weak exclusion, allows users to enter each of
the conflicting roles, but entry is controlled at policy enforcement time. Based on the type
of this control, weak separation of duties can be classified as:

Simple dynamic separation of duties prohibits users from assuming conflicting roles
at the same time.

Object-based separation of duties allows users to enter the conflicting roles, but the
conflicting privileges cannot be exercised on the same object.

Operational separation of duties allows conflicting roles to be entered as long as the
union of the privileges in the roles activated does not contain the privileges of a
business task.

History-based separation of duties prevents users from performing all the actions in
a business task.

Gligor, Gavrila, and Ferraiolo formalised the above mentioned separation of duties in [GGF98].
Ahn and Sandhu extended them in [AS99] and provided the RSL99 language to describe separa-
tion of duty types. Kuhn provides a formal model to express separation of duties in single session
environments [Kuh97]. Additional separation of duties, like the Chinese Wall (see Section 2.1.2),
can be found in [JSS97].

In our work we shall primarily concentrate on static SoD, but our contexts defined in Chap-
ter 4 can be also used to specify different varieties of dynamic SoD.

Enforcing dynamic separation of duty constraints at authorisation level is a difficult task.
This problem is usually aggravated by sessions, as they allow the same principals to have many
sets of active roles, as opposed to a single set. The common solutions to handle dynamic SoD
constraints usually approach the problem from the protected object itself, and add some state
information to these objects [San88] or use locks [Fad99].

Cardinalities

Cardinality constraints are the last type of constraints we consider. They limit the number of
sessions a user may have or the number of users being active in a role at the same time. For
example, cardinalities can express the policy that there could only be one administrator active
at any particular time. Cardinalities are part of the activation control type constraints [SZ97]
that were described in this section. These constraints must be evaluated at runtime.
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2.2.3 Extensions

Apart from the above aspects to distinguish role-based access control models, there are other
characteristics unique to certain models:

Delegation

Delegation allows a user or a role to empower other users or roles with some of the rights the user
holds. The motivation for this comes from real-world scenarios, where users need to act on behalf
of other users for accessing resources, for example, when they substitute for someone who is ill.
There is a large amount of work concentrated on role delegation [BS00a, ZAC01, BS00b, NC00].
Some consider partial delegation, when only privileges are delegated, or when the delegated role
is further constrained. Different delegation types are well described in [BS00a].

Delegation is strongly connected with the concept of revocation, which allows delegating
users to revoke a specific role, or delegated roles to be revoked using time-restriction constraints.
Architectures supporting delegation and revocation differ in the way that revocation is imple-
mented. OASIS, the RBAC implementation we used as our primary testbed, stands out among
these architectures with a fast, event based revocation system [Hay96]. OASIS also provides the
notion of appointment, which is an abstraction of delegation; for more details see Section 2.3.

Parameters

To ease generalisation, many RBAC models include role and/or privilege parameters. Such
parameterised roles can be refined during role activation time by setting the parameter val-
ues. Note that these parameter values are fixed, i.e. once they are set they are not modified.
Parameterised roles serve only as a template. The parameters of privileges, similarly to the
parameters of roles, are set when a privilege instance is created; consequently, the parameters
of an issued privilege cannot be modified. Such privileges can contain information about the
object accessed and thus reduce the number of privileges in the policy specification. For ex-
ample, instead of specifying a large number of privileges of the form NHS read haematology,
NHS read biochemistry, NHS read microbiology, and so forth, a single privilege with a NHS
record type (NHS read record(record name)) could be used.

While parameters introduce a way to abstract away privileges and roles, they cause problems
for role hierarchies. The parameters of the roles in a hierarchical relation must be set somehow,
and this can become problematic if the parameters of the parent role are significantly different
from those of the child role. Thus the role inheritance relation must include parameter setting
information.

Parameters increase the demand for constraints, which, by supporting parameters, also be-
come more complex [Jae99]. Accordingly, static policy analysis becomes harder. For example,
parameters complicate cardinality checks and separation of duty constraints, as role names are
no longer sufficient to distinguish between role instances, thus the policy enforcer needs to store
more state information.

Context awareness

Requirements for access control specification languages continue to grow. This has made it
necessary to consider the context in which the access control decision is made [CLS+01]. Sup-
port for context awareness1 can range from temporal predicate evaluations [BBF01] to complex

1Note that in this thesis we shall use the term context for concepts that are not related to context
awareness.
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predicates that provide information about the underlying system [GMS94] or allow almost ar-
bitrary predicates to be evaluated [BMY02]. This extension to RBAC policies enables further
restrictions to be added to role activation, restrictions that can be time-based or that can even
perform complex database lookups.

Distribution

Scalability is an important factor in access control systems. A centralised RBAC system might
not be able to follow requirements of large scale organisations that are normally spread out
geographically; thus, it is essential to consider distribution.

Distribution introduces many challenges. To support users accessing resources from different
locations, most implementations are extended with sessions. This, as well as the distribution
itself, complicates constraint checking; for example, it is more difficult or expensive to gather
data about currently active roles of a user. These systems must also be prepared to handle
network failures. As a consequence, the policy language itself must be extended to allow the
specification of policy enforcement behaviour under degraded network conditions. As different
portions of organisations have some level of autonomy, there is a natural demand to modify
policies locally.2 Due to such requirements more and more RBAC models are being extended to
support distribution [San00, HB99, YMB01].

Obligation policies

Most RBAC models are permissive, i.e. policies specify what a subject is allowed to do. In
contrast obligation policies [LS97], which originate from requirements in system management,
specify what subjects must or must not do to a set of target objects.

An example of an RBAC policy language that supports obligation is Ponder [DDLS01].
Obligations work well with other RBAC features, they can make use of hierarchies and contexts.
An interesting work of Schaad et al. [SM02a] proposes to further integrate obligation with the
popular RBAC extensions by providing support for delegating obligations.

Negative policies

Permissions that can be specified in most RBAC models are positive, i.e. they specify what one
is allowed to do. In such environments the default policy is to deny access if it is not allowed
explicitly.

On the other hand, negative permissions are exactly the opposite of positive ones; they
specify what one cannot do. If only negative policies are present the default access control
behaviour is to allow everything that is not explicitly prohibited.

Models can include both positive and negative policies, an example for such can be found in
[Lup98]. The use of both positive and negative rules leads to conflicts as certain actions can be
both permitted and prohibited at the same time. Such models must address conflict resolution.
Generally this involves a priority ordering for rules, which specifies that rules with a higher
priority always dominate over those with a lower priority.

Negative permissions can be simulated by positive permissions and through the appropriate
use of policy constraints [AS99].

2We discuss policy maintenance and distributed administration later in this thesis.
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Freedom of choice

RBACs differ in how much freedom they give to users, and this implementation detail is reflected
at model level. Some RBAC implementations only allow roles to be activated automatically on
demand of a privilege. Indeed, some RBACs (e.g. [CO02]) activate all the accessible roles, thus
breaking the support for least privilege. Others permit users to activate the roles they need at
the time when they need it. At model level, RBACs that support role revocation usually also
allow users to deactivate roles. This further increases the user’s control over the currently active
role set.

Position-related vs. task-related roles

Roles group both privileges and users. Depending on the perspective this can be done in many
ways. In [SBC+97] Sandhu et al. distinguish three different types of roles: abilities, groups, and
UP-roles. Abilities are roles that can only have privileges and other abilities as members, i.e.
they do not explicitly group users. Groups, on the other hand, collect users and other groups,
and do not explicitly consider privileges. UP-roles are roles that have both users and privileges
associated with them.

Another classification of roles is based on what real-world entity the role corresponds to
[NS02]. According to this classification a role can be functional or organisational. A functional
role groups together privileges that are specific to a business function. For example, the role
database user is a functional role. An advantage of functional roles is that they are resilient
against organisational restructuring. An organisational role, on the other hand, reflects the
position of people in a hierarchical organisation in a company. An example for such a role is the
manager role. RBACs that support organisational roles usually also support hierarchies.

When RBAC is not enough

All these extensions may give the impression that role-based access control is a very expressive
access control model, but there are scenarios, and not only pathological ones, where it is very
hard to express real-world policy with the help of roles and role activation rules. An example is
a team that has a goal, and team members who are cooperating. Such cases give rise to other
access control models like team-based access control [Tho97] or task-based access control [TS97].

Another scenario when RBAC is not sufficient in itself is the case of work-flows. To support
work-flow the RBAC enforcement system needs to consider and rely on external information,
e.g. the current stage of a business process. A good overview of how to extend RBAC to support
work-flows can be found in [BFA97, HA99].

2.2.4 Review of available RBACs

The concepts we introduce in this thesis are applicable to many RBAC models, even though
these models differ significantly. Next we introduce briefly the most popular RBAC models.

Sandhu and the NIST model

Ravi Sandhu is among the pioneers of RBAC research. He, his students and colleagues have
developed many access control models and extensions. We have already mentioned their most
cited work about the four basic RBAC classes [SCFY96] that we used to introduce the various
features of RBAC. In [SFK00] Sandhu, Ferraiolo, and Kuhn revise these four models in an
attempt to further formalise and standardise RBAC, but their description of the models still

33



2.2. ROLE-BASED ACCESS CONTROL

remains very general. In [FSG+01] Ferraiolo et al. describe a proposed RBAC standard and
provides a formal specification using Z notation.

Almost all RBAC models Sandhu has worked on have support for role hierarchies. In their
[SFK00] paper the authors go even further by requiring hierarchies to be prerequisites for sepa-
ration of duty constraints.

The work described in [San00] is among the few that addresses certain distribution issues in
RBAC. In this paper the authors provide a number of simulation models, autonomous entities
that are administered separately, each recognising only a portion of the available roles.

Sandhu and his group are also among the few researchers who pay much attention to how
RBAC policies are administered. In their paper Sandhu et al. [SBC+97] introduced the ARBAC
model to manage RBAC using RBAC itself.

While many of these models are extensive and well specified, they provide no support for
parameters. Parameters help to abstract roles and privileges, and therefore further simplify
policy administration. Also parameters help to incorporate information into roles. The need for
this was recognised in [AKS03].

Ponder

Ponder is an RBAC implementation developed at Imperial College, London. It is based on Slo-
man’s and Lupu’s previous experiences in policy-based management. Before considering RBAC,
Sloman had done much research into policy-based distributed system management [Slo94].

Building on Sloman’s research, Lupu considers in his work [Lup98, LS99] policies that can
express permissions as well as obligations [LS97]. As both negative and positive policies are
supported much attention has been paid to conflict resolution via rule prioritising.

In [DDLS01, Dam02] Damianou extended Lupu’s work in a number of ways. These exten-
sions included policy grouping for reusability, and delegation support [YLS96].

Sloman et al. have realised that specifying policies to individual objects is inefficient, and
to address this problem they introduced domains. These domains group objects together, thus
policies can be applied to domains as opposed to just individual objects. The membership of a
domain is explicit, i.e. it is not defined in terms of predicates.

One of the strengths of Ponder comes from its strong typing and its support for object-
orientation. The latter makes the policy specification language highly extensible and flexible. A
self-explaining example policy rule is:

inst auth+ fileServerAccess {
subject /Employees;

target Servers/PrinterServer;

action *; // wild-card that allows all actions

when Time.after(’’1300’’); // constraint

}

Ponder supports three types of constraints. Subject/target state constraints consider the
attributes of the subject or the target object. Action/event parameter constraints are expressions
that use the parameters of events, which are fundamental for obligation policies. Finally, time
constraints are supported via a specific time library.

Jajodia and Bertino

Realising the need for a flexible access control mechanism that is not bound to an application,
in [BJS96] Bertino, Jajodia, and Samarati propose a centralised policy-based access control

34



CHAPTER 2. BACKGROUND

model that supports both positive and negative authorisations. Their model supports strong
authorisations, that must be obeyed, as well as weak authorisations, that allow for exceptions.
Building on this model, Jajodia et al. present FAM (Flexible Authorisation Manager) [JSSB97,
JSS97], a formal model to enforce multiple access control policies within one system. This
model makes use of predicates like cando, do, the derived dercando predicate, done and error.
With these they express what a subject can or cannot do, while the error predicate helps to
ensure consistency. As both positive and negative authorisations are considered their model
must consider conflict resolution. These models were not role-based, but they supported groups
and delegation, and they served as a good formal foundation for the following RBAC models.

[JSSS01] defines FAF (Flexible Authorisation Framework), which introduced role support
while maintaining positive and negative authorisations. Partly due to their previous access
control models Jajodia et al. kept the notion of groups. In their model, group membership is
static, while roles are dynamic, as users may activate different roles at their will.

FAF can also consider access history in decision making, but real support for constraints
was introduced in [BBF01]. This paper formally introduces temporal constraints and provides
a proof of concept implementation using Oracle DBMS.

An application of their model is presented in [SRJ01], in which, motivated by the problems
of slow revocation in PKI, Samarati et al. explore the use of their policies for key management.

Nyanchama and Osborn

Nyanchama and Osborn introduced their role graph model in [NO94], in which they propose
a way to administer roles using graph theory. Their model defines roles as a named set of
privileges. Because in their model neither roles nor privileges are parameterised, it is simple to
find relations among roles by searching for shared privileges. This relation is used to organise
roles into a graph. To make their role graph connected they define the MaxRole, the least
common senior role (least upper bound of privileges), and MinRole, the greatest common junior
role (greatest lower bound). Therefore the role graph, based on the junior (subset) relation,
forms a lattice, where the unique least upper bound and greatest lower bound are MinRole and
MaxRole respectively.

In [NO95a] Nyanchama and Osborn refine their privileges for the object-oriented world.
They also look at method call implications, which consider dependencies among method calls.

In [NO99] Nyanchama and Osborn continue their work on role hierarchy management, but in
this paper they investigate conflict of interest constraints. They categorise these into five types
(user-group, role-role, privilege-privilege, user-role assignment, and role-privilege assignment
conflicts). Unfortunately these restrictions can only express static separation of duty.

An interesting work is presented in [Osb97] that looks at MAC properties in the role graph
model. This work considers objects and subjects with security labels assigned to them and how
role hierarchies could be built by maintaining MAC’s information flow restrictions. This work
is extended in [Osb02], where the authors provide methods to produce information flow graphs
from role hierarchy graphs.

Named set of protection domains

Giuri defines roles as a set of named protection domains [GI96, Giu95]. A protection domain is
a privilege set, which identifies the set of all operations that could be preformed by a subject at
a given time. Protection domains were introduced to support dynamic separation of duty like
constraints at privilege level, i.e. they disallow subjects having conflicting privileges at the same
time.
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Roles are defined as a set of privileges and other roles. This implicitly supports role hierar-
chies as roles can be derived from other roles.

To support separation of duty, their role specification language allows and-roles and or-roles.
And-roles specify a set of privileges and roles that can be enabled simultaneously, while or-roles
define mutually exclusive roles.

Their basic model (Named Set of Protection Domains) does not support constraints, but an
extension which does is provided in [GI96]. This adds a constraint element to protection domains
that must be satisfied (together with all the constraints of the roles this named protection domain
extends) before it is activated.

In [GI97] Giuri and Iglio further extend their RBAC model to support content based access
control. They introduce restricted privileges that contain logical expressions which must be
satisfied at the time the privilege is used. In this model they also introduce role templates that
are basically parameterised roles.

In [Giu98] Giuri analyses the available sandbox policy support of the Java platform and how
this could be extended to support RBAC. The implementation of such RBAC support in Java
is described in [Giu99].

Schaad, Kern and Moffett

Schaad et al. have done many case studies that formed vital feedback for academic research. In
[SMJ01] they show the results of such a case study that was performed at a major German bank
with over 50,000 employees and around 1,500 branches. This work identified 65 official positions
that are ordered into a hierarchy, and 368 different job functions. Because many job functions
are related to only a few positions, the effective number of roles was about 1,300.

Kern et al. also look at case studies and share their practical experience about the use of
roles in commercial organisations [KKSM02]. An important observation they make is that access
control roles do change, often because it is difficult to transform natural roles into ones that can
be used in an access control system.

PERMIS

Otenko and Chadwick have developed PERMIS (PrivilEge and Role Management Infrastructure
Standards validation), an RBAC infrastructure that uses X.509 attribute certificates [CO02].
PERMIS has support for role hierarchies that help to reduce the size of policy specifications.

Their model supports delegation, but due to the underlying X.509 certificates and the prob-
lems associated with their revocation, role revocation is a problematic issue. Delegation in
PERMIS can be restricted to a certain delegation depth, therefore it is possible, for example, to
delegate a role that cannot be delegated further.

PERMIS only partially supports constraints. While some temporal constraints can be in-
cluded in the X.509 certificates it is expected that constraints are enforced at the targets. Thus,
when compared to RBAC models that support role revocation and dynamic role activation, the
user-role associations of PERMIS policies are rather static [BMCO03].

While PERMIS has no direct support for role parameters it is able to evaluate context, thus
enabling policies that consider identity information. For example, policies can express that all
users in a Generalised role can read their own pending car parking fines.

X.509 in RBAC The idea to use RBAC and PKI (Public Key Infrastructure) can also be
found in [HMM+00], where Herzberg et al. provide a mechanism for distributed environments
to map users to roles based on X.509 certificates. In his thesis [Yao02], Yao describes a trust
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management framework that can model and express complex RBAC models such as OASIS. Park
and Sandhu also consider X.509 certificates to address scalability issues in RBAC [PS99, PSA01].

RBAC in UNIX-like systems

UNIX-like systems support discretionary access control in their file systems. At a basic level
these systems identify three types of subjects (owner, group, and other) and have three access
modes (read, write, and execute (or search)). Users can belong to groups, and every file is
assigned a permission list that indicates what the three subject types can do with it. Note that
certain changes to the access control policy, such as changes to a user’s group membership, are
not reflected immediately in the user’s rights. Such changes take effect only with the start of
a new session. Therefore, access control decisions are made based on the resource’s permission
settings and the user’s identity and group membership at session-start time. While users had
freedom to change access rights to their files there was a large demand for additional flexibility.
Many custom extensions exist that provide support for more expressive access control lists,
and recently we have seen many initiatives to add RBAC support to UNIX-like systems [LS00,
Sma00, Ott02, Fad99].

Among the extensions to add RBAC to UNIX-like systems is the work of Faden [Fad99],
which describes an implementation for Solaris. Faden’s work has many interesting ideas that
inspired parts of our research. In his system, objects have security labels attached to them, but
these labels are visible only to specific roles: roles to which the labels are relevant. Another
interesting idea is to support privilege hierarchies instead of role hierarchies.

Feature summary of available RBACs

Table 2.1 summarises the features of the most popular RBAC models that were described in
this section.

The last entry in this table is OASIS, an RBAC implementation that will be described in
Section 2.3.

2.2.5 Policy management

There are many ways to represent policies; furthermore, these representations can differ in the
level of abstraction at which they consider policies. Consequently, policies that describe the
same access control restrictions, but at different abstraction levels, can form policy hierarchies
[Wie94, AMN02].

As they are present in our everyday communication, natural languages seem to be the most
obvious choice for specifying policies. However, natural languages are ambiguous and policies
specified using them can be easily misinterpreted. Initiatives to restrict natural languages to an
unambiguous subset lead to languages like Attempto Controlled English (ACE) [FSS98, FS96].
Such controlled English can be used to specify access control policies [Llo00, BLM01] and later
translated into lower-level, logic-based policies.

Alternatives to natural languages for specifying policies at the user-level include visual tools
[HMT+90, Lup98, TP01]. Human users can easily understand visual representations of poli-
cies, especially as connections among the policy components, such as role-privilege mappings
or hierarchies are easily and clearly presented. Unfortunately graphical policy specifications
cannot express everything in a straightforward, easy-to-read way. Tidswell and Jaeger show
how to handle and visualise various separation of duty constraints in their dynamic type based
access control model [TJ00, JT01]; however, the area of constraint and conflict visualisation still
requires much research.
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Extras Features
NIST X X X – – X – X

Ponder – X X X X X Xa X Obligation policies
Jajodia et al. – X X – X X –b –
Nyanchama-Osborn – X –c – – – – – Role graphs
NSPD (Giuri) X X Xd X – – X –
PERMIS X X Xe – – X X X X.509
OASISf X – X X –g Xh X X Appointments

Fast revocation

aExtensible via libraries
bTRBAC allows temporal predicate evaluations.
cStatic SoD is supported
dSupported in their extended model
eTemporal and delegation restriction constraints, but other constraints are supported only at the

targets.
fOASIS will be discussed in Section 2.3
gOASIS can emulate negation via environmental predicates.
hOASIS supports delegation through its appointment mechanism.

Table 2.1: Overview of popular RBAC models.

At the lowest abstraction level of policy languages are formal, mostly logic-based languages.
While these are difficult to understand they can be translated into more user readable forms.
Many RBAC models use these languages as they are well suited for formal reasoning.

In [AS99] Ahn et al. describe such a language to specify RBAC policies. Their set theory
based language, which can be translated into first order predicate logic, supports both dynamic
and static separation of duty constraints. Other popular, formal languages include the specifi-
cation language of TRBAC by Bertino et al. [BBF00], and the policy specification language of
OASIS [BMY02].

No matter how policies are represented, they must be created somehow, and once created
they must be maintained.

Role engineering

Organisational policies are complex. Nothing better illustrates this than the large number
of RBAC extensions described in Section 2.2.3. Although RBAC continues to be extended
to support more and more real-world policies, there are other aspects of RBAC that require
attention. One area that needs further research is the initial creation of policies.

In [FH97] Fernandez and Hawkins show a method that applies use cases to determine roles of
an organisation. Epstein and Sandhu approach this problem using UML [ES95], while Roeckle
et al. show a process-oriented way to determine roles [RSW00].

The above methods already assume an existing organisational policy; consequently, they
try to convert that into access control policies. But organisational policies are often vague,
sometimes based on or extended with unwritten rules. In such cases new methods are needed
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to determine the policy. A proposal to address such cases with the help of statistical analysis
and data mining of accesses is described in [KSS03].

Policy administration

Once roles and the access control policy are determined they need to be maintained – policies
generally evolve! They change as the organisational policy changes, but also since the mapping
of organisational policies to access control is rarely perfect, policies change as discrepancies are
found.

Distribution only complicates the problem of policy administration. Large heterogeneous
environments include many administrators, and thus the goal is not only to have a consistent
policy but also to ensure that the policy is only modified by the administrators who are allowed
to do so. Sandhu et al. addressed the issue of distributed policy management in [San00] and in
their ARBAC model [SBC+97] with the help of sysadmin sets and privileges that treat policies
as resources.

Mönkeberg and Rakete investigated policy changes in highly dynamic heterogeneous envi-
ronments [MR00].

Lupu considers policy life-cycles with three stages (dormant, disabled, enabled) to help policy
evolution.

We shall discuss policy administration in more detail in Chapter 8.

2.3 OASIS

The Open Architecture for Secure Interworking Services (OASIS) [BMY01, HYBM00] is an
RBAC model developed at the University of Cambridge Computer Laboratory.

Ever since the earliest designs, OASIS has been built with the requirement of supporting
scalability and interaction in an open and distributed environment.

The first version of OASIS was based on the capability system paradigm [Hay96, HBM98],
which is reflected throughout its later versions.

Currently OASIS is a powerful model that extends basic RBAC in a number of novel ways,
while at the same time it incorporates most of the features of other RBAC models. The imple-
mentation of OASIS is founded on a formal, logic-based model [BMY02].

The virtues of OASIS include session support, prerequisite parameters, context awareness,
flexible delegation with a fast revocation mechanism, and distributed operation and manage-
ment. Next we provide an overview of most of its key features and look at how some of them
are reflected in OASIS policies.

Environmental predicates

OASIS is context-aware, a feature of RBAC implementations that has recently been receiving
much attention. Context-awareness is achieved in two ways. OASIS roles can carry parameters
that depend on the environment in which they were activated, and, in addition, OASIS allows
the use of environmental predicates. These predicates, evaluated at policy enforcement time,
allow access to both static and dynamic information outside the OASIS system, and enable this
information to be incorporated into the access control decision process . In this way it is possible
to set role parameters based on the result of a complex database query evaluation during policy
enforcement time.
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Appointments

The importance of delegation is well reflected in the number of RBAC models that support it.
In commercial organisations it is vital that the access control policy can express the transfer of
subjects’ rights to other subjects. However, in the real world such delegation is not the only
form of rights transfer. There is often a need to transfer, or indeed authorise, rights that are not
held by the assigner. For example, in a hospital a nurse can assign a doctor as a treating doctor
to a patient, even though the nurse does not have the rights of a doctor. OASIS provides such
an assignment of rights in the form of appointment [BMY02].

Appointment is thus an abstraction of delegation. It can express traditional delegation, but
at the same time it can also express the transfer of further rights, rights that the appointer does
not hold.

Similarly to environmental predicates, appointments can make use of parameters that help
to aggregate similar appointments and thus result in more concise policies. In policies we use
only the abstract notion of appointments together with their syntactical description. However,
during policy evaluation the instance of such appointments is considered. These instances,
called appointment certificates, are the issued appointments that represent a valid action of an
appointment. As the name suggests, appointment certificates are digitally signed certificates.
Their lifetime can span over multiple sessions, thus they are well suited to represent long term
user qualities like qualification.

Moreover, appointment certificates can have additional restrictions to their use. They may
contain preconditions that must be satisfied before the certificate is permitted to be used as
a precondition to a role activation. This mechanism further increases the expressive power of
policy specification that is available to policy administrators. Indeed, it allows the issuer to
restrict the use of the appointment certificate independently of policy.

Closely related to delegation is revocation, through which a currently active role can be
invalidated. Revocation can be implemented by a variety of techniques, of which the use of
timestamps and expiry is probably the most popular. OASIS supports fast revocation through
an event-based middleware.

2.3.1 OASIS policies

Access control policy in OASIS is specified by a number of logic-based rules in Horn clause form.
There are two kinds of rules in OASIS. The first rule type describes authorisation, i.e. it maps
roles to privileges. The second one expresses role activation, this maps users and other roles to
roles. Both of these rules consist of two major parts, the head or target that is either a role or
a privilege, and the prerequisites.

Authorisation rules

Authorisation rules map roles to privileges. Their form is as follows:

r, e1, ..., ene
⊢ p

In these rules there is one and only one prerequisite role (r). Every authorisation rule
assigns a single privilege (p) to its role. The only other prerequisites permitted in these rules
are environmental predicates, these are denoted ek(k ∈ [0..ne]) above. As mentioned earlier
these form a link to the environment that can be external to rule evaluation.

The role, the privilege, as well as the environmental predicates, can all be parameterised.
These parameter values within a rule can be marked as in or out to reflect the information flow
as individual predicates are evaluated (we mark out parameters with a ‘?’, e.g. roleA(x, y?)).
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We next provide an example rule:

treating doctor(x?, y?), check field td(f) ⊢ read EHR(y?, f?)

The above rule assigns the read EHR privilege to the treating doctor role. The parameters
of the treating doctor are the identifiers of the doctor and his patient respectively. check field td
is an environmental predicate that checks whether treating doctors can have access to the field
specified as the predicate’s parameter. If the result of this predicate evaluation yields true the
privilege with the appropriate parameters is assigned to the treating doctor role.

This rule expresses the policy that a treating doctor may read a particular electronic health
record of his patient if treating doctors are allowed to read that particular record type.

Activation rules

The assignment of users to roles in OASIS is handled by role activation rules. These rules allow
users to enter roles based on the user’s possession of valid prerequisites.

In case of activation rules such prerequisites can be either a role, an appointment, or an
environmental predicate. Thus, the format of role activation rules is as follows:

r1, r2, ..., rnr
, ac1, ..., acnac

, e1, ..., ene
⊢ r

The ri, acj and ek terms represent the nr prerequisite roles, nac appointment certificates,
and ne environmental constraint predicates in this rule respectively – note that it is acceptable
for any of nr, nac or ne to be zero. Predicate expressions on the left hand side of the rule
are called prerequisites, and must be valid for a given user to activate r, the target role. Roles
and appointment certificates are valid if they have not been revoked, environmental predicates
are valid if they evaluate to true. Environmental predicates are powerful, and constraints such
as separation of duty or cardinalities can be expressed with their help. Just as in the case of
authorisation rules all the prerequisites can be parameterised.

OASIS, with its role parameters, environmental predicates, and revocation, supports the
concept of active security, according to which access control decisions depend on context, which is
monitored. Every prerequisite can be tagged to make it a membership condition. If a membership
condition should become false subsequent to role activation, the target role of the rule in question
is revoked. Since the revoked role could itself have been used as a prerequisite to activate other
roles, its revocation can trigger further revocation, resulting in cascade. Mechanisms to achieve
finer control over revocation behaviour can be found in [BE03].

We next provide an example activation rule:

local user(h id?), employed medic(h id?), on duty(h id)∗ ⊢ doctor on duty(h id)

This rule has three prerequisites to its target role doctor on duty(h id). The first prerequisite
is a role (local user(h id?)) with a single out parameter. The following prerequisite is an
appointment with the name employed medic. The specification of this appointment has a single
out parameter. In order to evaluate this rule an appropriate appointment certificate, whose
parameter matches the role parameter, must be provided. Finally, the last prerequisite is an
environmental predicate, once again with a single parameter. When the rule is evaluated the
validity of this environmental predicate is checked, which in this case most likely includes a
database lookup to find out whether the person identified by its h id parameter is on duty or
not.

Note that the last prerequisite (on duty(h id)∗) is tagged as being a membership condi-
tion. As a consequence, the validity of the target role depends on the validity of this predicate;
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therefore, when the doctor finishes his duty and the on duty predicate is invalidated, the doc-
tor on duty role is also revoked.

This rule expresses the access control policy that a person can act in the ‘doctor on duty’
role as long as he is on duty, has activated the ‘local user’ role, and has been appointed as an
employed medic.

Since most OASIS roles are expected to be parameterised, OASIS does not support role
hierarchies in an explicit manner. It is our belief that privilege inheritance expressed through
a role hierarchy often improperly reflects the privilege assignment in organisations, thus its
use can be misleading (see Section 2.2.1). Nevertheless, the rule system of OASIS can express
hierarchical role relations with the help of role activation rules. However, in order to support
other RBAC models in this thesis we also consider role hierarchies.

2.3.2 Service Level Agreements

Unlike the majority of RBAC systems OASIS is inherently distributed, as it is based on coop-
erating services that themselves can be distributed. The coordination and cooperation of these
OASIS services is managed by an asynchronous publish/subscribe event architecture [BMB+00].

Cooperation between OASIS services is governed by prespecified bilateral agreements. These
are referred to as Service Level Agreements (SLA).

An SLA is bilateral contract between two OASIS services. It contains the specification of
roles or other policy components that are exported to the other OASIS service. Apart from
these, it contains information about a communication channel, which needs to be set up for
event based notifications to handle role revocation. In the first OASIS implementation an SLA
would also set up a heartbeat between the cooperating services. This heartbeat protocol helps
to prevent certain attacks that try to compromise the network in order to disable role revocation
messages. Different revocation behaviours are discussed in [BE03].

A problem with SLAs is that they are set up between only two OASIS services, and whenever
the policy of at least one of these services changes the SLA must be updated. When the number of
services is large and there is much cooperation among the services, a change to a policy can imply
a large number of SLA updates. Each of these updates can require the policy administrators
of both services to exchange information. In environments such as the National Health Service,
where individual hospitals are expected to run their own OASIS services, and where cooperation
is expected between hospitals, this is clearly infeasible. We propose a solution to this problem
in Chapter 6, in which we investigate automatic SLA generation.

2.4 Problems with RBAC

While role-based access control solves many problems associated with MAC and DAC policy
administration and it also retains important qualities of earlier access control models, it still
requires much research.

For the last decade role-based access control has been considered as a promising alternative
to other access control models such as MAC or DAC. In fact, there are many workshops and
conferences focusing primarily on RBAC, and there is a large research community working on
formal RBAC models and extensions to it. Industry also has favourable opinions about RBAC;
for example Gartner lists RBAC among the best practises for security [Gar02].

But where is RBAC today? Why is it not everywhere in industry? There were many
initiatives to adopt RBAC in industrial applications, and naturally many of these have failed.
The successful implementations of RBAC (like in COM+ and .NET [HL03], and the access
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control systems of Dresdner Bank [SMJ01]) use only the core concepts of it, such as the grouping
aspect of roles without the support for activity and parameters.

There are many reasons for RBAC’s lack of proliferation:

Most RBAC models are too expressive. Although RBAC extensions are justified by im-
portant real-life scenarios, they require expressive policy languages. These can express
simple access control concepts in a number of alternative ways. Each alternative will have
implications for the future, consequently the policy administrator must make a decision.
For example, in the case of OASIS policies one must decide whether to use environmental
predicates, an appointment, or a role parameter to store a piece of information that is
needed for an access control decision.

Complex policies are difficult to administer, and due to the complex semantics it is difficult
if not impossible to ensure that a policy does what it supposed to do. The consequences of
policy modification are difficult to foresee. The latter is especially problematic when many
administrators – who most likely do not have a degree in policy maintenance – manage a
policy.

Vague organisational policy. If an organisation has a well defined, precise policy why is it a
problem to translate it to a policy language that is sufficiently expressive?

Policies of commercial organisations are not perfect. Even if they are written down,
English is an expressive policy language, and can easily be misinterpreted. Poor and
incomplete specifications lead to unwritten rules that complement organisational policies.

There are techniques that help to capture organisational roles (we discussed them in 2.2.5),
but these are still insufficient.

Policy administration. Organisational policies do evolve. Accordingly, policies for access
control systems must be updated. Such updates must preserve access control decisions
that were made earlier, and goals that were achieved in previous policies or should be
ensured in subsequent policies.

Currently there are no tools available to assist policy evolution in distributed environ-
ments. Administrators get no information about the consequences of policy changes.
On the other hand, administrators often have to create ad hoc policies to support inter-
organisational collaborations that involve resource sharing.

In this thesis we propose some solutions that can help policy administration.
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3 Policy structure

In OASIS RBAC, as in some other RBAC models, a policy is basically a set of rules. Although
the structure of these rules could differ in the various models, they share elementary components.
Such components are, among others, data types, privileges, and roles themselves. Some models
may contain extensions, but most of the time these extensions make use of the basic policy
components.

In this chapter we introduce such basic policy components. We also provide a possible
representation of these policy components in an object-oriented implementation.

These components build on the components of previous OASIS policy specification languages,
but we extend them in a number of ways to support access control restriction to policies, long-
term policy management, and policy evolution.

Although the components are seemingly very simple, policies built up from them can rapidly
become complex. To assist policy administrators to structure and manage such policies, in Sec-
tion 3.2 we present meta-policies. These contain constraints for policies, together with informa-
tion that is not necessarily required at policy enforcement time. The objective of meta-policies
is to help to preserve long-term goals and security requirements throughout policy evolution.

3.1 Basic policy components

Generally policies of large organisations are administered by more than one person. The number
of such administrators can depend on the number of users, resources, and on the complexity of
the policy. Giga Information Group – a leading IT advisory firm and a subsidiary of Forrester
Research, Inc. – estimates that there will be one security administrator for every one to six
thousand employees, depending on the quality of the RBAC implementation. These administra-
tors may have different qualifications, competence, and trust, therefore we must provide means
to control access to the various policy components. In this way access control policies become
resources themselves; we must specify exactly what a policy is and how it is accessed, i.e. what
the actions are that can be performed on a policy. These actions must be sufficiently fine-grained
to support an expressive language that can restrict access control to policy components.

In this section we present the structure of the basic policy components that we expect to
be part of every OASIS RBAC policy specification. The majority of these components also
constitute the building blocks of policies of other RBAC implementations.

Note that many RBACs support policies that may contain constructs, such as role hierar-
chies, that are not explicitly present in OASIS. While these can be expressed in OASIS RBAC in
an alternative way, we include appropriate extensions in our policy components, so maintaining
their applicability to other RBAC models.
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Knowledge of policy structure is vital for programmers, policy administrators and users. It
is important for programmers because the structure presented here can serve as a template
or a reference implementation. Policy structure is also reflected by the serialised forms of
OASIS policies (for example, an XML policy specification or a Service Level Agreement (SLA)).
Knowledge of policy structure is also necessary to use the API of our implementation (see
Section 8.3).

Policy administrators need a good knowledge of policy structure, since it helps them to
understand the methods that are used to modify policies. This is especially important when
such policy components are used to restrict access to policies themselves (see Chapter 7).

Users need a limited knowledge of the policy components to protect themselves and their
information. Many RBAC implementations allow users to interact with the access control en-
forcer, thus permitting the users to select the roles they want to enter, to select the rules that
should be used for role entry or authorisation, or to select the credentials or prerequisites that
should be considered in an access control decision. If the user has an idea of “what is going on”
he or she can assign a trust level to the policy enforcing application, and based on such a trust
level the user might hide or provide credentials that are needed to enter a specific role.

Our policy structure introduces an indirection layer that can be mapped to low-level database
components such as tables or other storage entities, but at the same time provides an interface
on which we can build reflexive control.

At the most basic level policy specification can be divided into two major parts. The first
part of the specification concerns the most elementary building blocks, such as data types, roles,
functions, and so forth. Their declarative specification provides the syntax to be used for these
components. Generally, this includes the signature (i.e. parameter name and data type) of all
elementary components.

A second part of the specification uses these building blocks to define the access control
policy itself with the help of both activation and authorisation rules. Some previous OASIS
policy specifications (e.g. [Hay96]) contained only such rule definitions, and the specification of
the elementary building blocks was provided in an implicit way. This was clearly insufficient
for the newer policy models that support strong typing and are connected to external services
through well defined interfaces.

3.1.1 Data types

As already discussed in the section about OASIS (Section 2.3), policy components such as
roles, environmental predicates and privileges can all be parameterised; thus, parameter type
information may be included in policies.

Data type specification binds a name to a real data type that is known by the policy enforcer.
This name can then be used in the type specification of variables and parameters.

Note that the data type specification presented here is basically just a label with some
information about sub-types. Without functions this can only be used for type checking. Some
standard functions are described in the next section, Section 3.1.2.

Policy components themselves use certain common data types. These common data types
are therefore predefined for every policy, and they can be used in each policy specification.
Currently there are only a few built in data types; among these is boolean, which is used, for
example, as the return type of environmental predicates or to indicate validity of prerequisites.
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3.1.2 Functions

Functions, as we shall see in Chapter 6, are used for handling parameters, e.g., converting
parameter values from one representation to another. In our implementations functions are
internal to the policy enforcer, i.e. functions cannot reference external services like web services
or other OASIS services.

The return type of a function is a data type, and the parameters of a function are terms. In
an object-oriented implementation a function could be represented according to Figure 3.1.

Term

ConstantFunction Container Variable Container
+in/out

VariableData Type

type

Function

ret type
arguments

Figure 3.1: The structure of a term.

A term can be either a constant, the return value of another function or a variable (variables
will be described with rules in Section 3.1.7). In our example implementation displayed in the
figure the term class – as indicated by the italic typeset – is an abstract class.

As described in the previous section, data types, without supporting functions, can be used
for static type checking only. There are a number of functions that are advisable to be specified
for data types. Such functions might manage serialisation, convert values of the data type to
strings, and vice versa. These functions can be used to embed constants as parameters in some
policy components. They are also needed for transferring instances of policy components via
text-based protocols, for example ones that use XML.

Comparison functions form another common set of functions. These compare values of
certain data types, but most importantly, they can check for equality.

Whether a data type needs any of the above functions is primarily determined by the way
it is used in the policy specification, but some functions could also be prescribed by global
consistency rules (see Chapter 5).

3.1.3 Environmental predicates

Environmental predicates are similar to functions in the sense that they accept arguments and
they return a value of a specified data type, in this case it is fixed to the built-in boolean data
type. However, predicates may have side-effects, i.e. they can set parameter values – we call
these parameters out parameters. Predicates can be viewed as a sequence of functions (defined
over the parameters for which the predicate returns true) all with the same parameters (in
parameters) and each returning an out value.

Unlike functions, predicates may also reference – and they often do – external services, thus
they form a link to databases or to services provided by other applications.

The identification of environmental predicates within a policy is done the same way as in
the case of functions, i.e. the name and parameter signature uniquely identifies an environmen-
tal predicate. Note that although the signature now also contains value binding information
(in/out), we do not use this extra information to differentiate environmental predicates. Thus
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we do not differentiate between the following two environmental predicates:

treating doctor(doctor id, patient id?)

treating doctor(doctor id?, patient id)

These environmental predicates all concern information about patients treated by doctors.
The first predicate returns the treated patients for a particular doctor, while the second returns
the treating doctors for a particular patient. Since parameter binding is not considered to
differentiate environmental predicates, we need to assign the above two predicates different
names.

3.1.4 Privileges

Privileges describe the available resource accesses and the parameters for these accesses. Privi-
leges are not method calls! They are tokens that are preconditions to certain protected method,
procedure, or function calls. The parameters of privileges are needed for access control decisions
only, therefore they should not contain information that is irrelevant for that purpose.

An example privilege could be read EHR record(x : patient id, y : record type), where the
two parameters are the identifier of the patient and the type of the electronic health record (e.g.
‘haematology’). An example for an actual method that requires this privilege for its execution
can be a method of a Java class NHS patient of the form:

public String read_Field(Object fieldID, String returnFormat);

This method has different parameters from the privilege. For example, its String returnFormat

parameter, which specifies formatting information for the return value, is not included among
the privilege parameters as it is irrelevant from the perspective of access control. On the other
hand, the patient identifier, which is implicitly part of the method via the object on which the
method is called, must be included in the privilege.

Privilege components concern only the specification of privileges; they have information
about names and parameter signatures only, and contain no role assignment.

Privilege inheritance

A possible extension to the above privileges is support for privilege inheritance. In this case
we must augment the privilege specification with hierarchy information. This hierarchy can be
easily simulated in RBAC, but having explicit support for privilege hierarchies allows for more
compact policy specifications. If a parent and a child privilege are in a hierarchical relation,
then the parent privilege can be used as a prerequisite in all the method calls where the child
privilege is accepted as a prerequisite.

By using hierarchical relation between privileges we can express privilege dependencies, for
example, a write privilege can only be assigned to a role with a read privilege. An algorithm to
check non-parameterised privilege dependencies is described in [IO03] by Ionita and Osborn.

One difficulty, however, arises from parameters. It must be possible to convert the parent
privilege with its parameters into the child privilege, which can have a different set of parameters.
This mapping looks almost like a policy rule that treats a senior privilege as a prerequisite, and
authorises inherited privileges automatically (i.e. a user has no control over this change).

By introducing rules that allow privileges as prerequisites the difference between roles and
privileges starts to disappear. Indeed, privileges could even be considered as roles that cannot
be prerequisites; the separation of the notion of privileges and roles is merely a convenience
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for administrators. There are models, for example PERMIS [CO02], that do not differentiate
privileges from roles; indeed, there are access control models – like the capability-based access
control – that handle roles and privileges as if they were one concept. Hierarchical privileges
are basically functional roles with a restriction that they should not be used as prerequisites to
organisational roles. They could prove to be a useful extension to RBACs that use organisa-
tional roles only; however, all RBACs could benefit from a clean separation of functional and
organisational roles, even in the form of privilege dependencies.

3.1.5 Appointments

Appointments are unique to OASIS, however this concept replaces many “hacks” in other RBAC
implementations that realise the need for more general delegation support. The semantics of
appointments was described in Section 2.3, here we discuss their syntax only.

The appointments section of a policy specification declares the structure of the certificates
used for appointment. This declaration specifies the name of the appointment, lists the pa-
rameters and their types, and provides additional information to bind this appointment to
appointment certificates. This includes information about the consistency of an appointment
certificate, and instructions about how to check this consistency (e.g. a list of accepted author-
itative servers).

Note that appointment certificates are instances of appointments. They can contain ad-
ditional prerequisites, but these are appointment instance specific, and thus are not part of a
policy specification.

3.1.6 Roles

Roles are specified through a signature, which consists of the name of the role and the names and
types of its parameters. In a policy description this information could be implicitly encoded in
the rules, and indeed this has been done in the past. However, having a separate role definition
gives information about unused roles as well; this information is needed for policy evolution
and for meta-policies. In addition, to support strong typing it is vital to have a separate role
declaration.

Role hierarchy

Role hierarchies are part of many RBAC models; in fact, there is more than one type of role
hierarchy that can be supported by an RBAC model [Mof98]. It has often been suggested that
role hierarchies are unnecessary and can cause problems [HV01, GB98, ML99].

OASIS resolves the above debate in a simple way. It does not support role hierarchy in
an explicit form. However, it is possible to simulate role hierarchies by automatic role entry
rules, i.e. with rules that have a single prerequisite role, the ‘senior role’, with no additional
preconditions, and the ‘child role’ as target role. The addition and deletion of such rules is
equivalent to the addition and deletion of role hierarchy relations, under the condition that
there is no hierarchy management that maintains hierarchy relationships even if a role between
two roles in the hierarchy is removed.

Such handling of role inheritance, similarly to the case of privilege inheritance, has the
advantage of handling role parameters properly, i.e. propagating the role parameters between
senior and junior roles.
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3.1.7 Authorisation rules

Authorisation rules, together with activation rules, are the most important, but also the most
complex, constituents of a policy. As described in the section about OASIS RBAC, these rules
map roles to privileges. In the simplest cases, when no parameters are involved, the complexity
of these rules arises from the variable number of prerequisites, i.e. a rule can have any number
of prerequisite environmental predicates. This extra complexity requires the careful design of
the data structures these rules are stored in, as well as the API to access these data structures
(generally a single API call is insufficient to create a rule with arbitrary numbers of prerequisites,
see Section 7.1.1).

Thus, the two main components of these rules are the prerequisites (a prerequisite can either
be an environmental predicate or a role) and the target privilege.

An important requirement is the identification of rules. This was not part of the previous
role definition languages of OASIS, but is very much needed for administrative, storage, and
long-term evolutionary reasons. We therefore extend rules with an identifier that is unique
within a policy.

Variables and containers

In general, authorisation rules are even more complex, and this complexity arises from their
having variables. Apart from the simplest cases when all the prerequisites and the rule target
lack parameters, rules contain variables. These variables are typed, and they can be used
as parameters in the prerequisites. As they are rule specific, their scope is restricted to one
particular rule.

Rules of a policy must satisfy certain constraints. One such constraint concerns free variables
[BMY02]. As mentioned in Section 2.3 the occurrences of rule variables can be either in or out.
A rule variable is bound in a rule if at least one of its occurrence is out parameter. A rule
variable is free if it is not bound.

The constraint for an authorisation rule is that it contains no free variables. We assume that
the rules used in the remaining part of this thesis are well-formed, i.e. they satisfy the above
constraint.

In our implementation the main components of the rule are thus extended with variables.
The structure of these rules is shown in Figure 3.2. Every parameter of the prerequisites and

Authorisation Rule

Predicate Container Role Container

PrerequisiteFunction

Term

Privilege

Privilege Container

Role

Variable

Figure 3.2: The structure of an authorisation rule.

the target privilege must be assigned to a term. Currently in OASIS this term is either a rule
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variable or a constant value. This assignment information is stored with the help of Containers.
Note however, that containers can support the binding of parameters to function results, where
the function is itself embedded into a container to fill its parameters. This extension will be
important for the future extensions of policies (see Chapters 5 and 6), but it is also needed to
support other RBAC models.

We next provide a short example for containers and variables. First we specify a role, an
environmental predicate, and a privilege:

treating doctor(doctor : doctor id, patient : patient id)

check field td(fieldname : string)

read EHR(patient : patient id, fieldname : string)

The rule NHS1 will have three variables x : doctor id, y : patient id, and f : string.

The rule has the following form:

NHS1 : treating doctor(x?, y?), check field td(f) ⊢ read EHR(y?, f?)

In this rule there are two prerequisites and a target privilege. The role, environmental
predicate, and the privilege are embedded into containers in this rule. The role container, for
example, binds the rule variable x to the first parameter of the role (doctor), and the rule variable
y to the second role parameter (patient). The container also specifies that these parameters are
out parameters.

When policies are stored in plain text files there is an implicit ordering of rules. While
in many models this has little significance, some models use such rule relations for conflict
resolution. To support this we have added support for partial ordering of rules.

3.1.8 Activation rules

Activation rules control the activation of roles based on the prerequisites presented by the
principal requesting the role – see Section 2.3. From the point of view of policy specification or
policy structure, activation rules are much like the authorisation rules that were presented in
the previous section.

Unlike authorisation rules, activation rules may have appointment certificates as prerequi-
sites.

Similarly to authorisation rules activation rules may have no free variables.

The main components of activation rules are the target privilege, the prerequisites, and as
in the case of authorisation rules, rule variables.

Each prerequisite, as described earlier, can be tagged to indicate whether it is a membership
condition.

The structure of a possible object-oriented implementation of an activation rule is visualised
in Figure 3.3.

In this representation membership information is stored in the containers that embed the
prerequisites. Apart from this addition, the prerequisite containers work in the same way as
for authorisation rules, i.e. they bind the prerequisite parameters to either variables or constant
values.
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Role Activation Rule

ActPredicateContainer ActRoleContainer

ActPrerequisite
+membership: boolean

Predicate

Term

Role

target

Variable

ActAppointmentContainer

AppointmentRoleContainer

Figure 3.3: The structure of a role activation rule.

The following example activation rule contains three prerequisites (a role, an appointment,
and an environmental predicate) and a target role. The specification of these is as follows:

local user(user : user id)

employed medic(medic : user id)

on duty(user : user id)

doctor on duty(doctor : user id)

The activation rule looks as follows:

NHS2 : local user(h id?), employed medic(h id?), on duty(h id)∗ ⊢ doctor on duty(h id)

In this rule the rule containers, similarly to those of authorisation rules, bind rule variables (in
our case h id is the only rule variable) to the rule component parameters, and indicate binding
information, i.e. whether a parameter is an in or out parameter. In addition, activation contain-
ers hold information about membership conditions; in our case the container for on duty(h id)
records that the environmental predicate it contains is a membership condition.

More general membership conditions

In the simplest case a membership condition is just a tag that specifies whether a specific pre-
requisite is a membership condition or not, but the API produced as part of this research also
supports possible extensions to membership conditions that can control revocation behaviour
of prerequisites. We shall briefly consider such extensions in Section 4.6.3, but [BE03] contains
a more detailed description. Basically, this extension gives finer control over OASIS server be-
haviour in unusual circumstances like network failure or a denial of service attack. Some OASIS
implementations use a heartbeat protocol to keep informed about the state of a remote OASIS
service. If such a heartbeat is lost, the validity state of the relevant membership conditions
becomes unknown. The extra piece of information that is stored with the membership condition
can control, according to the “importance” of the prerequisite, whether the prerequisite should
be revoked immediately or in some delayed manner.
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3.2 Extended policy components

In this thesis we extend the basic policy specifications to support other aspects of policy adminis-
tration. These extensions we call meta-policies. They contain extra information and restrictions
for a policy, but they do not necessarily form part of the policy that is expressed through ac-
tivation and authorisation rules. Through meta-policies we divide organisational policies into
access control policies at different abstraction levels. By structuring organisational policies in
this way we support policy refinement and evolution in a way that is easy to administer, since
policy changes, which occur frequently at the lower abstraction levels, can be performed subject
to the control of parts of the policy at a higher abstraction level. We assume that the higher
the abstraction level of a meta-policy is, the longer its expected lifetime will be.

As a naming convention in this thesis we refer to the policies of an organisation as organi-
sational policies. These are most likely expressed in a textual form and govern various aspects
of organisations. By the term policies we mean a set of RBAC or OASIS RBAC rules. The
meta-policies we introduce specify some restrictions and a set of requirements for policies. Poli-
cies and meta-policies together are formed to represent organisational policies from the access
control point of view.

The three kinds of meta-policies we shall discuss are contexts, compliance policies, and in-
terface policies. In Figure 3.4 we illustrate how these meta-policies depend on each other.

Policy

Contexts

Compliance Policies

Interface Policies

Figure 3.4: The relation among meta-policy types.

Each of these meta-policies contains a policy-independent and a policy-dependent portion.
The independent part contains general definitions and the main concepts of the meta-policies,
while the policy-dependent part makes use of the underlying policy model and contains binding
information to policy and meta-policy instances. The higher the abstraction level of a meta-
policy is, the more independent from a policy it is.

Although these meta-policies will be discussed individually in this thesis, a short summary
is provided next:

3.2.1 Introduction to contexts

Policies can became large and complex, thus it is desirable to group policy components together
and to be able to address such groups. This grouping is analogous to the concept of roles
themselves, since at a basic level roles group permissions, and users. We introduce contexts,
which can be viewed as a set of labels that are assigned to the policy components, including
contexts themselves. Policy components that share a particular context label form groups. Every
policy component can belong to a number of such groups, and this group membership can be
taken into consideration in order to specify access control to a policy component, or to specify
higher-level constraints over the policy in question. For a more detailed description of contexts
see Chapter 4.
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In terms of policy structure, contexts behave like very basic policy components. It is neces-
sary to store the “labels”, the basic constituents, and a dependency relation among these labels.
We must also store the annotation of policy components, either with the policy specification
by extending the policy components, or separately, in which case we must refer to the identi-
fiers of the policy components. There must also be a few predicates to support contexts; these
predicates are very much like the predicates associated with set management, they allow us for
example to check whether a context label is included in a context.

The addition of contexts is really just an extension of the basic policy components. Contexts
are not used at the time that access control decisions are made. The only time contexts are
considered is when a policy is modified in some way, hence contexts form a meta-policy.

3.2.2 Introduction to compliance policies

Another extension to the basic policy components is a set of integrity rules, which we call com-
pliance policies. These rules are checked for either the whole or a part of a policy specification.
A policy that has been examined is said to comply with these rules if this compliance check
evaluates to true.

The constraints and integrity checks expressed by compliance policy rules are specified over
an abstract policy model, which is independent of the policies that will be checked against the
compliance policy. For compliance checks policy administrators must provide a mapping of the
abstract policy components to the components of the policy to be checked. The indirection
introduced by this abstract policy model of compliance policies has many purposes:

First of all re-usability ; the abstract model can be used for more than one policy. This is a
desirable property, as many policies or policy parts are conceptually similar (component names
and signatures may differ) and compliance policies can concentrate on a certain property, like,
for example, separation of duty.

An example scenario where there are many conceptually similar policies is a set of hospitals,
each with their own policies, but under the partial control of a higher-level organising group,
like the National Health Service (NHS). The NHS may have a number of general rules, and local
hospital policies, which are likely to differ from one another, can be required to comply with
such general “guidelines” or compliance policies of the NHS.

This re-usability property does not concern only policies that exist in parallel, but also policy
versions that follow each other in time. Policies evolve. Such evolutionary changes may include
modifications to a role name and its parameters, new policy components, such as rules, and so
forth. A compliance policy can capture important concepts of policies, concepts that should
survive different policy versions, concepts that could be described as long-term goals of a policy.
Then, via a compliance check, it can be ensured that these concepts are kept in the consecutive
versions of policies.

Mappings between compliance policies and policies support much more than simple bijection,
and thus they add to the expressiveness of the compliance policies, widening their applicability.
This enables us to reconcile certain incompatibilities between high-level security requirements
and the requirements set by legacy applications.

The mapping between the abstract policy model and the policy, as well as the successful
compliance check, can form a part of a policy. This compliance can be used as a prerequisite
for other compliances, but it can also provide information about the policy to both the users of
the policy and its administrators, without their needing to know all the complex details.

Compliance policies will be described in detail in Chapter 5.
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3.2.3 Introduction to interface policies

With the proliferation and rapid growth of the Internet, the need for inter-organisational coop-
eration has increased considerably. Our compliance policies capture certain aspects of policies
that exist in parallel and possibly are distributed over a WAN. Such compliance policies thus
describe something that is common across a set of policies. With our interface policies we ex-
tend compliance policies to facilitate cooperation between the management domains of different
policies.

The RBAC model we use as our base model and as a testbed for our extensions – OASIS –
supports the cooperation of policy domains that are spread over a network. Cooperation is
managed by Service Level Agreements, which are bilateral point-to-point agreements. In the
case of a large number of differing policy domains between which communication is common,
the number of SLAs can become unmanageably large. An example scenario is, once again, a
set of hospitals that store patient data in a distributed manner; access to such data from other
hospitals is very desirable. In this environment, policy domains are heavily interconnected, and
a change of a single policy can result in the update of many SLAs. This is expensive both in
terms of human and material resources.

The rules of our compliance policies are specified on an abstract model that can be used
as a mediator between two cooperating domains. If two domains with their relevant policies,
comply with some abstract rules, the fact of this compliance gives useful information to both
of these domains. This pair of compliances can be used to establish a connection between the
policy components of the two domains.

Interface policies implement this concept. With the help of mappings – similar to those of
compliance policies – certain roles of a domain can be converted into roles of another domain.
In this way roles can be requested from a remote policy enforcer and be used to access remote
resources based on roles in a local policy domain. The way the remote role is requested, together
with the information that needs to be provided for this, is all specified in an interface policy.

We shall show how to generate SLAs automatically with the help of interface policies and
corresponding policy mappings.

Our interface policies thus introduce an indirection between cooperating policy domains. An
advantage of this indirection is the reduced administrative cost of SLA generation, as whenever
a single policy is modified only the mapping between this policy and the abstract model needs
to be updated, and the SLAs are regenerated automatically on request.

Interface policies are described in detail in Chapter 6.

3.3 Discussion

Every RBAC model has a set of components that are used to specify policies. Some of these
building blocks are predicate based, some use objects; however, their general structure is similar.
Unfortunately, most RBACs, including OASIS, were designed without consideration for policy
maintenance; they had little support for strong typing, component declaration, and naming.

In this chapter we have introduced the policy components that we shall use in the remainder
of this thesis.

We described the structure of our basic policy components, and we indicated how these
extend the previous component models of OASIS policies. We shall use these extensions, which
include naming, to add support for policy evolution and to simplify long-term policy adminis-
tration.

Our components are OASIS specific, but they include extensions that enable them to express
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the policies of other RBACs. For example, they can express hierarchical relations, which are
not part of OASIS policies.

Apart from policy specification there are two primary uses for our policy components. First,
they are used to specify constraints over policy specifications. These constraints, which we call
meta-policies, help long-term policy administration and policy evolution. Second, our component
model will be used to specify a set of privileges in order to cater for access control restrictions
to policies themselves.

The three kinds of meta-policies (contexts, compliance policies, and interface policies) and
the policy administration privileges for self-administration will be described in the following
chapters.
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Role-based access control organises and groups the users and privileges of organisations. This
simplifies access control policies, since through roles policies can refer to aggregated component
sets, as opposed to individual users and privileges. However, in the case of large organisations,
where the number of users is measured in hundreds of thousands, the number of such aggregating
roles could itself be very large.

Case studies like the one described in [SMJ01], that examine large commercial organisations,
estimate the number of roles required to express the organisational policy to be well over one
thousand. Even in the case of simpler policies, like the one described in [KKSM02], the number
of roles is several hundred. All of these roles are mapped to users, privileges, or maybe other
roles, and this mapping, usually in the forms of rules, also forms a part of the RBAC policy. In
addition, roles and rules, as described in the previous chapter, rely on policy components such
as data types, environmental predicates, variables, and so forth, thus further adding to the total
number of components in a policy.

There are not many humans who could actually keep in mind and understand such large
numbers of components. Naturally, such policies are managed by many administrators, and it
is expected that they understand the changes made by their colleagues.

Real-world organisational policies are not specified in the form of activation and authorisation
rules. When these policies are expressed, using a policy specification language, as a set of policy
components, the logical binding – i.e. that these components belong to one “real-world” policy –
is lost. As a consequence, policy specifications become flat, which makes them difficult to read
for human users.

In this dissertation we propose many methods to address the problem of maintenance of
large policies in the form of policy constraints or meta-policies. These meta-policies are not
used directly for access control decisions but describe and restrict policies at policy specification
time.

In an effort to preserve policy structure the meta-policy described in this chapter groups
policy components together according to some logical coherence. We refer to such groups as
contexts1, and we annotate the policy components with a label that refers to such a context.

Contexts form a new policy component. While it might seem at first glance that contexts
add to the complexity of a policy specification, they actually end up simplifying it, as they
organise a policy into smaller coherent fragments that can be administered individually. In this
way administrators with different trust, competence, or rights can manage portions of a policy
without breaking other policies that are out of the scope of their responsibilities. For those who

1Note that this use of the term context is different from the use in context awareness that we talked
about in Section 2.
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administer a larger number of policy component groups, contexts help by providing views to a
scope of policy components.

Policy component groups organised with the help of contexts are not isolated, as their corre-
sponding real-world policy component groups not only overlap but relate to each other in some
way. We express such relations with the help of information flow restrictions between contexts.
This will enable us to specify restrictions over rules and thus enforce segregation of unrelated
policy components.

Parts of the work described in this chapter were published in [BEM03]. This paper was writ-
ten together with David Eyers, whose primary focus on contexts is motivated by how contexts
can be used to specify work-flow management and separation of duty like constraints.

The author’s motivation to explore contexts was primarily to group components for admin-
istrative purposes and to impose restrictions on rules. The joint work did not contain a formal
specification of contexts, and the semantics of the information flow restrictions are completely
revised in this thesis. These extensions are described in [BME04].

In this chapter we first define contexts in Section 4.1. We describe in detail the components
that build up contexts, define the relations between contexts, and give examples of how contexts
relate to each other. Next, in Section 4.2, we consider the context assignment to OASIS policy
components, as in later sections we shall use OASIS RBAC policies to demonstrate the use
of contexts. In the following two sections we explore the two primary uses for contexts. In
Section 4.3 we investigate the grouping aspect of contexts, while in Section 4.4 we look at how
we can use contexts to impose information flow restrictions on policy rules and what further
constraints we can express with their help. We extend our context model to support hierarchical
context elements in Section 4.5. In the subsequent section (Section 4.6) we show other uses for
contexts. Finally we look at how contexts could be applied to other RBAC models, how our
context model extends possible grouping aspects of those RBACs, and how others’ work relates
to ours.

4.1 The definition of contexts

We define a context as a finite set of labels. These labels are referred to as context elements and
appear as C′ in our formal descriptions2.

In order to use contexts in a policy specification we first must define the permitted context
elements, i.e. specify the context constituent labels. The only restriction for context elements is
that they an equality predicate defined over them. As a convention we shall use strings using
the Latin alphabet for context elements.

In the following we shall use lower case characters from the beginning of the Latin alphabet
(a,b,c, ...) to denote context element variables, i.e. variables that can have a label value. For
context variables, i.e. variables whose values are sets of context elements, we shall use lower case
letters from the beginning of the Greek alphabet (e.g. α, β, γ).

Part of the context element specification is an information flow relation. This describes the
direction in which information is permitted to flow between context elements. There are many
ways to specify such a relationship between context elements. A trivial choice could be to treat
the context elements as the nodes of a directed graph, and then list the edges of this graph.
The final information flow relation between the nodes will be the transitive closure of the graph
edges. Although this is seemingly the simplest way of specifying an information flow relation, in

2We shall use primes to differentiate the context notation in the model presented in the first part of
this chapter. In Section 4.5 we shall extend and finalise this model, and use the symbols introduced here
without primes.
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this approach it is more difficult to add new, general context labels that allow information flow
from or into any other node, since the relation with every other disconnected node group must
be specified explicitly. It is also more difficult to specify fine-grained access control restriction
to the graph edges.

We use a different approach here, in which we specify for every context element a set of
context elements that it accepts information from, and a set of context elements it is willing to
provide information to.

Formally this can be expressed with the following two functions:

context in : C′ → P(C′) ∪ {⋆} ∪ {ε}

context out : C′ → P(C′) ∪ {⋆}

The function context in specifies for every context element the set of context elements it accepts
information flow from, and context out specifies in the same way for a context element the set of
context elements it allows information to flow to. As loop information flow from context elements
to themselves will be ensured by our information flow definition (Definition 4.1), information
flow specification through context in and context out does not need to take care of the reflexivity
of the information flow relation.

The range of both functions is extended by an additional element (⋆) to support wild-cards,
i.e. to specify that information from or to any context element is allowed. Using an extra symbol
to refer to all the available context elements instead of listing all the context elements allows us
to evaluate the set of available context elements dynamically. This is especially important for
successive context element specifications.

The range of context in is further extended by a special value ε. The value ε indicates that
a context element serves as an initial context element (see Section 4.5.4).

An explicit edge between two context elements in the information flow graph will exist if the
set of context elements to which the source node permits information flow includes the target
node, and the set of context elements from which the target node accepts information flow
includes the source node.

The above is expressed formally with the help of the →֒ relation:

Definition 4.1 (Direct information flow between non-hierarchical context elements)
→֒⊆ C′ × C′

a →֒ b ⇔ (a = b) ∨
(

(

b ∈ context out(a) ∨ ⋆ ∈ context out(a)
)

∧

(

a ∈ context in(b) ∨ ⋆ ∈ context in(b)
)

)

The final information flow graph is produced by the transitive closure of the direct edges.
We shall use the symbol →֒∗ to denote the relation that represents information flow between
context elements.

An advantage of handling context information in the way presented above, as opposed to
storing just the edges, is that it allows a more flexible administration of context elements.
Context elements that use wild-cards do not need to be updated when new context elements
are added or removed, thus from the access control point of view no access to these elements is
necessary. Also, principals responsible for certain context elements can specify information flow
without access to other context elements.
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4.1.1 Example specification of context element

We next give an example in which we illustrate how to specify information flow using the
context in and context out functions. The context elements are shown in Figure 4.1:

webStats

webFormsWAPgateway

logging

Figure 4.1: Example information flow among context elements.

In this example there are four context elements: WAPgateway, webForms, logging and
webStats. The context element webForms specifies that any information flow will be accepted
either in or out of this context element. With the help of the context in and context out functions
this is expressed as:

context in(webForms) = ⋆

context out(webForms) = ⋆

The context element logging can be considered as “mode in”. It specifies an empty set as
possible context elements it permits information to flow to, thus information may flow only
toward the logging context element.

context in(logging) = {}

context out(logging) = ⋆

The context element webStats allows only webForms as information source, and similarly to
logging, it does not allow any information flow out of itself.

context in(webStats) = {webForms}

context out(webStats) = {}

WAPgateway allows information flow from any source into only webForms.

context in(WAPgateway) = ⋆

context out(WAPgateway) = {webForms}

Because the effective information flow graph is the transitive closure of the specified graph,
information from the WAPgateway may flow into the webStats context element, even though
these were not directly connected.

4.1.2 Cycles in the information flow graph

The information flow graph, defined by the information flow relation for context elements, may
contain directed cycles. As the effective information flow is the transitive closure of the informa-
tion flow relation, information may flow from any context element to any other context element
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on the same directed cycle. Thus in the example presented in Section 4.1.1 the WAPgateway and
webForms context elements will behave in the same way.

Context elements on a directed cycle are equivalent from the information flow perspective,
but from a policy structuring perspective these context elements differ. For example, access
control to the policy can be specified according to the context elements, so one could permit a
role to modify policy components tagged with the webForms only.

Also, because of policy evolution, apparently equivalent context components could become
significantly different in the future.

For such reasons we allow cycles in the information flow specification; however, to avoid acci-
dental cycles we suggest that context elements that are open on both sides – i.e. that allow infor-
mation to flow freely both into them (context in(...) = ⋆), and out of them ((context out(...) =
⋆) – are avoided.

A possible alternative to specifying context elements that accept information from any other
domain is to mark them as initial (ε), but this we shall discuss later.

4.1.3 Information flow relation between contexts

As mentioned previously, policy components can be associated with contexts, i.e. with more
than one context element. The assignment of a set of labels is very similar to the assignment of
a single label. If only one context element were allowed per policy component then these could
be created from the powerset of the context labels, and the information flow relation in the new
scheme could also be deduced.

The advantage of having a set of labels assigned to a component is that it allows policy
components to be segmented along multiple dimensions. For example, one dimension distin-
guishes components based on their belonging to either procurement or marketing components,
and another dimension can distinguish components on their security classification like ‘web’ or
‘secure web’.

Based on information flow restrictions between context elements we can specify information
flow between contexts.

If α and β are two contexts, then information flow between them is permitted only if:

1. for every context element in α there is a context element in the target context β into
which information may flow, and

2. for every non-initial context element in β there is a context element a in the source context
(α) from which information flow is permitted to the target context element.

Formally this is defined by the following relation:

Definition 4.2 (Information flow between non-hierarchical contexts)
→֒⊆ P(C′) × P(C′)

α →֒ β ⇔ (∀a ∈ α : ∃b ∈ β : a →֒∗ b) ∧

(∀b ∈ β : ((∃a ∈ α : a →֒∗ b) ∨ (ε ∈ context in(b))))

Note that this definition allows information flow between two empty contexts. This special
case we shall discuss in more detail in Section 4.2.1.

Thus, based on the example in Section 4.1.1 information flow from the context [WAPgateway,
webForms] to [webForms, webStats] is permitted, as information from both WAPgateway and
webForms may flow to both webForms and webStats.
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A counterexample is the contexts [webForms, logging] and [webStats]; information flow
from the first context to the latter one is not permitted because, although information flow from
webForms to webStats is permitted, information cannot flow from logging to webStats.

An example that uses ε in context in is provided in Section 4.5.5.

The above definition has two consequences that are identified in the following two lemmas:

Lemma 4.1 If α and β are two contexts between which information flow is permitted (α →֒ β),
and α has a context element (a : a ∈ α) from which information may not flow anywhere else
(context out(a) = {}), then this context element must be in β.

Lemma 4.2 If α and β are two contexts between which information flow is permitted (α →֒ β),
and β has a context element (b : b ∈ β) into which information may not flow from anywhere and
it is not initial (context in(b) = {}), then this context element must be in α.

Parallel context flow structures

These lemmas enable parallel information flows for two context element sets that have no in-
formation flow permitted between each other. For example, in Figure 4.2 there are two context
element groups that can describe two different information flows. One group has a web →֒
secureWeb information flow restriction. This context element group takes care of information
flow from the web security aspect. The second group, consisting of the CompLab, OPERA, and
Security context elements, describes information flow from an organisational perspective. The
two context element groups thus describe two separate, orthogonal information flows.

OPERA

CompLab

Security

web

secureWeb

Figure 4.2: Parallel information flow example.

Components of both classifications will have to propagate one context element from each
group. Thus, for example a role that is marked with the {web,OPERA} context can only be used
as prerequisite to roles that have at least one context element from the {web, secureWeb} and
one element from the {CompLab, OPERA, Security} context element sets.

4.2 Context assignments

We introduced contexts in order to annotate policy components with them. In this section
we examine at syntactic level which OASIS policy components can have context information
associated with them. We shall briefly consider other policies in Section 4.7.

We allow the annotation of data types with contexts. Similarly, other basic components of
a policy, such as function, role, appointment, and privilege specifications, can all be assigned
contexts, but as these components use data types in their specification, they have two groups of

62



CHAPTER 4. CONTEXTS

context associated with them. The first is the context that is assigned directly to the component,
the second refers to the contexts of the data types used.

The most complex policy components are activation and authorisation rules. These rules
can have contexts associated with many of their constituent parts. In the case of activation
rules these parts are depicted in Figure 4.3. Note that rules themselves can be associated with
a context.

Role

Parameter

Parameter

Parameter

Role(s)

Environmetal
Predicate(s)

Parameter

Parameter

Preconditions

Activation 

Target

Rule 

Rule Element context assignment

Parameter context assignment

Rule context assignment

Parameter

Appointment(s)

Parameter

Figure 4.3: Role activation rule components that can be assigned a context.

To enable fine-grained information flow restrictions we allow context specification at sub-
component level, e.g. we allow context specification for prerequisites that are parts of a rule
(which itself is a policy component).

Rule components such as roles, appointments, environmental predicates, and privileges can
be assigned contexts at the time they are defined. In rules, these rule components are encap-
sulated into containers (see Section 3.1.7) that are not permitted to have contexts assigned to
them directly. The containers have effectively the same contexts associated with them as the
role, appointment, environmental predicate, or privilege that they encapsulate.

Parameters of rule components can also have contexts assigned to them. This allows the
differentiation of parameters within prerequisites. For example, in the case of the privilege
read EHR record(patient id, record) the two parameters can be differentiated from an infor-
mation flow perspective. Assuming that the patient id parameter, which uniquely identifies a
patient, is more sensitive than the record parameter, which can have values like ‘haematology’,
the propagation of patient id should be more restricted.

Rule variables, in the same way as containers, cannot be assigned contexts. The contexts
associated with them will be the contexts of the role component parameters that are bound to
these variables.

To show what context a policy component belongs to we use a superscript notation within
square brackets. For example, to indicate that RoleA has the context elements web and secure-

Web assigned to it, we write RoleA[web,secureWeb]. Thus an activation rule can have the following
form:

rule name[rulec] : r
[rc1]
1 , r

[rc2]
2 , ..., r[rcnr

]
nr

, ac
[acc1]
1 , ..., ac[accnac

]
nac

, e
[ec1]
1 , ..., e[ecne

]
ne

⊢ r[rc]
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where rule name is the name of the rule, ri, acj and ek are the nr, nac and ne prerequisite
roles, appointments, and environmental certificates respectively, and r is the target role. The
contexts are in superscript in square brackets, rulec is the rule context, while rci, accj , eck
are the prerequisite contexts; finally, rc is the target role context. The parameters of each rule
component can also be assigned a context, thus any of the above rule components can look like:

rule component[component context](parameter
[context1]
1 , ..., parameter[contextn]

n )

Note that while we shall use the above form of a rule in our examples, it is not intended for
policy administrators. Note also, that rules are only associated with rule contexts. Since con-
tainers have no contexts, the rule component context and parameter context in the above forms
of rules are specified with the rule component specifications, i.e. outside the rule specification.

As the activation and authorisation rules illustrate, rules as well as other policy components,
can have many parts associated with contexts. Which of these contexts must be considered when
a decision is made, or whether the union of the contexts must be considered, depends on the
purpose the contexts are used. These purposes, as well as how contexts are used to support
them, will be explained in the next sections.

4.2.1 If there is no context association

Contexts form a simple meta-policy, thus they are not required in a policy specification. Policies
may exist with no or only partial context specification.

Definition 4.2 allows information flow between two empty contexts, therefore information
may flow between policy components that have no contexts associated with them.

Information is permitted to flow from empty contexts to non-empty contexts only if all the
context elements are initial ones, i.e. they have ε in their context in.

The reason for segregating components with and without contexts is to avoid the use of
‘unchecked’ policy components (ones that have no contexts associated with them) together with
‘checked’ ones (ones with context). Initial context elements are oblivious to the information
source; they indicate a new piece of information.

The second part of this segregation, which says that information may not flow from non-
empty contexts into empty ones, is expressed by the following lemma:

Lemma 4.3 (Information flow from non-empty contexts)

α, β ∈ P(C′) : α 6= {} ∧ α →֒ β ⇒ β 6= {}

This is an immediate consequence of the information flow definition.

4.3 Component grouping

By annotating policy components with contexts we form policy component groups. These groups
provide a view to the policy, which can be used for several purposes, for example structural
component grouping can be used both to define coherent portions of a policy and for access
control.
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4.3.1 Structural groups

First of all, structuring introduced by contexts allows administrators to work with a smaller
number of policy components.

For example, policy components that are used for roles of a specific ward in a hospital, say
roles for haematology, can be grouped with the help of a context element called ‘haematology’.
Policy components that are annotated with this context element, i.e. whose contexts include the
context element ‘haematology’, will belong to one specific group.

Such groups can be freely formed. One of their primary purposes is to structure a policy for
readability reasons. This is especially useful if policies are stored in a policy store as opposed to
plain text files. These groups can later be visualised by appropriate graphical user interfaces.

Consistency requirement

Most policy components are built up from other components, and many of these can be labelled
with contexts. For example, roles can have contexts associated with them but the parameters
of a role can also be associated with contexts. As a role encapsulates its parameters it cannot
be separated from them.

Therefore, to maintain consistency, we impose a restriction on the context specifications that
are permitted, and require that subcomponents of a policy component belong to the context of
their parents. For example, the context of a role parameter must be a subset of the parent role’s
context.

Data types are not considered to be child components of policy components, thus the above
requirement does not apply to them.

4.3.2 Grouping for access control

In Chapter 7 we introduce a mechanism for fine-grained access control to policies and to their
constituent components. This mechanism is based on privileges that are associated with every
basic operation on policy components. In the case of small policies, such access privileges
could be used efficiently to specify access control to policies, but when a large number of policy
components is involved this approach becomes impractical.

Privileges concerning access control to policy components can take advantage of context-
based component groups. Thus, via such policy component groups, specifying access control to
policies can be expressed in a more concise form.

As mentioned in the case of structural grouping, the contexts of policy components that
are constituent parts of another component must include the context labels of their parents.
This property ensures that in the case of context-based access control, a principal that wishes to
modify a part of a policy component must also have modification rights for the parent component.
For example, if a rule has the context {web, secureWeb} the constituent elements must also
have these context elements associated with them. Thus, the modification of a rule component –
say a prerequisite role – will also require privileges to modify elements in the {web, secureWeb}
contexts. Note that this restriction does not extend to data types.

However, child components can belong to contexts that the parent component does not have.
Reasons for this will be discussed in the section about information flow restrictions (Section 4.4).
From the access control perspective this means that if a principal has rights to modify a policy
component, he still might not be able to modify specific subcomponents of it. This can be useful,
for example, in the case of an activation rule, where a principal may be authorised to change
only specific prerequisites of the rule.

65



4.4. INFORMATION FLOW RESTRICTIONS

4.3.3 Self-administration of contexts

Since in our model contexts form a meta-policy, they are intended to be used only at policy
specification time. Thus contexts need not be part of a policy at policy enforcement time. They
only help to administer a policy. But it is natural to store contextual information with the
policy, forming in this way a new policy component.

One motivation for contexts was the specification of evolutionary access control restrictions
to policy components. It is expected that the lifetime of contexts and meta-policies will be
much longer than that of individual policies; thus the maintenance of meta-policies, including
context element specification, should occur less frequently than the modification of the policy
itself. Still, policy contexts can be modified, and access control restriction to such modification
must be specified. The privileges associated with access to contexts can make use of contexts
themselves, making contexts self-administering. It is important to note that self-administration
as described in this thesis allows only the creation of a new version of a policy. Thus the access
control rights of a principal that is modifying a policy are not affected after each modification,
but only after a consistent set of modifications, when a new policy version is committed.

Predefined context elements

There is a set of predefined context elements available by default to policy administrators. These
context elements have a special form, in that they start with the keyword ‘desert’3. For example,
the ‘desert.administration’4 context is used to mark policy components (mainly privileges)
that concern policy modification.

4.4 Information flow restrictions

In this section we look at how to specify information flow among policy components, or in
other words, how to restrict the use of certain policy components. First, in Section 4.4.1, we
show our motivation for such use of contexts. Later we discuss the information flow restrictions
at three different granularity levels. These three levels correspond to the three categories of
rule constituents that can be assigned contexts. As depicted in Figure 4.3 on page 63, rule
components such as prerequisite roles, appointments, and environmental predicates can have
contexts associated with them. Information flow restrictions for these policy components will
be described in Section 4.4.2. Later, in Section 4.4.3, we narrow our focus and look at the
information flow between subcomponents of rule components, i.e. we look at individual rule
component parameters. Finally, in Section 4.4.4, we look at how information flow constraints
work at rule level.

4.4.1 Motivation

Grouping certain policy components and specifying information flow restrictions for such groups
enable us to treat such component groups differently. Some rule targets may require stricter
preconditions in order to be acquired or entered. For example, in a policy with two context
elements web and secureWeb, it might be required that roles in the secureWeb contexts cannot
be used as prerequisites to roles that belong to the web context. With the help of contexts and
the information flow relation between context elements, we can express such policy specification
time restrictions and decouple this restriction from the policy itself. In this way we can control

3Desert is our meta-policy management tool.
4Hierarchical context elements, such as desert.administration will be explained in Section 4.5.
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which policy components – belonging to a specific context – can be used as prerequisites to
policy components of another group.

Apart from the simplest policy specifications, most policy rule components, such as roles and
appointments, contain parameters. While parameters form a useful extension they also increase
the sophistication of policies. Parameters hold information. In rules the parameter values can
propagate to other policy components, and finally to privileges. For example in the rule

local user(h id?), employed medic(h id?), on duty(h id) ⊢ doctor on duty(h id)

the h id parameter of the local user role and the employed medic appointments can propagate
into the target role doctor on duty.

Whether parameter information is sensitive or not depends on the environment in which it
is used. For example, the patient identifier parameter that can be part of most roles in the
National Health Service policy should not be included in a role like HIV test, that authorises its
holders to have them anonymously checked for HIV infection. Note that a role can have both
sensitive and insensitive parameters.

The information does not only propagate to other policy components but, in OASIS via
environmental predicates, also to the external world. Environmental predicates form a link to
applications external to the policy enforcement engine, and information flow into such external
entities must also be controlled. An additional complexity is that this external link, due to the
fact that environmental predicates can set parameters, also forms an information source.

We expect valid policy rules to satisfy information flow restrictions. This will be discussed
in more detail in Chapter 8.

4.4.2 Context specification for rule elements

Rule elements, roles, appointments, environmental predicates, and privileges, can all be given
contexts. Information flow restrictions among these contexts control what can be used as a
prerequisite for the target role or target privilege in a rule.

The information flow restriction thus specifies that in rules – both activation and autho-
risation rules – a rule component can be used as a prerequisite to the target component only
if information flow is permitted from the prerequisite’s context to the context of the target
component.

Example

This next example shows how to create two or more contexts that cannot be used as prerequisites
of each other.

The context elements are CompLab, OPERA, and Security. Roles are local user(uid), OPERA -
webadmin(uid), OPERA meetingadmin(uid), and Security webadmin(uid). The CompLab is used
to mark policy components that are under the direct control of the Computer Laboratory. OPERA
and Security are used to mark components that are managed by the two research groups, the
OPERA and the Security group. There is also an environmental predicate – group member –
available that checks whether a particular user is in a specific research group.

The information flow restriction among the context elements is given and visualised in
Figure 4.4.

In this example context element specification, information is allowed to flow from the CompLab
context element to any other context element – in our case these are the OPERA and Security

context elements; and no other information flow is permitted.
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context in(CompLab) = {}

context out(CompLab) = ⋆

context in(OPERA) = {CompLab}

context out(OPERA) = {}

context in(Security) = {CompLab}

context out(Security) = {}

OPERA

CompLab

Security

Figure 4.4: Information flow example for rule components.

The assignment of contexts to roles is as follows:

local user[CompLab](uid)

OPERA webadmin[CompLab,OPERA](uid)

OPERA meetingadmin[OPERA](uid)

Security webadmin[Security](uid)

group member[CompLab](uid, group)

We next present some example rules that satisfy the above information flow requirements.
These rules follow the guideline expressed by the meta-policy, according to which a policy may
contain rules that use Computer Laboratory roles as prerequisites to the research groups’ roles
or privileges.

local user[CompLab](uid?),member of [CompLab](uid, ′OPERA′) ⊢
OPERA webadmin[CompLab,OPERA]

local user[CompLab](uid?),member of [CompLab](uid, ′Security′) ⊢
Security webadmin[Security](uid)

The information flow graph restricts the use of roles in the OPERA context so that these roles
can be used as prerequisites only to roles in the OPERA context. Thus the rule

OPERA webadmin[CompLab,OPERA] ⊢ OPERA meetingadmin[OPERA](uid)

is permitted, but the rule

OPERA meetingadmin[OPERA](uid) ⊢ Security webadmin[Security](uid)

cannot be part of the policy specification, because information is not allowed to flow from the
OPERA context element to the Security context element. In other words, the roles of the OPERA
group cannot be used as prerequisites to roles of the Security group. Note however, that a role
from the OPERA research group can still be used for shared roles, i.e. for roles that are marked
at specification time as belonging both to OPERA and Security.

4.4.3 Context specification for parameters

Parameters of rule components can have different levels of sensitivity themselves. For example,
in a role patient(‘Alice’, ‘burns’) with two parameters, one of which is a patient identifier, the
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second just a ward identifier, the first parameter is likely to be more sensitive than the second
one. While it is acceptable to use the second parameter as an information source for specific
roles, it might be required that the information held by the first parameter is not propagated.

We therefore allow parameters to belong to contexts that their parent components do not
share. Information from such parameters with extra context elements may propagate only into
parameters whose context includes context elements into which information may flow from the
extra context element. Note that to check information flow restrictions only the parameter con-
texts need to be considered, since the context associated with the parameter’s parent component
must be a subset of the parameter’s context.

Example parameter information flow

In the next example there are three context elements involved: personal, hospital, and
HIV test. Components marked with personal indicate that these components handle or con-
tain information that is personal to a patient. The hospital context element is used to mark
hospital specific policy components. The HIV test context is used to mark policy components
that are used for HIV screening. To ensure anonymity it is expected that components marked
with HIV test contain no personal information.

Information is permitted to flow from hospital to personal and HIV test, and from
HIV test to personal. This is visualised in Figure 4.5.

personal

hospital

HIV_test

Figure 4.5: Example information flow for parameters.

The specification of the role involved is:

patient[hospital](patient id[hospital,personal], ward name[hospital])

It can be seen here that the role has the hospital context element associated with it, but one
of its parameters (patient id) is – in addition to the role context – also associated with the
personal context element to indicate that it represents personal information.

There is also a privilege in this example; its specification is:

HIV testable[hospital,HIV test](some parameter[hospital,HIV test])

This privilege can be used for example to issue a magnetic card to a patient so that he may
prove that he may be tested for HIV free of charge. Here the privilege has two context elements
(hospital, HIV test) in its context. Its parameter, which for the sake of this example is called
just ‘some parameter’, has the same contexts as its parent component, the privilege.

For simplicity, all the parameters involved in this example have “character string” data type
(which, we assume, is defined in the policy specification).
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Let us consider the following authorisation rule:

patient(x, y) ⊢ HIV testable(y)

Or with the contexts shown:

patient[hospital](x[hospital,personal], y[hospital]) ⊢ HIV testable[hospital,HIV test](y[hospital,HIV test])

To test whether this rule complies with the information flow restrictions the following tests
are performed:

X Rule component level tests: checks whether the prerequisites can be used for the target
component.

In this case it is checked that information may flow from [hospital] – the context of the
prerequisite role patient – to [hospital], the context of the target privilege HIV testable.

X Component parameter level tests: checks whether the prerequisites can be used for the
target component.

In this case it is checked whether information is allowed to flow from the second parameter
(y) of the patient role to the first parameter (y) of the target privilege. In this case the
test passes, as information is permitted to flow from the relevant parameter contexts, i.e.
from [hospital] to [hospital,HIV test].

The following rule is an example when the parameter level information flow restriction is
not satisfied.

patient(x, y) ⊢ HIV testable(x)

Or with the contexts shown:

patient[hospital](x[hospital,personal], y[hospital]) ⊢ HIV testable[hospital,HIV test](x[hospital,HIV test])

This rule is not accepted, as according to the rule the value of the first parameter (x) of the
prerequisite role propagates to the first parameter of the target privilege, but the information
flow between the relevant contexts – [hospital,personal] to [hospital,HIV test] – is not
permitted (information may not flow from the personal context element to either HIV test or
hospital). This result is not unexpected, as there is no information flow from the personal

context element, and according to Lemma 4.1, it is required that this context element is present
in the target component’s context.

Taxonomy of environmental predicates

Environmental predicates, in addition to being able to read and to set parameter values, can
have side-effects. They form a link to the application outside the policy decision making engine,
therefore it is prudent to provide a means to specify their information flow characteristics.

Extra care must be taken with environmental predicates and with the information that flows
into them. When other prerequisites (roles and appointments) are evaluated, the information
stored in their parameters does not leave the policy enforcement engine. In the case of environ-
mental predicates the in parameter values are sent to the service that evaluates these parameters
and sets any out parameters. Therefore it is imperative to know and to be able to specify what
information may flow to environmental predicates.

Also, unlike the other rule prerequisites, environmental predicates can set parameter values –
out parameters – based on other parameter values – in parameters – in the same environmental
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predicate. This introduces an information flow channel within the environmental predicate
itself. This channel conveys information from the in parameters to out parameters. Consider
for example the environmental predicate eq(a, b?) that sets the value of b to be equal to the
value of a. This information flow must be considered when a rule is checked. For example, the
rule that was rejected earlier:

patient[hospital](x[hospital,personal], y[hospital]) ⊢
HIV testable[hospital,HIV test](x[hospital,HIV test])

could be extended as follows:

patient[hospital](x[hospital,personal], y[hospital]), eq(x, z?) ⊢
HIV testable[hospital,HIV test](z[hospital,HIV test])

Without the consideration of information flow within environmental predicates the above rule
would be accepted.

We show two ways to handle the information flow within environmental predicates.
The first approach follows a paranoid principle. Environmental predicates can be potentially

complex, and have many in as well as out parameters. It is often difficult to learn how infor-
mation is flowing in such a predicate, therefore it is assumed that all out parameters have been
able to benefit from the information given in the in parameters. This approach thus considers
information flow almost at environmental predicate level. All out parameters are ‘tainted’, and
thus must be treated that way. In the case of such environmental predicates the predicate is
valid only if information flow is permitted from every in parameter context to every out pa-
rameter context. Note that this restriction might be insufficient in certain cases. For example,
an environmental predicate equals(x,y) may check whether its two in parameters are the same.
Since none of these parameters are out parameters, it is possible to create rules that exploit the
backtracking capability of policy enforcers, and can thus use this equals predicate to propagate
the information from x to y.

However, the semantics of environmental predicates, including the actual context information
flows from in to out parameters, might be known to the policy administrator. Therefore, if it is
exactly known which in parameters are used for determining the value of the out parameters,
administrators should be allowed to specify information flow between parameters explicitly.

4.4.4 Context specification for rules

The final granularity of context specification is done at the overall rule level. Based on contexts,
policy rules can be organised into groups.

Administrators with different levels of trust and jurisdiction, and thus different privileges,
can create rules that belong to specific contexts. Similarly to the context restriction for rule
components, it is required that all the child components of such rules belong to the contexts of
the rule. That is, the rule context is a subset of each child component’s context.

This constraint can be used to restrict the policy components that are allowed in a rule.
Consider for example the context elements specified in Figure 4.4 on page 68. If a rule is marked
with the OPERA context element, it will not be able to use components that are tagged with a
context that does not contain a context element into which information may flow from OPERA.
For example, this rule may not contain a component tagged with the [Security] context.

This is useful for restricting the domain within which a policy administrator may work, as
we can grant him privileges to add and modify rules that have a specific context associated with
them. In this way we can limit the rule components that the policy administrator may use for
a given rule. For example, we can require that an internal policy administrator for the OASIS
research group use only group specific roles and privileges in the group’s policy.
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4.4.5 Context-based restrictions for data types

In the same manner as for other policy components we have permitted context assignment to
data types in order to restrict their use. But, unlike these other policy components, we do
not consider data types to be child components within policy components, thus we define here
separately the parent-child context relation for data types:

If a data type has no context associated with it we handle it as a general data type, and
allow its use in any component specification.

On the other hand, if a data type is assigned a context, then we require that it is used in
components that have contexts associated with them into which information may flow from the
context of the data type.

Thus, in the case of role, privilege, appointment, function, and environmental predicate
specification, information must be allowed to flow from the data type’s context to the parameter’s
context.

The only other place where data types are used in policy specifications is the declaration of
rule variables. As rule variables simply provide information conduits, we allow rules to use any
data type, since information flow restrictions will be checked at rule component parameter level.

4.5 Hierarchical contexts

We next present an extension to our previous context element specification, in which we add hi-
erarchical information for context elements. The idea was first mentioned in our paper [BEM03]
that introduced contexts, but here we elaborate on this concept and provide a more formal
description and include examples.

As context elements that are found on directed cycles (see Section 4.1.2) behave in the same
way from an information flow perspective, it is vital to avoid accidental creation of such cycles.
Unfortunately, it is easy to introduce cycles! One must take special care of the ⋆ sources and
destinations, i.e. one must be careful when specifying context elements that accept information
from everyone else or permit information flow to potentially every other context element.

It would also be nice to group relevant context elements together. In the example presented
on page 62 we talk about two groups of context elements. The first group restricts information
flow from the CompLab context element to the OPERA and Security context elements. The other
group, which is independent of the first one, contains two context elements, web and secureWeb,
and permits information flow from the web to the secureWeb context element.

These context element groups were separated in Figure 4.2 on page 62, but in their specifica-
tion, which puts all the context elements into a set, these two groups would not be distinguished.

In the above example, the specification of wild-cards is also problematic, as it can introduce
undesired information flow that could break the parallel context flow specification by joining
the context component groups. With the hierarchies introduced in this section it is possible to
specify free information flow within a group, i.e. we can specify that from the CompLab context
element information may flow freely into any other context element in that group, which in
our case is {CompLab, OPERA, Security}. This context element group can be extended later
without the need to modify the information flow restriction for the parent – CompLab – context
element.

A further problem, which we shall address with hierarchical context elements, is the dis-
tributed administration of contexts. In the above example the Computer Laboratory must take
care of its CompLab context element, but its subgroups are responsible for their own context ele-
ments. If additional context elements are introduced they should not affect the context elements
and information flow indirectly.
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In hierarchical contexts, participating context elements can be grouped together into a new
context element, and can be referred to collectively via this new context element. For example, all
the Computer Laboratory context elements can be grouped together under the CompLab context
element. At the university level this CompLab context element can be used to specify information
flow to the Computer Laboratory, while within the Computer Laboratory the information flow
can be further refined.

Therefore context element hierarchies introduce a layering in context specification. This is
visualised in Figure 4.6.

Security

Lab

OPERA

                                                                       

CompLab.

CompLab Engineering

Cambridge

Biology

Trust
Policy

CompLab.general

Middleware

OPERA.

Figure 4.6: Some example information flow layers.

4.5.1 Definition

Building on the definition of non-hierarchical context elements (denoted by C′) we next present
a more formal definition of hierarchical context elements.
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In the non-hierarchical case we used context elements as unique identifiers, but since we
cannot require all context labels to be globally unique (for example a research group at another
institution might also be called OPERA), we decouple labels from context elements. We shall
use C to refer to all the hierarchical context elements.

For variables that are from C we shall use capital letters, e.g. A, B, C, or X, Y.

Definition 4.3 (Hierarchy relation of context elements) The hierarchy of the context el-
ements is specified by the Cparent ⊂ C × C relation. This relation pairs together parent and
child context elements.

We do not allow multiple parents in our context element hierarchy, therefore the Cparent
relation must satisfy the following restriction:

∀C,P1, P2 ∈ C : (P1, C) ∈ Cparent ∧ (P2, C) ∈ Cparent ⇒ P1 = P2

This restriction says that a context element may have at most one parent.
Context elements cannot be their own parents; this is achieved by the following restriction:

Cparent = Cparent \ △C

Furthermore, we require the reflexive-transitive closure of Cparent, for which we shall use
≤ symbol, to be antisymmetric.

≤ is a partial order – reflexivity and transitivity are consequences of the closure, while anti-
symmetry was required by the definition of Cparent. Thus the context elements, together with
the Cparent hierarchy relation, form a forest of rooted trees (C, Cparent).

We also introduce the predicate Croot to denote root context elements, i.e. ones that have
no parents:

Croot : C → bool

∀A ∈ C : Croot(A) = (¬∃B ∈ C : (B,A) ∈ Cparent)

Context elements that satisfy this predicate are the minimal context elements.

4.5.2 Labels

As we decoupled context element labels from context elements, we specify a function (Clabel),
that returns the label associated with such a hierarchical context element. The range of Clabel
is C′.

Just as in the case of non-hierarchical context elements, for which we required label unique-
ness, we require that labels assigned to root nodes are unique. Similarly, siblings must use
different labels. This is expressed by the following constraint:

∀A,B ∈ C :

A 6= B ∧ ((Croot(A) ∧ Croot(B)) ∨ (∃C ∈ C : Cparent(C,A) ∧ Cparent(C,B)))

⇓

Clabel(A) 6= Clabel(B)

In the examples it is easier to refer to context elements if we use a path expression. To
support this we introduce the path function, which returns the labels (separated by ‘.’) on a
path from the root of a context element to the context element. Using + as a concatenation the
definition is as follows:

path(X) =

{

path(Y ) + ‘.’ + Clabel(X) if ∃Y ∈ C : Cparent(Y,X)

Clabel(X) if Croot(X)
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Note that as a path from a context element’s root to a context element is unambiguous, and
because of our labeling restrictions, there is a bijection between the above path strings and the
context elements (C). Consequently, the path function is invertible, with inverse path−1.

This bijection enables policy administrators to refer more easily to hierarchical context el-
ements through a path expression. Accordingly, in our examples we shall use labels (whenever
this does not lead to unambiguity) and path expressions.

4.5.3 Context administration

The introduction of hierarchies requires only minor modification to context administration. The
main difference is that hierarchical context labels provide additional flexibility for access control
management, as they provide a means to associate groups created by contexts. Thus, giving a
role rights to modify elements associated with a context will imply the right to modify all the
elements in the sub-contexts.

For example, giving someone rights to modify policy components in the Cambridge.CompLab
context element (or actually to the path−1(‘Cambridge.CompLab’ ) context element) will im-
ply the modification rights for all the child components of this context element, thus for the
Cambridge.CompLab.OPERA and the Cambridge.CompLab.Security context elements.

4.5.4 Information flow restrictions

In the case where no wild-cards are used, the information flow specification for our new context
elements is the same as for our non-hierarchical ones (except for the decoupling of context
elements and labels). But, when wild-cards (e.g. ⋆) are allowed, the hierarchical model differs.
The meaning of the phrase ‘information is allowed from everywhere’ can be interpreted now at
each context element. Therefore we shall introduce wild-cards on a context element basis. These
wild-card symbols will have the form of subtree(X), denoting information source or target for
the X context element and its entire subtree.

We shall refer to the set of these parameterised symbols as C⋆.
To get the corresponding context element subtree from a wild-card symbol, we introduce the

following function: expand : C⋆ → P(C).

expand(‘subtree(X)’ ) = {Y |Y ≤ X}

Using the new wild-card context elements we can define information flow restrictions for
hierarchical context elements, using functions similar to those introduced for non-hierarchical
context elements.

context in : C → P(C ∪ C⋆ ∪ {⋆, ε})

context out : C → P(C ∪ C⋆ ∪ {⋆})

The context in and context out sets must be evaluated depending on the current context el-
ements. We introduce the Ceval function to convert sets of context elements, wild-card ex-
pressions, and ε to a set of context elements. First we specify Ceval for elements of the above
set:

Ceval : C ∪ C⋆ ∪ {⋆, ε} → P(C)

Ceval(ω) =























ω if ω ∈ C

expand(ω) if ω ∈ C⋆

C if ω = ⋆

∅ if ω = ε
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Extending the Ceval function to sets of context elements, wild-card expressions, and ε:

Ceval : P(C ∪ C⋆ ∪ {⋆, ε}) → P(C)

Ceval(ψ) =
⋃

ω∈ψ

Ceval(ω)

The following example shows how the Ceval function expands wild cards (for this we use
the informal context specification in Figure 4.6) :

Ceval

({

CompLab.Security,

subtree(CompLab.OPERA)

})

=







































CompLab.Security,

CompLab.OPERA,

CompLab.OPERA.general,

CompLab.OPERA.Trust,

CompLab.OPERA.Policy,

CompLab.OPERA.Middleware







































The information flow between hierarchical context elements is specified by the →֒ relation.

Definition 4.4 (Direct information flow between hierarchical context elements)
→֒⊆ C × C

A →֒ B ⇔ (A = B) ∨
(

(

B ∈ Ceval(context out(A))
)

∧
(

A ∈ Ceval(context in(B))
)

)

According to the first part of this definition, information flow from a context element to itself
is permitted. Also, information is permitted to flow from context element A to context element
B if B is included in A’s expanded (i.e. wild-card expressions are evaluated and replaced by
context elements of a subtree) context out set, and A is included in B’s expanded context in

set.
Instead of considering the information flow relation as it is, we shall consider its transitive

closure. Consequently, we get the following behaviour for parent and child context elements.
Information may flow from a child to the parent if this is either stated explicitly, or the child

allows information to flow via a wild-card to its parent and the entire subtree of the parent.
Similarly, information may flow from a parent to a child, if the information flow is either

explicitly specified, or information flow is permitted via a wild-card from the parent to itself and
all elements of its subtree. These two cases are shown in Figure 4.7.

parent
child

parent
child

Figure 4.7: Parent-child information flow via wild-cards.

The transitive closure of →֒, which describes the information flow among context elements,
is once again denoted by →֒∗.

Information flow between contexts is exactly the same as in the non-hierarchical case, only
the respective →֒ functions are used.
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Definition 4.5 (Information flow between hierarchical contexts) →֒⊆ P(C) × P(C)

α →֒ β ⇔ (∀A ∈ α : ∃B ∈ β : A →֒∗ B) ∧

(∀B ∈ β : (∃A ∈ α : A →֒∗ B) ∨ (ε ∈ context in(B)))

The above definition preserves our lemmas (Lemma 4.1, Lemma 4.2). Lemma 4.3 is preserved
as well, the only minor modification that’s needed is the replacement of P(C′) with P(C) so that
it refers to hierarchical contexts.

4.5.5 An example hierarchical context specification

We next present an example, which offers an alternative to part of our previous example on
page 62, this time using hierarchical contexts.

Instead of having two top level context elements web and secureWeb we only have one
context element, WSec. This has two child context elements with normal and secure labels.
The information flow between these is shown in Figure 4.8. WSec groups together the two context
elements that we use to annotate policy components that have something to do with web security.
The two child context elements (normal and secure) represent the different classifications of
policy components from the web security perspective.

normal

secure
WSec

Figure 4.8: Example hierarchical information flow.

The same information flow of our old example is described next using the context in and
context out functions:

context in(WSec) = {}

context out(WSec) = {}

context in(WSec.normal) = {ε}

context out(WSec.normal) = {WSec.secure}

context in(WSec.secure) = {WSec.normal}

context out(WSec.secure) = {}

This example shows an advantage of hierarchical context specifications, as unlike in the
example on page 62, we keep the web security related context elements together, and separate
from other context elements.

Note the new symbol in the figure which indicates that the WSec.normal context element is
an initial context element.
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The parent component does not specify any permitted information flow in or out and it is
not even initial! This makes this context element very limited, as information may only flow to
itself, i.e. from WSec to WSec. If a role is marked with this context it must be an initial role, or
in activation rules all its prerequisites must have WSec in their context.

But, as WSec.normal is an initial context it can be included in any target role’s context.
Every target role that uses this role as a prerequisite will have to have in its context the
WSec.normal context component, or a context element to which information may flow from
WSec.normal, which in our case is only WSec.secure.

We introduce an additional context element OPERA that is defined as follows:

context in(OPERA) = {ε}

context out(OPERA) = {}

With this context element we can express the following context information flows:

[OPERA] →֒ [OPERA]

[WSec] →֒ [WSec]

[WSec.normal] →֒ [WSec.normal]

[WSec.normal] →֒ [WSec.normal, WSec.secure]

[OPERA, WSec.normal] →֒ [OPERA, WSec.secure]

Note that since initial contexts are considered only in the information flow for contexts, as
opposed to the information flow for context elements, the transitive closure of the information
flow graph does not take account of them. As a consequence, information flow from [OPERA] to
[OPERA, WSec.secure] is not permitted.

This example illustrates well the expressive power of both normal and hierarchical context
elements and contexts.

4.6 Further uses for contexts

Until now we talked about two main uses for contexts. The first one was grouping policy
components for administrative and access control reasons. We shall discuss this use in more
detail in Chapter 7. The second use was to restrict information flow in role activation and
authorisation rules. This can be used to differentiate between organisational and functional
roles.

4.6.1 Organisational vs. functional roles

As discussed in Section 2.2.3, roles can be classified as organisational or functional roles. In
RBAC policies that support such differentiation between roles it is expected that users first
enter organisational roles, and then, according to the task they are performing, they enter
functional roles. The restriction on such role entry order can easily be specified with the help of
contexts. For this, two context labels are required (e.g. org and func). These labels shall be used
to differentiate organisational and functional roles. By specifying information flow only from
the org context element to func, we allow rules that use organisational roles as prerequisites
to functional or organisational roles, and we disallow rules that would use functional roles as
prerequisites to organisational roles.
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Until now we were considering contexts as meta-policies only, i.e. they formed a part of a
policy specification that was not considered during policy enforcement time. We next describe
three uses of contexts in which they can be used to control or influence the policy enforcer’s
behaviour.

4.6.2 Auditing

Proper auditing is crucial in systems that support access control. Although in role-based access
control roles help to support the principle of least privilege, a user may activate more powerful
roles than required, and it must be ensured that these more powerful roles are not abused.
Logging the actions a user performs, and letting the user know that such an auditing system is
in place, helps to discourage improper access.

In an access control enforcer many decisions are made. Such decisions concern policy compo-
nents of different sensitivity, and depending on such sensitivity information logging requirements
might vary.

There could also be different external factors that must be considered when information is
logged. For example, an organisation may have a system of security levels. When the alert level
is high, perhaps some hacker activity was detected, and the organisational policy may require
every action to be logged. In normal situations, when the alert level is low, the policy may state
that only entry to powerful roles must be logged.

Contexts annotate roles, and this annotation is conveyed through the role activation tree via
the information flow relation, thus facilitating meaningful annotation of log entries. Information
that must be logged thus can depend on the contexts of the roles activated or privileges requested.

The log itself is a resource. Either there are many log files to which information of differ-
ent sensitivity is written, or some sensitivity annotation is included in the main log. Context
elements of the requested privilege or role can be used to segregate information or to mark
log entries. This extra information stored in the logs can be used to specify access control
information to the logs.

Contexts introduce an abstraction for policy components. Because the expected lifetime
of context elements (and other meta-policies) is intended to be greater than that of policy
components, contexts are useful for log classification.

4.6.3 Failure behaviour

Another use of contexts is to control the failure behaviour of access control systems. In Sec-
tion 2.3.2 we described the way one of our OASIS implementations supports certain failure
detection by means of heartbeats.

In distributed environments where access control is managed by a service that is itself dis-
tributed over the network, mechanisms must be in place to handle network failure. In [BE03]
we proposed extensions to OASIS policies to control heartbeat loss.

Heartbeat loss mainly concerns membership conditions. If a membership condition becomes
false, the roles activated using such a condition must be revoked. Such revocation can lead
to a cascade as a role that is to be revoked itself could have been used as a precondition and
marked as a membership condition for other roles, which now must also be revoked. We specify
the following revocation behaviours that an OASIS service can choose from in the case of a
heartbeat loss.

Time-delayed revocation tagged precondition can hold up to t (t is a parameter) milliseconds
after the deadline for the missing heartbeat. If no heartbeat is received during this period
the role in question is revoked.
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Count-delayed revocation tagged preconditions may hold for up to c (c is a parameter)
heartbeat periods after detecting heartbeat loss.

Lazy-revocation will not revoke the role based on loss of heartbeat.

Quick-revocation revokes the role if heartbeat loss is detected (based on the expected heart-
beat period for each particular service). This is the existing OASIS strategy.

While the above revocation behaviour can be expressed in policies by using different mem-
bership condition symbols (see [BE03]), here we propose to associate such revocation behaviour
with the context of roles. This has the advantage that revocation behaviour can be changed
without policy modification, and it can also depend on external conditions, such as the organi-
sational security level.

4.6.4 Separation of duty with contexts

Separation of duty constraints (see Section 2.2.2) can be expressed in many ways. Usually
conflicting roles are specified with the help of a set. Such a set lists the roles that cannot be
activated by the same user. Contexts could also be used for defining conflict groups, i.e. we can
indicate conflicting roles by tagging them with a particular context element. Moreover, we can
specify conflicting context elements. This could allow separation of duty constraints like: “A
user is not allowed to be active in roles that belong to two conflicting role sets at any time.” We
have not explored such use of contexts, but other researchers are currently extending the work
presented in this thesis to provide support for context-based dynamic separation of duties and
work-flow management.

4.7 Discussion

Until now we have focused primarily on how contexts can be used to supplement OASIS policies.
However, contexts are general enough to be used with other role-based access control models
and policy specification languages, like the ones we described in Section 2.2.4.

To extend the models of Sandhu and NIST (page 33) is relatively simple, since these models
are very similar to OASIS. As in the case of other models that have no support for parameters
(e.g. Nyanchama et al. and Giuri et al., see page 35) information flow restrictions can be used
primarily for limiting prerequisites, i.e. what roles can be used as preconditions to other roles,
and what roles can be assigned to what privileges.

Unlike OASIS, which expresses inheritance via its rules, many systems support role hier-
archies. Contexts and information flow between them can limit this inheritance relation by
restricting for a role the set of roles it may inherit from. This is achieved by analysing the
inheritance graph, and ensuring that information is permitted to flow from less powerful roles
to more powerful ones. Such restriction on role hierarchies is very useful, as it can restrict the
use of a powerful privilege to a specific class of roles.

Ponder (page 34) can use contexts to mark both authorisation and obligation rules, libraries
and objects. For example, Ponder authorisation rules follow a structure that assigns a privilege
(target and action) to a subject, under certain conditions. For example:

inst auth+ fileServerAccess {
subject /Employees;

target Servers/PrinterServer;
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action *; // wild-card that allows all actions

when Time.after(’’1300’’); // constraint

}

By annotating directory entries such as /Employees and Servers/PrinterServer, and li-
braries (Time), the use of different policy components can be restricted via the information
flow relation. We may require, for example, that information flow must be permitted from the
contexts of the when and subject clauses to the target ’s context.

Contexts will also be able to restrict the use of certain libraries, for example ones that provide
time information, for rule constraints. Thus we can restrict the use of temporal constraints for
a certain category of rules. Contexts can also be assigned to different directories in Ponder’s
directory service, and in this way we can control what targets can be used together with what
subjects.

Ponder supports component grouping with the help of hierarchical management domains.
Contexts can express these domains, but they also extend management domains with information
flow restrictions.

It is relatively hard to apply contexts to the models of Jajodia and Bertino et al. (see
page 34). Their models are very rich and their logic-based specification language contains many
predicates. The integrity rules of the Flexible Authorisation Framework (FAF) can express
the same information flow restrictions for FAF rules as our contexts. But contexts, being
meta-policies, can potentially be used for grouping subjects and objects outside a FAF policy
specification, and check information flow restrictions of FAF policy rules, in this way restricting
the literals and their parameters that can be used for decision rules.

Contexts can also be applied to models that use certificates for roles. In addition to the
above we can associate certificate validity times with particular context elements. Thus it could
be required that certificates for roles that are marked with a specific context element are issued
for at most two hours.

4.7.1 Related work

Information flow control is a well researched area. Denning provides a unifying view of all
systems that restrict information flow [Den76]. While in our work we consider only explicit
and static information flow, she considers both static and dynamic information flow as well as
implicit information flow.

Data and information flow analysis is still a hot topic in security research. Its process is
vital in many security assessments [HL03].

Information flow restrictions can be found in many access controls, for example in Mandatory
Access Control (see Section 2.1.1). In fact, the security labels in MAC inspired much of our
work on contexts.

Bidan and Issarny model information flow as an extension to access control [BI98]. In their
access control model, policies specify what a subject is authorised (s ∼> o) or prohibited to
access (s 6∼> o). This can also be interpreted as allowing information to flow from the subject to
the object. Following this reasoning the authors extended their model with inverse information
flow (s <∼ o). These two information flow directions, specified from the subject’s perspective,
correspond to the in and out information flows of our context elements.

Nevertheless, there has not been much work in the area of information flow analysis of RBAC
access control policies. Many researchers have concentrated on core RBAC models, and focused
less on how policies are created and modified.
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Information flow in the role graph model

In [Osb02], Osborn analyses her role graph model from an information flow perspective.

As in the role graph model roles are unparameterised and privileges have a form (o, x), where
o is an object, and x is an operation (basically read or write operation), it is possible to look at
possible information flow among the objects accessed. If, for example, a role may read object a
and write object b, then information may possibly flow from a to b.

Osborn’s work is basically the reverse of ours, as it produces information flow graphs from
role graphs. Such an approach is infeasible in the case of OASIS policies, as roles and privileges
are both parameterised, and the assignment of roles to privileges may include environmental
predicate evaluation that can set parameters in an unpredictable way.

On the other hand we can assign context to privileges, and thus impose classification of
privileges. We can later ensure that such privileges are assigned only to roles that are permitted
to access objects of a specific classification. Unfortunately contexts can only express information
flow restrictions by static policy analysis, thus parameter values cannot be considered.

PCASSO

The PCASSO (Patient Centered Access to Secure Systems Online) project aims to enable health
care providers and patients to retrieve health information over the Internet [Bak00, MBBC02].
To make this information access secure they use security classifications of objects together with
RBAC in an access control system for health care.

In a trial application PCASSO supported five security classifications: low–information that
cannot be identified with a patient; standard–information that can be identified with a patient;
public–deniable-information about conditions, such as HIV/AIDS, abortion, adoption, mental
health, genetics, substance abuse, and sexually transmitted diseases, that by law requires special
protection; guardian deniable–information, such as that about teenage abortion, that can be
denied to a guardian; and patient deniable–information that, if disclosed to the patient, might
harm his or her well-being.

Roles are associated with capabilities (in OASIS these are called privileges) that specify what
data the role may access. PCASSO works with an unusually small set of roles (in the above
example there are only four roles: primary care provider, secondary care provider, emergency
care provider, and patient).

The information flow restrictions that PCASSO enforces can be expressed with the help of
our contexts. We can annotate roles and privileges with the above security classifications, and
ensure that only privileges that comply with the security policy are associated with roles. In
fact, our approach can specify classes of roles and privileges, thus we can have a number of roles
belonging to a context or security classification. The information flow restrictions defined for
the contexts will be maintained in the authorisation rules. In this way the above information
flow restriction can be extracted from the policy. This helps to apply this information flow
restriction in environments that have existing, legacy policies.

4.7.2 Summary

In this chapter we presented a kind of meta-policy we call contexts. We did this by first intro-
ducing a basic context model, and then extended this to support hierarchical relations between
context elements. Later we showed how these contexts can be used to group policy compo-
nents and also to specify restrictions on OASIS RBAC policies. We used a relation on contexts,
called the information flow relation, which can check information flow between parameter values
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within a rule, and between OASIS and the external world. With this relation we can also express
constraints over policies, and thus assist policy evolution.

We provided examples to show how expressive these restrictions are and to indicate the
motivation for our research.

We also showed additional uses for contexts when context information can be accessed during
policy enforcement time. These uses included supplementing and refining audit information and
failure behaviour for distributed policy enforcers.

Finally, we briefly described the applicability of our context model to other RBAC architec-
tures and implementations.
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5 Compliance policy

In the previous chapter we looked at the two main uses of contexts; namely, to group pol-
icy components and to impose restrictions on rules. This we have done by associating policy
components with context labels.

In this chapter we explore a type of meta-policy that is more expressive than contexts, as in
addition to further restrictions it will allow us to specify requirements. These meta-policies we
call compliance policies. They contain an abstract policy component model, which extends the
policy components of policies.

Compliance policies specify requirements on this abstract policy model, thus making them-
selves independent from policies. A complete compliance policy includes the specification of
its abstract components and a list of constraints over these components. In order to use this
meta-policy a connection between a policy and this meta-policy must be provided; we shall refer
to this connection as a mapping. Based on this mapping we can evaluate policies against the
requirements specified on the compliance policy’s abstract model.

We expect policy administrators to use compliance policies to extract specific aspects of
policies and separate them from the policy itself. For example, a simple compliance policy
could encompass a static separation of duty constraint or require that a particular role should
exist. These qualities can be checked at policy specification time, so there is no need to include
them in policies that should govern only policy enforcement decisions. These design goals are
encapsulated in compliance policies, and when a policy changes, compliance policies can be used
to check the new policy version, and in this way ensure that the original design goals are still
satisfied by the new policy.

As in the case of every meta-policy, we expect that the lifetime of compliance policies is
longer than the lifetime of individual policies. However, meta-policies also evolve. We support
the maintenance of compliance policies in the following two ways.

First of all, we allow the coexistence of many compliance policies. All these compliance
policies define an abstract model through which they capture different aspects of a security
policy. A policy can then be checked against all of these abstract policies. Consequently, if only
a specific aspect of a long-term policy goal changes, only the appropriate compliance policies
need to be updated.

Second, as compliance policies are themselves similar to policies, we allow hierarchical re-
finement of compliance policies. Thus we can distinguish goal specification at different levels of
abstraction.

Compliance policies can also form the means to provide a user with information about a
policy without disclosing the low-level policy specification. As the lifetime of a compliance
policy potentially spans the lifetime of many policies, providing information through these meta
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policies not only reduces the complexity of the information given to users, but also the frequency
with which users are given substantially new information.

For example, a compliance policy may specify that a student role is authorised to use a printer
via a virtual can print privilege. If policy administrators check the effective policy against this
meta-policy, it is sufficient to show the users only this meta-policy together with its compliance.
The way this role-privilege binding is accomplished in the effective policy, whether there are
some intermediary roles activated, or some environmental predicates evaluated, is completely
irrelevant to the users, as long as they know that they can access a printer.

Similarly, compliance policies can help to give information to other policy administrators,
and this quality of compliance policies is vital in environments with many policy administrators.
Furthermore, compliance policies can be used to restrict the freedom of policy administrators,
and provide them with a sandbox environment where they may do everything as long as the
resulting policy complies with the relevant meta-policies.

Another justification for the use of a separate component model, as opposed to the component
model of a specific policy, is the differences among policies. Policies are often designed in a
bottom-up way, by first specifying the policy and then thinking about its properties. A reason
for such policy design comes from the need to support legacy applications that might require
specific privilege formats. By using a separate component model we facilitate the reuse of
compliance policies. This will later lead to further benefits, such as inter-policy cooperation,
which we shall describe in a later chapter (Chapter 6).

We next build up the structure of compliance policies; starting from simple compliance
policies, we gradually extend their abstract model to include more complex features, such as
partial mappings, implicit rules, and negation.

5.1 The simplest compliance policy

The simple compliance policy structure we start with is almost the same as a policy that uses
only unparameterised components. We use this to show how compliance policies are expected
to work. This is also illustrated in Figure 5.1, which illustrates the three steps for compliance
policy checking: (1) specification of a compliance policy, (2) mapping this compliance policy to
a policy, and (3) performing the compliance check.

The components with which we shall gradually extend our basic model are also shown in
this figure, but these are grayed out. As they are introduced we shall also refine the above three
steps.

5.1.1 Structure

Our simple compliance policy model consists only of the specification of roles, predicates, ap-
pointments (note that from the point of view of prerequisites, environmental predicates and
appointments are very similar to roles), privileges, and both authorisation and activation rules.
We do not yet allow these components to contain parameters. We also do not associate meaning
with the components of the compliance policy; they behave simply like a set of labels.

Consider the following example compliance policy, which specifies a role, a privilege and an
authorisation rule:

general student role

general db access

general rule1 : general student role ⊢ general db access
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Figure 5.1: The structure and usage of simple compliance policies.

This compliance policy expresses that there shall be an unparameterised role general student role,
an unparameterised privilege general db access, and an authorisation rule that unconditionally
assigns this privilege to the role.

This compliance policy is independent from any policies. It only specifies an RBAC policy
on an abstract policy model.

Since a compliance policy very much resembles a policy, we require that compliance policy
components satisfy the same constraints as policies, i.e. they are well-formed. One such con-
straint is that rules may not contain free variables. We assume that the following compliance
policy rules are well-formed.

5.1.2 Mapping simple compliance policies to policies

Once a compliance policy is specified it can be used for checking real policies. As it is independent
from policies it can be used to check any number of policies, but also a policy may be checked
against any number of compliance policies.

To continue with our previous example we first provide a policy specification:

student role

lecturer role

db access

rule1 : student role ⊢ db access

The next step is to specify the connection between the policy components and the compliance
policy components. This is done with the help of mappings, which specify the corresponding
components of the compliance policy and the checked policy.

In our example this mapping is as follows:
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compliance policy maps to (map()) policy

general student role ∼ student role
general db access ∼ db access
general rule1 ∼ rule1

In our simple model we use ∼ mapping, with which we indicate equivalence. Later in this
chapter we shall see more complicated mapping types. Note that the rule mapping is optional;
if it is provided it can simplify the compliance check, but if it is not provided the compliance
check can still be performed. In general we shall use the function name map to refer to the
mapping between the compliance policy and the policy components. We shall use this function
to get the components corresponding to an abstract component, for example, according to the
above mapping, map(general student role) = student role.

5.1.3 Compliance

Once a mapping between the components of a policy and a compliance policy is provided we can
check whether the requirements and restrictions specified in the compliance policy are satisfied
by the policy. This consists of the following steps:

1. The first step checks whether the mapping is complete, i.e., whether compliance policy
components are mapped onto an appropriate policy component. We require the map-
ping of roles, appointments, environmental predicates and privileges, but we also accept
optional mappings for rules.

2. The second check concerns the rules of the compliance policy. It checks whether the policy
contains rules that are equivalent to the translation of compliance policy rules. We say
that two rules are equivalent if they contain the same prerequisites and targets, and bind
the variables in the same way, i.e. the only difference is in the order of prerequisites, the
names of the variables and the names of the rules.

The rule translation is done with the help of the mappings.

In our example, the first step checks for the existence and correctness of the three compliance
policy component mappings. The second step translates the compliance policy rule into the
world of the policy:

translated general rule1 : map(general student role) ⊢ map(general db access)

After applying the map functions (when it is possible) we get the following rule:

translated general rule1 : student role ⊢ db access

As the policy contains a rule that is equivalent to this translated rule (we even had a hint in
form of a rule mapping), and there are no other rules to check, the compliance check passes.

A successful compliance check will result in a certificate that contains the version of the
policy that is checked, the version of the compliance policy, the mapping between the two, and
the time of the compliance check.

It is the responsibility of the policy administrators to provide a binding between the com-
ponents of a compliance policy and the components of a policy. But is it possible to ensure the
correctness of this mapping? We expect compliance policies to help administrators to main-
tain subsequent policy versions. In such cases compliance policies are used to describe specific
aspects of a policy and can even be used as templates to specify policies. The correctness of
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the mappings is up to the policy administrators. But, if this compliance is used as a source of
information to the external world, let us say to the users, then a trusted third party is required
to check the correctness of the mappings between a policy and a compliance policy. This third
party – trusted by both the administrators and the users – can digitally sign the mapping and
compliance certificate. Users must be able to check whether the policy is the same as the one
that is used (in our implementation, Desert, we provide a function that returns a hash value
of a serialised policy).

5.2 Parameters

In our simple model we considered unparameterised rule components only. While this compli-
ance policy can express requirements for RBAC models that support no parameters, in OASIS
policies, apart from the most trivial ones, rule components do have parameters. Unfortunately
parameters complicate compliance policies, as, even if both component models (those of the pol-
icy and the compliance policy) use the same data types, the values of these could be interpreted
differently. For example, a privilege that contains a temperature parameter could express this
parameter value in either Celsius or Fahrenheit. These type of problems, referred to as semantic
heterogeneity, are well researched in other research fields, such as federated databases. We next
consider the analogy between our compliance policies and federated databases.

5.2.1 Federated databases

A federated database [HM85, HM93] is a collection of cooperating database systems. Each of
the constituent databases is autonomous, i.e. it has its own set of schemata that are maintained
locally. The relation between compliance policies and policies is very similar to the relation
between two cooperating databases; we can associate the data type model of a compliance policy
and the data type model of a policy with two component databases in a federation. Later we
shall see that this similarity holds even from the perspectives of autonomy and administration.

From a user’s viewpoint, the entire federated database should look like a single, consistent
system. Consequently, users should be able to query and modify data, which is most likely
stored across a number of databases, parts of which are possibly stored using different data
representations.

As data is stored in different forms, some databases contain more detailed information.
Generally, federated databases distinguish local and global accesses. Local accesses allow the
use of local functions, and give access to all the details, while global ones support only a subset
of functionalities shared in the federation.

In every local relational database data is organised with the help of schemata, which are
named sequences of field declarations (a name and data type pair). Thus, depending on the
federated database architecture, the global functionalities can be expressed either with the help
of a global schema or through pairwise contracts between cooperating databases.

In [SL90], Seth and Larson describe a reference architecture for a federated database. Among
the six major components in this architecture (data, database, command, processors, schemata,
and mappings) are mappings, which are functions that correlate schema objects of two different
schemata.

Our parameterised policy rule components are similar to schemata. Both associate names
with components, and both contain a list of typed parameters or fields. For example, the role
specification

treating doctor(doctor : doctor id, patient : patient id)
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could as well be interpreted as a relational schema to store the relation between doctors and
their patients.

Similarly, the mappings between global and local schemata, or between two local schemata,
closely resemble our mappings between compliance policy and policy components. Naturally,
we face similar problems. We shall discuss next one of the biggest of these problems, semantic
heterogeneity, which is associated with disagreements about the meaning of data.

5.2.2 Semantic heterogeneity

Semantic heterogeneity is used to describe the phenomenon of disagreement about the meaning
or interpretation of the same or related data. For example, as we have already mentioned, a
temperature value could be given either in Fahrenheit or Celsius.

Naturally such disagreement can occur at many levels. In certain cases it is difficult, if not
impossible, to provide an algorithmic resolution. An example is presented in [LSPR93] by Lim
et al., according to which two database entities, stored in different databases, could refer to the
same real-world entity, but, this remains undetected due to the structural differences in their
representations.

Semantic heterogeneity that cannot be resolved is generally referred to as fundamental se-
mantic heterogeneity [Col97]. In the case of compliance policies such fundamental structural
heterogeneity can arise from the rich set of policy specification tools.

There could be many sources for semantic heterogeneity, such as differences in data definition
constructs, differences in object representations, and system-level differences in the way atomic
data is stored.

At the level of data semantics, Ceri and Widom describe four kinds of semantic heterogeneity
[CW93]:

naming conflicts occur when different databases use different names to identify the same
real-world entities. For example, in one database schema the identifier of a doctor could
be stored in a field named doctor id, and in an other database schema the same field
could be referred to as doctor. We face the same problem in the case of rule component
parameters, for example, parameter names of an abstract doctor role could be different
from the parameter names of a policy role, even though they represent the same entity.
Similarly the name of an abstract role can be different from the one used in a policy.
We do not seek automatic resolution of such problems. Access control policies are a
critical application domain, therefore computers should not be allowed to infer mappings
automatically.

domain conflicts occur when different databases use different values to represent the same
concepts. For example, a doctor might be identified in a central NHS database as ‘ab374’,
but in a hospital he might be known as ‘András’. In the case of compliance policies the
abstract model’s parameters and the parameters of the policy being checked could have
similar differences. Our example about the temperature representation, in which either
Fahrenheit or Celsius is used, falls into this heterogeneity category.

meta-data conflicts occur when the same concepts are represented at different levels, in one
database at the schema, in the second database at the instance-level. For example, histor-
ical information about a person can be stored either as part of a table that stores people’s
information in a tuple, or as a separate table for every person.

structural conflicts occur when different data organisations are used, for example a name
is represented as a single character string, or represented with two strings, one for the
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surname, and one for all the other names. Our compliance policies face this problem
when they are applied to existing policies; however, our compliance policies can be used
as templates for newly created policies, thus helping to synchronise the policy structures
of independent policy domains.

This kind of semantic heterogeneity also includes type conflicts, when the same concept
is represented by different data types. For example, a temperature can be represented by
either a float point or an integer value.

One way of handling semantic heterogeneity is to use semantic values [SSR94]. In this
approach, which is based on strong typing, the semantics of the data is determined only by the
type it is an instance of. But even if such systems exist, we must provide conversion functions
or mappings, that change data from one representation to another.

Automatic mapping of schemata is an ambitious goal (for such projects see [Hul97]), and
there are not many implementations that support it. As in the case of most federated databases,
we require policy administrators to provide the mappings between the components of the com-
pliance policy and those of the policy. We require this manual control partly because of the
higher sensitivity of our application domain.

5.2.3 Mapping types (partial mapping)

We next consider mappings of data types that can be specified in the abstract model of compli-
ance policies. There are two problems we face with these mappings [Ken91]. The first problem
arises when the structure of the mapped components is different, for example, a single data type
value is mapped to a pair of data type values. For instance, a name parameter could be used
in an abstract role, which can be mapped to two parameters of a policy role (first names and
surname). The second kind of problem we can face is when the interpretation of the values is
different in the compliance policy and the policy, and a lossless mapping is not available. For
example, it is not possible to convert a value that contains an address (e.g. 459 King’s College,
Cambridge, CB2 1ST) to a city (Cambridge) without some information loss, thus we shall not
be able to convert this value back to its original form.

As a consequence we must consider conversion functions that might take more than one
argument.

We require that functions be total functions, i.e. they must be defined for every element in
the function’s domain.

In ideal cases we can provide invertible one-to-one mappings, i.e. ones that form a bijection
between their domains and ranges. Unfortunately this is not always the case, and some mapping
functions will have no inverses.

Thus, for our compliance mappings, we distinguish bijections and lossy mapping functions.
An example for the first kind of function is one that converts from metres to feet. An example
for the second is the one that converts addresses to cities.

Mapping of parameterised components

With the help of these functions we can map compliance policy components and their parameters
to policy components. The compliance policy must specify whether it accepts lossy mappings,
or only bijections, for a specific abstract component parameter.

Restrictions Such augmentation of policy component is done with the help of restrictions,
which are annotations added to compliance policy components. We shall list restrictions for
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abstract components in braces (‘{}’). If a component has more than one restriction, then these
will be separated with a comma. For example, roleA{restriction1, restriction2}(). The list of
all restrictions is presented in Appendix A.

Because rule component parameters can share data types, i.e. general policy specifications do
not make use of semantic values, we require parameter mappings on a rule component basis, i.e.
for every abstract rule component such as a role, the mapping of parameters must be specified
together with the mapping of abstract roles.

For example, consider the following simple compliance policy that contains parameterised
components. For readability we prefix the compliance policy components with ‘c ’.

c student role(c id : c idtype)
c db access(c id : c idtype)
c rule1 : c student role(x) ⊢ c db access(x)

This compliance policy specifies an abstract student role with an identifier parameter, and a
privilege with a student identifier parameter. This policy expresses that a student role must be
able to acquire the c db access privilege, which we assume will give him access to his own data.

In our example policy, students are identified by two parameters: their department and
name.

Our policy thus looks as follows:

student role(dep : string, name : string)
db access(dep : string, name : string)
rule1 : student role(x, y) ⊢ db access(x, y)

The mappings, which in our example we require to be bijections, are as follows:

compliance policy maps to policy

c student role(x) ∼ student role(f1(x), f2(x))
c db access(x) ∼ db access(f1(x), f2(x))
c rule1 ∼ rule1

This mapping requires two function symbols (f1 and f2) that map the compliance policy com-
ponent parameters. Note that in our mappings we require semantics to be attached to these
functions only if there are constants present in the compliance policy, otherwise functions can
behave like labels. The same applies to data types, which in the absence of constants be-
have only like labels. In translated rules we can basically replace the f1(x) expression with
new variable names. Consequently, the compliance test translates the abstract rule (c rule1 :
c student role(x) ⊢ c db access(x)) to student role(f1(x), f2(x)) ⊢ db access(f1(x), f2(x)), it
replaces these function labels with new variable labels (student role(z, w) ⊢ db access(z, w)),
and checks whether this rule is the same as the rule1 rule.

In this section we still require that every abstract parameter is mapped onto a policy pa-
rameter, and every policy parameter is also mapped onto. Our current mappings thus support
only splitting and merging abstract parameters, which also includes changes to parameter order.
Since this is often insufficient, we shall provide more general mappings.

Mapping functions may use databases to convert values. The reason for this is that value
sets are often not available at the time of policy specification. In such cases the domain and
range of the mapping functions are determined by populations. For example, the identifiers of
doctors in a hospital are usually provided in a database.
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Mapping direction If we used only bijections for parameter mappings, then we could con-
vert parameter values both from and to the compliance policy and policy value domains. If,
in addition to this, every abstract rule component is mapped to a different rule component in
the policy, then the compliance policy and the policy behave isomorphically. That is, were the
inverses of the mappings known, we could swap at any time between one policy and the other
one by translating the components to the other’s representation.

For an OASIS role activation rule this is illustrated next:

c r1, c r2, ... c rnc r
, c ac1, ... c acnc ac

, c e1, ..., c enc e
, ⊢ c r

l l l l l l l l l l l
r1, r2, ..., rnr

, ac1, ..., acnac
, e1, ..., ene

⊢ r

Such situations could occur if the compliance policy has been used as a template to create
a policy.

If the compliance policy were specified on a real policy, jumping from one representation to
the other would be especially meaningful for environmental predicates, as it would be enough to
evaluate one of the environmental predicates (either the one of the policy, or the corresponding
one of the compliance policy). Similarly, appointment certificates can be converted this way
from one representation to another. We shall exploit such mappings in Chapter 6, in which we
shall use mappings to reconcile differences between different policies.

Uniqueness of mappings However, we cannot expect that every abstract policy component
can be mapped onto a distinct policy component. For example, two abstract roles might be
mapped onto a single role. We must specify for each compliance rule component whether we
require it to be mapped to a policy component that is not yet mapped onto. We do this with
the unique restriction keyword.

Component consumption With unique mappings the components of a policy are con-
sumed if they are mapped onto. As a consequence, the order in which they are mapped on does
matter, as different orders could lead to different consumptions. To avoid ambiguity we allow
ordering of the compliance policy components (in our implementation they are represented in
an XML file, which is ordered). Rule mapping hints also help to resolve such ambiguity. Such
hints are particularly important since we do not support backtracking.

Split mappings There might be two policy roles that correspond together to an abstract
role. To allow such mappings of rule components we use the split restriction keyword.

If such an abstract role occurs as the target of an abstract rule, then this rule is translated
into two (or more) policy rules, each of which must be satisfied.

If such an abstract role occurs as a prerequisite, then any non-empty subset of it can be
present in the translated rule, i.e. the abstract rule is translated into a set of rules, out of which
at least one must be equivalent to a policy rule.

5.3 Minimum and maximum specifications

Until now we have been considering compliance policies and mappings that prescribe exactly
what a policy must contain. For example, we specified what roles we want, and exactly what
prerequisites a rule must have. On the other hand, we have seen that in certain cases we allow
minor differences between the compliance policy and the policy. In the case of rule components
we permitted different parameter signatures (different parameter numbers and parameter orders)
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while still satisfying the requirement that we map every abstract component parameter to a
policy parameter, and every policy component parameter is mapped onto.

We extend this flexibility by allowing compliance components to specify both a minimum
and a maximum set of components that are expected to be in a policy. Our current compliance
policies and the restrictions on mappings can be considered as a minimum set of requirements,
as every compliance policy component must map onto a policy component, thus they must be
part of a policy.

5.3.1 Optional policy components

By introducing optional elements in the compliance policy we make a first step towards specifying
the maximum requirements for a policy. We can specify a set of elements a policy may have,
and if a policy has these elements, then we can prescribe how these components should behave.

We next consider the different components of a compliance policy where we allow optionality.

Optional parameters

We have seen that rule component parameters of a compliance policy and of a policy can differ
in terms of the order of the parameters, and even in the number of parameters. But because
of the restriction that every parameter of an abstract rule component must be mapped onto
a parameter of a policy component, and that every parameter of policy component must be
mapped onto, we could not specify optional parameters. Note that there is an indirect way
to introduce an optional parameter (by adding the optional parameter to any of the mapping
function arguments), but this should be avoided as it only obscures the mapping specification.

We therefore introduce syntax to specify that a rule component is optional, in which case
the corresponding component in the policy is not required to have it either directly or indirectly
(by merging it with other parameters).

Consider, for example, the next compliance policy specification:

c student role(c id : c idtype, [subject : string])
c db access(c id : c idtype)
c rule1 : c student role(x, y) ⊢ c db access(x)

In this example the c student has two parameters, but one of these parameters (subject) is an
optional one. Thus, this role can be mapped onto a policy role such as student(id:idtype).

Indirectly these optional parameters are used in rules, thus their values can be propagated
to other rule component parameters. Clearly, if a parameter does not exist in a policy it cannot
be used, therefore we must impose the following constraint on compliance rules:

If a rule variable is assigned to an optional parameter we distinguish two cases:

1. There is a non-optional prerequisite parameter that is assigned to the same variable, i.e.
during policy evaluation the value of this variable can be determined. In such cases there
is no need for further restrictions.

2. If there is no non-optional prerequisite parameter to which this variable is assigned, then
every parameter that serves as an input parameter to the rule, and to which the variable
is assigned, must also be optional. Furthermore, it must be ensured in the compliance
mappings that if an optional parameter is absent from a policy specification, then the
parameters that were dependent on it (via any compliance policy rule) are not present in
the policy in other rule components.
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For example, if the c db access privilege had a string parameter, and the compliance rule
had the form

c rule1 : c student role(x, y) ⊢ c db access(x, y),

then the specification of the db access privilege must mark its second parameter as optional.
Also, when the c student role is mapped to a policy role that does not contain the subject
parameter, then the equivalent of the c db access privilege must not have a second parameter
either.

In what cases can a policy component have different parameters from the compliance policy
parameters? First of all, the compliance policy could be authored by a different administrator
or set of administrators than the administrator of the policy. This could lead to differences,
especially as a local policy might have to include some extra parameters to support legacy
applications. Such bottom-up policy designs are very common. Using optional components,
compliance policy authors can give more freedom and flexibility to policy administrators.

In Appendix A we provide a table that shows the restrictions which can be used with various
compliance policy components.

Optional rule component

Like optional parameters, we allow the optionality of rule components. We thus allow the
specification of abstract rules that can include prerequisites that may be absent from policies.
Rule heads, such as target role or privilege, could also be made optional, but as every rule must
have one head, these cases are equivalent to rule optionality, which is discussed after this section.

For example, in the following compliance policy we introduce a rule that can have an optional
prerequisite role (c OPERA):

c student role(c id : c idtype)
c OPERA(c id : c idtype)
c db access(c id : c idtype)
c rule1 : c student role(x, y), [c OPERA(x)] ⊢ c db access(x)

Similarly to the case of optional parameters, we must be careful about the parameters of
optional prerequisites. We can thus ensure that every parameter can be assigned a value during
rule evaluation.

Optional component specifications

The specification of abstract data types, roles, appointments, environmental predicates, privi-
leges, and even rules can be marked optional, in which case a policy may not provide mappings
for these components. Obviously, in such cases the compliance policy must handle components
that rely on optional components and whose equivalents are not present in a policy. If a data
type is optional then it can only be used in abstract policy components that are themselves
optional (or require the existence of this data type as a precondition, see following sections).
Similarly if a rule component specification is optional, the rules using this component must be
themselves optional, or the prerequisite containers that hold this component must be optional
within the rules.

It is relatively simple to specify optional rules, as there are no basic policy components that
depend on a rule. By marking a rule optional we indicate that there need not be a policy rule
to which the role is mapped.
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5.3.2 Restrictions

In the example presented in Section 5.3.1 we have seen that if an abstract rule component is
marked as optional, it must also be specified as an optional prerequisite in every rule that uses
this component. But, in this case there is no way to enforce the use of this prerequisite in a
rule if the component has a corresponding policy component (i.e. it is mapped onto a policy
component). Similarly, while in certain scenarios, like environments where a web service that
provides an environmental predicate is unavailable, it is acceptable to have optional prerequisites,
it can be expected that in such cases alternatives are used. To support this, we introduce
restrictions to abstract rule components.

Restrictions can contain conditions that are evaluated during compliance checking. These
conditions can check whether specific mappings have been provided, i.e. whether some optional
abstract policy components have a corresponding policy component. Abstract policy compo-
nents whose restriction is not satisfied will not be considered in the compliance check.

The restrictions we allow now are:

isdefined() is a restriction predicate; it checks whether a specific optional compliance policy
component (specified as the predicate’s parameter) is mapped onto a policy component
or not, i.e. whether this component exists for a specific policy.

isnotdefined() predicate is the opposite of the isdefined() predicate; it specifies a condition
when a specific abstract policy component (the predicate’s parameter) is not defined in a
policy.

These restrictions can be used anywhere in the compliance policy specification, and they
may refer to any previously defined optional compliance policy component. Note, however, that
we do not allow circular dependencies.

We now extend the example presented on page 95 to include restrictions.

c student role(c id : c idtype)
c OPERA(c id : c idtype)
c db access(c id : c idtype)
c rule1 : c student role(x, y), c OPERA{isdefined(c OPERA)}(x) ⊢ c db access(x)

We have removed the optionality from the c OPERA prerequisite, and specified a restriction
(isdefined(c OPERA)) for this component. If the role c OPERA is not defined in a policy,
this rule will behave as if the prerequisite were not there, but if this role is defined, then this
prerequisite role will be part of the rule, unlike in the original example, where it was only
optional.

Abstract policy components that are marked with the isdefined or isnotdefined restrictions
are considered the same way as optional components, so rules containing such components must
be checked similarly to ones that contain optional components.

By assigning such restrictions to rules we can provide alternative rules in scenarios where
certain abstract components are not mapped. For example, the following provides two rules of
which only one can be checked in a policy. The one that is selected depends on whether the
policy contains a role that corresponds to the c OPERA role.

rule1 a{isdefined(c OPERA)} : ...
rule1 b{isnotdefined(c OPERA)} : ...
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A restriction can contain any number of such condition predicates, e.g. such a restriction
might look like {isdefined(c OPERA), isnotdefined(c student role)}. The parameter of a com-
ponent can be referenced by using a ‘.’ notation, for example, the parameter of the c OPERA
abstract component is referred to as c OPERA.c id.

The isdefined and isnotdefined predicates are evaluated according to a partial order defined
by the dependency relation of optional components and these predicates. For example, if a
component contains a restriction which refers to another optional component, then it is not
evaluated until an administrator specifies a mapping for that component or explicitly states
that the referenced optional component will not be mapped.

Administrators must specify explicitly whether a particular optional component will not
be available in a policy. This can be reflected in GUIs, which, in order to simplify mapping
specifications, can hide (or display differently) unavailable optional components.

5.3.3 Arbitrary components

In the previous sections we concentrated on how to specify compliance policy components that
are optional in a policy, i.e. we were looking at cases in which the compliance policy describes
a superset of policy components. But, naturally, a policy may contain components that are not
described in a compliance policy, especially as compliance policies are designed to describe a
specific aspect of a policy. To support the specification of compliance policies that allow such
additional components in a policy we introduce arbitrary components, which work as a wild-card
for policy components.

We shall denote these arbitrary compliance components with the component type (e.g. role)
with an underscore prefix. For example, role symbolises an arbitrary role. If it is present in a
compliance policy specification, then the policy whose compliance is checked may contain a single
role specification that is not specified elsewhere in the compliance policy. Clearly adding a single
such component is of little help; also, saying that a policy may have an arbitrary component does
not help much to specify restrictions over it. We therefore extend the restrictions introduced in
the previous section; an arbitrary component together with such a restriction forms a template
against which the components of a policy can be checked.

All arbitrary components may contain cardinality restrictions, which can specify a minimum
and/or a maximum number of occurrences for any abstract component template. The two
restrictions are min() and max(). They take one parameter, which is either a number or the
“unbounded” keyword. The default value for these two restrictions is one. By specifying these
restrictions for an abstract arbitrary component template we require that an evaluated policy
matches this template the number of times that is within the min/max range. For example,
by adding the role{min(1), max(‘unbounded’)} component to the compliance policy we specify
that a policy must have at least one role that is not specified otherwise in the compliance policy,
but, as the upper limit is unbounded, the policy may have any additional such roles.

For arbitrary component parameters (denoted by parameter) we permit the following re-
strictions:

datatype may specify a restriction on a parameter’s data type. For example, datatype( ‘in-
teger’). The parameter data type must refer to a data type in the compliance policy
specification.

Cardinality constraints can specify parameter multiplicity within a parameterised compo-
nent. For example, the arbitrary component role( parameter{min(0), max(3), datatype(
‘integer’)}) specifies a role that can have up to three parameters whose data type is integer.
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For abstract rule component (role, appointment, privilege, or environmental predicate) spec-
ifications we allow, as for almost every other abstract component, cardinality restrictions. These
cardinality restrictions specify constraints on the number of rule component specifications in the
target policy. Cardinality restrictions for these components also imply the unique restriction.
Appointments and environmental predicates may have an additional binding restriction, which
can impose limitations on their binding attribute.

Within rules we can specify restrictions to prerequisite containers and to the target container
as well. Cardinalities for these containers specify the multiplicity of the container within the
rule. For activation containers, i.e. for the prerequisites of activation rules, we permit one more
restriction: membership override. This specifies whether the policy prerequisite that corresponds
to this abstract prerequisite can override membership specification, i.e. in the case that an
abstract rule specifies a prerequisite as a normal prerequisite, and adds this restriction to it, an
implementing policy may specify membership condition for the corresponding prerequisite.

As the extra components defined with the help of templates cannot be referenced from other
components – e.g. if we define extra parameters for a role we cannot refer to them in a rule –
there is no need for constraints similar to ones that we specified for the optional parameters.

5.4 Implicit rules

Rules provide a connection between a set and a single rule component, for example an activation
rule specifies that given a specific set of prerequisites it is possible to activate a target role. Some
policies might specify this connection via several rules.

For example, if we have two roles (roleA and roleB) in a policy, we can specify a direct role
activation rule (roleA ⊢ roleB), or we can specify two rules, which make use of an intermediary
role (roleC ), as follows:

roleA ⊢ roleC
roleC ⊢ roleB

As there are no additional prerequisites required, everyone in roleA will be able to enter roleB
(through roleC ). Whether we use a single rule or two rules to get from roleA to roleB is irrelevant
to the fact that we can somehow enter roleB if we have roleA.

We introduce implicit rules, which specify a set of preconditions, and a target (a role or
privilege). A compliance check tests whether the holder of the equivalents of these components
(i.e. the versions translated into the policy environments) can enter the target role, or whether
he can acquire the target privilege, possibly by entering some intermediary roles, for which the
prerequisites are already – or can be – satisfied.

Prerequisite roles in implicit rules behave very much the same way as the prerequisite roles of
policy rules. Their parameters may also contain both rule variables and constants. Variables of
the implicit rule are handled as constants in the policy environment (Skolem constants). These
constants are slightly different from the constants we allow in the compliance policy’s abstract
prerequisites. The only difference is that the latter constants must be converted to constants
used in the policy.

Note that abstract environmental predicates in implicit rules, and their corresponding policy
environmental predicates, are not evaluated during compliance checking. Because of skolemisa-
tions, which uses the same Skolem constants for every abstract rule variable, the semantics of a
translated environmental predicate is not needed. Such abstract implicit rules only ensure that
corresponding environmental predicates are used in a chain of policy rules, and their parameters
are set in accordance with the abstract rule.
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As an environmental predicate, apart from its name, tells little about its semantics, just as
in the case of all the other components, verbal comments are necessary.

We allow the use of membership conditions in implicit activation rules. In such cases we
require that the component which is marked as a membership condition is a membership con-
dition in the policy, but also, that the intermediary roles entered with the help of membership
condition rules are also specified as membership conditions.

Checking implicit rules is more expensive than the checks of direct rules, but this does not
affect runtime policy enforcement as both these checks are performed at policy specification
time, and not policy enforcement time.

For implicit rule checks we can use the unification engine of OASIS, as the underlying concept
of this check is the same as the one of runtime policy decision making.

5.4.1 Negation

Similarly to checking for the existence of rules we can check for their nonexistence. Just as in
the check for implicit rules, this check requires a set of prerequisites (roles, appointments and
environmental predicates, their parameters assigned a variable or a constant value), and a target
role or privilege, which once again can be parameterised. As this check is the opposite of the
implicit rule checks, it performs the same steps, but negates the result.

To learn whether it is impossible to enter a specific role is rather difficult. First of all, the
entire policy must be considered. However, in principle it would be possible to consider the
information flow restrictions of contexts, and thus consider only a part of a policy marked with
specific contexts, while excluding other policy parts; support for this can be added to our model,
but we leave it as future work. A problem with negation is the complexity of policies and the fact
that, through environmental predicates, some policy decisions can be made outside the control
of the policy enforcer. For example, if a rule has an environmental predicate, whose semantics is
unknown at policy checking time, we cannot consider this rule in our checks. Even if the predicate
evaluates to true all the time! Thus our negations mean that, given only the prerequisites, we
cannot activate the target via intermediary roles, assuming that every environmental predicate
that is not included in the prerequisite list would evaluate to false.

5.4.2 Static Separation of Duties

Related to negation and implicit rules is the check for static separation of duties. In the same way
as previous implicit rules, this check requires a non-empty set of prerequisites whose parameters
are bound to variables. Instead of a target role or target privilege this implicit rule expects
a set of targets (either roles or privileges). These targets we call the conflicting targets. The
prerequisites would normally contain the initial roles of specific users or user groups.

This rule can be decomposed into a number of implicit rules that have the same prerequisites
– the prerequisites of the separation of duty rule – and a single element from the target set.
For a separation of duty check to pass it is required that at most one of these implicit rules is
satisfied, and the remaining ones are not satisfied.

Example

As an example consider the following compliance policy:

c clerk(id : c integer)
c approve(order : c integer)
c initiate(order : c integer)
c ssod : c clerk(x) ⊢ c approve(y), c initiate(y)
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This compliance policy specifies that there is a clerk role (c clerk), two privileges (c approve and
c initiate), and a static separation of duty rule, that requires that if someone has the c clerk
role (or actually the corresponding role in a real policy), then he may only be able to get either
the equivalent of the c approve or the equivalent of the c initiate privilege.

The policy we map this compliance policy to is as follows:

clerk(id : integer)
approve(o : integer)
initiate(o : integer)
manager

auth rule1 : clerk(x) ⊢ approve(y)
auth rule2 : manager ⊢ approve(y)
act rule1 : clerk(x) ⊢ manager

The mapping is as follows:

compliance policy maps to (map()) policy

c clerk(x) ∼ clerk(f(x))
c approve(x) ∼ approve(g(x))
c initiate(x) ∼ initiate(g(x))

First we decompose the static separation of duty rules into two implicit rules:

tmp1 : c clerk(x) ⊢ c approve(y)
tmp2 : c clerk(x) ⊢ c initiate(y)

We then translate these rules with the help of mappings to the policy environment:

tmp1 : clerk(z) ⊢ approve(w)
tmp2 : clerk(z) ⊢ initiate(w)

We can now check whether the above implicit rules can be satisfied in the policy. For this we use
OASIS’s unification algorithm, which returns that the first rule is satisfied, as having clerk(z)
(z is a Skolem constant) we can acquire the requested approve(w) (w is also a Skolem constant)
privilege via the policy’s auth rule1 authorisation rule. The second implicit rule (tmp2 ) is
also satisfiable, as the target privilege can be acquired through the use of the policy’s rules
act rule1 and auth rule2, in which a clerk first enters a general manager role, which is assigned
the requested privilege.

As both of these implicit rules are satisfiable, the compliance check, as expected, fails, thus
indicating that our original requirement that the two conflicting privileges are not accessible to
a single role does not hold for the policy.

5.4.3 Contexts

Contexts, which we introduced in Chapter 4, like compliance policies are a type of meta-policy.
They are more tightly integrated to policies, as they annotate policy components, as opposed to
compliance policies, which are defined in terms of an abstract policy model. Since contexts are
so tightly integrated with policies it seems natural to include restrictions on them in compliance
policies.

Contexts could be used in two different ways in compliance policies, but we only allow one
of these uses.
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Contexts for compliance

First, compliance policies could make use of contexts in the same way as has been done for
policies. In this case the contexts of the compliance policy can be used to organise the compliance
policy itself, and to impose restrictions on how abstract rules are assembled.

Compliance policies, like policies, could thus include a context element specification, and
their abstract components can be annotated with contexts. Such context elements cannot be
optional, as they are used only for checking the compliance policy itself.

But, since compliance policies are expected to describe only specific aspects of policies, they
should be simple and relatively small in size. Consequently we do not allow context specification
for compliance policies in the same sense as we have done for policy specifications.

Abstract contexts

The second way in which contexts could be applied to compliance policies is through specifying
a context model that is expected to be implemented in a policy. In this case the compliance
policy contains an abstract context model, and this must be mapped to the context model of
the policy.

The specification of abstract contexts is, as in the case of policy contexts, a specification
of labels (context elements) and the information flow relation. Abstract policy elements of the
compliance policy are annotated with these context labels in the same way as in the case of
policies.

As the contexts in compliance policies specify what contexts should be like in policies, we
can include further restrictions. One such restriction is negative information flow, which spec-
ifies that information flow between two specific context elements should not be permitted in a
policy. The reason for the need for such negative restrictions is that in policy contexts undesired
information flow is specified implicitly through the information flow relation. Without negative
restrictions we could only check whether information may flow from a particular context element
to another; thus a set of context elements that allow all possible information flows would always
satisfy the abstract context’s specification.

The compliance check for contexts consist of the following stages:

1. First a mapping between the abstract context labels and the context labels of the policy
must be provided. Whether we allow the mapping of two abstract context labels to a
single policy context label is specified in the mapping restriction (by using the unique
keyword) of the abstract context element.

2. We must then check whether negative information flow restrictions specified on the ab-
stract context elements are satisfied by the contexts of the checked policy.

3. Once this mapping is provided, together with the mappings of the compliance policy
components, the rules of the policy can be checked for context information flow.

In the following example we specify two abstract context elements (c A and c B) in the
compliance policy. We permit information flow from c A to c B, but not the other way around.
We annotate the compliance policy components as follows (for simplicity we only display the
contexts for rule components – the parameters have exactly the same contexts as their parent
component, and rules have no contexts associated with them):

c student role[c A](c id : c idtype)

c db access[c B](c id : c idtype)
c rule1 : c student role(x, y) ⊢ c db access(x)
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Based on the components’ contexts the context annotated rule is:

c rule1 : c student role[c A](x, y) ⊢ c db access[c B](x)

This rule is permitted, as information flow is permitted between the prerequisite rule compo-
nent’s contexts and the target’s context.

If we map these contexts to a policy’s contexts (A and B, with information flow permitted
from A to B and from B to A, i.e. the two contexts are distinguished only from the perspective of
administrative grouping), the compliance check will fail, as expected, at stage 3. The reason for
this is that in the policy information may flow from the equivalent of c B (B) to the equivalent of
c A (A), but this is not permitted by our negative information flow restriction in the compliance
policy.

Together with abstract contexts, we can use negative information flow restrictions to spec-
ify static separation of duty (SoD) like constraints on policies. We can achieve this by two
context labels between which information flow is prohibited, and annotating conflicting policy
components with different context labels.

This way of specifying SoD is different to our SoD rules, as this one requires the use of
contexts. It is thus more heavyweight than our SoD rules; however, such specification can be
used for conflicting sets of roles, as opposed to conflicting roles.

5.4.4 Optionality and templates

Unlike the case of other abstract rules, we disallow the use of optional components in implicit
rules. The reason for this is that all prerequisites of these rules behave as if they were optional,
and implicit rules are not mapped directly onto policy rules.

Similarly, we disallow the use of template components (or arbitrary components), as we
require an unambiguous set of prerequisites to test implicit rules. While it is possible to describe
policy components with the help of templates, it is more difficult to map their parameters, and
this would unnecessarily complicate implicit rules.

5.5 Compliance as a policy component

Conformance to the restrictions of a compliance policy results in a certificate that itself can be
considered as part of a policy. This can be used as a prerequisite to other compliance checks,
thus forming a dependency between compliance policies. Indeed, because of the similarity to
policies, compliance policies could be specified hierarchically, where higher-level compliance
policies specify constraints for lower-level ones. In such a hierarchy, a top-level compliance
policy may only specify an abstract component model (a list of abstract roles for example), and
lower-level compliance policies would provide rules to reflect various aspects of access control.
Our current implementation does not support such hierarchies, but such extensions are not too
complicated.

Access to compliance policies does not need to be as finely specified as for policies. Compli-
ance policies are guidelines for policy administrators. Administrators who specify such guidelines
are expected to be competent. A compliance policy should describe a specific aspect of a policy,
thus a policy usually must conform to many compliance policies.
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5.6 Discussion

The examples we have used in this chapter are OASIS specific; however, many of the restrictions
specified in compliance policies can be applied to other RBAC models.

5.6.1 Related work

There are many areas that relate to our work presented in this chapter. We have already
mentioned federated databases, which address the issue of semantic heterogeneity.

Another broad related area is the field of XML Schema [W3C01] and XSLT [W3C99]. A pol-
icy could be considered as a semi-structured document. Indeed, in our current implementation,
while our database-centred policy store is under development, we store policies in XML. XML
Schemata and XSLT can specify restrictions over such semi-structured data, but our approach
is more RBAC specific, and we take RBAC semantics into consideration.

In [MS93], Moffett and Sloman introduce policy hierarchies. Their work is motivated by
a desire to automate the management of very large-scale distributed systems. They introduce
different levels of policy abstractions, in which they derive lower-level policies from higher-level
ones. This derivation is based on goal refinement, target partitioning or delegation.

As mentioned earlier our compliance policies can also be organised into a hierarchy, but
because we expect compliance policies to be small in size, we do not put much emphasis on
this feature. Goal refinement is achieved via compliance policies themselves, where the goal is
specified in the compliance policy. Support for delegation is provided via OASIS appointments.

Wies considers various policy definitions in [Wie94]. In this work he classifies policies accord-
ing to different aspects, such as target types, triggering mode, activity, and so forth. This paper
also describes policy refinement along a hierarchical policy structure. It differentiates four policy
abstraction levels: Corporate level (high level policies are directly derived from corporate goals),
task-oriented policies (these define how management tools should be applied), functional policies
(specifications at management function level), and low-level policies (these refer to objects at
the lowest, resource access, level).

While this work provides a good motivation for policy refinement and for our compliance
policies in particular, it is fairly high-level, and consequently, it lacks implementation detail.

Mont et al. describe a prototype implementation for policy refinement in [MBG99]. In their
work the authors introduce templates, which are higher-level policies that can be understood
by non-expert policy administrators. Templates are similar to our compliance policies from the
perspective that they are intended to provide a general view to a policy, and can later be refined
and translated by policy experts into low-level constructs, which in our case are authorisation
and activation rules.

In [KKSM02], Kern et al. introduce enterprise roles to address the problem of many target
systems that live together within one enterprise. These enterprise roles include general informa-
tion about the target systems, and they bear similarities to our compliance policies. As in our
model, enterprise roles have to be mapped onto the ones used by target systems.

Ao et al. introduce a mechanism called law-governed interaction (LGI) [AMN02] to manage
message passing in large heterogeneous environments. While this does not use role-based access
control, their policies are organised into a superior/subordinate relation that is analogous to
our meta-policies. First, these policy hierarchies, similarly to our contexts, help to organise
and classify enterprise policies. Second, they help to regulate long-term evolution of enterprise
policies. This second aspect of policy hierarchies coincides with our compliance policies.
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5.6.2 Future directions

We have already mentioned hierarchical compliance policy specification as one possible path to
follow.

Another interesting path would be to refine arbitrary component templates. While we allow
the evaluation of certain conditions in our compliance policies (we can check whether an op-
tional component has been mapped or not), our templates could be extended to support further
conditions. Templates could be defined in a condition/restriction form; where a condition, using
the abstract component model, describes the rule component of a policy, and if this condition
matches, then we require the rule to satisfy the restriction part of the template.

5.6.3 Summary

In this chapter we introduced compliance policies, which use an abstract component model to
specify minimum and maximum requirements for policies. We can prescribe what components
must be present in a checked policy, what components are optional, and what restrictions extra
components must satisfy. In addition, we introduce implicit rules (including negation and static
separation of duty), which consider transitive rule evaluations, and form a powerful means to
analyse policies. Since compliance policies are specified at an abstract level they are suitable
for expressing the desired properties of different policy domains. Because the expected lifetime
of compliance policies is longer than the lifetime of policies, this abstraction is used to support
policy evolution, in which long-term goals can be encapsulated in compliance policies.

We have considered compliance policies from the aspect of policy refinement, but in large
scale enterprises it is natural to have many policies working in parallel. We shall discuss this in
the next chapter, together with other related work, such as [HGPS99], [BdVS02], and [Hom02],
which address both aspects of our compliance policies.
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Large organisations tend to be distributed both geographically and structurally. Different
branches or sub-organisations usually have varying levels of autonomy, which might include
autonomy over access control specification. In this chapter we shall refer to such autonomous
units as domains. In the previous chapter we considered how to restrict freedom in such do-
mains by requiring compliance with restrictions specified in our meta-policies. We also indicated
the potential for compliance policies to facilitate cooperation among different domains. In this
chapter we explore this aspect of meta-policies, i.e. we consider the use of meta-policies to enable
and ease cooperation among domains with different RBAC policies.

The work here is inspired by the National Health Service (NHS) environment, for which
the British government set the goal of enabling doctors to access patients’ Electronic Health
Records (EHR) independently of the locations of doctor and patient. As patient data is stored
at hospitals – that are autonomous, and have a considerable level of freedom in specifying local
access control policies – this application scenario encompasses many policy domains between
which there must be cooperation.

In this chapter we first review the service level agreements of OASIS, and point out some
problems that affect long-term policy administration. This is followed by a detailed description
of our interface policies, in which we show how to use them through examples. Finally, we review
some related work and conclude this chapter.

6.1 Service Level Agreements

OASIS’s architecture was designed with distribution in mind, and ever since its first model,
OASIS has supported cooperation among different policy domains.

Cooperation between two OASIS servers, each enforcing different policies, is achieved through
Service Level Agreements (SLA), which we have already reviewed briefly in Section 2.3.2.

These bilateral contracts specify what roles (referred to as local or exported roles) can be
used remotely, i.e. whether other policies may use them as foreign roles in their specifications.
From the remote policy domain’s perspective such roles are imported roles.

In addition to the set of roles that can be used remotely, SLAs contain information about
how to set up an event channel between the cooperating domains. This channel is used for
event notifications to support the revocation of foreign roles that are marked as membership
conditions.

While this design is perfectly suitable for setting up cooperation between two domains, in
the long term it proves inadequate for large-scale systems, in which there are many cooperating
domains whose policies are administered separately.
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The first problem arises from policy modifications. Policies evolve, and such evolutionary
changes must be reflected in the SLAs. If two policy domains are connected via an SLA, and
the policy of one of these domains changes, then the SLA must also be updated, and, since
the modified roles could have changed their names and parameter signatures, the second policy
might also need to be updated. An SLA update thus involves the coordinated cooperation of
the policy administrators of the two domains!

A domain may set up SLAs with a number of other domains, and upon a local policy change
policy administrators must update all these SLAs. Thus, a local policy change triggers the
revision and possible modification of all the policy domains this local domain is connected to.
Such implied remote policy changes could trigger further policy changes, resulting in a cascade.

Many SLAs are not used at all, but they still need to be maintained and updated when
policies evolve. For example, in the case of the National Health Service, the EHRs of individual
patients are potentially stored at many different hospitals. It is expected that all hospital
domains are interconnected via SLAs, but some of these SLAs are idle, e.g. if the two hospitals
share no patients. On the other hand, maintaining SLAs can become a serious burden on policy
administrators. Even though the SLAs in question are likely to be very similar, it is required
that each pair of administrators agree on the SLA that is used.

To overcome these problems we propose interface policies, which introduce an intermediary
entity between two cooperating domains.

An interface policy can be looked at as being a policy domain itself, with which other domains
set up virtual service level agreements. In our terminology we refer to such virtual service level
agreements as mappings. Whenever two domains need to cooperate, based on the mappings
between these two domains, and the interface policy, a service level agreement can be set up
automatically. This approach has many advantages. First, whenever a policy changes, only the
mappings to such interface policies need to be updated, after which all the previous SLAs are
regenerated. Second, the interface policy can act as a mediator to overcome representational
differences between different domains. Third, due to the longer expected lifetime of interface
policies, major changes that could affect a large number of cooperating policy domains become
less frequent.

The use of interface policies is illustrated in Figure 6.1, which shows a set of policy domains
that interact with each other using SLAs (left hand side), and the same policy domains using
interface policies to generate the same SLAs.
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Figure 6.1: The use of interface policies.

In this particular example we have seven policy domains (numbered from one to seven), and
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ten SLAs1. We assume that these SLAs are fairly similar, and we use interface policies to replace
them. In the example we introduce two interface policies, and replace the ten SLAs with eight
mappings. The SLAs are then generated automatically. Reducing ten SLAs to eight mappings
may not seem to be a large improvement, but these mappings are between interface policies
and policies, not between policies. If policy number three changes in our original model, the
policy change must be reflected in the four SLAs this policy has (between 3 − 4, 3 − 6, 3 − 7,
and 3 − 1), and this can result in consequent policy changes. With interface policies only one
mapping needs to be updated. Furthermore, we could (depending on the mapping directions,
i.e. whether a policy is component exporting or importing) now generate SLAs between policies
three and five without extra cost. The cost of using interface policies further reduces as the
system scales.

Our interface policies build on compliance policies, hence there is a further advantage to
our interface policies, viz. we can specify restrictions for the cooperating policy domains. With
these restrictions a policy domain that is exporting a role can specify an expected behaviour for
the role importing domain, and vice versa.

6.2 Interface policy structure

Interface policies build on compliance policies; hence, they also contain an abstract policy model
and a set of restrictions. But, unlike compliance policies, which specify a set of restrictions
for a single policy, interface policies must specify two sets of restrictions, as there are two
policies involved. These two sets are for component exporting and component importing policies
respectively. Just as with compliance policies, a policy needs to map its components to the
abstract components of an interface policy, and only then can this policy be checked against the
rules of the interface policy. For such compliances we need to know whether a policy is intended
to be a component exporting party, component importing party, or both in a particular SLA.
We shall refer to this information as the mode of a policy. Note that this mode is mapping
related, and for a given policy it may differ in various SLA mappings.

The use of interface policies is shown in Figure 6.2.

This figure shows the steps that are necessary for setting up cooperation between two or more
domains. First, an interface policy must be specified. We shall discuss its structure later in this
section, at the moment the only thing we need to know is that it is similar to a compliance policy,
or in fact, to two compliance policies that share their abstract component model. The second
step involves the mapping of policies to the interface policy, and performing a test on them,
which is similar to the compliance check introduced in the previous chapter. Once this is done,
based on the mappings we can set up a service level agreement between a component exporting
and a component importing policy. Note that an interface policy can be used for more than one
pair of policies, and thus it can be reused many times. If a policy changes, then only the mapping
between the policy and the interface policy needs to be updated, and the necessary SLAs will
be regenerated automatically. This saves much time for policy administrators, and this also
removes from their shoulders the burden of constant checking for remote policy modifications.
SLA updates will no longer require the synchronised collaboration of both cooperating policy
administrators.

1Note that SLAs are directed; however, this is not indicated in the figure, since it is irrelevant to our
example.
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Figure 6.2: Automatically generating SLAs.

6.2.1 Primary interface policy components

An interface specification contains the specification of the abstract policy components that can
be shared between two policies. These components can be roles, appointments, environmental
predicates, or privileges.

The other two major components of compliance policies are the constraints introduced in
Chapter 5. These constraints describe the required properties for both component exporting
and component importing policies.

Unlike for compliance policies, where data types were less important, in interface policies we
require the use of real data types, which must be understood by the policy enforcing environments
of the cooperating parties. This requirement arises because we shall convert data values to and
from values of these data types.

Interface policies must specify restrictions for two kinds of mappings, one for component
exporting and one for component importing policies. These two restrictions are specified inde-
pendently.

Some abstract components might not be required to conform to both the component export-
ing and importing policies. We indicate whether conformance is required with the help of the
imp and exp restrictions.

Example interface policy

We next begin to describe a running example that we shall use in this chapter to show how
interface policies work. In this example we would like to enable the cooperation of a few hospitals.
We assume that these hospitals have a role that corresponds to a general ward doctor role. This
assumption is based on NHS regulations.
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As a first step, we specify a data type and an abstract role with one single parameter. We
shall use the i prefix in our naming to indicate that a component belongs to our interface policy.

i NHS id : xsd : integer
i ward doctor{imp, exp}(i id : i NHS id)

With the {imp, exp} restriction we indicate that the abstract role must be mapped to by both
component importing and component exporting policies.

6.2.2 Mapping restrictions

As we shall convert the component parameters of the exporting policy to data types used in the
interface policy, we must require that the functions used in such mappings are concrete functions,
i.e. they are known to the policy enforcer. Also, we must specify the mapping direction as follows:

For parameters that will be exported from a policy we require that a function is provided
that translates parameter values from the policy’s data types to the interface policy’s data types.
For parameters that will be imported by a policy we require that a mapping function is provided
that converts from the interface policy’s data types to ones that are used in the importing policy.

As mapping requirements could differ for importing and exporting policies we introduce
some new restrictions for the abstract role, appointment, environmental predicate, and privilege
components.

Bijections and lossy mapping restrictions: Just as in the case of compliance policy
components we require mappings to be bijections, unless they are marked explicitly to allow
lossy functions. The lossy restriction will allow lossy mappings for both the importing and
exporting policies, but this can also be controlled by the imp lossy and exp lossy restrictions,
which allow lossy mappings for import and export policies respectively. Note that for import
mappings the mapping direction is different from the one in compliance mappings. Accordingly,
shared abstract components that are also used in the import side compliance check are involved
in mappings of opposite directions. For such components we require bijective mappings.

As in the case of compliance policies, the mapping functions can take many arguments, thus
they can split and merge parameter values to overcome semantic differences in the way parame-
ters are stored. Some functions also might make use of external services, such as environmental
predicates; for example functions might be used to get a property of a user session. The default
bijection restrictions are stricter than the lossy ones, since bijections may always be used instead
of lossy functions. A mapping function may have more than one parameter. In such cases the
strictest parameter restriction shall be considered.

Example mapping restriction

We shall extend our interface policy to include restrictions on the kind of mappings we accept.

i NHS id : xsd : integer
i ward doctor(i id{exp lossy} : i NHS id)

We specify that export mappings for our parameter (i id) could use lossy functions. This
allows the exporting domain to use multiple identifiers for the same doctor as long as these
identifiers can be converted to an NHS doctor id.
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Active components: Imported rule components could be used as membership conditions
in a component importing policy. If so, the importing policy enforcer needs to know whether a
particular imported rule component is revoked or not. SLAs usually specify an event channel
for informing importing domains about rule component revocations, however this channel con-
sumes resources (e.g. it has a heartbeat as part of its protocol). To avoid unnecessary resource
consumption we require the explicit specification of activity for components, i.e., in the shared
abstract policy component we must specify whether the validity of this component can be mon-
itored. In order to be able to check such validity, the exporting policy must keep track of all the
policy components that are exported and need to be monitored.

To indicate that a rule component (role, appointment or environmental predicate) could
be used as a membership condition in a component importing policy we use the imp active
restriction.

Queriable components: The representation of a shared abstract role could differ in two
different policies. Our interface policies only ensure that we are able to translate a policy
component given in the exporting policy’s domain to a role of the importing domain. This
process might involve lossy functions, therefore we cannot guarantee invertibility.

Although, in cases when only bijection mappings are used (and function inverses are known),
we could translate requested import policy components to components of the exporting policy,
we do not support this functionality.

As a consequence, a principal that needs to request a remote policy component that requires
more than one local (to the exporting policy) component, must present all of the local pre-
requisites to the component importing policy domain. How does a principal know about what
prerequisites it might need, given that it knows little about the internals of the remote policy?
We answer this in the next section.

6.2.3 Restrictions on policies

Interface policies may contain restrictions on both component importing and exporting policies.
These restrictions are the same as those we have seen in compliance policies. They are able to
check whether an importing or exporting policy contains a specific rule, whether they provide
a means to enter some role or acquire some privilege, and so forth. With their help, together
with the abstract model of the interface policy, it is possible to specify restrictions over the
use of the foreign policy components. For example, it can be specified that a role to be shared
is used only for privilege assignments in the role importing policy, and that this role satisfies
some separation of duty like constraints in the role exporting policy. Note, however, that it is
sometimes possible to circumvent these restrictions with the help of badly specified mappings
or with additional interface policies that outsource some policy decisions.
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Example interface restrictions

We extend our example with a restriction on the importing domain:

i NHS id : xsd : integer
i patient id{imp} : xsd : integer
i ward doctor(i id{exp lossy} : i NHS id)

i read haematology record{imp}(i patient : i patient id,
parameter{min(0),max(unbounded)})

i patient doctor{imp}(i patient : i patient id, i doctor : i NHS id,

parameter{min(0),max(unbounded)})
Restriction for the importing domain:
i rule1{imp} : i ward doctor(x), i patient doctor(x, y)

⊢ i read haematology record(y)

Here we first added a new data type (i patient id) and a privilege (i read haematology record)
that uses this data type for its parameter. We only require that these two are present in policies
that act as a component importing policy.

We also specify an implicit rule for the importing policy, in which we require that if a
principal holds the equivalents of the rule (i rule1 ) prerequisites, then this principal must be
able to get the equivalent of the target privilege (i read haematology record) without providing
any further prerequisites.

The compliance restrictions also must include wild-card elements to permit both the import-
ing and exporting policies to have additional policy components.

6.3 Compliance

Once an interface policy is specified it is ready to be used by policies. In the same way as for
compliance policies, the first step is to set up a mapping between a policy and the interface
policy. We shall discuss this in Section 6.3.1. Once this mapping is provided we can perform
the compliance check (see Section 6.3.2).

6.3.1 Mapping

Mappings between a policy and an interface policy must be set up in accordance with the mode
of the policy and the mapping restrictions of the interface policy. For component exporting
policies these mappings are the same as for compliance policy mappings, since both for policy
restrictions and exported components it is required to map policy components to interface policy
components.

However, for import policies there are two mapping directions involved. The first direction,
from the policy to the interface policy, is required for the compliance restrictions, if any. The
second direction, for the ‘shared’ policy components, is from the interface policy components to
the policy components. Clearly, lossy functions are not allowed if a policy component needs to
be mapped in both of these directions.

Example mapping

In order to continue with our example we need to specify two policies that will be mapped onto
the interface policy.
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To increase readability we shall use here the prefixes a and b in the exporting and importing
policies respectively.

Export policy: The first policy, which will be the component exporting one, is as follows:

a string

a ward doctor(name : a string)

In this policy we specify only a data type and a role (for simplicity we include only the
necessary elements). This role (a ward doctor) has a single parameter of data type a string.
This string is used to uniquely identify a doctor in a hospital that is using this policy. For
example, an instance of such a role could look like a ward doctor(‘Alice’).

The enforcer of this policy must provide a function to translate the parameter of the local
ward doctor role to the parameter of the interface policy’s role. This function is a get NHS id(
a string).

Using this function the mapping of the component exporting policy to the interface policy
can be given as follows:

a ward doctor(x) → i ward doctor(a get NHS id(x))

Thus, whenever we have an instance of the a ward doctor role, we can transform it to the
format specified by the interface policy.

The requirement for the a get NHS id function is that it must be able to map every possible
local parameter to a parameter of the interface policy role, but it need not be invertible (this is
specified by the exp lossy restriction).

Import policy: Because the interface policy specifies compliance restrictions for the import-
ing policy, we must provide a slightly more complicated policy:

b doctor id

b patient id

b record id

b ward doctor(doctor : b doctor id)
b patient of(doctor : b doctor id, patient? : b patient id)
b read record(patient : b patient id, type : b record id)
b authrule1 : ward doctor(x), b patient of(x, y) ⊢ b read record(y)

This policy has three data types (b doctor id, b patient id, and b record id), a ward doctor
role (b ward doctor), an environmental predicate (b patient of ) that checks whether a patient
is treated by a doctor, and a privilege that gives access to a patient’s particular record that is
specified by the type parameter.

The mapping of the components is as follows:

i ward doctor(x) → b ward doctor(b f(x))

i patient doctor(y, z) → b patient of(b f(z), b g(y))

i read haematology record(w) → b read record(b g(w), ′haematology′)

For this mapping the conversion functions b f and b g need to be provided by the policy
environment of the importing policy. b f transforms a value of i NHS id type to a value of
b doctor id data type. This forms the basis of the mapping between the abstract ward doctor

112



CHAPTER 6. INTERFACE POLICY

and the policy’s ward doctor role. Similarly, with the help of b g, which takes care of the con-
version between i patient id and b patient id, we can map the abstract environmental predicate
i patient doctor. Note that the abstract predicate allows additional parameters for the policy
parameters, but in this policy there were no such extra parameters. Nevertheless, the mapping
has still taken care of the parameter order, which is reversed in the importing policy.

Finally the mapping for the privilege i read haematology record is given. Note that the priv-
ilege in the policy has more parameters, which is permitted by the interface policy specification.
Also, the policy’s b read record privilege is much more powerful than the abstract privilege of
the interface policy, but this is restricted by a constant ‘haematology’. This constant can be
looked at as a constant function that takes no parameters and returns a single value.

In this example we have seen that an abstract privilege could be mapped onto a more
powerful one. Similarly a role could be mapped onto a much more powerful policy role. To
avoid such mappings, when possible, the abstract policy components must provide plenty of
verbal comments. In the case of roles, negative implicit rules can help to mitigate the above
problem, by restricting the set of privileges a policy role, to which the abstract role is mapped,
may have.

6.3.2 Compliance check

The next step before generating an SLA is to check whether a policy, be it component exporting
or importing, complies with the restrictions specified in the interface policy. These are based
on the checks of compliance policies. However, for component importing policies we must check
whether imported policy components are used as membership conditions in accordance with the
abstract policy components’ activity restriction.

Example compliance check

In our example the compliance check for the component exporting policy ensures that the
necessary mappings are provided. For the importing policy the compliance check includes, in
addition to the mapping checks, the examination of the policy rules, in order to find a set of
rules that satisfy the interface policy’s implicit rule.

The implicit rule is:

i rule1{imp} : i ward doctor(x), i patient doctor(x, y)

⊢ i read haematology record(y)

This translates to:

translated rule1 : b ward doctor(b f(x)), b patient of(b f(x), b g(y))

⊢ b read record(b g(y), ′haematology′)

Note that as x and y were variables, in this check b f(x) and b g(y) behave as if they were
simple constants (Skolem constants). This is an implicit rule, but luckily there is a direct rule
in the policy that satisfies this implicit rule. (If there were no such direct rules, then it would be
necessary to check whether the privilege could be acquired via any intermediary roles that can be
activated with the prerequisites of the translated implicit rule or via other intermediary roles.)
The remaining part of the policy still needs to be checked, but these are irrelevant wild-card
checks.

As a final step we must analyse the importing policy’s role activation rules to see whether
the imported role, which did not contain the imp active keyword among its restrictions, is used
as a membership condition.
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6.4 Generating SLAs

In order to generate service level agreements between two policies they must be mapped to an
interface policy. One such mapping must be in component exporting mode, while the other is
component importing. In an SLA we join these two mappings.

Example SLA generation

According to our interface policy there is only one role – i ward doctor – that is used in the
cooperation between an exporting and an importing domain. Therefore, if a principal in the
exporting domain has activated the a ward doctor(‘Alice’) role then he should be able to use
this role, or actually a translated version of it, in the importing policy domain. The first part
of the translation is done on the exporting policy side. This part translates a role instance to
an abstract role instance. For example:

i ward doctor(‘Alice’ ) → i ward doctor(a get NHS id(‘Alice’ ))

This abstract role instance can be sent to the policy component importer, which performs the
second step of the translation:

i ward doctor(a get NHS id(‘Alice’ )) → b ward doctor(b f(a get NHS id(‘Alice’ )))

Thus we are able to translate a role of the exporting policy to a role of the importing policy.
This role can then be used in the importing domain in accordance with its policy to either
activate further roles or to acquire privileges.

6.4.1 Trust between domains

A policy may comply with many interface policies. Consequently, two policies that intend to
cooperate may share more than one interface policy with which they comply in the required way
(import and export directions). Interface policies are not equivalent. Some allow the remote
use of powerful policy components, while others may concern fairly weak privileges. There are
many factors that can be considered when making a decision about which interface policy to
choose.

Just as in the case of compliance policies, compliance with an interface policy does not
necessarily mean that the mappings are correct. Whether a service level agreement is set up
automatically between two domains depends on the domain administrators.

An interesting extension to our work could be to base SLA generation on trust [BFK99].
Such trust could consider past cooperation experience, recommendation, micro payments, or
other trust, e.g. trust in the third parties that approved a policy domain’s compliance with a
particular interface policy.

Based on the trust levels between two domains, we can choose what interface policy to use
to set up an SLA. This is illustrated in Figure 6.3.

Our meta-policies store a great deal of information about policies, and as some of them
are abstracted away from a policy, their content is less sensitive than the content of a policy
itself. Our framework allows controlled querying of this information, and this can be used in
trust negotiation protocols, such as ones described in [Yao02], which uses OASIS-like policies
and X.509, [SB02], that advocates the use of micro-payments, and [SWY+02], that uses an
incremental trust negotiation protocol, which discloses trust policies based on trust itself.

Trust and RBAC have also been discussed in [LMW02] and [WFSM02].
The way that trust is determined is not part of the model presented in this thesis, nor is it

part of our policy management framework, however this future direction is worth pursuing.
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Figure 6.3: Automatically generating SLAs based on trust.

6.5 Discussion

Interface policies, while definitely a help, often cannot be reconciled, and thus mapped onto
policies that intend to cooperate. In such cases, either policies must be modified, or a new
interface policy specified. Still, interface policies can serve as implementation templates. Their
component model can be adopted by policy domains, and used as a skeleton for the local policy.
An added bonus of using interface (or compliance) policies as templates is that it will be simple
to specify mapping to this particular meta-policy, and the mapping functions will be bijections.
This will facilitate interoperation between policies that have been implemented using the same
interface policy as a template.

6.5.1 Future work

We have already mentioned one possible path to follow in extending interface policies. This was
to use trust in deciding what domains may cooperate, and use the same trust to select a service
level agreement.

Another possible extension is to consider the mapping between interface policies themselves
(see Figure 6.4). This would introduce further translation steps in SLAs, but could be useful in
environments where the administration of interface policies is localised. In such cases, policies
cooperate under different local interface policies, and mapping between these interfaces could
enable the cooperation of these policy groups.

6.5.2 Related work

Our work relies on research done in the area of federated databases, which we described in
Chapter 5. There we mentioned only the use of semantic values as a method of handling
semantic heterogeneity. Another popular method to tackle this problem is to use mediators
[Hul97]. Such mediators form a separate component, and define an integrated view of many
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Figure 6.4: Mapping between interface policies.

databases in a federation. This view provides its own schema, and queries can be made only
against this schema.

Such mediators were used by Hombrecher to reconcile semantic and structural heterogeneity
problems in event systems [Hom02]. In his thesis, Hombrecher uses event gateways to convert
events (which, being structured data, are very similar to both database entities or policy com-
ponents) from one representation to another. In Hombrecher’s model all conversion takes place
in such gateways, which are hosted on dedicated computers. In our model an interface policy is
only a specification, and conversions take place in two phases at the cooperating parties. Also,
our approach can, in addition to conversions, specify restrictions over the cooperating domains.

Many other middlewares, such as CORBA [OMG02], MPI [MPI97], and JMS [Sun01], try
to address the problem of various representations used by cooperating computers. A general
overview of the associated problems is discussed in [Has00]. Our approach builds on the results
of such research, and our implementation utilises these middlewares by partially adopting their
data type and component systems.

XML, while facilitating data sharing among diverse applications, introduces many challanges
that resemble those of heterogeneous databases. Data shared by diverse applications differ, and
such differences must be reconciled maually [SR01], similarly to how it is done with our interface
mappings.

Interface policies enable cooperation between two or more RBAC, specifically OASIS RBAC,
policies; therefore, next we narrow our focus to related work on access control policies.

An outstanding paper by Hale et al. [HGPS99] considers security policy coordination in
heterogeneous and distributed environments. Similarly to federated databases, their work uses
mediators to reconcile conflicts. This work is more general than ours, since it considers various
access control models, among them MAC, DAC, RBAC, and TBAC (Task-Based Access Con-
trol). As a consequence, their work must abstract away from the individual policies of these
models. Hale et al. do this with the help of a ticket-based primitive access control model, which
uses locks and keys – for the subjects and objects of the access control respectively – to determine
what subject has access to what object. They show how to convert a policy of each of the above
four more sophisticated models into such a primitive policy. Note, however, that conversion
to a primitive policy language requires sacrifices, and as a consequence, many activity-related
constraints of RBAC models cannot be supported.

The idea of using a primitive policy language has also appeared in the work of Bonatti, De
Capitani di Vimercati, and Samarati [BdVS02]. In their paper the authors use (subject, object,
authorisation) triples to express various access control policies. Their algebra is able to express
unknown policies, which are equivalent to our environmental predicates.
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However, both the work of Hale et al. and Bonatti et al. consider much more general access
control models than our interface policies, which stay at the level of RBAC. We specify con-
straints over the RBAC policy itself, hence the name meta-policy, and not on the access that
is permitted. That is, we can express requirements on the RBAC policy component level, as
opposed to the user, object, access level.

6.5.3 Summary

In this chapter we introduced interface policies – our final class of meta-policies. We showed how
to use interface policies to set up cooperation between two or more policy domains by specifying
a set of shared components and restrictions for the cooperating parties. We also described how
to generate service level agreements between two policies automatically, and how this process
can make use of inter-domain trust relationships.
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7 Controlling access to policy

An important motivation for the research presented in this thesis comes from policy storage and
access control to such stored policies.

Access control policies change, and in the previous chapters we considered how this change
can be restricted at a high level. However, access control policies constitute resources themselves.
The policies discussed in this thesis are built up from policy components (see Chapter 3), access
to which can be controlled by the same mechanisms that the policies contain. In this chapter
we shall explore how to use RBAC to restrict access to our RBAC policies.

Policy components could be accessed through various APIs. However, due to the fact that
policy components can be accessed in a limited number of ways, these APIs will be similar. The
elementary steps of these API functions can be described with the help of privileges. These priv-
ileges will also define the granularity of access control to policies. Since our policy components
are rather complex, it is difficult to encapsulate fine-grained accesses in a single privilege or
API call. Breaking up component accesses into many steps can introduce transient component
states, which can lead to component inconsistencies. To avoid such inconsistencies in policy
components we introduce in Section 7.1 the concept of binding.

In Section 7.1.3 we specify the privileges for accessing policy components. In this session
we also demonstrate the expressiveness of these privileges and we describe how to aggregate
component accesses through the use of wild-cards.

In Section 7.2 we extend our privileges with contexts, thus enabling more flexible scoping.

Finally we shall review related research and provide a short summary of this chapter.

7.1 Consistency of policy components

Basic policy components are accessed in various ways during policy evolution. As policies are
modified, we must ensure that policy modification results in a consistent policy, i.e. for example
there are no references to unspecified roles or data types. There are several levels of consistency
requirements. We have already considered higher, policy-level ones in the form of meta-policies.
In this chapter we shall focus on lower, component-level consistency requirements.

7.1.1 Binding policy components

Most APIs, like the one defined in our proof of concept implementation (Desert), consist of
methods that have a fixed number of arguments. However, many policy components refer to
a variable number of other policy components. For example, a role can have any number of
parameters, or a rule can have any number of prerequisites. Consequently, a single method call
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to create or to delete a policy component is insufficient. On the other hand, if more than one
method is used for a policy component creation or deletion, inconsistent component states may
be introduced. For example, if the specification of a role consists of adding role parameters one
by one, the role can only be used when its last parameter has been added, and intermediate
states should not be visible to methods that would use this role. To address this problem we
introduce the concept of binding. Whenever a policy component is created it is in a so called
unbound state. This means that it is not part of the final policy, thus it cannot be used to
construct other components. When the component reaches a state that is considered to be final
the component can be bound to the policy. After a successful binding the component becomes
part of the policy specification and its state changes to bound state. This binding behaves the
same way as transaction commits in database management systems. The process of binding a
component to a policy includes consistency checks, which we shall describe in Section 7.1.2.

Similarly, policy components cannot be modified freely. A new parameter cannot be added
to a role if this role, without its new parameter, is used as a prerequisite in some rules. Therefore,
before a component can be modified or deleted it must be in the unbound state. Unbinding
a component also requires some consistency checks, as it must be ensured that the component
that is unbound is not used by other bound components.

This state transition is illustrated in Figure 7.1. This figure shows that a policy compo-

Non-

existent
Unbound Bound

bind

unbinddel

new

Figure 7.1: The state transitions of a policy component.

nent created by a (new) method will be in the unbound state. Once in this unbound state a
component may be deleted by a del access method. Alternatively, from the unbound state the
policy component can enter a bound state via bind method calls. These method calls are also
responsible for maintaining general policy consistency, thus the consistency of the policy should
not change if a new component is bound to it. Similarly, unbinding methods unbind a policy
component only if this operation does not effect the consistency of the policy.

Rules are exempt from the above state restrictions, since they do not have other policy com-
ponents depending on them, and thus they cannot be referenced while they are in an inconsistent
state. However, rules that are in the bound state must be consistent. What this means we shall
discuss in the next section (Section 7.1.2).

Separating the addition of policy components into two stages, which lead first to unbound
then to bound state, has some additional advantages, since it will enable us to differentiate
between accesses that modify existing components and accesses that create new components. In
Section 7.1.3 we shall discuss this in more detail.

7.1.2 Consistency of policy components

In the following we list some operation level consistency requirements for each basic policy
component.
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Data types

Data types can only be unbound if they are not used in any policy component specification.
The only operation that is allowed for a bound data type is the addition or removal of a child in
the data type inheritance hierarchy. For this operation the parent data type must be in bound
state, while the child data type must be in unbound state.

Data types in policy specifications refer to real data types, whose general availability can
also be checked. Note that this check is the responsibility of the policy enforcer.

Finally, we must ensure that within a policy a bound data type is uniquely identified by its
name.

Functions

Functions must have a valid (bound) data type as their return type. Similarly all the parameter
data types must refer to a valid data type, and the parameter names must differ from each other.
A function must also refer to a real function that is accessible to the policy enforcer; however,
this consistency requirement could be checked at a later stage, as information needed to check
this might not be available at policy specification time. Thus, it is the responsibility of the
policy enforcer to check if the policy enforcing environment supports the real-world functions to
which policy specifications refer.

Just as in the case of the data types the function identifier must be unique in a policy. Our
implementation currently does not support polymorphism, thus function names must be unique
within policies. Note, however, that we can still refer to concrete functions that are polymorphic.

Functions, just as every other policy component, cannot be unbound if they are referenced
from other policy components.

Environmental predicates

For environmental predicate specifications the consistency checks are the same as in the case
of functions. Note that the association of environmental predicate names to real-word ser-
vices/environmental predicates can be complicated, since they can refer to external entities such
as web services or other OASIS services.

Privileges, appointments, and roles

From the perspective of consistency, privileges, appointments, and roles behave similarly. They
must satisfy the same restrictions as functions, viz. their parameters must refer to bound data
types, and they must be unique within their parent component.

At policy specification level the names of these components must also be unique, just as in
the case of other components.

Similarly, these components can only be unbound if no bound components reference them.

Authorisation and activation rules

The modification restrictions to both authorisation and activation rules are more relaxed as
these rules do not have other policy components that depend on them.

We distinguish two types of operations on these rules. The first type does not affect the
component’s consistency. Examples include the addition of a variable, the removal of an unused
variable, the addition of a prerequisite, and its removal if it does not affect parameter binding.
The second type of operations affect consistency. An example for such an operation is the
deletion of the target container.
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Name Parameters

type new (t type id, rt string, p policy id )

type del (t type id, p policy id )

type inherit new (parent type id, child type id, p policy id )

type inherit del (parent type id, child type id, p policy id )

type bind (t type id, p policy id )

type unbind (t type id, p policy id )

Table 7.1: Privileges for accessing data types.

We allow both categories of these operations in the unbound state of a rule, but for bound
rules we restrict the set of permitted operations to ones that leave modified rules consistent.
Such differentiation of access methods will increase the expressive power of our policy access
privileges. We shall provide an example for this in Section 7.1.3.

We require that the variables of a consistent rule refer to valid data types only.
The prerequisites and the targets of the rules are embedded into containers. Such containers

must only refer to valid policy components, and they must bind each parameter either to a valid
function container, or to a constant of the appropriate data type, or to a variable of the rule.
Restrictions on free variables (as described in [BMY02]) must also be satisfied.

Consistent rules thus can only contain containers that are consistent. Other consistency
restrictions include the uniqueness of rule names.

7.1.3 Privileges to basic policy components

Next we look at the privileges required for access control to a policy management API. Like
the consistency restrictions, these are organised according to the policy structure; for each
component we shall discuss the relevant privileges and give small examples.

Data types

The privileges associated with data type management are given in Table 7.1. These correspond to
the operations of adding, deleting, and modifying data types (like adding and deleting inheritance
relations).

These privileges are not method calls, however they resemble the methods that could be
part of an API for accessing policy components.

All the privileges include a parameter that identifies a policy. This allows the specification
of policies that control access to number of policies.

The type new privilege is required for associating a t type id (usually a string) to a data
type reference (rt), which is usually given as URI.

The type del privilege allows the deletion of a data type from a policy. Note that this is
just a permission. Whether a principal that has such a privilege can delete a data type may
depend on additional conditions, such as the state of the data type in question, i.e. whether it
is in bound or unbound state.

The type inherit new and type inherit del privileges deal with permissions for the addition
and deletion of type inheritance relations.

To give a role my role the privilege of setting an inheritance relation between two types – in
our case let these two types be identified by the strings ‘integer’ and ‘natural’ – one should use
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a rule like:

my role, string eq(x?, ‘ integer’ ), string eq(y?, ‘natural’ ) ⊢ type inherit new(x?, y?)

The above example is obviously contrived and such rules would be of little use in real
policies. However, free variables can also be used in authorisation rules. In our rule, omitting
the string eq(x?, ‘float’ ) and string eq(y?, ‘natural’ ) prerequisites would result in giving the
my role permission to add any data type hierarchy relation. Or, removing just one of these
prerequisites, for instance string eq(x?, ‘float’ ), would permit the role to add inheritance
relationships where the child data type is restricted to the data type identified by ‘natural’.

Functions

Functions can be created (in a policy this means an association with a function known by the
policy engine), deleted, and modified. Associated privileges are given in Table 7.2.

Name Parameters

func new (f func id, rf string, p policy id )

func del (f func id, p policy id, p policy id )

func retval new (f func id, ret type type id, p policy id )

func param new (f func id, param name string,

param type type id, p policy id )

func param del (f func id, param name string, p policy id )

func bind (f func id, p policy id )

func unbind (f func id, p policy id )

Table 7.2: Privileges for accessing functions.

In order to create a new function a principal must hold the func new privilege. The param-
eters of this privilege may specify restrictions on the identifier of the function, on its reference
to a real function (e.g., we may issue a privilege that allows the creation of an integer to string
conversion function only) and on the policy of which this function should be a part.

To set the data type of the return value of a function a principal needs the func retval new
privilege.

With the help of func param new privilege we can restrict the parameters that can be added
to a particular – or to any – function.

The func bind and func unbind privileges control rights to bind and to unbind a function
policy component. An advantage of having bound and unbound components is that we can
differentiate between creating new policy components and modifying existing ones.

To allow a user to modify a function we can grant him both the bind and unbind privileges.
However, to allow a user to add a new function, without allowing him to modify existing ones,
we can grant him the func bind privilege only.

Roles

In Table 7.3 we list the privileges associated with role specification. These privileges control
whether a principal may or may not create, modify, or delete a role. Note that these privileges
concern only the existence of roles. How these roles are used is specified by rules, which we shall
discuss later.

123



7.1. CONSISTENCY OF POLICY COMPONENTS

Name Parameters

role new (r role id, p policy id )

role del (r role id, p policy id )

role param new (r role id, param name string,

param type type id, p policy id )

role param del (r role id, param name string, p policy id )

role bind (r role id, p policy id )

role unbind (r role id, p policy id )

Table 7.3: Privileges for accessing roles.

Appointments

Appointment-related privileges are similar to those of roles. They are specified in Table 7.4.

Name Parameters

app new (a appointment id, ra string, p policy id )

app del (a appointment id, p policy id )

app param new (a appointment id, param name string,

param type type id, p policy id )

app param del (a appointment id, param name string,

p policy id)

app bind (a appointment id, p policy id)

app unbind (a appointment id, p policy id)

Table 7.4: Privileges for accessing appointments.

Appointments must be bound to real-world appointment certificate types, so that at policy
enforcement time the integrity of these certificates can be checked adequately. This binding is
done with the help of the ra parameter.

Environmental Predicates

The specification of environmental predicates is managed in the same way as in the case of
functions. These privileges are listed in Table 7.5.

Privileges

The privileges for managing privilege in a policy are listed in Table 7.6. They are structurally
the same as those for role access.

It is possible to extend our privileges to support control over privilege inheritance. Such an
extension is given in Table 7.7.

A similar extension could be provided to support hierarchical relations between roles.
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Name Parameters

env new (e env id, re string, p policy id )

env del (e env id, p policy id )

env param new (e env id, param name string, param type type id,

in out boolean, p policy id )

env param del (e env id, pname string, p policy id )

env bind (e env id, p policy id )

env unbind (e env id, p policy id )

Table 7.5: Privileges for accessing environmental predicates.

Name Parameters

priv new (p priv id, p policy id )

priv del (p priv id, p policy id )

priv param new (p priv id, param name string,

param type type id, p policy id )

priv param del (p priv id, param name string, p policy id )

priv bind (p priv id, p policy id )

priv unbind (p priv id, p policy id )

Table 7.6: Privileges for accessing privileges.

Name Parameters

priv dep new (p priv id, priv dependent priv id, p policy id )

priv dep del (p priv id, priv dependent priv id, p policy id )

Table 7.7: Privileges for accessing privilege hierarchies.

Authorisation rules

Authorisation rules are among the most critical components of a policy from the point of view
of both access control and self-administration. A role with privileges to modify rules can control
the assignment of privileges to policy roles, which may even include the role itself, thus it is
possible that a role has the power to modify its own privileges.

The privileges and methods we introduce in Table 7.8 and Table 7.10 allow a very fine-
grained control that not only allows limiting the use of certain prerequisites, but also can impose
restrictions on the parameters of the prerequisites. This is achieved with the help of simple
environmental predicates – e.g. arithmetic operators – that can be part of authorisation rules.

Rule prerequisites are encapsulated into containers, privileges for which are given in Ta-
ble 7.8.

These privileges allow the creation of containers for privileges, roles, appointments, and
environmental predicates. As the privileges for these components are separated, it is simple
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Name Parameters

cont priv new (c contp id, p priv id, r arule id,

p policy id)

cont role new (c contr id, r role id, r arule id,

p policy id)

cont app new (c conta id, a appointment id, r arule id,

p policy id)

cont env new (c conte id, e env id, r arule id,

p policy id)

cont del (c {priv, role, app, env} id, r arule id,

p policy id)

cont{prae} param new (c cont{prae} id, t term id,

io boolean, r arule id, p policy id)

cont{prae} param del (c cont{prae} id, nr int, r arule id,

p policy id)

Table 7.8: Privileges for accessing authorisation rule containers.

to specify policies which allow the addition of role prerequisites, but disallow appointment
prerequisites.

Container parameters are handled through the cont{prae} param new and cont{prae} param
del privileges, where {prae} is replaced with the letters p, r, a, or e, indicating privileges, roles,
appointments and environmental predicates respectively. These parameters can refer to a rule
variable, or they can use a constant or a function return value (i.e. refer to another container
that wraps around a function). The privileges that control the creation of such parameter values
are listed in Table 7.9.

Name Parameters

term const new (t term id, t type id, value string, p policy id)

term func new (t term id, f cont func id, p policy id)

term var new (t term id, t type id, p policy id)

term del (t term id, p policy id)

Table 7.9: Privileges for accessing terms.

Privileges associated with adding or removing such containers to or from rules, together with
privileges for creating, deleting, binding, and unbinding rules, are specified in Table 7.10.

We next show an example where we assign a permission to a role my role to use a specific
privilege as target privilege when creating an authorisation rule. The privilege we allow to be
used is read EHR(z, f), which grants permission to read a field f in the electronic health record
of a patient z. We also want to limit the field which can be read to a constant value ‘haematology
field’. In other words, we want to restrict the privilege to read EHR(z, ‘haematology field’ ).
This would allow the role that has the above privilege to create rules like:

... ⊢ read EHR(z, ‘haematology field’ )
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Name Parameters

arule {new/del} (r arule id, p policy id)

arule var {new/del} (r arule id, v term id, p policy id)

arule priv {new/del} (r arule id, p contp id, p policy id)

arule prole {new/del} (r arule id, r contr id, p policy id)

arule papp {new/del} (r arule id, a conta id, p policy id)

arule penv {new/del} (r arule id, p conte id, p policy id)

arule bind (r arule id, p policy id)

arule unbind (r arule id, p policy id)

Table 7.10: Privileges for accessing authorisation rules.

Assuming that the role has all the other necessary privileges to create an authorisation rule and
it can also use the necessary data types, we need to add a rule that gives permission to my role
to create an authorisation rule to use the privilege read EHR(z, ‘haematology field’ ):

my role,

contp pname(x, y?),

y = ‘read EHR’ ,

contp getparam(x, 2) = ‘haematology field’ ⊢ cont priv new(x?)

In this rule we use contp pname(x, y?) and contp getparam(x, n) predicates that return the
predicate name and the nth parameter of a predicate container respectively. (The return type
of contp getparam(x, n) is a term, and as the = compares two terms, the string ‘haematology
field ’ is transformed into a term which contains a string.)

We can control the kind of prerequisites a role is allowed to use through the privileges for
prerequisite containers.

For example, to allow a role to use secretrole as a prerequisite we can use the following rule:

my role, x = ‘secretrole’ ⊢ contr new(x?)

Role activation rules

The containers used by activation rules differ from those used by authorisation rules, since
activation containers include information about membership condition. This must be reflected by
the privileges, thus in Table 7.11 we define separate privileges for role activation rule containers.
Note that the privileges related to role containers (specified in Table 7.8) are also used for
specifying access restrictions for activation rules. The reason for this is that the target role of
activation roles is embedded into a simple (i.e. not active) container.

With the help of role activation rule privileges we can control access to the prerequisites and
the target role of activation rules. These privileges, as in the case of authorisations rules, can
express rights to add or delete activation rules, add or delete prerequisites to activation rules,
and so forth.

Note that the privileges that manage restrictions on what prerequisites can be used, and
with what parameters, are those related to containers.
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Name Parameters

acont role new (c acontr id, r role id, r arule id,

p policy id)

acont app new (c aconta id, a appointment id, r arule id,

p policy id)

acont env new (c aconte id, e env id, r arule id,

p policy id)

acont del (c {priv, role, app, env} id, r arule id,

p policy id)

acont{rae} param new (c acont{rae} id, t term id,

io boolean, r arule id, p policy id)

acont{rae} param del (c acont{rae} id, nr int, r arule id,

p policy id)

Table 7.11: Privileges for accessing authorisation rule containers.

7.1.4 Example policy access

In the following example we show the privileges that are requested while building a new policy.
This sequence of privilege requests closely follows the methods that were used to create the
policy in question.

The policy we shall construct consists of one rule that has three prerequisites (one of each
type) with each prerequisite having a single parameter.

The rule is:

local user(h id?), employed medic(h id?), on duty(h id) ⊢ doctor on duty(h id)

The first prerequisite local user(h id?) is a prerequisite role, the employed medic(h id?) is a
prerequisite appointment certificate, and the last prerequisite on duty(h id) is an environmental
predicate.

The sequence of privileges requested when this policy was created is shown in Figure 7.2.

We shall next go through the method calls that resulted in these privilege requests.

In line 1 a new data type local uid was created, and later bound to a data type known to
the policy engine. This step was needed because the data type had not yet been defined in the
policy.

In line 13 a new role was created with one parameter (h id of type local uid, line 14). This
role was bound – i.e. made available for other policy components – in line 15.

Similarly to the role definition, in lines 17 and 18 an appointment was created and bound
in line 19. Lines 21 to 23 reflect privileges used to specify an environmental predicate with one
parameter.

Like the prerequisites, the target role, together with its single parameter, was created and
bound in lines 25 to 27.

Lines 29 through 31 created an empty rule (identified by ‘erule1’ ) with one variable (iden-
tified by ‘var x’ ). This variable is specific to this rule, and can only be used in the target role
and the prerequisites for this rule.

The privileges that were requested when the rule components were embedded into containers
are shown in lines 33 to 40.
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1 type_new(‘local_uid’, ‘xsd:integer’, policy1)

2 type_bind(‘local_uid’, policy1)

3

4 func_new (‘local_uid:tostring’, ‘xsd:Integer.toString’, policy1)

5 func_retval_new (‘local_uid:tostring’, ‘string’, policy1)

6 func_param_new (‘local_uid:tostring’, ‘x’, ‘local_uid’, policy1)

7

8 func_new (‘local_uid:parse’, ‘xsd:Integer.parse’)

9 func_retval_new (‘local_uid:parse’, ‘local_uid’, policy1)

10 func_param_new (‘local_uid:parse’, ‘value’, ‘string’, policy1)

11

12

13 role_new (‘local_user’, policy1)

14 role_param_new (‘local_user’, ‘h_id’, ‘local_uid’, policy1)

15 role_bind (‘local_user’, policy1)

16

17 app_new (‘employed_medic’, ‘app://...’, policy1)

18 app_param_new (‘employed_medic’, ‘h_id’, ‘local_uid’, policy1)

19 app_bind (‘employed_medic’, policy1)

20

21 env_new (‘on_duty’, ‘oasis:...:indb’, policy1)

22 env_param_new (‘on_duty’, ‘h_id’, ‘local_uid’, ‘true’, policy1)

23 env_bind (‘on_duty’, policy1)

24

25 role_new (‘doctor_on_duty’, policy1)

26 role_param_new(‘doctor_on_duty’, ‘h_id’, ’local_uid’, policy1)

27 role_bind (‘doctor_on_duty’, policy1)

28

29 erule_new (‘erule1’, policy1)

30 term_var_new (‘var_x’, ‘local_uid’)

31 erule_var_new(‘erule1’, ‘var_x’)

32

33 cont_role_new (‘rc1’, ‘local_user’, policy1)

34 cont_role_param_new(‘rc1’, ‘var_x’, OUT, policy1)

35 cont_app_new (‘ac1’, ‘employed_medic’, policy1)

36 cont_app_param_new (‘ac1’, ‘var_x’, OUT, policy1)

37 cont_env_new (‘pc1’, ‘on_duty’, policy1)

38 cont_env_param_new (‘pc1’, ‘var_x’, IN, policy1)

39 cont_role_new (‘rc2’, ‘doctor_on_duty’, policy1)

40 cont_role_param_new(‘rc2’, ‘var_x’, IN, policy1)

41

42 erule_target_new(‘erule1’, ‘rc2’, policy1)

43 erule_prole_new (‘erule1’, ‘rc1’, policy1)

44 erule_papp_new (‘erule1’, ‘ac1’, policy1)

45 erule_penv_new (‘erule1’, ‘pc1’, policy1)

46 erule_bind (‘erule1’, policy1)

Figure 7.2: Example privilege request sequence.

Once the containers had been filled they became ready to be added to the rule created in
line 29. This can be followed in lines 42 to 45.

Finally, the rule, now ready, was made available for the policy through binding (line 46).

This example illustrates the complexity of the privileges involved in access control specifica-
tions for policies. Policy maintainers cannot be expected to specify privileges for every possible
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policy access. However, the use of wild-cards (free-variables in authorisation rules) significantly
simplifies this task. With their help we can specify rules that can allow generic policy modifica-
tion. For example, by specifying an authorisation rule in which the target privilege has the form
role new(x, policy1) we can allow the principal that is active in the target role of this rule to
create any new role in policy1. This single rule thus would cover the privilege requests in lines
13 and 25.

The privileges we specified can be used by administrators directly, but they can also be
used in applications that provide a GUI to policies. As the privileges closely follow the policy
structure, errors or access denials can be easily managed, and proper feedback can be given to
the users.

7.1.5 Component visibility

In general, it makes little sense to restrict read access to individual policy components like roles
or data types. We believe that read access to policies must be handled at policy level. The
reason for this is consistency. For example, adding a role to a policy without knowing all the
other roles in the policy could lead to problems like name conflicts, in which case the uniqueness
of role identifiers within a policy is not ensured.

7.2 Extending with contexts

We have seen how to specify policies that allow general policy modification by using free variables
in authorisation rules. With the help of such rules we can authorise a role to modify any role;
however, it is desirable to specify access control to a specific portion of a policy. In Chapter 4
we introduced contexts, which can form policy component groups. These groups can be referred
to through the context element that groups the components together. We therefore extend our
privileges to contain context information. This extension adds a parameter to the privileges.
Thus, for example, instead of the

priv new ( p priv id, p policy id )

privilege, we shall have a privilege like:
priv new ( p priv id, p policy id, c context)

Whenever a policy component is accessed, a privilege with the component’s context is re-
quested. If the principal can acquire the privileges in question, then it may perform the requested
operation. If there is more than one context element present in a context, then the principal
must have access to components belonging to each of these context elements. For example, if a
role (a role) is marked with [A,B] as its context, and a principal would like to delete this role,
then it must have rights to the following privilege:

priv del(‘a role’ , [A,B])

Privileges having a compound context parameter can be decomposed into privileges that have
contexts consisting of a single context element, thus the above privilege could be decomposed
into the following two privileges:

priv del(‘a role’ , [A])

priv del(‘a role’ , [B])

A principal that intends to delete the role a role thus must have rights to both of the above
privileges.
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7.2.1 Context modifications

The context of a new component must be specified when the component is created. Context
information must thus be known at the time the relevant privilege is requested. However,
a component’s contexts may change. To control this we introduce privileges that allow the
addition and removal of context elements.

These are in the form of ⋆ context add and ⋆ context del, where ⋆ refers to the component
type. These privileges contain a parameter that can restrict the component whose context may
be modified. These privileges also include the context element that is to be added to or deleted
from a component’s context.

The list of privileges that includes these context extensions is included in Appendix B.

7.3 Access to meta-policies

Conformance with compliance and interface policies requires some information, such as mapping
information. This, together with a certificate indicating a successful compliance check, is policy
specific, thus it makes sense to store such compliance information together with the relevant
policies. Who may add or delete such compliances is controlled via a set of privileges. These
privileges contain an identifier that refers to the compliance policy or interface policy, and their
versions.

Similarly, the specification of new context labels is controlled via a privilege. These are listed
in Table 7.12.

Name Parameters

context mod (i context policy id, p policy id)

compliance {new/del} (c compliance policy id, p policy id)

interface {new/del} (c interface policy id, p policy id)

Table 7.12: Privileges for accessing authorisation rules.

Note that the granularity we provide to access meta-policies is more coarse-grained than
what we allow for policies. For example, in the interface new privilege we do not include
parameters that could restrict the set of policy components that could be used for an interface
policy compliance check.

The reason for providing less control over meta-policy related components is that we expect
meta-policies to be more persistent and simpler then policies; we also assume that meta-policies
are administered by fewer people, all of whom can take a high-level view.

7.4 Discussion

An access control policy is a set of rules and the component definitions for these rules. The
privileges presented in this chapter are not different from the privileges that are used in other
access control policies, thus they can be part of any parameterised RBAC policy. However, they
have a special meaning to the service that is responsible for policy storage and access control
to it. Therefore, a policy may include the above privileges in order to control access to itself.
Roles that can control part of a policy that defines them could potentially authorise themselves
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to control additional parts of a policy. This is clearly a very dangerous way to administer
policy, but our meta-policies can help to achieve control. For example, all the administrative
privileges can be assigned a context element like desert.admin. This not only helps to separate
administrative privileges, but through information flow restrictions it can constrain the set of
roles that can be assigned administrative privileges. Our meta-policies also help to maintain
control over policy changes, and we shall discuss this in the following chapter.

7.4.1 Related work

We next review the work done by other researchers in the area of policy administration. Un-
fortunately, since most of the research in the RBAC community focused on model extensions
(such as delegation, constraints, and hierarchies) administration has received little attention.
The ARBAC model, defined by Sandhu et al. is the most significant work in this field. Since
its initial introduction in [SBC+97] ARBAC has undergone several changes. The original is
referred to as ARBAC97 consists of three components: URA97, PRA97, and RRA97. These
acronyms stand for user-role assignment, permission-role assignment, and role-role assignment
respectively. This is the first work that considers RBAC policies from the resource perspective,
and proposes the use of RBAC itself to control access to RBAC policies.

ARBAC97 introduces administrative roles, and defines a small set of parameterised privileges
that control the way administrative roles may modify user-role, permission-role, and role-role
relations. Note that the policies whose access control can be managed through these privileges
use the NIST model; accordingly, these privileges do not support role parameters!

ARBAC97 introduces role ranges, that help to restrict authority in a role hierarchy. This
points to a problem in distributed policy administration – namely policy component grouping,
or in other words scoping.

In [Cra02], Crampton and Loizou address the scoping problem of ARBAC, however their
work concentrates mainly on role hierarchies, and how portions of this hierarchy could be iden-
tified. Our solution to such scoping utilises contexts, which provide a more flexible means to
form policy component groups.

Using RBAC to manage policies can lead to other problems as well, one of which is discussed
by Schaad and Moffett in [SM02b]. They use the Alloy language to analyse ARBAC policies
in order to detect separation of duty conflicts. We address the same problem through our
compliance policies, which check for policy properties before policies are permitted to become
active. We shall discuss this, together with the stages at which our policies are checked, in the
next chapter.

Many problems of ARBAC97 were realised by the authors; consequently, they introduced
extensions to their model. One of their revised models, ARBAC02, is presented in [OS02]. It
adds the concept of organisational units to address dependency problems arising from the use
of hierarchies. However, this model still lacks support for flexible scoping.

Our privileges were designed to work with a more general RBAC model, OASIS. As a
consequence these privileges are more complex, and their number is also much larger. However
they support parameters, more general prerequisites, and more complex rules. In our policy
management framework we are able to enforce general policy restrictions, and with the help of
our contexts we can group policy components in a flexible way. Unlike in ARBAC, roles are not
separated into two distinct categories (administrative and non-administrative roles), and we can
use the same roles that are specified by a policy to control the policy itself. Note, however, that
such separation can easily be achieved through contexts; indeed, through contexts we can even
organise the administrative policy components into further subgroups.

In [KSM03] Kern et al. describe another approach to using RBAC for self-administration.
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Primary concepts of their model, called the Enterprise Role-Based Access Control Model (ER-
BAC), are enterprise roles and scopes. These enterprise roles are general roles that span over
more than one target system. Their concept is similar to the abstract roles we have in both inter-
face and compliance policies. Scopes in ERBAC provide flexible component grouping, similarly
to our contexts. Unfortunately the ERBAC model lacks support for parameters.

7.4.2 Future work

Our privilege specification for policy access opens plenty of opportunities for further work.
We have specified privileges only. Since these privileges are fine-grained, to give a role rights

to create a role, modify it, delete it, and manage its parameters, we must use many privileges.
However, as some of these privileges occur together in policies, it could be desirable to provide
more support for their grouping. This could be done with the help of roles. For example,
we could specify a role modifier role that would encompass all of the above mentioned role
modification privileges. This role could be defined as follows:

role modifier(r role id, pol policy id, c context)

role modifier(r, p, c) ⊢ role new(r, p, c)

role modifier(r, p, c) ⊢ role del(r, p, c)

role modifier(r, p, c) ⊢ role param new(r, x, y, p, c)

role modifier(r, p, c) ⊢ role param del(r, x, y, p, c)

role modifier(r, p, c) ⊢ role bind(r, p, c)

role modifier(r, p, c) ⊢ role unbind(r, p, c)

Policy specification would be simplified if such roles were already available.

If privilege inheritance were supported, then these aggregating roles could be expressed
through the privilege hierarchy, making it unnecessary to use such functional roles, and thus
avoiding their misuse (e.g. using these roles as preconditions in role activation rules).

In our work we have not described fine-grained access control to contexts. It could be
interesting to explore context management, since the hierarchical structure of context elements
could be exploited in environments where policy management follows a hierarchical domain
structure. For example, in a university a computing service may be responsible for the top level
context elements, and departments may have authority over their context elements, which are
sub-elements of the university’s context element.

7.4.3 Summary

In this chapter we have introduced a set of privileges for managing policies that consist of the
policy components defined in this thesis. Our motivation for doing so arises from the usual setup
of policy administration, i.e. there are more and less competent administrators, who share the
task of policy administration. By providing means to specify restrictions on how policies may
be modified, more competent administrators can provide their colleagues with a playground or
sandbox environment, thus saving time and separating high and low-level administration tasks.
This is vital in case of a large number of administrators, and when policy administration is
distributed. In this chapter we have also given examples that demonstrate the fine-grained
control that our privileges can achieve.

Further, by allowing our administrative privileges to contain context parameters, we provide
a powerful means to specify access control to groups of policy components. This extension
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complements the method of using free variables in authorisation rules to provide general policy
modification privileges. Additionally, through context parameters we introduce an indirection
between policy administration privileges and policy components, extending the applicability of
the administrative privileges to successive policy versions. This latter property is vital for policy
management and policy evolution, both of which we shall discuss in the next chapter.
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In this chapter we consider policy administration, and we describe how meta-policies and policy
administration privileges can be used to support policy evolution. As part of this description we
look at the various steps involved in such evolutionary processes, and indicate how these steps
affect each other. Since policies change it is important to keep track of their successive versions.
Thus, in this chapter we also describe the version information our policies store, and indicate how
such information can be used to support graceful policy change. Finally, we describe Desert,
our policy administration framework.

8.1 Policy evolution

Much of the work we have presented in this thesis is motivated by the vision of a distributed
policy store, which controls access, facilitates maintenance, and ensures the consistency of the
policies it stores.

We have presented a layered architecture for such policy stores in [BEWM03]. Its three
constituent layers are as follows:

Policy management: This layer concerns consistency and restrictions at policy level. At this
level we can find restrictions such as those specified by our meta-policies. This level is also
responsible for managing policy version information, which we describe in Section 8.2.

Policy component management: The middle layer of our architecture uses an API, provided
by the lowest layer, to create, delete, and modify policy components. Its purpose is to
ensure component-level consistency, and to enforce component-level access control.

Active predicate management: This is the lowest level of our proposed architecture. It uses
the API of the underlying storage architecture, which in our case is the t5 predicate store
we developed to support active predicate storage in the PostgreSQL [Loc01] RDBMS (see
[BEWM03]). The purpose of this level is to store policy components in a distributed
manner, while ensuring component level integrity.

8.1.1 Policy changes

There are many consistency and access control requirements that need to be satisfied during
policy modification. The expected sequence of actions and checks performed during policy
change is illustrated in Figure 8.1.

The policy store is responsible for enforcing access control to the policies that it stores. If
a principal initiates a policy modification, the policy store first checks whether the principal is
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Figure 8.1: A policy evolution step.

authorised to perform the requested actions, i.e. the policy store checks whether the principal
holds the privileges required for the requested operation (as discussed in Chapter 7). The re-
quested policy modification is performed only if the principal is authorised, and the modification
can be performed (i.e. it satisfies state-related restrictions, such as ‘a component may only be
deleted if it is in unbound state’ (see Section 7.1.1)).

Policy modifications do not necessarily have to be made by a single principal. A series of
modifications could be made in the frame of a transaction, in which many principals may modify
a policy. The way in which such modifications are grouped is not part of our work.

Once all the modifications are completed we must check whether there is any policy com-
ponent left in an unbound state. We require that, at the end of the policy modifications, all
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undeleted policy components are bound.

In the next step the restrictions specified by meta-policies are checked: first contexts, then
compliance and interface policies. Note that for many of these checks, extra information, such
as mappings, are required.

Once all of the meta-policy tests are successfully finished, the new policy version is ready to
replace the current policy.

Meta-policies, just like policies, may change over time. A major difference however, is the
expected frequency of changes. We illustrate this in Figure 8.2.

Interface

policies

Compliance

policies

Contexts Policy

Long-term Medium-term Short-term

= required knowledge

Figure 8.2: Policy and meta-policy lifetime.

Since meta-policies encapsulate long-term design decisions, we expect that changes will occur
most frequently at policy level.

There is a dependency relationship between policies and the meta-policies they comply with.
If a policy changes it needs to maintain compliance with its meta-policies (unless compliance
is no longer required). If a meta-policy is modified, then all the dependent policies and meta-
policies need to be updated to reflect the requirements set by the new meta-policies. Since
meta-policies can be used to specify restrictions to many policies, a change to a meta-policy is
relatively expensive.

Meta-policies specify constraints over policies. This allows competent policy administrators
with a view of higher-level requirements to create a sandbox environment for policy adminis-
trators with more limited jurisdiction. In such a sandbox a policy administrator may modify
only a restricted set of policy components (this restriction may be governed by contexts). The
way they may modify the accessible policy components can also be restricted through the policy
management privileges. Furthermore, when modifying a policy, administrators must follow the
general guidelines expressed by compliance and interface policies.

In environments such as the National Health Service, our compliance policies can help local
policy administrators to follow general NHS guidelines. Compliance policies are particularly
useful when new initial policies are set up, since compliance policies can be used as templates. In
the case of a new hospital, policies based on compliance policies and interface policies that serve
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to enable inter-hospital cooperation can be used as initial hospital policies. Such synthesised
policies can be later extended according to local needs, but since they closely follow the structure
of meta-policies, mappings for both compliance checks and inter-hospital cooperation will be easy
to specify.

Meta-policies are expected to be maintained by specialised administrators who have a high-
level view. Using such meta-policies for guidance, administrators with less training and experi-
ence can create and modify local policies.

Through this task sharing, our sandboxes may help to reduce overall policy administration
training costs in large organisations.

8.2 Version control

When a series of authorised policy modifications is completed, and the resulting policy satisfies
all the required restrictions given in the form of contexts, compliance policies, and interface
policies, the new policy may replace its predecessor. Technically this means the assignment of a
new version number to the new policy, after which the previous policy is replaced with the new
one.

However, many components of our access control architecture are dependent on policies and
their particular versions:

Currently active sessions: Sessions that are active at the time of policy version change may
have roles of the previous policy version active.

Active service level agreements: A special case of the above problem is when a session is
active, and some roles belonging to the previous policy version are used remotely, and the
remote role is marked as a membership condition (i.e. an event channel has been set up
and the validity of the role is being monitored).

Environmental predicates: Environmental predicates can depend on external services, and
modification to a policy may change such dependencies. Furthermore, similarly to the
first problem, an environmental predicate may be a membership condition for policy com-
ponents of an active session, in which case such external links must also be handled during
policy evolution.

Appointment certificates: Appointment certificates, while designed to serve as long-term
credentials, may contain arbitrary prerequisites (see [BMY02]). Such prerequisites refer
either to other appointment certificates, or to a policy. For example, an appointment
certificate, i.e. an appointment instance, may require the principal intending to use the
appointment certificate to be active in a specific role. This role is part of a policy specifi-
cation, which may change in time. We must ensure that the role that has the same name
and parameter signature in the new version of a policy is compatible with the one that is
referred to in the appointment certificate.

There are many ways to address these problems. A simplistic solution would be to abort all
sessions that are active at the time of policy update. While this solution is simple to implement,
in the real world a more graceful policy change mechanism is desired. The other extreme is
supporting full version management for policies, in which we may have branching policy versions.
At the moment we do not feel that such a heavy-weight version control mechanism is justified.

The solution we propose lies between the above two alternatives. We do not allow version
branching; accordingly, our version graph will be a list. Whenever a new policy version is
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introduced we must provide compability information. This specifies whether a policy component
is compatible with its previous version.

We allow compatibility only between rule components and data types that have the same
name and parameter signature. We do not keep version information about rules. In Figure 8.3
we illustrate some example version compatibility information. In the figure we indicate roles
that are incompatible with their last (current) version by putting them into square brackets.

Version 1 Version 2 Version 3

roleA: [roleA(x int)] roleA(x int, y int) roleA(x int, y int)
roleB: [roleB(x int)] [roleB(x int, y int)] roleB(x int, y int)

Figure 8.3: Example version compatibility information.

In this example there are three successive versions of two roles (roleA and roleB). The first
two versions of roleA cannot be declared compatible, since there is a change to its parameter
signature. However, the second and third versions of roleA can be, and are specified to be,
compatible (since their name and parameter signatures are the same). The second role, roleB, is
structurally the same as the roleA, however we declared its current, third version as incompatible
with previous versions, even though its structure would allow compatibility.

If a component is not compatible with its previous version, then all its older versions active in
a session must be declared invalid when the new policy takes effect. Such invalidation implies the
revocation of the non-compatible roles, and all policy components that are dependant on these
components through membership conditions. Compatible components on the other hand may
persist after a policy change. Such handling of compability information enables administrators
to perform policy modification in a graceful way.

It is very expensive and dangerous to revoke roles that are not membership conditions. Users
might be performing important operations that a role revocation might endanger. Whether an
incompatible role should be revoked or not depends much on how critical or important the role
is. Our contexts could help to specify such revocation behaviour.

The entire policy version may be marked as incompatible with its previous version. In this
case administrators can ensure that all the sessions active at the time of version change are
aborted or phased out gradually.

Policy components that monitor membership conditions for remote policy enforcers handle
component revocation the same way as in the case of normal revocation, i.e. they notify the
remote domains about the revocation. Whether a new version of the event channel needs to be
set up depends on the underlying messaging infrastructure.

During a sequence of policy changes the active policy must maintain a version number for
every policy component, and accept policy components that have a version number between this
stored number and the current policy version. This number can be compared against the policy
version number of specific appointment certificates.

8.2.1 Auditing

Audit trails are vital in access control policy enforcement. Since we keep track of policies and
the versions that are used to authorise a principal to perform an action, we can find the policy
version that was in force at any time for audit purposes.
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8.3 Implementation - Desert

To test the ideas introduced in this thesis we have developed a proof-of-concept policy manage-
ment framework, Desert.

Its development constitutes part of a larger set of projects in which members of the OPERA
research group are involved. In the following we briefly describe the foci of these projects:

Event middleware: This project focuses on publish/subscribe event middleware for large-
scale distributed systems. Among the results of this project is Hermes [PB02], a novel
type- and attribute-based publish/subscribe architecture.

Ongoing research in this area involves efficient composite event detection ([PS02]) and se-
curity ([BEP+03]). Security is of particular interest to us, since, as described in [BEP+03],
we use OASIS RBAC to control access to event types, event subscription, advertisement,
and publication. Note that the enforcement of this access control to events is handled
by OASIS, which itself relies on event technology (see service level agreements in Sec-
tion 2.3.2).

SECURE: The SECURE (Secure Environments for Collaboration among Ubiquitous Roaming
Entities) project is investigating the use of trust in global computing. Results of their work
could be incorporated into our interface policies as described in Section 6.4.1. On the other
hand, the SECURE project can benefit from using our compliance policies – and policies
conforming to them – as an information source for establishing trust.

OASIS: This project maintains the OASIS access control model and its many implementations
to reflect mainstream technologies such as X.509 certificates, web services, SOAP, J2EE,
and XML.

Policy store and policy management: The primary aim of this project is to design and
implement a distributed policy store that controls access to its policies and supports
policy evolution. The work in this thesis is part of this initiative.

The main components of the Desert policy management framework are shown in Figure 8.4.

These components are as follows:

Policy component interfaces introduce an indirection level between stored policies and poli-
cies used by OASIS or some other RBAC policy enforcer.

An implementation of the policy component interfaces adds a protection layer to the
policy and its components. It is also responsible for ensuring component, policy, and
context-level consistency. Furthermore, this layer uses a set of privileges that control
policy component access.

A compliance checker, which tests conformance to compliance and interface policies.

The SLA generator creates service level agreements between policies based on the two poli-
cies, an interface policy, and the relevant mappings.

Visualisation tools. Part of the Desert framework is a set of visualisation classes that help
to display or manage policy components, meta-policies and additional information, such
as mappings.

140



CHAPTER 8. POLICY ADMINISTRATION

Visualisation

XML parser

Policies

stored in an

active 

database 

P
o
li

cy
 i

n
te

rf
ac

e
M

et
a-

p
o
li

cy
 i

n
te

rf
ac

e

OASIS SWI Prolog

Storage

P
o
li

cy
 i

n
te

rf
ac

e

In-memory policy store

M
et

a-
p
o
li

cy
 i

n
te

rf
ac

e

XML

policies

and

meta-policies

Mapping GUI

Policy GUI

Access control

Policy

Policy

components

Mappings

Interface

policies

Compliance

policies

Meta-policy handler

Compliance

checker

SLA

generator

Figure 8.4: The Desert architecture.

External components. Desert makes use of external components, such as OASIS, Prolog,
and a policy store. These are not part of our framework (in the figure this is indicated by
grey colour). Interaction with such external components is handled via Java interfaces.

In the following we shall look at these components in more detail.

8.3.1 Policy component interfaces

At the time we started to implement Desert there were two ongoing OASIS developments.
In order to support each of them, and to facilitate later development, we defined a set of Java
interfaces to policies and to policy components. These specify the API through which policies
and policy components should be accessed both within and outside the Desert framework.

These interfaces allow us to create, modify, and delete policy components independently of
the underlying implementation.

Contexts

Contexts are more policy-specific than interface and compliance policies (see Section 3.2). They
can either be integrated into a policy, or stored separately together with some binding informa-
tion. For the internal policy representation we have chosen the first option, thus the methods
specified in our interfaces contain context handling parameters.

Meta-policy interfaces

Compliance and interface policies are expected to be stored in a similar fashion as our access
control policies, thus we provide a set of interfaces that manage the creation and maintenance
of meta-policies.
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8.3.2 Component implementation

We implement the above interfaces in order to have an in-memory representation of a policy
and its components. The general structure of these classes is the same as the structure we
presented in Chapter 3. Note that all the implementing classes use interfaces (some of which
are marker interfaces) to access policy components. This allows any component implementation
to be swapped without requiring changes to the rest of the source code.

In accordance with the interface specification, these policy components are able to store
context information, and can check information flow restrictions.

Access control

To support access control to policy components a set of privileges is defined. These use the same
component class as other policy privileges (PrivilegeImpl), and are instantiated by default for
every policy management framework. A full list of these privileges is provided in Appendix B.

In our implementation the policy management privileges are requested whenever a policy or
policy component method is invoked. If the principal invoking a method holds the privilege, the
method execution will proceed, otherwise an exception is raised. Privilege requests are handled
through a special class (AccessController). Its implementation is responsible for establishing a
connection with an OASIS service, and for forwarding privilege requests. Since at the moment
our Desert framework is not bound to any particular OASIS implementation, we provide a
temporary implementation for the AccessController. This is used mainly for debugging purposes,
since it gives manual control over privilege checking, and it can also produce a list of requested
privileges (we used this for the example in Section 7.1.4).

XML policy loader

The policy store that uses a distributed active database management system was being developed
in parallel with Desert, therefore we needed to find alternative ways to store policies and meta-
policies persistently. For this purpose we defined a set of XML schemata (an example schema
is included in Appendix C) and provided tools to read XML policies and meta-policies.

Such XML representations of policies and their components can also be used for exchanging
policies or parts of them, for example in a service level agreement. The integrity of such XML
files can be ensured by using digital signatures.

Consistency

The policy component classes, that implement the above interfaces also take care of policy
consistency in the same way as described in Section 3.1. These classes also enforce context
information flow restrictions.

Visualisation

To visualise policies we provide a set of classes, which use the policy and policy component
interfaces to display information about a policy (see Figure 8.5).

These are intended to be used in GUIs that need to display our policies. One such application
that uses our policy visualisation classes is a mapping editor, which we shall describe on page
142.
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Figure 8.5: Policy visualisation in Desert.

8.3.3 Compliance policy checks

Most of the compliance checks we described in Chapter 5 consist of relatively simple steps that
look for specific policy components. The most complex checks involve implicit rules. Since, due
to skolemisation, we have no variables that need to be matched, and environmental predicates
need not be looked up, there is no need to use OASIS’s complex unification engine to perform
implicit rule checks. Instead, our implementation uses SWI Prolog to perform compliance tests.

Mapping editor

In order to perform a compliance check, policy administrators need to provide a mapping between
a policy and a compliance policy.

In Desert this can be done by manually specifying a mapping in an XML file; however,
since such mappings reference many components of both the policy and meta-policy involved,
such mapping specifications are likely to be highly error prone.

To simplify the task of mapping we provide a GUI-based editor (see Figure 8.6).
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Figure 8.6: Desert’s mapping editor.

8.3.4 Interface policy tools

Our compliance checker also checks for conformance with interface policies. Once two policies
(a component exporting and component importing policy) comply with an interface policy, an
SLA may be set up between them. This is handled by our SLA generator.

8.4 Discussion

In this chapter we have presented the steps of policy evolution, and discussed how these steps
may be constrained with the help of meta-policies. We looked at the expected lifetime of our
meta-policies, and considered how these, together with the policy management privileges, could
be used to restrict the freedom of some policy administrators.

We have also considered version management issues to enable graceful policy changes, in
which compatible policy components of subsequent policy versions may temporarily coexist,
making policy changes less noticeable to users.

Finally, we have described our policy management framework, Desert, which we used to
test the ideas presented in this thesis.

We expect Desert to be part of the final policy management framework that is being
developed and maintained by members of the OPERA research group. Desert’s integration
should be relatively straightforward, due to its modular design and the interfaces through which
its components are accessed. Currently other members of the OPERA group are working on a
policy store that is based on a distributed active database management system. Once again,
through its interfaces Desert can make use of such policy stores.
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9 Conclusions and future work

With our increasing dependence on computers, requirements for large-scale organisational access
control policies will continue to grow. More and more business tasks will be performed relying
on infrastructure provided by interconnected computers. Since such business transactions will
frequently involve dynamically changing collaborators, it is vital that access control policies
adapt rapidly in order to follow organisational needs.

Such requirements demand skilled policy administrators, who are able to change policies to
support ad-hoc collaborations, while ensuring that the policies fulfil their fundamental purpose,
i.e. they control authorised and unauthorised access.

Dependence on well-designed and well-operating access control policies necessitates tools to
structure and to organise policies.

In this thesis we made the initial steps to provide the means for policy administrators to
share the task of policy administration in dynamic environments.

In this chapter we first review our contributions, and then consider some possible future
research directions.

9.1 Summary of contributions

The primary contribution of our work is a means to organise and structure RBAC policies to
support their long-term evolution in an administratively distributed environment. In detail these
are the following:

Policy components: We have extended the policy component model of OASIS RBAC in order
to support its long-term evolution. Through naming every component in a policy we enable
descriptions external to a policy specification to refer to individual access control policy
components, that is essential for fine-grained management. We also included constructs
in this component model that allow it to explicitly express popular RBAC features, such
as role hierarchies.

Meta-policies: We separated organisational policies into parts that directly relate to access
control decisions and those that encode the general goals of access control. By doing so we
translate organisational policies into a hierarchical access control policy description that
encapsulates access control information at different abstraction levels. This allows us to
classify information in policies, and use this classification to support policy evolution and
distributed policy management.

Contexts: We have introduced contexts, a construct that allows us to structure policy com-
ponents from multiple aspects. Contexts introduce an indirection between entities that

145



9.2. FUTURE DIRECTIONS

manage policies and the policies themselves, allowing us to refer to certain policy parts
independently from their version, naming, and implementation. We have used this indi-
rection to enforce general restrictions on the structure of the policies. Such restrictions
include control of information flow and of prerequisite categories.

Compliance policies: We have introduced compliance policies that can express fine-grained
restrictions and requirements for policies. Compliance policies can be considered as in-
variants for successive policy versions. Having their own component model, they are
well-suited to describing long-term policy goals for a number of policies, thus helping
administrators to maintain certain properties throughout policy evolution.

Interface policies: Building on compliance policies we introduce interface policies to overcome
heterogeneity problems in inter-policy collaboration. Our interface policies work as medi-
ators between cooperating policy domains, enabling remote resource access that complies
with the organisational policies of the cooperating parties. Furthermore, interface policies
can express requirements for the cooperating parties, and conformance to such restrictions
can be used as a precondition to collaborations.

Access control to policies: We have introduced a set of privileges that enable OASIS RBAC
policies to treat RBAC policies as resources and control access to them. These privileges
allow fine-grained policy update security. They may also use contexts, making them better
applicable to successive policy versions.

Policy management: We have considered how long-term policy evolution can be supported by
our meta-policies and policy management privileges. We discussed version management
issues, and how our meta-policies can be used to gradually deploy policies in a top-down
manner.

Implementation: Finally, we have described our policy management framework, Desert.
It provides a set of interfaces and their implementation for the policy components we
introduced in Chapter 3, and gives practical means to experiment with policies structured
in that way, and to check their conformance to meta-policies. It includes visualisation
tools that help future policy extensions and development. Also, through the privileges we
described in Chapter 7 Desert can enforce access control to policy modifications, which
is vital for its becoming part of a policy store.

9.2 Future directions

Our research can be considered as an initial step in policy administration research. There are
many ways to extend our work, some of which we shall discuss next. These are also illustrated
in Figure 9.1.

Policy components

Our policy components were designed to extend and enrich OASIS RBAC policy components.
They support many features of other RBAC models, but we have not examined whether these
components can be used to help conversion from an arbitrary RBAC policy model to another
one.

OASIS RBAC policies can become rather complex. Our meta-policies help to organise and
structure policies, but the understanding of particular policies can be further aided by using
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Figure 9.1: Past, present, and the future.

visual representations. An ongoing study visualises policy rules using graphs. Such research
is much needed, since policy administrators may have different qualifications, thus some might
have very limited knowledge of access control systems. For example, if a patient may be allowed
to modify NHS policies pertaining to her, the policy interface must be straightforward for her,
as a non computer scientist policy engineer, to use.

Contexts

We have described many uses for contexts. Among others these included organising policy
components for easier administration, forming access control groups, and restricting prerequisite
groups.

In Section 4.6 we considered additional areas where contexts may be useful. We mentioned
how to apply contexts to separate functional and organisational roles, how to associate logging
requirements with roles belonging to a particular context, and how to differentiate roles from the
perspective of failure. These uses already indicate a large set of possibilities for future research,
but the grouping aspect of contexts can be further explored.

For example, David Eyers of the OPERA research group is working on methods to apply
contexts to Dynamic Separation of Duties (DSoD, see Section 2.2.2). Such an extension will
require modification to the OASIS access control decision engine, but the advantage of having
DSoD justifies such change.

Another possible extension to contexts is the association of contexts, and roles belonging to
particular context elements, with various stages of a business process. Such use of contexts can
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help workflow specifications in which workflow is partly enforced through the information flow
restrictions between context labels.

Policy components may be marked with many context elements, thus allowing administrators
to group policy components according to various dimensions. This allows different views to a
policy, and this can be exploited in policy visualisations. For example, on page 62 we used two
orthogonal policy component classifications; we differentiated components from the web security
and research group perspectives. Depending on which of these two aspects a policy administrator
is interested in, policy components may be arranged differently in a visual representation.

Compliance policies

Our compliance policies form a powerful means to specify constraints over policies. They can
cater for indirect role activation and negation. It could be an interesting research project to
examine how conformance to compliance policies can be tested for different RBAC systems, and
not only for OASIS RBAC policies.

We have considered only RBAC-level restrictions on policies, i.e. our basic primitives were
roles, privileges, and rules. To overcome differences between various RBAC models, it could
be interesting to use some lower-level primitives, such as (subject, object, access) triples from
[BdVS02], extended with RBAC conditions, to find equivalent policies. Such research could be
especially promising from the perspective of contexts and information flow restrictions.

Interface policies

If compliance policies can be extended to multiple RBAC systems that differ significantly (e.g.
from the aspect of parameter support, typing support, constraint limitations, etc.), a possible
way to continue is to enable cooperation between various RBAC systems. In such environments
interface policies can be used to mediate differences between access control policy domains.

The primary goal of interface policies is to enable cooperation between independent policy
domains. Whether cooperation is allowed depends on the relevant policy administrators. How-
ever, in certain cases ad-hoc cooperation can be set up based on trust. A possible extension
to our work could be to utilise interface policy compliance in inter-domain trust decisions, and
then use interface policies to set up collaborations automatically. Since a policy may comply
with many different interface policies, trust information could be used to select the appropriate
interface policy.

Policy management privileges

The policy management privileges we have specified provide a powerful means to control access
to RBAC policies at a very fine granularity. They can already be applied to various RBACs, thus
research in this direction is less interesting. However, as we have mentioned in Section 7.4.2, these
policy management privileges could be organised into a hierarchy. Such privilege hierarchies
would allow more concise policy specifications.

An extension to our privileges could be their association with risk. The operations we permit
on policies are not equal from the perspective of the potential damage that their misuse can
cause. By associating risk with certain privileges one could analyse policies, and point out roles
that may potentially be dangerously powerful. Using our contexts we could associate a threshold
with roles, and may require that the cumulative risk of roles belonging to a specific context stays
below the threshold.
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Policy store

Among the main motivations for our research is the development of a policy store in which poli-
cies are stored and managed by many administrators in a controlled way. We have contributed
much to the design of such a policy store, but there are many issues remaining that need to
be addressed. Currently there is ongoing work on how to distribute such policy stores. This
introduces many challenges, since policies can be modified concurrently and changes need to be
synchronised.

Case studies

Once the policy store is ready to be deployed, it will be possible to test various policies in large-
scale case studies. Such case studies can help answer questions relating to optimal policy/meta-
policy size.

Case-studies may also help us to design better meta-policies, possibly hierarchical meta-
policies, that can be easily used as templates for new policy versions, allowing fast access control
policy deployment.

9.3 Conclusion

In this thesis we have presented a means to manage RBAC policies, particularly OASIS RBAC
policies, in an environment where policies evolve, and are managed in a distributed fashion by
many administrators.
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Abstract policy components

Role specification X X X X X

Appointment specification X X X X X

Env. predicate specification X X X X X

Function specification X X X X X

Privilege specification X X X X X

Parameters of the above X X X X X X

Authorisation rule X X X

prerequisites X X X

Activation rule X X X

prerequisites X X X

Arbitrary components

Role X X X X X

Appointment X X X X X X

Env. predicate X X X X X X

Privilege X X X X X

Parameters of the above X X X X X X X

Authorisation rule X X X X X

Prerequisite X X X

Activation rule X X X X X

Prerequisites X X X X

Other compliance policy components

Implicit rules X X X X X

Prerequisites X X X X X X
1

Contexts X X X X X

Table A.1: Restrictions permitted for compliance policy com-
ponents

1Only for implicit activation rules
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B Policy access privileges

In the following table we list the privileges associated with policy component management, which
we described in Chapter 7.

Name Parameters

Data type privilges
type new (t type id, typeinfo string, P,C)
type del (t type id, P,C)
type inherit new (parent type id, child type id, P,C)
type inherit del (parent type id, child type id, P,C)
type bind (t type id, P,C)
type unbind (t type id, P,C)
type context new (t type id, c context element, P,C)
type context del (t type id, c context element, P,C)

Function privileges
func new (f func id, functioninfo string, P,C)
func del (f func id, P,C)
func retval new (f func id, ret type type id, P,C)
func param new (f func id, param name string, param type type id, P,C)
func param del (f func id, param name string, P,C)
func bind (f func id, P,C)
func unbind (f func id, P,C)
func context new (f func id, c context element, P,C)
func context del (f func id, c context element, P,C)

Environmental predicate privileges
env new (e env id, environmentinfo string, P,C)
env del (e env id, P,C)
env param new (e env id, param name string, param type type id, in out boolean, P,C)
env param del (e env id, pname string, P,C)
env bind (e env id, P,C)
env unbind (e env id, P,C)
env context new (e env id, c context element, P,C)
env context del (e env id, c context element, P,C)

Privilege privileges
priv new (p priv id, P,C)
priv del (p priv id, P,C)
priv param new (p priv id, param name string, param type type id, P,C)
priv param del (p priv id, param name string, P,C)
priv dep new (p priv id, priv dependent priv id, P,C)
priv dep del (p priv id, priv dependent priv id, P,C)
priv bind (p priv id, P,C)
priv unbind (p priv id, P,C)
priv context new (p priv id, c context element, P,C)
priv context del (p priv id, c context element, P,C)

Role privileges
role new (r role id, P,C)
role del (r role id, P,C)

P = pol policy id, C = c context
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Name Parameters

role param new (r role id, param name string, param type type id, P,C)
role param del (r role id, param name string, P,C)
role bind (r role id, P,C)
role unbind (r role id, P,C)
role context new (r role id, c context element, P,C)
role context del (r role id, c context element, P,C)

Appointment privileges
app new (a appointment id, appointmentinfo string, P,C)
app del (a appointment id, P,C)
app param new (a appointment id, param name string, param type type id, P,C)
app param del (a appointment id, param name string, P,C)
app bind (a appointment id, P,C)
app unbind (a appointment id, P,C)
app context new (a appointment id, c context element, P,C)
app context del (a appointment id, c context element, P,C)

Term privileges
term const new (t term id, t type id, value string, P)
term func new (t term id, f cont func id, P)
term var new (t term id, t type id, P)
term del (t term id, P)

Container and activation container privileges
cont priv new (c contp id, p priv id, P)
cont role new (c contr id, r role id, P)
cont app new (c conta id, a appointment id, P)
cont env new (c conte id, e env id, P)
cont del (c cont{prae} id, P)
cont{prae} param new (c cont{prae} id, t term id, P)
cont{prae} param del (c cont{prae} id, nr int, P)
acont role new (c acontr id, r role id, membership boolean, P)
acont app new (c conta id, a appointment id, membership boolean, P)
acont env new (c aconte id, e env id, membership boolean, P)
acont del (c acont{prae} id, P)
acont{rae} param new (c acont{rae} id, t term id, P)
acont{rae} param del (c acont{rae} id, nr int, P)

Authorisation rule privileges
arule {new,del} (r arule id, P,C)
arule var {new,del} (r arule id, v term id, P)
arule priv {new,del} (r arule id, p contp id, P,C)
arule prole {new,del} (r arule id, r acontr id, P,C)
arule papp {new,del} (r arule id, a conta id, P,C)
arule penv {new,del} (r arule id, p aconte id, P,C)
arule bind (r arule id, P,C)
arule unbind (r arule id, P,C)
arule context new (r arule id, c context element, P,C)
arule context del (r arule id, c context element, P,C)

Role activation rule privileges
erule {new,del} (r erule id, P,C)
erule var {new,del} (r erule id, v term id, P)
erule target {new,del} (r erule id, r contr id, P,C)
erule prole {new,del} (r erule id, r contr id, P,C)
erule papp {new,del} (r erule id, a conta id, P,C)
erule penv {new,del} (r erule id, p conte id, P,C)
erule bind (r erule id, P,C)
erule unbind (r erule id, P,C)
erule context new (r erule id, c context element, P,C)
erule context del (r erule id, c context element, P,C)

Meta-policy handling privileges
context new (i context policy id, p policy id)
context del (i context policy id, p policy id)
compliance new (i compliance policy id, p policy id)
compliance del (i compliance policy id, p policy id)
interface new (i interface policy id, p policy id)
interface del (i interface policy id, p policy id)

P = pol policy id, C = c context
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C OASIS policy schema

This XML schema is used for policy storage and policy distribution.

1 <?xml version="1.0"?>
2 <xs:schema id="Policy 1.0"
3 targetNamespace="http://cl.cam.ac.uk/opera/MetaPolicy/2003/08"
4 xmlns:mstns="http://cl.cam.ac.uk/opera/MetaPolicy/2003/08"
5 xmlns="http://cl.cam.ac.uk/opera/MetaPolicy/2002/02"
6 xmlns:xs="http://www.w3.org/2001/XMLSchema"
7 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"
8 attributeFormDefault="qualified" elementFormDefault="qualified">
9 <xs:element name="policies">

10 <xs:complexType>
11 <xs:sequence>
12 <xs:element name="contextelement" minOccurs="0" maxOccurs="unbounded">
13 <xs:complexType>
14 <xs:sequence>
15 <xs:element name="contextin" type="xs:string" minOccurs="unbounded" />
16 <xs:element name="contextout" minOccurs="0" maxOccurs="unbounded" nillable="true">
17 <xs:complexType>
18 <xs:simpleContent msdata:ColumnName="contextout_Text" msdata:Ordinal="0">
19 <xs:extension base="xs:string">
20 </xs:extension>
21 </xs:simpleContent>
22 </xs:complexType>
23 </xs:element>
24 </xs:sequence>
25 <xs:attribute name="name" form="unqualified" type="xs:string" />
26 <xs:attribute name="parentname" form="unqualified" type="xs:string" use="optional"/>
27 <xs:attribute name="initial" form="unqualified" type="xs:string" />
28 </xs:complexType>
29 </xs:element>
30 <xs:element name="privilegespec" minOccurs="0" maxOccurs="unbounded">
31 <xs:complexType>
32 <xs:sequence>
33 <xs:element name="param1" minOccurs="0" maxOccurs="unbounded">
34 <xs:complexType>
35 <xs:attribute name="name" form="unqualified" type="xs:string" />
36 <xs:attribute name="type" form="unqualified" type="xs:string" />
37 </xs:complexType>
38 </xs:element>
39 <xs:element name="param2" minOccurs="0" maxOccurs="unbounded">
40 <xs:complexType>
41 <xs:attribute name="name" form="unqualified" type="xs:string" />
42 <xs:attribute name="type" form="unqualified" type="xs:string" />
43 </xs:complexType>
44 </xs:element>
45 </xs:sequence>
46 <xs:attribute name="name" form="unqualified" type="xs:string" />
47 </xs:complexType>
48 </xs:element>
49 <xs:element name="rolespec" minOccurs="0" maxOccurs="unbounded">
50 <xs:complexType>
51 <xs:sequence>
52 <xs:element name="param3" minOccurs="0" maxOccurs="unbounded">
53 <xs:complexType>
54 <xs:attribute name="name" form="unqualified" type="xs:string" />
55 <xs:attribute name="type" form="unqualified" type="xs:string" />
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56 </xs:complexType>
57 </xs:element>
58 </xs:sequence>
59 <xs:attribute name="name" form="unqualified" type="xs:string" />
60 <xs:attribute name="context" form="unqualified" type="xs:string" />
61 </xs:complexType>
62 </xs:element>
63 <xs:element name="environmentspec" minOccurs="0" maxOccurs="unbounded">
64 <xs:complexType>
65 <xs:sequence>
66 <xs:element name="param7" minOccurs="0" maxOccurs="unbounded">
67 <xs:complexType>
68 <xs:attribute name="name" form="unqualified" type="xs:string" />
69 <xs:attribute name="type" form="unqualified" type="xs:string" />
70 <xs:attribute name="mode" form="unqualified" type="xs:string" />
71 </xs:complexType>
72 </xs:element>
73 <xs:element name="param8" minOccurs="0" maxOccurs="unbounded">
74 <xs:complexType>
75 <xs:attribute name="name" form="unqualified" type="xs:string" />
76 <xs:attribute name="type" form="unqualified" type="xs:string" />
77 <xs:attribute name="mode" form="unqualified" type="xs:string" />
78 </xs:complexType>
79 </xs:element>
80 </xs:sequence>
81 <xs:attribute name="name" form="unqualified" type="xs:string" />
82 <xs:attribute name="binding" form="unqualified" type="xs:string" />
83 </xs:complexType>
84 </xs:element>
85 <xs:element name="appointmentspec" minOccurs="0" maxOccurs="unbounded">
86 <xs:complexType>
87 <xs:sequence>
88 <xs:element name="param9" minOccurs="0" maxOccurs="unbounded">
89 <xs:complexType>
90 <xs:attribute name="name" form="unqualified" type="xs:string" />
91 <xs:attribute name="type" form="unqualified" type="xs:string" />
92 </xs:complexType>
93 </xs:element>
94 </xs:sequence>
95 <xs:attribute name="name" form="unqualified" type="xs:string" />
96 <xs:attribute name="binding" form="unqualified" type="xs:string" />
97 </xs:complexType>
98 </xs:element>
99 <xs:element name="activation" minOccurs="0" maxOccurs="unbounded">

100 <xs:complexType>
101 <xs:sequence>
102 <xs:element name="role1" minOccurs="0" maxOccurs="unbounded">
103 <xs:complexType>
104 <xs:sequence>
105 <xs:element name="variable1" minOccurs="0" maxOccurs="unbounded">
106 <xs:complexType>
107 <xs:attribute name="name" form="unqualified" type="xs:string" />
108 </xs:complexType>
109 </xs:element>
110 </xs:sequence>
111 <xs:attribute name="name" form="unqualified" type="xs:string" />
112 <xs:attribute name="membership" form="unqualified" type="xs:string" />
113 </xs:complexType>
114 </xs:element>
115 <xs:element name="target1" minOccurs="0" maxOccurs="unbounded">
116 <xs:complexType>
117 <xs:sequence>
118 <xs:element name="variable2" minOccurs="0" maxOccurs="unbounded">
119 <xs:complexType>
120 <xs:attribute name="name" form="unqualified" type="xs:string" />
121 </xs:complexType>
122 </xs:element>
123 </xs:sequence>
124 <xs:attribute name="name" form="unqualified" type="xs:string" />
125 </xs:complexType>
126 </xs:element>
127 <xs:element name="role2" minOccurs="0" maxOccurs="unbounded">
128 <xs:complexType>
129 <xs:sequence>
130 <xs:element name="variable3" minOccurs="0" maxOccurs="unbounded">
131 <xs:complexType>
132 <xs:attribute name="name" form="unqualified" type="xs:string" />
133 </xs:complexType>
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134 </xs:element>
135 </xs:sequence>
136 <xs:attribute name="name" form="unqualified" type="xs:string" />
137 <xs:attribute name="membership" form="unqualified" type="xs:string" />
138 </xs:complexType>
139 </xs:element>
140 <xs:element name="environment" minOccurs="0" maxOccurs="unbounded">
141 <xs:complexType>
142 <xs:sequence>
143 <xs:element name="variable4" minOccurs="0" maxOccurs="unbounded">
144 <xs:complexType>
145 <xs:attribute name="name" form="unqualified" type="xs:string" />
146 </xs:complexType>
147 </xs:element>
148 <xs:element name="variable5" minOccurs="0" maxOccurs="unbounded">
149 <xs:complexType>
150 <xs:attribute name="name" form="unqualified" type="xs:string" />
151 </xs:complexType>
152 </xs:element>
153 </xs:sequence>
154 <xs:attribute name="name" form="unqualified" type="xs:string" />
155 <xs:attribute name="membership" form="unqualified" type="xs:string" />
156 </xs:complexType>
157 </xs:element>
158 <xs:element name="appointment" minOccurs="0" maxOccurs="unbounded">
159 <xs:complexType>
160 <xs:sequence>
161 <xs:element name="variable6" minOccurs="0" maxOccurs="unbounded">
162 <xs:complexType>
163 <xs:attribute name="name" form="unqualified" type="xs:string" />
164 </xs:complexType>
165 </xs:element>
166 </xs:sequence>
167 <xs:attribute name="name" form="unqualified" type="xs:string" />
168 </xs:complexType>
169 </xs:element>
170 <xs:element name="target2" minOccurs="0" maxOccurs="unbounded">
171 <xs:complexType>
172 <xs:sequence>
173 <xs:element name="variable7" minOccurs="0" maxOccurs="unbounded">
174 <xs:complexType>
175 <xs:attribute name="name" form="unqualified" type="xs:string" />
176 </xs:complexType>
177 </xs:element>
178 <xs:element name="variable8" minOccurs="0" maxOccurs="unbounded">
179 <xs:complexType>
180 <xs:attribute name="name" form="unqualified" type="xs:string" />
181 </xs:complexType>
182 </xs:element>
183 </xs:sequence>
184 <xs:attribute name="name" form="unqualified" type="xs:string" />
185 </xs:complexType>
186 </xs:element>
187 </xs:sequence>
188 <xs:attribute name="name" form="unqualified" type="xs:string" />
189 </xs:complexType>
190 </xs:element>
191 <xs:element name="authorisation" minOccurs="0" maxOccurs="unbounded">
192 <xs:complexType>
193 <xs:sequence>
194 <xs:element name="target3" minOccurs="0" maxOccurs="unbounded">
195 <xs:complexType>
196 <xs:sequence>
197 <xs:element name="variable9" minOccurs="0" maxOccurs="unbounded">
198 <xs:complexType>
199 <xs:attribute name="name" form="unqualified" type="xs:string" />
200 </xs:complexType>
201 </xs:element>
202 <xs:element name="constant" minOccurs="0" maxOccurs="unbounded">
203 <xs:complexType>
204 <xs:attribute name="value" form="unqualified" type="xs:string" />
205 </xs:complexType>
206 </xs:element>
207 </xs:sequence>
208 <xs:attribute name="name" form="unqualified" type="xs:string" />
209 </xs:complexType>
210 </xs:element>
211 <xs:element name="role3" minOccurs="0" maxOccurs="unbounded">
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212 <xs:complexType>
213 <xs:sequence>
214 <xs:element name="variable10" minOccurs="0" maxOccurs="unbounded">
215 <xs:complexType>
216 <xs:attribute name="name" form="unqualified" type="xs:string" />
217 </xs:complexType>
218 </xs:element>
219 </xs:sequence>
220 <xs:attribute name="name" form="unqualified" type="xs:string" />
221 <xs:attribute name="membership" form="unqualified" type="xs:string" />
222 </xs:complexType>
223 </xs:element>
224 </xs:sequence>
225 <xs:attribute name="name" form="unqualified" type="xs:string" />
226 <xs:attribute name="context" form="unqualified" type="xs:string" />
227 </xs:complexType>
228 </xs:element>
229 </xs:sequence>
230 <xs:attribute name="targetNamespace" form="unqualified" type="xs:string" />
231 </xs:complexType>
232 </xs:element>
233 <xs:element name="NewDataSet" msdata:IsDataSet="true" msdata:EnforceConstraints="False">
234 <xs:complexType>
235 <xs:choice maxOccurs="unbounded">
236 <xs:element ref="policies" />
237 </xs:choice>
238 </xs:complexType>
239 </xs:element>
240 </xs:schema>

158



Bibliography

[AKS03] Mohammad A. Al-Kahtani and Ravi Sandhu. Induced role hierarchies with
attribute-based RBAC. In Proceedings of the Eighth ACM Symposium on Access
Control Models and Technologies (SACMAT’03), pages 142–148. ACM Press, 2003.

[AMN02] Xuhui Ao, Naftaly Minsky, and Thu Nguyen. A hierarchical policy specification
language and enforcement mechanism for governing digital enterprises. In Third
IEEE International Workshop on Policies for Distributed Systems and Networks
(POLICY’02), pages 38–49, 2002.

[AS99] Gail-Joon Ahn and Ravi Sandhu. The RSL99 language for role-based separation
of duty constraints. In Proceedings of the Fourth ACM Workshop on Role-Based
Access Control (RBAC’99), pages 43–54, 1999.

[Awi97] Roland Awischus. Role based access control with the security administration man-
ager (SAM). In Proceedings of the Second ACM Workshop on Role-Based Access
Control (RBAC’97), pages 61–68, 1997.

[Bak00] Dixie B. Baker. PCASSO: A model for safe use of the internet in healthcare. Journal
of American Health Information Management Association (AHIMA), 71(3):33–38,
March 2000.

[BBF00] Elisa Bertino, Piero Andrea Bonatti, and Elena Ferrari. TRBAC: a temporal role-
based access control model. In Proceedings of the Fifth ACM Workshop on Role-
Based Access Control (RBAC’00), pages 21–30, 2000.

[BBF01] Elisa Bertino, Piero Andrea Bonatti, and Elena Ferrari. TRBAC: A temporal role-
based access control model. ACM Transactions on Information and System Security
(TISSEC), 4(3):191–233, August 2001.

[BD99] Konstantin Beznosov and Yi Deng. A framework for implementing role-based access
control using CORBA security service. In Proceedings of the Fourth ACM Workshop
on Role-Based Access Control (RBAC’99), pages 19–30, 1999.

[BdVS02] Piero A. Bonatti, Sabrina De Capitani di Vimercati, and Pierangela Samarati. An
algebra for composing access control policies. ACM Transactions on Information
and System Security (TISSEC), 5(1):1–35, 2002.

[BE03] András Belokosztolszki and David Eyers. Shielding RBAC infrastructures from
cyberterrorism. In Research Directions in Data and Applications Security, IFIP
WG 11.3 Sixteenth International Conference on Data and Applications Security,
July 28-31, 2002, Kings College, Cambridge, U.K., volume 256 of IFIP Information
Processing, pages 3–14. Kluwer Academic Publishers, 2003.

159



[BEM03] András Belokosztolszki, David M. Eyers, and Ken Moody. Policy contexts: Con-
trolling information flow in parameterised RBAC. In Policy 2003: IEEE Fourth
International Workshop on Policies for Distributed Systems and Networks, pages
99–110, 2003.

[BEP+03] András Belokosztolszki, David M. Eyers, Peter R. Pietzuch, Jean Bacon, and Ken
Moody. Role-based access control for publish/subscribe middleware architectures.
In Proceeding of the 2nd International Workshop on Distributed Event-Based Sys-
tems (DEBS’03), ACM SIGMOD, San Diego, CA, U.S.A., 2003.

[BEWM03] András Belokosztolszki, David M. Eyers, Wei Wang, and Ken Moody. Policy stor-
age for role-based access control systems. In Proceedings of the Twelfth IEEE In-
ternational Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE’03), pages 196–201, 2003.

[Bez98] Konstantin Beznosov. Requirements for access control: US Healthcare domain. In
Proceedings of the Third ACM Workshop on Role-Based Access Control (RBAC’98),
page 43, 1998.

[BFA97] Elisa Bertino, Elena Ferrari, and Vijayalakshmi Atluri. A flexible model supporting
the specification and enforcement of role-based authorization in workflow manage-
ment systems. In Proceedings of the Second ACM Workshop on Role-Based Access
Control (RBAC’97), pages 1–12, 1997.

[BFK99] Matt Blaze, Joan Feigenbaum, and Angelos D. Keromytis. The role of trust man-
agement in distributed systems security. In Secure Internet Programming, pages
185–210, 1999.

[BI98] Christophe Bidan and Valérie Issarny. Dealing with multi-policy security in large
open distributed systems. In Computer Security - ESORICS’98, volume 1485 of
Lecture Notes in Computer Science, pages 51–66. Springer, 1998.

[Bib75] Ken J. Biba. Integrity consideration for secure computer systems. Technical Report
MTR-3153, MITRE Corporation, Bedford, MA, April 1975.

[BJS96] Elisa Bertino, Sushil Jajodia, and Pierangela Samarati. Supporting multiple access
control policies in database systems. In IEEE Symposium on Security and Privacy
(SSP’96), 1996.

[BL75] David E. Bell and Leonard J. LaPadula. Secure computer systems: Unified ex-
position and Multics interpretation. Technical Report MTR-2997, The MITRE
Corporation, July 1975.

[BLM01] Jean Bacon, Michael Lloyd, and Ken Moody. Translating role-based access control
policy within context. In Policies for Distributed Systems and Networks, Interna-
tional Workshop (POLICY’01), Bristol, UK, pages 107–119, 2001.

[BM02] András Belokosztolszki and Ken Moody. Meta-policies for distributed role-based
access control systems. In Third IEEE International Workshop on Policies for
Distributed Systems and Networks (POLICY’02), pages 106–115, 2002.

[BMB+00] Jean Bacon, Ken Moody, John Bates, Richard Hayton, Chaoying Ma, Andrew Mc-
Neil, Oliver Seidel, and Mark Spiteri. Generic support for distributed applications.
IEEE Computer, pages 68–77, March 2000.

160



APPENDIX C. OASIS POLICY SCHEMA

[BMCO03] Jean Bacon, Ken Moody, David Chadwick, and Oleksandr Otenko. Persistent versus
dynamic role membership. In Proceedings of the IFIP WG 11.3 Conference on Data
and Applications Security, 2003.

[BME04] András Belokosztolszki, Ken Moody, and David M. Eyers. A formal model for
hierarchical policy contexts. In Policy 2004: IEEE Fifth International Workshop
on Policies for Distributed Systems and Networks, 2004.

[BMY01] Jean Bacon, Ken Moody, and Walt Yao. Access control and trust in the use of widely
distributed services. In Middleware’01, volume 2218, pages 300–315, November
2001.

[BMY02] Jean Bacon, Ken Moody, and Walt Yao. A model of OASIS role-based access
control and its support for active security. ACM Transactions on Information and
System Security (TISSEC), 5(4):492–540, November 2002.

[BN89] David F. C. Brewer and Michael J. Nash. The Chinese Wall security policy. In
IEEE Symposium on Security and Privacy (SSP’89), pages 206–214, 1989.

[BS00a] Ezedin Barka and Ravi Sandhu. Framework for role-based delegation models. In Six-
teenth Annual Computer Security Applications Conference, New Orleans, Louisiana,
December 2000.

[BS00b] Ezedin Barka and Ravi Sandhu. A role-based delegation model and some exten-
sions. In Twenty-third National Information Systems Security Conference, Balti-
more, MD, October 2000.

[BS03] András Belokosztolszki and Erich Schikuta. An XML based framework for self-
describing I/O data. In Proceedings of the Eleventh Euromicro Conference on Par-
allel, Distributed and Network-Based Processing (PDP ’03), pages 324–332, 2003.

[CLS+01] Michael J. Covington, Wende Long, Srividhya Srinivasan, Anind K. Dev, Mus-
taque Ahamad, and Gregory D. Abowd. Securing context-aware applications using
environment roles. In Sixth ACM Symposium on Access Control Models and Tech-
nologies (SACMAT’01), pages 10–20, 2001.

[CO02] David W. Chadwick and Alexander Otenko. The PERMIS X.509 role based priv-
ilege management infrastructure. In Seventh ACM Symposium on Access Control
Models and Technologies (SACMAT’02), pages 135–140. ACM Press, 2002.

[Col97] Robert M. Colomb. Impact of semantic heterogeneity on federating databases. The
Computer Journal, 40(5):235–244, 1997.

[Cra02] Jason Crampton. Administrative scope and role hierarchy operations. In Seventh
ACM Symposium on Access Control Models and Technologies (SACMAT’02), pages
145–154. ACM Press, 2002.

[CS95] Fang Chen and Ravi S. Sandhu. Constraints for role-based access control. In
Proceedings of the First ACM Workshop on Role-Based Access Control (RBAC’95),
pages II–39–46, 1995.

[CW87] David D. Clark and David R. Wilson. A comparison of commercial and military
computer security policies. In Proceedings of the 1987 IEEE Symposium on Se-
curity and Privacy (SSP’87), pages 184–195, Los Angeles, CA, April 1987. IEEE
Computer Society Press.

161



[CW93] Stefano Ceri and Jennifer Widom. Managing semantic heterogeneity with produc-
tion rules and persistent queues. In Proceedings of the 19th Conference on Very
Large Databases, Morgan Kaufman pubs. (Los Altos CA), Dublin, pages 108–119,
1993.

[Dam02] Nicodemos C. Damianou. A Policy Framework for Management of Distributed Sys-
tems. PhD thesis, Department of Computing, Imperial College of Science, Technol-
ogy and Medicine, University of London, 2002.

[DBE+04] Nathan Dimmock, András Belokosztolszki, David Eyers, Jean Bacon, and Ken
Moody. Using trust and risk in role-based access control policies. In Proceedings
of the Ninth ACM Symposium on Access Control Models and Technologies (SAC-
MAT’04). ACM Press, 2004.

[DDLS01] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman. The Pon-
der policy specification language. In Policies for Distributed Systems and Networks,
International Workshop (POLICY’01), Bristol, UK, pages 18–38, 2001.

[Den76] Dorothy E. Denning. A lattice model of secure information flow. Communications
of the ACM, 19(5):236–243, 1976.

[Did97] Tor Didriksen. Rule based database access control – a practical approach. In Pro-
ceedings of the Second ACM Workshop on Role-Based Access Control (RBAC’97),
pages 143–151, 1997.

[ES95] Jeremy Epstein and Ravi Sandhu. NetWare 4 as an example of role-based access
control. In Proceedings of the First ACM Workshop on Role-Based Access Control
(RBAC’95), pages II–71–82, 1995.

[Fad99] Glenn Faden. RBAC in UNIX administration. In Proceedings of the Fourth ACM
Workshop on Role-Based Access Control (RBAC’99), pages 95–101, 1999.

[FH97] Eduardo B. Fernandez and J. C. Hawkins. Determining role rights from use
cases. In Proceedings of the Second ACM Workshop on Role-Based Access Con-
trol (RBAC’97), pages 121–125, 1997.

[FS96] Norbert E. Fuchs and Rolf Schwitter. Attempto controlled english. In The First
International Workshop on Controlled Language Applications, pages 124–136, 1996.

[FSG+01] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn, and Ra-
maswamy Chandramouli. Proposed NIST standard for role-based access control.
ACM Transactions on Information and System Security (TISSEC), 4(3):224–274,
August 2001.

[FSS98] Norbert E. Fuchs, Uta Schwertel, and Rolf Schwitter. Attempto Controlled English
- not just another logic specification language. In Logic Program Synthesis and
Transformation, pages 1–20, 1998.

[Gar02] Gartner, Inc. Best practices: Access rights are not created equal, 2002. http:

//security2.gartner.com/story.php.id.102.s.1.jsp.

[GB98] Cheh Goh and Adrian Baldwin. Towards a more complete model of role. In
Proceedings of the Third ACM Workshop on Role-Based Access Control (RBAC’98),
pages 55–62, 1998.

162



APPENDIX C. OASIS POLICY SCHEMA

[GGF98] Virgil D. Gligor, Aerban I. Gavrila, and David Ferraiolo. On the formal definition of
separation-of-duty policies and their composition. In IEEE Symposium on Security
and Privacy (SSP’98), pages 172–183, 1998.

[GI96] Luigi Giuri and Pietro Iglio. A formal model for role-based access control with
constraints. In Proceedings of the Ninth IEEE Computer Security Foundations
Workshop, pages 136–145, 1996.

[GI97] Luigi Giuri and Pietro Iglio. Role templates for content-based access control. In Pro-
ceedings of the Second ACM Workshop on Role-Based Access Control (RBAC’97),
pages 153–159, 1997.

[Giu95] Luigi Giuri. Role-based access control: a natural approach. In Proceedings of the
First ACM Workshop on Role-Based Access Control (RBAC’95), pages II–33–37,
1995.

[Giu98] Luigi Giuri. Role-based access control in Java. In Proceedings of the Third ACM
Workshop on Role-Based Access Control (RBAC’98), pages 91–100, 1998.

[Giu99] Luigi Giuri. Role-based access control on the Web using Java. In Proceedings of the
Fourth ACM Workshop on Role-Based Access Control (RBAC’99), pages 11–18,
1999.

[GMS94] Cheng Hian Goh, Stuart E. Madnick, and Michael D. Siegel. Context interchange:
overcoming the challenges of large-scale interoperable database systems in a dy-
namic environment. In Proceedings of the third International Conference on Infor-
mation and Knowledge Management, pages 337–346. ACM Press, 1994.

[HA99] Wei-Kuang Huang and Vijayalakshmi Atluri. SecureFlow: a secure Web-enabled
workflow management system. In Proceedings of the Fourth ACM Workshop on
Role-Based Access Control (RBAC’99), pages 83–94, 1999.

[Has00] Wilhelm Hasselbring. Information system integration. Communications of the
ACM, 43(6):32–38, June 2000.

[Hay96] Richard Hayton. OASIS An Open Architecture for Secure Interworking Services.
PhD thesis, University of Cambridge, 1996. Technical Report No. 399.

[HB99] Thomas Hildmann and Jörg Barholdt. Managing trust between collaborating com-
panies using outsourced role based access control. In Proceedings of the Fourth
ACM Workshop on Role-Based Access Control (RBAC’99), pages 105–111, 1999.

[HBM98] Richard J. Hayton, Jean M. Bacon, and Ken Moody. Access control in an open dis-
tributed environment. In Proceedings of IEEE Symposium on Security and Privacy
(SSP’98), pages 3–14, 1998.

[HGPS99] John Hale, Pablo Galiasso, Mauricio Papa, and Sujeet Shenoi. Security policy coor-
dination for heterogeneous information systems. In Proceedings of the Fifteenth An-
nual Computer Security Applications Conference, pages 219–228, December 1999.

[HL03] Michael Howard and David LeBlanc. Writing Secure Code. Microsoft Press, Red-
mond, Washington, U.S.A., second edition, 2003.

163



[HM85] Dennis Heimbigner and Dennis McLeod. A federated architecture for information
management. ACM Transactions on Information Systems (TOIS’85), 3(3):253–278,
July 1985.

[HM93] Joachim Hammer and Dennis McLeod. An approach to resolving semantic hetero-
geneity in a federation of autonomous, heterogeneous database systems. Journal
for Intelligent and Cooperative Information Systems, 2(1):51–83, 1993.

[HMM+00] Amir Herzberg, Yosi Mass, Joris Mihaeli, Dalit Naor, and Yiftach Ravid. Access
control meets public key infrastructure, or: Assigning roles to strangers. In IEEE
Symposium on Security and Privacy (SSP’00), pages 2–14, 2000.

[HMT+90] Allan Heydon, Mark W. Maimone, J. D. Tygar, Jeannette M. Wing, and
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