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Abstract. A human brain operates as a pattern of switching. An abstract defini-
tion of a quantum mechanical switch is given which allows for the continual random
fluctuations in the warm wet environment of the brain. Among several switch-like
entities in the brain, we choose to focus on the sodium channel proteins. After explain-
ing what these are, we analyse the ways in which our definition of a quantum switch
can be satisfied by portions of such proteins. We calculate the perturbing effects of
normal variations in temperature and electric field on the quantum state of such a
portion. These are shown to be acceptable within the fluctuations allowed for by our
definition. Information processing and unpredictability in the brain are discussed.
The ultimate goal underlying the paper is an analysis of quantum measurement the-
ory based on an abstract definition of the physical manifestations of consciousness.
The paper is written for physicists with no prior knowledge of neurophysiology, but
enough introductory material has also been included to allow neurophysiologists with
no prior knowledge of quantum mechanics to follow the central arguments.
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1. Introduction.

A functioning human brain is a lump of warm wet matter of inordinate complex-
ity. As matter, a physicist would like to be able to describe it in quantum mechanical
terms. However, trying to give such a description, even in a very general way, is by no
means straightforward, because the brain is neither thermally isolated, nor in thermal
equilibrium. Instead, it is warm and wet — which is to say, in contact with a heat
bath — and yet it carries very complex patterns of information. This raises inter-
esting and specific questions for all interpretations of quantum mechanics. We shall
give a quantum mechanical description of the brain considered as a family of ther-
mally metastable switches, and shall suggest that the provision of such a description
could play an important part in developing a successful interpretation of quantum
mechanics.

Our essential assumption is that, when conscious, one is directly aware of definite
physical properties of one’s brain. We shall try both to identify suitable properties
and to give a general abstract mathematical characterization of them. We shall look
for properties with simple quantum mechanical descriptions which are directly related
to the functioning of the brain. The point is that, if we can identify the sort of physical
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substrate on which a consciousness constructs his world, then we shall have a definition
of an observer (as something which has that sort of substrate). This could well be a
major step towards providing a complete interpretation of quantum mechanics, since
the analysis of observers and observation is the central problem in that task. We shall
discuss the remaining steps in §9. Leaving aside this highly ambitious goal, however,
the paper has three aspects. First, it is a comment, with particular reference to
neurophysiology, on the difficulties of giving a fully quantum mechanical treatment
of information-carrying warm wet matter. Second, it is a discussion of mathematical
models of “switches” in quantum theory. Third, it analyses the question of whether
there are examples of such switches in a human brain. Since, ultimately, we would
wish to interpret such examples as those essential correlates of computation of which
the mind is aware, this third aspect can be seen, from another point of view, as asking
whether humans satisfy our prospective definition of “observer”.

The brain will be viewed as a finite-state information processor operating through
the switchings of a finite set of two-state elements. Various physical descriptions of
the brain which support this view will be provided and analysed in §4 and §6. Unlike
most physicists currently involved in brain research (for example, neural network the-
orists), we shall not be concerned here with modelling at the computational level the
mechanisms by which the brain processes information. Instead, we ask how the brain
can possibly function as an information processor under a global quantum mechanical
dynamics. At this level, even the existence of definite information is problematical.

Our central technical problem will be that of characterizing, in quantum me-
chanical terms, what it means for an object to be a “two-state element” or “switch”.
A solution to this problem will be given in §5, where we shall argue for the natural-
ness of a specific definition of a switch. Given the environmental perturbations under
which the human brain continues to operate normally, we shall show in §7 and §8 that
any such switches in the brain must be of roughly nanometre dimension or smaller.
This suggests that individual molecules or parts of molecules would be appropriate
candidates for such switches. In §6 and §7 we shall analyse, from the point of view
of quantum mechanics, the behaviour of a particular class of suitable molecules: the
sodium channel proteins. §2 and §3 will be devoted to an exposition of the quantum
mechanical framework used in the rest of the paper.

One of the most interesting conclusions to be drawn from this entire paper is that
the brain can be viewed as functioning by abstractly definable quantum mechanical
switches, but only if the sets of quantum states between which those switches move,
are chosen to be as large as possible compatible with the following definition, which
is given a mathematical translation in §5:

Definition A switch is something spatially localized, the quantum state of which
moves between a set of open states and a set of closed states, such that every open
state differs from every closed state by more than the maximum difference within any
pair of open states or any pair of closed states.

I have written the paper with two types of reader in mind. The first is a neu-
rophysiologist with no knowledge of quantum mechanics who is curious as to why a
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quantum theorist should write about the brain. My hope is that I can persuade this
type of reader to tell us more about randomness in the brain, about the magnitude of
environmental perturbations at neuronal surfaces, and about the detailed behaviour
of sodium channel proteins. He or she can find a self-contained summary of the paper
in §2, §4, §6, and §7. The other type of reader is the physicist with no knowledge of
neurophysiology. This reader should read the entire paper. The physicist should ben-
efit from the fact that, by starting from first principles, I have at least tried to make
explicit my understanding of those principles. He or she may well also benefit from
the fact that there is no mathematics in the sections which aim to be comprehensible
to biologists.

2. The Problems of Quantum Mechanics and the Relevance of the Brain.
(This section is designed to be comprehensible to neurophysiologists.)

Quantum theory is the generally accepted physical theory believed to describe
possibly all, and certainly most, forms of matter. For over sixty years, its domain of
application has been steadily extended. Yet the theory remains somewhat mysterious.
At some initial time, one can assign to a given physical object, for example, an
electron or a cricket ball, an appropriate quantum mechanical description (referred
to as the “quantum state” or, simply, “state” of that object). “Appropriate” in this
context means that the description implies that, in as far as is physically possible, the
object is both at a fairly definite place and moving at a fairly definite velocity. Such
descriptions are referred to by physicists as “quasi-classical states”. The assignment
of quasi-classical states at a particular time is one of the best understood and most
successful aspects of the theory. The “laws” of quantum mechanics then tell us
how these states are supposed to change in time. Often the implied dynamics is in
precise agreement with observation. However, there are also circumstances in which
the laws of quantum mechanics tell us that a quasi-classical state develops in time
into a state which is apparently contrary to observation. For example, an electron,
hitting a photographic plate at the end of a cathode ray tube, may, under suitable
circumstances, be predicted to be in a state which describes the electron position as
spread out uniformly over the plate. Yet, when the plate is developed, the electron is
always found to have hit it at one well-localized spot. Physicists say that the electron
state has “collapsed” to a new localized state in the course of hitting the plate. There
is no widely accepted explanation of this process of “collapse”. One object of this
paper is to emphasize that “collapse” occurs with surprising frequency during the
operation of the brain.

The signature of “collapse” is unpredictability. According to quantum theory
there was no conceivable way of determining where the electron was eventually going
to cause a spot to form on the photograph. The most that could be known, even in
principle, was the a priori probability for the electron to arrive at any given part of
the plate. In such situations, it is the quantum state before “collapse” from which one
can calculate these a priori probabilities. That quantum state is believed to provide,
before the plate is developed, the most complete possible description of the physical
situation. Another goal for this paper is to delineate classes of appropriate quantum
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states for the brain at each moment. This requires deciding exactly what information
is necessary for a quasi-classical description of a brain.

Now the brain has surely evolved over the ages in order to process information in
a predictable manner. The trout cannot afford to hesitate as it rises for the mayfly.
Without disputing this fact, however, it is possible to question whether the precise
sequence of events in the fish’s brain are predictable. Even in those invertebrates
in which the wiring diagrams of neurons are conserved across a species, there is no
suggestion that a precise and predictable sequence of neural firings will follow a given
input. Biologically useful information is modulated by a background of noise. I claim
that some of that noise can be interpreted as being of quantum mechanical origin.
Although average behaviour is predictable, the details of behaviour can never be
predicted. A brain is a highly sensitive device, full of amplifiers and feedback loops.
Since such devices are inevitably sensitive to initial noise, quantum mechanical noise
in the brain will be important in “determining” the details of behaviour.

Consider once more the electron hitting the photographic plate. The deepest
mystery of quantum mechanics lies in the suggestion that, perhaps, even after hitting
the plate, the electron is still not really in one definite spot. Perhaps there is merely
a quantum state describing the whole plate, as well as the electron, and perhaps
that state does not describe the spot as being in one definite place, but only gives
probabilities for it being in various positions. Quantum theorists refer in this case
to the quantum state of the plate as being a “mixture” of the quantum states in
which the position of the spot is definite. The experimental evidence tells us that
when we look at the photograph, we only see one definite spot; one element of the
mixture. “Collapse” must happen by the time we become aware of the spot, but
perhaps, carrying the suggestion to its logical conclusion, it does not happen before
that moment.

This astonishing idea has been suggested and commented on by von Neumann
(1932, §VI.1), London and Bauer (1939, §11), and Wigner (1961). The relevant
parts of these references are translated into English and reprinted in (Wheeler and
Zureck 1983). The idea is a straightforward extension of the idea that the central
problem of the interpretation of quantum mechanics is a problem in describing the
interface between measuring device and measured object. Any objective physical
entity can be described by quantum mechanics. In principle, there is no difficulty
with assigning a quantum state to a photographic plate, or to the photographic plate
and the electron and the entire camera and the developing machine and so on. These
extended states need not be “collapsed”. There is only one special case in the class of
physical measuring devices. Only at the level of the human brain do we have direct
subjective evidence that we can only see the spot in one place on the plate. The only
special interface is that between mind and brain.

It is not just this idea which necessitates a quantum mechanical analysis of the
normal operation of the brain. It is too widely assumed that the problems of quantum
mechanics are only relevant to exceptional situations involving elementary particles.
It may well be that it is only in such simple situations that we have sufficiently
complete understanding that the problems are unignorable, but, if we accept quantum
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mechanics as our fundamental theory, then similar problems arise elsewhere. It is
stressed in this paper that they arise for the brain, not only when the output of
“quantum mechanical” experiments is contemplated, but continuously.

“Collapse” ultimately occurs for the electron hitting the photographic plate, be-
cause the experimenter can only see a spot on a photographic plate as being in one
definite place. Even if the quantum state of his retina or of his visual cortex is a
mixture of states describing the spot as being visible at different places, the experi-
menter is only aware of one spot. The central question for this paper is, “What sort
of quantum state describes a brain which is processing definite information, and how
fast does such a state turn into a mixture?”

One reason for posing this question is that no-one has yet managed to answer the
analogous question for spots on a photographic plate. It is not merely the existence of
“mixed states” and “collapse” which makes quantum theory problematical, it is the
more fundamental problem of finding an algorithmic definition of “collapse”. There is
no way of specifying just how blurred a spot can become before it has to “collapse”.
There are situations in which it is appropriate to require that electron states are
localized to subatomic dimensions, and there are others in which an electron may be
blurred throughout an entire electronic circuit. In my opinion, it may be easier to
specify what constitutes a state of a brain capable of definite awareness – thus dealing
at a stroke with all conceivable measurements - than to try to consider the internal
details of individual experiments in a case by case approach.

Notice that the conventional view of the brain, at least among biochemists, is
that, at each moment, it consists of well-localized molecules moving on well-defined
paths. These molecules may be in perpetual motion, continually bumping each other
in an apparently random way, but a snapshot would find them in definite positions.
A conventional quantum theorist might be more careful about mentioning snapshots
(that after all is a measurement), but he would still tend to believe that “collapse”
occurs sufficiently often to make the biochemists’ picture essentially correct. There
is still no agreement on the interpretation of quantum mechanics, sixty years after
the discovery of the Schrödinger equation, because the conventional quantum theorist
still does not know how to analyse this process of collapse. In this paper we shall be
unconventional by trying to find the minimum amount of collapse necessary to allow
awareness. For this we shall not need every molecule in the brain to be localized.

For most of this paper, we shall be concerned to discover and analyse the best
description that a given observer can provide, at a given moment, for a given brain
compatible with his prior knowledge, his methods of observation, and the results of
his observations. This description will take the form of the assignment of a quantum
state to that system. Over time, this state changes in ways additional to the changes
implied by the laws of physics. These additional changes are the “collapses”. It will
be stressed that the best state assigned by an observer to his own brain will be very
different from that which he would assign to a brain (whether living or not) which
was being studied in his laboratory.

We are mainly interested in the states which an observer might assign to his own
brain. The form of these states will vary, depending on exactly how we assume the
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consciousness of the observer to act as an observation of his own brain, or, in other
words, depending on what we assume to be the definite information which that brain
is processing. We shall be looking for characterizations of that information which
provide forms of quantum state for the brain which are, in some senses, “natural”.
What is meant by “natural” will be explained as we proceed, but, in particular, it
means that these states should be abstractly definable, (that is, definable without
direct reference to specific properties of the brain), and it means that they should be
minimally constrained, given the information they must carry, as this minimizes the
necessity of quantum mechanical collapse.

Interpreting these natural quantum brain states as being mere descriptions for
the observer of his observations of his own brain, has the advantage that there is
no logical inconsistency in the implication that two different observers might assign
different “best” descriptions to the same system. Nevertheless, this does leave open
the glaring problem of what the “true” quantum state of a given brain might be. My
intention is to leave the detailed analysis of this problem to another work (see §9). I
have done this, partly because I believe that the technical ideas in this paper might
be useful in the development of a range of interpretations of quantum mechanics,
and partly because I wish to minimize the philosophical analysis in this paper. For
the present, neurophysiologists may accept the claim that living brains are actually
observed in vastly greater detail by their owners than by anyone else, brain surgeons
included, so that it is not unreasonable to assume a “true” state for each brain which
is close to the best state assigned by its owner. The same assumption may also be
acceptable to empirically-minded quantum theorists.

For myself, I incline to a more complicated theory, the truth of which is not
relevant to the remainder of the paper. This theory – “the many-worlds theory” –
holds, in the form in which it makes sense to me, that the universe exists in some
fundamental state ω . At each time t each observer o observes the universe, including
his own brain, as being in some quantum state σo,t . Observer o exists in the state
σo,t which is just as “real” as the state ω . σo,t is determined by the observations
that o has made and, therefore, by the state of his brain. Thus, in this paper, we are
trying to characterize σo,t . The a priori probability of an observer existing in state
σo,t is determined by ω . It is because these a priori probabilities are pre-determined
that the laws of physics and biology appear to hold in the universe which we observe.
According to the many-worlds theory, there is a huge difference between the world
that we appear to experience (described by a series of states like σo,t ) and the “true”
state ω of the universe. For example, in this theory, “collapse” is observer dependent
and does not affect ω . Analysing the appearance of collapse for an observer is one of
the major tasks for the interpreter of quantum theory. Another is that of explaining
the compatibility between observers. I claim that this can be demonstrated in the
following sense: If Smith and Jones make an observation and Smith observes A rather
than B, then Smith will also observe that Jones observes A rather than B. The many-
worlds theory is not a solipsistic theory, because all observers have equal status in it,
but it does treat each observer separately.
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Whatever final interpretation of quantum mechanics we may arrive at, we do
assume in this paper, that the information being processed in a brain has definite
physical existence, and that that existence must be describable in terms of our deep-
est physical theory, which is quantum mechanics. Whether the natural quantum brain
states defined here are attributes of the observer or good approximations to the true
state of his brain, we assume that these natural states are the best available descrip-
tions of the brain for use by the observer in making future predictions. From this
assumption, it is but a trifling abuse of language, and one that we shall frequently
adopt, to say that these are the states occupied by the brain.

Much of this paper is concerned with discussing how these states change with
time. More specifically, it is concerned with discussing the change in time of one of
the switch states, a collection of which will form the information-bearing portion of
the brain. This discussion is largely at a heuristic (or non-mathematical) level, based
on quantum mechanical experience. Of course, in as far as the quantum mechanical
framework in this paper is unconventional, it is necessary to consider with particular
care how quantum mechanical experience applies to it. For this reason, the peda-
gogical approach adopted in §6 and §7, is aimed, not only to explain new ideas to
biologists, but also to detail suppositions for physicists to challenge.

One central difficulty in developing a complete interpretation of quantum theory
based on the ideas in this paper lies in producing a formal theory to justify this
heuristic discussion. Such a theory is sketched in §5 and will be developed further
elsewhere. The key ingredients here are a formal definition of a switch and a formal
definition of the a priori probability of that switch existing through a given sequence
of quantum collapses. Some consequences of the switch definition are used in the
remainder of the paper, but the specific a priori probability definition is not used.
In this sense, the possibility of finding alternative methods of calculating a priori
probability, which might perhaps be compatible with more orthodox interpretations
of quantum theory, is left open.

3. Quantum Mechanical Assumptions.
(This section is for physicists.)

Four assumptions establish a framework for this paper and introduce formally
the concepts with which we shall be working. These assumptions do not of themselves
constitute an interpretation of quantum mechanics, and, indeed, they are compatible
with more than one conceivable interpretation.

Assumption One Quantum theory is the correct theory for all forms of matter
and applies to macroscopic systems as well as to microscopic ones.

This will not be discussed here, except for the comment that until we have a
theory of measurement or “collapse”, we certainly do not have a complete theory.

Assumption Two For any given observer, any physical system can best be de-
scribed, at any time, by some optimal quantum state, which is the state with highest
a priori probability, compatible with his observations of the subsystem up to that
time.
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(Convention Note that in this paper the word “state” will always mean density matrix
rather than wave function, since we shall always be considering subsystems in thermal
contact with an environment.)

For the purposes of this paper, it will be sufficient to rely on quantum mechanical
experience for an understanding of what is meant by a priori probability. A precise
definition is given below in equation 5.6. However, giving an algorithmic definition
of this state requires us not only to define “a priori probability”, but also to define
exactly what constitutes “observations”. This leads to the analysis of the information
processed by a brain. As a consequence, we need to focus our attention, in the first
place, on the states of the observer’s brain.

Assumption Three In the Heisenberg picture, in which operators change in time
according to some global Hamiltonian evolution, these best states also change in time.
These changes are discontinuous and will be referred to as “collapses”.

In terms of this assumption and the previous one, collapse happens only when a
subsystem is directly observed or measured. In every collapse, some value is measured
or determined. Depending on our interpretation, such a value might represent the
eigenvalue of an observable or the status of a switch. Collapse costs a priori probability
because we lose the possibilities represented by the alternative values that might have
been seen. Thus, the state of highest a priori probability is also the state which
is minimally measured or collapsed. This requires a minimal specification of the
observations of the observer and this underpins the suggestion in the previous section
which led to placing the interface between measuring device and measured object at
the mind-brain interface. Nevertheless, a priori probability must be lost continually,
because the observer must observe.

Assumption three is not the same as von Neumann’s “wave packet collapse pos-
tulate”. In this paper, no direct link will be made between collapse and the measure-
ment of self-adjoint operators as such. The von Neumann interpretation of quantum
mechanics is designed only to deal with isolated and simple systems. I think that
it is possible that an interpretation conceptually similar to the von Neumann inter-
pretation, but applying to complex thermal systems, might be developed using the
techniques of this paper. I take a von-Neumann-like interpretation, compatible with
assumption one, to be one in which one has a state σt occupied by the whole universe
at time t. Changes in σt are not dependent on an individual observer but result from
any measurement. Future predictions must be made from σt , from the type of col-
lapse or measurement permitted in the theory, and from the universal Hamiltonian.
The ideas of this paper become relevant when one uses switches, as defined in §5, in
place of projection operators, as the fundamental entities to which definiteness must
be assigned at each collapse. The class of all switches, however, is, in my opinion,
much too large, and so it is appropriate to restrict attention to switches representing
definite information in (human) neural tissue. One would then use a variant of as-
sumption two, by assuming that σt is the universal state of highest a priori probability
compatible with all observations by every observer up to time t. I do not know how
to carry out the details of this programme – which is why I am led to a many-worlds
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theory. However, many physicists seem to find many-worlds theories intuitively un-
acceptable and, for them, this paper can be read as an attempt to give a definition
of “observation” alternative to “self-adjoint operator measurement”. This definition
is an improvement partly because it has never been clear precisely which self-adjoint
operator corresponded to a given measurement. By contrast, the states of switches
in a brain correspond far more directly to the ultimate physical manifestations of an
observation.

Assumption Four There is no physical distinction between the collapse of one
pure state to another pure state and the collapse of a mixed state to an element of
the mixture.

This is the most controversial assumption. However, it is really no more than a
consequence of assumption three and of considering non-isolated systems. There is a
widely held view that mixed states describe ensembles, just like the ensembles often
used in the interpretation of classical statistical mechanics, and that therefore the
“collapse” of a mixture to an element is simply a result of ignorance reduction with
no physical import. This is a view with which I disagree completely. Firstly, as should
by now be plain, the distinction between subjective and objective knowledge lies close
to the heart of the problems of quantum mechanics, so that there is nothing simple
about ignorance reduction. Secondly, any statistical mechanical system is described
by a density matrix, much more because we are looking at only part of the total
state of system plus environment, than because the state of the system is really pure
but unknown. If we were to try to apply the conventional interpretation of quantum
theory consistently to system and environment then we would have to say that when
we measure something in such a statistical mechanical system, we not only change
the mixed state describing that system, but we also cause the total state, which, for
all we know, may well originally have been pure, to collapse.

For an elementary introduction to the power of density matrix ideas in the inter-
pretation of quantum mechanics, see (Cantrell and Scully 1978). For an example, with
more direct relevance to the work of this paper, consider a system that has been placed
into thermal contact with a heat bath. Quantum statistical mechanics suggests, that
under a global Hamiltonian evolution of the entire heat bath plus system, the system
will tend to approach a Gibbs’ state of the form exp(−βHs)/ tr(exp(−βHs)) where Hs

is some appropriate system Hamiltonian. Such a state will then be the best state to
assign to the system in the sense of assumption two. Quantum statistical mechanical
models demonstrating this scenario are provided by the technique of “master equa-
tions”. For a review, see (Kubo, Toda, and Hashitsume 1985, §2.5-§2.7), and, for a
rigorously proved example, see (Davies 1974). These models are constructed using a
heat bath which is itself in a thermal equilibrium state, but that tells us nothing about
whether the total global state is pure or not. To see this, we can use the following
elementary lemma:

lemma 3.1 Let ρ1 be any density matrix on a Hilbert space H1, and let H1 be any
Hamiltonian. Let ρ1(t) = e−itH1ρ1e

itH1 . Then, for any infinite dimensional Hilbert
space H2, there is a pure state ρ = |Ψ><Ψ| on H1 ⊗H2 and a Hamiltonian H such
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that, setting ρ(t) = e−itH |Ψ><Ψ|eitH , we have that ρ1(t) is the reduced density
matrix of ρ(t) on H1.

proof Define H by H(|ψ ⊗ ϕ>) = |H1ψ ⊗ ϕ> for all |ψ> ∈ H1, |ϕ> ∈ H2. Let
ρ1 =

∑
i∈I ri|ψi><ψi| be an orthonormal eigenvector expansion. Choose a set {|χi> :

i ∈ I} ⊂ H2 of orthonormal vectors and define Ψ =
∑
i∈I
√
ri|ψi ⊗ χi >.

In applying this lemma, I think of ρ1 as the state of the system plus heat bath,
and of H2 as describing some other part of the universe. I do not propose this
as a plausible description of nature; but it does, I think, suggest that we cannot
attach any weight to the distinction between pure and mixed states unless we are
prepared to make totally unjustifiable cosmological assumptions. For me, one of the
great attractions of the many-worlds interpretation of quantum mechanics is that,
because observers are treated separately, it is an interpretation in which collapse can
be defined by localized information. Simultaneity problems can thereby be avoided,
but the distinction between pure and mixed states is necessarily lost.

One consequence of assumption four is that the problems to be dealt with in this
paper are not made conceptually significantly simpler by the fact that the mathemat-
ical descriptions of the brain that we shall employ can almost entirely be expressed
in terms of classical, rather than quantum, statistical mechanics. By my view, this
means only that, at least at the local level, we are usually dealing with mixtures rather
than superpositions, but does not eliminate the problem of “collapse”. Of course, if
superpositions never occurred in nature then there might be no interpretation prob-
lem for quantum mechanics, but that is hardly relevant. Indeed, it is important to
notice that I am not claiming in this paper that the brain has some peculiar form of
quantum mechanical behaviour unlike that of any other form of matter. I claim in-
stead that the first step towards an interpretation of quantum mechanics is to analyse
the appearance of observed matter, and that a good place to start may be to try to
analyse how a brain might appear to its owner. Bohr would have insisted that this
means looking for classical (rather than quantum mechanical) behaviour in the brain,
but, since I do not believe that Newtonian mechanics has any relevance in neural
dynamics, and since I accept assumption one, I have used the word “definite” in place
of “classical”.

4. Information Processing in the Brain.
(This section is designed to be comprehensible to neurophysiologists.)

From an unsophisticated point of view, the working of the brain is fairly straight-
forward. The brain consists of between 1010 and 1011 neurons (or nerve cells) which
can each be in one of two states – either firing or quiescent. The input to the brain
is through the firing of sensory neurons in the peripheral nervous system, caused by
changes in the external world, and the output is through the firing of motor neurons,
which cause the muscles to contract in appropriate response patterns. In-between
there is an enormously complex wiring diagram, but, at least as a first approxima-
tion, a non-sensory neuron fires only as a result of the firing of other neurons connected
to it.
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This picture can be refined in every possible aspect, but, leaving aside the details
for the moment, we must stress first that the terms in which it is expressed are simply
those of a behaviourist view of the brains of others. If we accept, as will be assumed
without question in this paper, that we are not simply input-output machines, but
that we have some direct knowledge, or awareness, of information being processed in
our own brain, then the question arises of what constitutes that information. This
question is not answered by merely giving a description of brain functioning. For
example, we might consider whether the existence of the physical connections that
make up the wiring diagrams forms a necessary part of our awareness, or whether, as
will be postulated here, we are only aware of those connections through our awareness
of the firing patterns.

In this paper an epiphenomenalist position will be adopted on the mind-body
problem. In other words, it will be assumed that mind exists as awareness of brain, but
that it has no direct physical effect. The underlying assumption that it is the existence
of mind which requires the quantum state of the brain to “collapse”, (because it must
be aware of definite information), does not contradict this position, as it will be
assumed that the a priori probability of any particular collapse is determined purely
by quantum mechanics. Mind only requires that collapse be to a state in which definite
information is being processed – it does not control the content of that information.
In particular, I assume, that collapse cannot, as has been suggested by Eccles (1986),
be directed by the will. Even so, the approach to quantum mechanics taken in this
paper does make the epiphenomenalist position much more interesting. Instead of
saying that mind must make whatever meaning it can out of a pre-ordained physical
substratum, we ask of what sort of substratum can mind make sense.

Finding an interpretation of quantum theory requires us to decide on, or discover,
the types of state to which collapse can occur. The aim of this paper is to suggest that,
through the analysis of awareness, we can first learn to make that decision by looking
at the functioning brain. This will be a matter of supposing that collapse occurs
to those states which have just enough structure to describe mentally interpretable
substrata. We shall then have a basis in terms of which we can subsequently analyse
all collapse or appearance of collapse. Our assumptions about quantum mechanics
imply that it is insufficient to describe a mind merely by the usual hand-waving talk
about “emergent properties” arising from extreme complexity, because they imply
that the physical information-bearing background out of which a mind emerges is
itself defined by the existence of that mind. Thus, we are lead to look for simple
physical elements out of which that background might be constructed.

One possibility, which we shall refer to as the “neural model”, is that these ele-
ments are the firing/quiescent dichotomy of individual neurons. How the information
contained in these elements might be made up into that of which we are subjectively
aware, remains a matter for hand-waving. What is important instead, is the concrete
suggestion that when we try to find quantum states describing a conscious brain,
then the firing status of each neuron must be well-defined. In the course of the rest
of the paper, we shall provide a whole succession of alternative models of what might
be taken to be well-defined in describing a conscious brain. Our first such model,
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which we shall refer to henceforth as the “biochemical model” was introduced in §2.
It assigns definiteness to every molecular position on, say, an Ångström scale.

The most interesting feature of the neural model is its finiteness. Biologically,
even given the caveats to be introduced below, it is uncontroversial to claim that all the
significant information processing in a human brain is done through neurons viewed
as two-state devices. This implies that all new human information at any instant can
be coded using 1011 bits per human. Taken together with a rough estimate of total
human population, with the quantum mechanical argument that information is only
definite when it is observed, and with the idea that an observation is only complete
when it reaches a mind, this yields the claim that all definite new information can be
coded in something like 1021 bits, with each bit switching at a maximum rate of 2000
Hz.

There are two ways of looking at this claim. On the one hand, it says something,
which is not greatly surprising, about the maximum rate at which information can be
processed by minds. However, on the other hand, it says something quite astonishing
about the maximum rate at which new information needs to be added in order to
learn the current “collapsed” state of the universe (ignoring extra-terrestrials and
animals). Conventional quantum theorists, who would like to localize all molecules
(including, for example, those in the atmosphere), certainly should be impressed by
the parsimony of the claim. Of course, many important questions have been ignored.
Some of these, and, in particular, the question of memory and the details of the
analysis of time, are left for another work (see §9). We shall say nothing here about
how the information about neural status might be translated into awareness. At the
very least this surely involves the addition of some sort of geometrical information,
so that, in particular, we can specify the neighbours of each neuron. The information
of this kind that we shall choose to add will involve the specification of a space-time
path swept out by each neuron. While this will undermine the counting argument
just given, I believe that that argument retains considerable validity because it is in
the neural switching pattern that most of the brain’s information resides.

The neural model, unfortunately, seems to fail simultaneously in two opposing
directions. Firstly, it seems to demand the fixing of far more information than is
relevant to conscious awareness. For example, it appears that it is often the rhythm
of firing of a neuron that carries biologically useful information, rather than the
precise timing of each firing. Indeed, few psychologists would dream of looking at
anything more detailed than an overall firing pattern in circuits involving many, many
neurons. The lowest “emergent” properties will surely emerge well above the level of
the individual neuron.

In my opinion, this first problem is not crucial. We know nothing about how
consciousness emerges from its physical substrate. For this paper, it is enough to
claim that such a substrate must exist definitely, and to emphasize that it is this
definiteness, at any level, which presents a problem for quantum theory. In terms
of the amount of superfluous information specified, the neural model is certainly an
enormous improvement over the biochemical model.
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The more serious problem, however, is that neurons are not, in fact, physically
simple. Quantum mechanically, a neuron is a macroscopic object of great complexity.
After all, neurons can easily be seen under a light microscope, and they may have
axons (nerve fibres) of micron diameter which extend for centimetres. Even the idea
of firing as a unitary process is simplistic (see e.g. Scott 1977). Excitation takes a
finite time to travel the length of an axon. More importantly, the excitation from
neighbouring neurons may produce only a localized change in potential, or even a
firing which does not propagate through the entire cell.

Circumventing this problem, while preserving the most attractive features of the
neural model, requires us to find physically simple switching entities in the brain
which are closely tied to neural firing. We shall have to make precise, at the quantum
theoretical level, the meaning of “physically simple” as well as “switching”. This
will occupy the technical sections of this paper, but first, in order to find plausible
candidates for our switches, we shall briefly review some neurophysiology, from the
usual classical point of view of a biochemist. A useful introductory account of this
fascinating subject is given by Eccles (1973).

A resting nerve cell may be thought of as an immersed bag of fluid with a high
concentration of potassium ions on the inside and a high concentration of sodium
ions on the outside. These concentration gradients mean that the system is far from
equilibrium, and, since the bag is somewhat leaky, they have to be maintained by
an energy-using pump. There is also a potential difference across the bag wall (cell
membrane), which, in the quiescent state, is about -70mV (by convention the sign
implies that the inside is negative with respect to the outside). This potential differ-
ence holds shut a set of gates in the membrane whose opening allows the free passage
of sodium ions.

The first stage in nerve firing is a small and local depolarization of the cell. This
opens the nearby sodium gates, and sodium floods in, driven by its electro-chemical
gradient. As the sodium comes in, the cell is further depolarized, which causes more
distant sodium gates to open, and so a wave of depolarization – the nerve impulse
– spreads over the cell. Shortly after opening, the sodium gates close again, and, at
the same time, other gates, for potassium ions, open briefly. The resulting outflow of
potassium returns the cell wall to its resting potential.

Another relevant process is the mechanism whereby an impulse is propagated
from one nerve cell to the next. The signal here is not an electrical, but a chemical
one, and it passes across a particular structure - the synaptic cleft – which is a gap
of about 25nm at a junction – the synapse – where the two cells are very close, but
not in fact in contact. When the nerve impulse on the transmitting cell reaches the
synapse, the local depolarization causes little bags (“vesicles”) containing molecules
of the transmitter chemical (e.g. acetylcholine) to release their contents from the cell
into the synaptic cleft. These molecules then diffuse across the cleft to interact with
receptor proteins on the receiver cell. On receiving a molecule of transmitter, the
receptor protein opens a gate which causes a local depolarization of the receiver cell.
The impulse has been transmitted.
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This brief review gives us several candidates for simple two-state systems whose
states are closely correlated with the firing or quiesence of a given neuron. There
are the various ion gates, the receptor proteins at a synapse, and even the state of
the synaptic cleft itself – does it contain neuro-transmitter or not? Here we shall
concentrate entirely on the sodium gates.

Note that “neural firing states”, “two-state elements”, and “quantum states”
make three different uses of the same word. Keeping “state” for “quantum state”, we
shall refer to “neural status” and “switches”.

Sodium gating is part of the function of protein molecules called sodium chan-
nels, which have been extensively studied. Their properties as channels allowing the
passage of ions, and their role in the production of neural firing are well understood.
This understanding constitutes a magnificent achievement in the application of physi-
cal principles to an important biological system. I believe that many physicists would
enjoy the splendid and comprehensive modern account by Hille (1984). Rather less is
known about the detailed molecular processes involved in the gating of the channels,
although enough is known to tell us that the channels are considerably more complex
than is suggested by simply describing them as being either open or shut. Neverthe-
less, such a description is adequate for our present purposes, and we shall return to
consider the full complexities in §7.

Although the opening and closing of a sodium channel gate is an event that
strongly suggests that the neuron of which it forms part has fired, neither event is
an inevitable consequence of the other. Nevertheless, it is intuitively clear that the
information contained in the open/shut status of the channels would be sufficient to
determine the information processing state of the brain, at least if we knew which
channel belonged to which neuron. Here I wish to make a deeper claim which is less
obviously true.

I shall dignify this claim with a title:

The Sodium Channel Model (first version). The information processed by
a brain can be perfectly modelled by a three dimensional structure consisting of a
family of switches, which follow the paths of the brain’s sodium channels, and which
open and close whenever those channels open and close.

We can restate the neural and biochemical models in similar terms:

The Neural Model The information processed by a brain can be perfectly mod-
elled by a three dimensional structure consisting of a family of switches, which follow
the paths of the brain’s neurons, and which open and close whenever those neurons
fire.

The Biochemical Model The information processed by a brain can be perfectly
modelled by a three dimensional structure consisting of ball and stick models of
the molecules of the brain which follow appropriate trajectories with appropriate
interactions.

To move from the sodium channel model back to the neural model, one would
have to construct neurons as surfaces of coherently opening and closing channels.
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Having formulated these models, it is time to analyse the nature of “opening and
closing” in quantum theory. Neurophysiologists should rejoin the paper in §6, where
the definiteness of the paths of a given channel and the definiteness of the times of
its opening and closing will be considered.

5. The Quantum Theory of Switches.
(for physicists)

It is an astonishing fact about the brain that it seems to work by using two-state
elements. Biologically, the reason may be that a certain stability is achieved through
neurons being metastable switches. By Church’s thesis (see, e.g. Hofstadter 1979), if
the brain can be modelled accurately by a computer, then it can be modelled by finite
state elements. What is astonishing is that suitable such elements seem so fundamen-
tal to the actual physical operation of the brain. It is because of this contingent and
empirical fact that it may be possible to use neurophysiology to simplify the theory of
measurement. Many people have rejected the apparent complication of introducing
an analysis of mind into physics, but it may be that this rejection was unwarranted.

If we are to employ the simplicity of a set of switches, then we have to have
a quantum mechanical definition of such a switch. Projection operators, with their
eigenvalues of zero and one – the “yes-no questions” of Mackey (1963) – will spring at
once to mind. One might be able to build a suitable theory of sodium channels using
predetermined projections and defining “measurement”, along the lines suggested by
von Neumann, by collapse to the projection eigenvectors. The problem with this
option lies with the word “predetermined”. I intend to be rather more ambitious.
My aim is to provide a completely abstract definition of sequences of quantum states
which would correspond to the opening and closing of a set of switches. Ultimately
(see §9 and the brief remarks at the end of this section), having defined the a priori
probability of existence of such a sequences of states, I shall be in a position to claim
that any such sequence in existence would correspond to a “conscious” set of switches,
with an appropriate degree of complexity. For the present, it will be enough to look
for an abstract definition of a “switch”. Regardless of my wider ambitions, I believe
that this is an important step in carrying out the suggestion of von Neumann, London
and Bauer, and Wigner.

Five hypothetical definitions for a switch will be given in this section. Each
succeeding hypothesis is both more sophisticated and more speculative than the last.
For each hypothesis one can ask:
A) Can sodium channels in the brain be observed, with high a priori probability, as
being switches in this sense?
B) Are there no sets of entities, other than things which we would be prepared to
believe might be physical manifestations of consciousness, which are sets of switches
in this sense, which, with high a priori probability, exist or can be observed to exist,
and which follow a switching pattern as complex as that of the set of sodium channels
in a human brain?

I claim that any definition of which both A and B were true, could provide a
suitable definition for a physical manifestation of consciousness. I also claim that,
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given a suitable analysis of a priori probability, both A and B are true for hypothesis
below. Most of this paper is concerned with question A. I claim that A is not true
for hypotheses I and II, but is true for III, IV, and V. This will be considered in more
detail in §6, §7, and §8. I also claim, although without giving a justification in this
paper, that B is only true for hypothesis V.

If one wishes a definition based on predetermined projections, then those projec-
tions must be specified. To do this for sodium channels, one would need to define the
projections in terms of the detailed molecular structure. This is the opposite of what
I mean by an abstract definition. An abstract definition should be, as far as possible,
constructed in terms natural to an underlying quantum field theory. This may allow
geometrical concepts and patterns of projections, but should avoid such very special
concepts as “carbon atom” or “amino acid”.

Hypothesis I A switch is something spatially localized, which moves between two
definite states.

This preliminary hypothesis requires a quantum theory of localized states. Such
a theory – that of “local algebras” – is available from mathematical quantum field
theory (Haag and Kastler 1964). We shall not need any sophisticated mathematical
details of this theory here: it is sufficient to know that local states can be naturally
defined. The two most important features of the theory of local algebras, for our
purposes, are, firstly, that it is just what is required for abstract definitions based on
an underlying quantum field theory, and secondly, that it allows a natural analysis
of temporal change, which is compatible with special relativity. Such local states, it
should be emphasized again, will, in general, correspond to density matrices rather
than to wave functions. We work always in the Heisenberg picture in which these
states do not change in time except as a result of “collapse”.

Technically speaking, local algebra states are normal states on a set of von Neu-
mann algebras, denoted by {A(Λ) : Λ ⊂ R4} , which are naturally associated, through
an underlying relativistic quantum field theory (Driessler et al. 1986), with the re-
gions Λ of space-time. A(Λ) is then a set of operators which contain, and is naturally
defined by, the set of all observables which can be said to be measurable within the
region Λ. For each state ρ on A(Λ) and each observable A ∈ A(Λ), we write ρ(A) to
denote the expected value of the observable A in the state ρ. Thus, formally at least,
ρ(A) = tr(ρ′A) where ρ′ is the density matrix corresponding to ρ. ρ is defined as a
state on A(Λ) by the numbers ρ(A) for A ∈ A(Λ). A global state is one defined on
the set of all operators. This set will be denoted by B(H) — the set of all bounded
operators on the Hilbert space H. For example, given a normalized wave function
ψ ∈ H, we define a global state ρ by ρ(A) = <ψ|A|ψ>. A global state defines states
ρ|A(Λ) (read, “ρ restricted to A(Λ)”) on each A(Λ) simply by ρ|A(Λ)(A) = ρ(A) for
all A ∈ A(Λ).

Recall the sodium channel model from the previous section. We have a family
of switches moving along paths in space-time. Suppose that one of these switches
occupies, at times when it is open or shut, the successive space-time regions Λ1, Λ2,
Λ3, . . . We shall suppose that it is open in Λk for k odd, and closed in Λk for k even.
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We choose these regions so that no additional complete switchings could be inserted
into the path, but we do not care if, for example, between Λ1 and Λ2, the switch moves
from open to some in-between state and then back to open before finally closing.

In order to represent a switch, the regions Λk should be time translates of each
other, at least for k of fixed parity. Ignoring the latter refinement, we shall assume that
Λk = τk(Λ), k = 1, 2, . . . where Λ is some fixed space- time region and τk is a Poincaré
transformation consisting of a timelike translation and a Lorentz transformation. We
shall also assume that the Λk are timelike separated in the obvious order.

While it is of considerable importance that our ultimate theory of “collapse”
should be compatible with special relativity, the changes required to deal with general
Poincaré transformations are essentially changes of notation, so, for this paper, it will
be sufficient to choose the τk to be simple time translations. We then have a sequence
of times t1 < t2 < . . . with Λk = {(x0 + tk,x) : (x0,x) ∈ Λ}.

Under this assumption, A(Λk) is a set of operators related to A(Λ) by
A(Λk) = {eitkHAe−itkH : A ∈ A(Λ)} where H is the Hamiltonian of the total quan-
tum mechanical system (i.e. the universe).

Choose two states ρ1 and ρ2 on A(Λ). Suppose that ρ1 represents an open state
and ρ2 a closed state for our switch. The state σk on A(Λk) which represents the
same state as ρ1, but at a later time, is defined by σk(eitkHAe−itkH) = ρ1(A) for all
A ∈ A(Λ). This yields the following translation of hypothesis I into mathematical
language:

Hypothesis II A switch is defined by a sequence of times t1 < t2 < . . ., a region
Λ of space-time, and two states ρ1 and ρ2 on A(Λ). The state of the switch at time
tk is given by σk(eitkHAe−itkH) = ρ1(A) for A ∈ A(Λ), when k is odd, and by

σk(eitkHAe−itkH) = ρ2(A) for all A ∈ A(Λ), when k is even.

This hypothesis allows the framing of an important question: Is there a single
global state σ representing the switch at all times, or is “collapse” required? With
the notation introduced above, this translates into: Does there exist a global state σ
such that σ|A(Λk) = σk for k = 1, 2, 3, . . .?

Hypotheses I and II demand that we choose two particular quantum states for
the switch to alternate between. This is, perhaps, an inappropriate demand. It is a
residue of von Neumann’s idea of definite eigenvectors of a definite projection. As we
are seeking an abstract and general definition, using which we shall ultimately claim
that our consciousness exists because it is likely that it should, it seems necessary to
allow for some of the randomness and imperfection of the real world. In the current
jargon, we should ask that our switches be “structurally stable”. This means that
every state sufficiently close to a given open state (respectively a given closed state)
should also be an open (resp. a closed) state.

The question was raised above of whether it was possible to define a single global
state for a switch. In terms of the general aim of minimizing quantum mechanical
collapse, a description of a switch which assigned it such a global state would be
better than a description involving frequent “collapse”. My preliminary motivation
for introducing the requirement of structural stability was that, in order to allow for
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variations in the environment of the brain, such stability would certainly be necessary
if this goal were to be achieved for sodium channels. Now, in fact, as we shall see in
the following sections, there is no way that this goal can be attained for such channels,
nor, I suspect, for any alternative physical switch in the brain. Because of this, the
concepts with which we are working are considerably less intuitively simple than they
appear at first sight. It is therefore necessary to digress briefly to refine our idea of
“collapse”.

If we are not prepared to admit structural stability, then we must insist that
a sodium channel returns regularly to precisely the same state. However, we can-
not simply invoke “collapse” to require this because we are not free to choose the
results of “collapse”. In the original von Neumann scenario, for example, we write
Ψ =

∑
anψn , expressing the decomposition of a wave function Ψ into eigenvectors of

some operator. We may be free to choose the operator to be measured but the a priori
probabilities |an|2 are then fixed, and each ψn will be observed with corresponding
probability. If we were required to force a sodium channel to oscillate repeatedly
between identical states – pure states in the von Neumann scenario – then, we must
choose a set of observation times at each of which we must insist that the channel
state correspond either to wave function ψ1, representing an open channel, or to wave
function ψ2, representing a closed channel, or to wave functions ψ3, . . . , ψN , repre-
senting intermediate states which will move to ψ1 or ψ2 at subsequent observations.
We would then lose consciousness of the channel with probability

∑∞
n=N+1 |an|2. I

do not believe that suitable wave functions ψ1 and ψ2 exist without the accumulating
probability of non-consciousness becoming absurdly high. My grounds for this belief
are implicit in later sections of the paper, in which I shall give a detailed analysis of
the extent to which normal environmental perturbations act on sodium channels.

Even allowing for variations in our treatment of “collapse”, this sort of argument
seems to rule out switching between finite numbers of quantum states in the brain.
Instead, we are led to the following:

Hypothesis III A switch is something spatially localized, the quantum state of
which moves between a set of open states and a set of closed states, such that every
open state differs from every closed state by more than the maximum difference within
any pair of open states or any pair of closed states.

At the end of this section we shall sketch an analysis of “collapse” compatible
with this hypothesis, but first we seek a mathematical translation of it. Denote by U
(resp. V ) the set of all open (resp. closed) states.

It is reasonable to define similarity and difference of states in terms of projections,
both because this stays close to the intuition and accomplishments of von Neumann
and his successors, and because all observables can be constructed using projections.
Suppose then that we can find two projections P and Q and some number δ such
that, for all u ∈ U , u(P ) > δ and, for all v ∈ V , v(Q) > δ. It is natural to insist
that P and Q are orthogonal, since our goal is to make U and V distinguishable. We
cannot require that we always have u(P ) = 1 or v(Q) = 1, because that would not
be stable, but we do have to make a choice of δ. It would be preferable, if possible,
to make a universal choice rather than to leave δ as an undefined physical constant.
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In order to have a positive distance between U and V , we shall require that, for
some ε > 0 and all u ∈ U and v ∈ V , u(P )−v(P ) > ε and, similarly, v(Q)−u(Q) > ε.
Again ε must be chosen.

Finally, we require that U and V both express simple properties. This is the
most crucial condition, because it is the most important step in tackling question B
raised at the beginning of this section. We shall satisfy the requirement by making
the projections P and Q indecomposable in a certain sense. We shall require that,
for some η , it be impossible to find a projection R ∈ A(Λ) and either a pair u1, u2

in U with u1(R) − u2(R) ≥ η or a pair v1, v2 in V with v1(R) − v2(R) ≥ η. If we
did not impose this condition, for some η ≤ ε, then we could have as much variation
within U or V as between them. Notice that the choice η = 0 corresponds to U and
V consisting of single points. Thus we require η > 0 for structural stability.

Finding a quantum mechanical definition for a switch is a matter for speculation.
Like all such speculation, the real justification comes if what results provides a good
description of physical entities. That said, I make a choice of δ, ε, and η by setting
δ = ε = η = 1

2 . This choice is made natural by a strong and appealing symmetry
which is brought out by the following facts:
1) u(P ) > u(R) for all projections R ∈ A(Λ) with R orthogonal to P , if and only if
u(P ) > 1

2 .
2) The mere existence of P such that u(P ) − v(P ) > 1

2 is sufficient to imply that
u(P ) > 1

2 > v(P ).
Proving these statements is easy.

Choosing ε = 1
2 and η = 1

2 corresponds, as mentioned in the introduction, to
making U and V as large as possible compatible with hypothesis III.

Hypothesis IV A switch in the time interval [0, T ] is defined by a finite sequence
of times 0 = t1 < t2 < . . . < tK ≤ T , a region Λ of space-time, and two orthogonal
projections P and Q in A(Λ). For each t ∈ [0, T ], we denote by σt the state of the
switch at that time. For later purposes it is convenient to take σt to be a global state,
although only its restriction to the algebra of a neighbourhood of appropriate time
translations of Λ will, in fact, be physically relevant.

We assume that the switch only switches at the times tk and that “collapse” can
only occur at those times. Thus we require that σt = σtk for tk ≤ t < tk+1.

For k = 1, . . . ,K define σk as a state on A(Λ) by

σk(A) = σtk(eitkHAe−itkH) for A ∈ A(Λ). (5.1)

(This is not really as complicated as it looks – it merely translates all the states back
to time zero in order to compare them.)

The σk satisfy
i) σk(P ) > 1

2 for k odd,
ii) σk(Q) > 1

2 for k even,

iii) |σk(P )− σk′(P )| > 1
2 and |σk(Q)− σk′(Q)| > 1

2 for all pairs k and k′ of different
parity.
iv) There is no triple (R, k, k′) with R ∈ A(Λ) a projection and k and k′ of equal
parity such that |σk(R)− σk′(R)| ≥ 1

2 .
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Since the remainder of this section is mathematically somewhat more sophisti-
cated, many physicists may wish to skip from here to §6 on a first reading.

Conditions iii and iv can be translated into an alternative formalism. This is
both useful for calculations (see §8), and helps to demonstrate that these conditions
are, in some sense, natural. The set of states on a von Neumann algebra A has a
norm defined so that

||u1 − u2|| = sup{|u1(A)− u2(A)| : A ∈ A, ||A|| = 1}. (5.2)

It will be shown below (lemma 8.11) that

||u1 − u2|| = 2 sup{|u1(P )− u2(P )| : P ∈ A, P a projection}. (5.3)

Thus the constraint iii on the distance between U and V is essentially that

for all u ∈ U , v ∈ V we must have ||u− v|| > 1, (5.4)

while the constraint iv on the size of U and V is precisely that for all u1, u2 ∈ U (resp.
v1, v2 ∈ V ) we must have

||u1 − u2|| < 1 (resp. ||v1 − v2|| < 1). (5.5)

For completeness, two additional constraints have to be added to our hypothetical
definition of a switch. First, we should require that the switch switches exactly K
times between 0 and T , so that we cannot simply ignore some of our switch’s activity.
This requirement is easily expressed in the notation that has been introduced. Second,
it is essential to be sure that we are following a single object through space-time. For
example, hypothesis IV would be satisfied by a small region close to the surface of the
sea, if, through wave motion, that region was filled by water at times tk for k even
and by air at times tk for k odd. To satisfy this second requirement, we shall demand
that the timelike path followed by the switch sweeps out the family of time translates
of Λ on which the quantum state changes most slowly. This requires some further
notation, and uses the (straightforward) mathematics of differentiation on Banach
spaces (for details, see Dieudonné 1969, chapter VIII).

Definition Let (H,P) be the energy-momentum operator of the universal quantum
field theory, and let y = (y0,y) be a four-vector. Let τy denote translation through
y. τy is defined on space-time regions by τy(Λ) = {(x0 + y0,x + y) : (x0,x) ∈ Λ} and

on quantum states by τy(σ)(A) = σ(ei(y
0H−y.P)Ae−i(y

0H−y.P)). As in (5.1), τy maps
a state on τy(Λ) to one on Λ.

Hypothesis V A switch in the time interval [0, T ] is defined by a finite sequence
of times 0 = t1 < t2 < . . . < tK ≤ T , a region Λ of space-time, two orthogonal
projections P and Q in A(Λ), and a time-like path t 7→ y(t) from [0, T ] into space-
time. The state of the switch at time t is denoted by σt.
The σt satisfy:
1) σt = σtk for tk ≤ t < tk+1.
2) For t ∈ [0, T ], the function f(y) = τy(σt)|A(Λ) from space-time to the Banach
space of continuous linear functionals on A(Λ) is differentiable at y = y(t), and
inf{||dfy(t)(X)|| : X2 = −1, X0 > 0} is attained uniquely for

X =
dy(t)

dt
. (By definition dfy(t)(X) = limh→0

f(y(t) + hX)− f(y(t))

h
.)
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3) Set σk = τy(tk)(σtk)|A(Λ). (This is the same as (5.1).) Then

i) σk(P ) > 1
2 for k odd,

ii) σk(Q) > 1
2 for k even,

iii) |σk(P )− σk′(P )| > 1
2 and |σk(Q)− σk′(Q)| > 1

2 for all pairs k and k′ of different
parity.
iv) There is no triple (R, k, k′) with R ∈ A(Λ) a projection and k and k′ of equal
parity such that |σk(R)− σk′(R)| ≥ 1

2 .
4) For each odd (resp. even) k ∈ {1, . . . ,K − 1} , there is no pair
t, t′ ∈ [tk, tk+1] with t < t′ (resp. t′ < t) such that setting
ρt = τy(t)(σt)|A(Λ) and ρt′ = τy(t′)(σt′)|A(Λ) , we have

i) ρt′(P ) >
1
2 ,

ii) ρt(Q) > 1
2 ,

iii) |ρt′(P )− σk′(P )| > 1
2 and |ρt′(Q)− σk′(Q)| > 1

2 for all even k′ ,

and |ρt(P )− σk′(P )| > 1
2 and |ρt(Q)− σk′(Q)| > 1

2 for all odd k′ ,
unless there exists a projection R ∈ A(Λ) such that either
|ρt′(R)− σk′(R)| ≥ 1

2 for some odd k′, or |ρt(R)− σk′(R)| ≥ 1
2 for some even k′.

At the end of the previous section, three possible models of the necessary physical
correlates of information processing in the brain were presented. I have no idea how
a formalism for calculating a priori probabilities in the biochemical model – the most
widely accepted model – might be constructed. In particular, I find insuperable the
problems of the so-called quantum Zeno paradox (reviewed by Exner (1985, chapter
2)), and of compatibility with special relativity. For the other models which refer to
structures consisting of a finite number of switches moving along paths in space-time,
not only is it possible to give an abstract definition of such a structure, using an
extension of hypothesis V to N switches, but it is possible to calculate an a priori
probability which has, I believe, appropriate properties.

Since the extension to N switches is straightforward, it will be sufficient in this
paper to give the a priori probability which I postulate should be assigned to any
sequence of states (σtk)Kk=1 which satisfies hypothesis V, with switching occurring in
regions τy(tk)(Λ). These regions will be defined by the brain model that we are using.
For example, in the sodium channel model, the space-time regions in which a given
channel opens or shuts are defined.

Set B = ∪{A(τy(t)(Λ)) : t ∈ [0, T ]}. B is the set of all operators on which the
states σt are constrained by the hypothesis. Let ω be the state of the universe prior
to any “collapse”. Then I define the a priori probability of the switch existing in the
sequence of states (σtk)Kk=1 to be

appB((σtk)Kk=1|ω) = exp{
K∑
k=1

entB(σtk |σtk−1
)}, (5.6)

where we set σt0 = ω . Here entB is the function defined in (Donald, 1986) and
discussed further in (Donald, 1987a).

It is not my intention to discuss in this paper the properties of the function
appB. I merely wish to sketch, in passing, some of the most important possibilities

22



and difficulties for an interpretation of quantum mechanics based on models of the
brain like the sodium channel model. Clearly it is necessary at least to indicate that
some means of calculating probabilities can be found. It should be noted that I am not
attempting to split the original state (ω ) of the universe into a multitude of different
ways in which can be experienced. This is how the original von Neumann “collapse”
scenario discussed above works. I simply calculate an a priori probability for any
of the ways in which ω can be experienced. Using these a priori probabilities one
can calculate the relative probabilities of experiencing given results of some planned
experiment. I claim that these relative probabilities correspond to those calculated
by conventional quantum theory. I hope to publish in due course a justification of
this claim and a considerably extended discussion of this entire theory (see §9).

There are also important conceptual questions that could be mentioned. For
example, how is one to assign a class of instances of one of these models to a given
human being? In particular, in as far as sodium channels carry large amounts of
redundant information, can one afford to ignore some of them, and thereby increase
a priori probability? I suspect that this particular question may simply be ill-posed,
being begged by the use of the phrase “a given human being”, but it emphasizes,
once again, that providing a complete interpretation of quantum mechanics is a highly
amibitious goal. My belief is that the work of this paper provides interesting ideas
for the philosophy of quantum mechanics. I think that it also provides difficult but
interesting problems for the philosophy of mind, but that is another story.

6. Unpredictability in the Brain.
(This section is designed to be comprehensible to neurophysiologists.)

It is almost universally accepted by quantum theorists, regardless of how they
interpret quantum mechanics, that, at any time, there are limits, for any microsystem,
to the class of properties which can be taken to have definite values. That class
depends on the way in which the system is currently being observed. For example,
returning to the electron striking the photographic plate, it is clear that one could
imagine that the electron was in a definite place, near to where the spot would appear,
just before it hit the plate. However, it is not possible, consistent with experimentally
confirmed properties of quantum theory, to imagine that the electron at that time
was also moving with a definite speed. This is very strange. To appreciate the full
strangeness, and the extent to which there is experimental evidence for it, one should
read the excellent popular account by Mermin (1985).

In this paper, not only is this situation accepted, but the position is even taken
that least violence is done to quantum theory by postulating at any time a minimal set
of physical properties which are to be assigned definite values. In the sodium channel
model of §4, it was proposed to take for these properties the open/shut statuses of
the sodium channels of human brains. In this section, we shall consider what this
proposal implies about the definiteness of other possible properties of the brain, and,
in particular, what the definiteness of sodium channel statuses up to a particular
moment implies about the subsequent definiteness of sodium channel statuses.

Sodium channel status, according to the model of §4, involves both a path, which
the channel follows, and the times at which the channel opens and shuts. We shall
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argue that sodium channel paths cannot be well-localised without frequent “collapse”.
We shall also see that we must be more precise about what we mean by a channel
opening and shutting, but that here too we need to invoke “collapse”. This section
is largely concerned with the general framework of this sort of quantum mechani-
cal description of the brain. Having developed this framework, we shall be ready
in the next section for a discussion of the details of possible applications of recent
neurophysiological models of the action of sodium channel proteins to the specific
quantum mechanical model of a switch, proposed in §5. In this section, we consider
the inter-molecular level, leaving the intra-molecular level to the next.

The conceptual difficulty at the heart of this section lies in accepting the idea
that what is manifestly definite on, for example, an micrograph of a stained section
of neural tissue, need not be definite at all in one’s own living brain. This has
nothing to do with the fact that the section is dead, but merely with the fact that
it is being looked at. Consider, for example, the little bags of neurotransmitter, the
“synaptic vesicles”, mentioned in §4. On an electron micrograph, such vesicles, which
have dimensions of order 0.1µm, are clearly localized. However, this does not imply
that the vesicles in own’s one brain are similarly localized. The reader who would
dismiss this as a purely metaphysical quibble, is, once again, urged to read Mermin’s
paper. Perhaps all that makes the electron micrograph definite is one’s awareness of
a definite image. The vesicles seen on the micrograph must be localized because one
cannot see something which is not localized, and one must see something when one
looks. In other words, if you look at a micrograph, then it is not possible for your
sodium channels to have definite status unless you are seeing that micrograph as a
definite picture. That means that all the marks on the micrograph must, at least in
appearance, have “collapsed” to definite positions. This, in turn, makes the vesicles,
at least in appearance, “collapse” to definite positions.

In §2, the signature of “collapse” was said to be unpredictability. It turns out,
under the assumptions about quantum theory made in this paper, that the converse
is also true, or, in other words, that if something appears to take values which cannot
be predicted, then, except at times when it is being observed, it is best described by a
quantum state in which it takes no definite value. This means that the appearance of
unpredictability in the brain is more interesting than one might otherwise think. One
purpose of this section is to review relevant aspects of this topic and to encourage
neurophysiologists to tell us more about them.

Unpredictability, of course, is relative to what is known. Absolute unpredictabil-
ity arises in quantum mechanics because there are absolute limits to what is knowable.
What is known and what is predictable depends mainly on how recently and how ex-
tensively a system has been observed, or, equivalently, on how recently if has been
set up in a particular state. It would not be incompatible with the laws of quantum
mechanics to imagine that a brain is set up at some initial time in a quantum state
appropriate to what we have referred to above as the biochemical model. In this
model, all the atoms in the brain are localized to positions which are well-defined
on the Ångström scale. The question then would be how rapidly the atom positions
become unpredictable, assuming perfect knowledge of the dynamics. Similarly, the
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question for the sodium channel model is how rapidly the sodium channel paths and
statuses become unpredictable after an instant when they alone are known. In re-
viewing experiments, we must be careful to specify just what is observed and known
initially, as well as what is observed finally.

The best quantum mechanical description of a property which is not observed
gives that property the same probability distribution as one would find if one did
measure its value on every member of a large ensemble of identical systems. The
property does not have one real value, which we simply do not know; rather it exists
in the probability distribution. Examples clarifying this peculiar idea will be given
below. It is an idea which even quantum theorists have difficulty in understanding,
and in believing, although most would accept that it is true for suitable microsystems.
The assumptions put forward in this paper are controversial in that they demand that
such an idea be taken seriously on a larger scale than is usually contemplated.

Let us first consider what can be said about the sodium channel paths in the
membrane (or cell wall) of a given neuron. The “fluid mosaic” model of the cell
membrane (see, for example, Houslay and Stanley 1982, §1.5) suggests that many
proteins can be thought of as floating like icebergs in the fluid bilayer. Experiments
(op. cit. p.83) yield times of the order of an hour for such proteins to disperse over
the entire surface of the cell. In carrying out such an experiment, one labels the
membrane proteins of one cell with a green fluorescing dye, and those of another with
a red fluorescing dye. Then, one forces the two membranes to unite, and waits to see
how long it takes for the two dyes to mix. The initial conditions for this experiment,
are interesting. One is not following the paths of any individual molecules, but only
the average diffusion of proteins from the surface of one cell to the surface of the
next. Even so, from this and other experiments, one can predict diffusion coefficients
of order 1 – 0.01(µm)2s−1 for the more freely floating proteins in a fluid bilayer
membrane. These diffusion coefficients will depend on the mass of the protein, on the
temperature, and on the composition of the membrane.

In fact, it is not known whether sodium channels do float as freely as the fluid
mosaic model would suggest, and there is some evidence to suggest the contrary,
at least for some of the channels (Hille 1984, pp 366–369, Angelides et al. 1988).
However, we may be sure that there is some continual and random relative motion.
Even if the icebergs are chained together, they will still jostle each other. If we wish
to localize our sodium channels on the nanometre scale, as will be suggested in the
next section, then the diffusion coefficients given above may well still be relevant, but
should be re-expressed as 103–10 (nm)2(ms)−1 . It would seem unlikely to me, that
links to the cytoskeleton (Srinivasan 1988) would be sufficient to hold the channels
steady on the nanometre scale. It is however possible that portions of the membrane
could essentially crystallise in special circumstances, such as at nodes of Ranvier, or
in synaptic structures.

According to the remarks made above, if a sodium channel is not observed, then
its quantum state is a state of diffusion over whatever region of membrane it can
reach. If, for example, it is held by “chains” which allow it to diffuse over an area of
100 (nm)2, then it will not exist at some unknown point within that area, but rather
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it will be smeared throughout it. Assigning a quantum state to the channel gives a
precise mathematical description of the smearing. The laws of quantum mechanics
tell us that if we place a channel at a well-defined position in a fluid membrane then,
in a time of order the millisecond diffusion time, its quantum state will have become
a smeared state. Such a state could only be avoided if we knew the precise positions
at all times of all the molecules neighbouring our channel, but these positions too will
smear, and on the same timescale (Houslay and Stanley 1982, p 41).

As has been mentioned, it is possible to write down a “quasi-classical” quantum
state for an entire brain, corresponding, at one moment, to a description of that brain
as it would be given by the biochemical model with all the atoms in well-localized
positions. However, because of all the unpredictable relaxation processes in such a
warm wet medium, with relaxation starting at the atomic bond vibration time scale
of 10–14 s, even such a state will inevitably describe each separate channel as being
smeared by the time that its measured diffusion time has elapsed. The message of
quantum statistical mechanics is that, in a warm wet environment, floating molecules
do not have positions unless they are being observed.

The majority of membrane proteins also appear to spin freely in the plane of
the membrane, although they cannot rotate through it. Typical rotational diffusion
times are measured at 10 - 1000µs (Houslay and Stanley 1982, p 82). In quantum
mechanical terms this means that, even if we held the centre of mass fixed, after about
1ms a channel protein which started with a quantum state describing something like
a biochemist’s ball and stick model, will be best described by a quantum state which
has the molecule rotated in the plane with equal probability through every possible
angle.

So far we have only considered the motion of a channel within the cell membrane.
This should not be taken to imply that the membrane itself has a well-defined locus.
In fact, it is clear that the membrane will spread in position due to collisions with
molecules on either side of it. However, this spreading will be much slower than
the channel diffusion rate, simply because the membrane is so much larger than the
individual channels. More importantly, in adopting the sodium channel model for a
brain, we are asking to know the positions of each channel every time that it opens
and shuts. Channels have a surface density of order greater than 100(µm)−2 (Hille
1984, chapter nine), so this is equivalent to observing regularly that density of points
of the cell surface. This gives strong constraints on the lateral spreading of individual
channels. If we know where all the neighbours of one particular channel are, then the
plane within which that one floats will be fairly well determined.

If the neurophysiological reader has not already given up this paper in disgust,
then he or she is surely demanding an answer to the question, “How can it be possible
that our image of the cell as a collection of well-localized molecules can be superseded,
given that, throughout biology, that image has allowed such dramatic progress in
understanding?” My answer is that I believe that a more accurate description of a
cell, which is not observed, involves describing that cell by a probability distribution
of collections of well-localized molecules. Each collection within that distribution
can be thought of as developing almost independently – almost precisely as it would
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were the cell fixed at a succession of instants to be in the state corresponding to
only that collection. After all, the language of biochemistry speaks as if molecules
were always well-localized, but it does not reveal the precise path followed by any
individual molecule. What matters, and what is measured, is, for example, that
on average potassium leaks from a depolarized cell, not that a specific ion follows
a specific path through a definite channel. The biochemical model of a cell is an
approximation like a model of the economy in which every consumer is assumed to
adopt average behaviour. That such a model can be extremely powerful does not
imply that plutocrats do not exist. It is a curious fact that although the image of
a cell put forward here is very different from the standard biochemical model, both
models are equally compatible with modern cell biology. The purpose of the model
that I am proposing is to find a new way of looking at deep, important, and long-
standing difficulties in the interpretation of physics. Although my model could be
disproved by new information from biology, I do not think that it has any immediate
implications for that subject.

There is one essential aspect of this quantum picture of the cell which must be
stressed. This is the extent to which the properties of each item are interdependent,
so that knowing one property implies constraints on others, or equivalently, observing
one property implies constraints on the results of other possible observations. It is
a mistake to think of the cell as composed of separately delocalized molecules. For
example, if we know where one sodium channel molecule is then we know also where
part of the cell membrane is, and we know, without needing a second observation that
most of the immediate neighbours of the channel are lipid molecules. This is because
the biologically most important properties of the cell are true of every element of the
probability distribution which makes up its quantum state. In every such element,
every sodium channel has the same amino acid sequence, every sodium channel has
both ends inside the cell, and every sodium channel curls up into a similar structure.
That those channels are not in identical places in every element of the probability
distribution does not vitiate the ability of a neuron to propagate an action potential
following every sufficient depolarization.

Turn now to consider the extent to which the times of opening and closing of a
channel are well-defined. The most direct experiments involve the use of the astonish-
ing “patch-clamp” technique in which an area of membrane so small that it contains
but a single channel is impaled on the end of a micro-pipette. The opening of the
channel is then directly detectable as a step increase in current. The results indicate
that, following a depolarization of the patch mimicking the propagation of an action
potential in vivo, the channel does not open once with certainty and then close on the
same 0.5 millisecond time scale as the action potential. Instead, the somewhat briefer
opening of an individual channel is seen as a random process, and the time course
of the sodium current through a comparatively large area of membrane can only be
obtained by averaging over a long sequence of records from a single channel.

With this experimental set-up, the status of an individual channel is not pre-
dictable from the time course of the potential across the membrane. However, what
is measured in these experiments is the current through a single channel which has
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been manipulated into circumstances in which it provides information of a kind quite
different from that which would have been relevant to the mind to which it might
originally have belonged. The observation made by a mind on its own brain may well
not be as refined as the observation made by an experimenter on a patch-clamped
segment of membrane. It is possible that if sufficient information to reconstruct
awareness is contained in firing/non-firing status at the neural level, then conscious-
ness will not observe precisely how a channel conducts current, but rather, whether it
is in a quantum state which corresponds to an average state for a channel in a recently
depolarized cell, or in a quantum state which corresponds to an average state for a
channel in a resting cell.

It is important to realise that there is a much richer class of quantum states for
a channel than would be allowed for the corresponding classical biochemical ball and
stick model. For example, the ball and stick model must be spatially localized, but
the quantum state can be spatially “smeared” as described above. The ball and stick
model is simply open or shut, but the quantum state can be, at one instant, both open
and shut with equal probability. In the ball and stick model, one must choose the
positions of the atoms in the aromatic ring of a phenylalanine residue, but a quantum
state can describe them as being in a state of “flipping”.

The ball and stick model was used implicitly in §4 in the first version of the
“sodium channel model” for information processing in the brain. It is necessary to
refine this in view of this quantum mechanical richness. Quantum states can be
assigned to systems by using techniques related to quantum statistical mechanics to
find the most likely state given particular prior observations (Donald 1986, 1987a,
1987b). There is a choice of state for a sodium channel in as far as there are choices
in the way in which it is assumed to be observed. Given the current flowing through a
clamped patch, the quantum state of the channel in the patch must always be either
open or shut, like the ball and stick model. However, given only the neural status, or
only the potential across the membrane, the most likely quantum state for a channel
in an intact neuron will be a state in which the most that can be known, at any time,
is a positive (status-, or potential-, dependent) probability for the channel to be open
and a complementary and also positive probability for it to be closed. Compared to
the channel in the patch, in these latter cases one is given less information, and thus
the most likely states have higher a priori probabilities.

Recall that we are seeking the least conditions on the quantum state of the
world which will allow brains to process definite information, as this minimizes the
necessity of quantum mechanical “collapse”. Allowing that these conditions are that
local neural status be definite, the quantum states assigned to sodium channels in vivo
will be averaged states compared to those seen with a patch clamp. These average
states do follow the potential across a membrane with a time course identical to that
of the sodium current across a broad region. In the next section, we shall consider
more precise definitions of such “average” states.

A second version of the sodium channel model can now be given:

The Sodium Channel Model (second version). The information processed by
a brain can be perfectly modelled by a three dimensional structure consisting of a
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family of switches, which follow the paths of the brain’s sodium channels, and which
open and shut whenever the corresponding neuron is depolarized locally.

Using this model we still have to answer a question about the extent to which
timing in the brain is well-defined, but now it is a question about the timing of local
depolarization rather than about the details of individual channel gate movements.
In applying this new model, we are considering observations of local neural firing
status, imagining that the initial information that we are given is the paths of our
sodium channels, the previous pattern of neural firing, and the information about to
be delivered to our senses by the external world. We must ask to what extent this
initial information is sufficient to predict the subsequent neural firing.

I claim that the precise sequence of timing of switchings in channel status over
the whole brain, even when linked to timing in local neural firing, cannot be predicted
over any significant duration from any of the possible quantum states which the brain
can occupy at any initial moment. I would still make this claim if “precise sequence”
were interpreted to mean submillisecond timing, and, even in that case, I would take
“significant duration” to mean no more than a few seconds. The justification for this
claim is partly that, as will be described below, it is in accordance with the observed
behaviour of the brain, and is partly based on experience with quantum states. In
general, the rate at which predictable information about particular properties is lost
in a quantum state is at least as fast as the rate at which those properties would relax
in corresponding situations in classical statistical mechanics. This is a statement
which is much too broad (and vague) for mathematical proof, but I think that, at
the intuitive level, it should be sufficiently plausible to most quantum theorists, that
they would only disbelieve it if they were presented with an explicit construction of
a relevant model with demonstrably slower loss of information. What this implies is
that “collapse” must occur regularly in every aware brain. As a quantum theorist, I
find this statement both so credible, when made, as to need little justification, and
surprising, because I have not seen it made before. My deeper purpose in this paper
is to delineate a precise model for the nature of collapse in the brain.

Even in a classical biological picture, it is well known to be naive to assume that
whether a cell fires or not is completely determined by the impulses incident on it.
The entire environment of the cell is relevant. The pattern of local electric fields
is related to, but not determined by, the impinging impulse traffic. The density of
neurotransmitter in a synaptic cleft depends on the time since the last impulse, and
so on. Uncertainty as to where the channels are may lead to uncertainty over whether
there are enough of them in a given region of neuron to magnify sufficiently the local
depolarization caused by receipt of neurotransmitter from a neighbouring neuron and
cause cell firing. The amount of neurotransmitter released into a synaptic cleft as a
result of presynaptic depolarization has been measured to be unpredictable (Eccles
1986, Korn and Faber 1987).

As was mentioned in §2, the brain is, in the details of its operation, a very
sensitive device. At each stage in neural processing, the firing of subsequent neurons
depends on the summation of patterns of firing of earlier neurons. If one neuron gets
out of step or misfires, then, while the overall pattern will remain similar, the details,
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and, in particular, the precise timings of firings of that neuron’s neighbours will be
altered. Each subsequent alteration will add to changes already produced, until the
final details are totally altered.

These comments are sufficient to demonstrate that the claim that neural firing
times are unpredictable on a time scale of seconds, does not conflict with the observa-
tions of biologists. Indeed, unpredictability at the level of individual neural firing is
not a biological problem. Biologically, the brain is designed to produce results at the
level of the general behaviour of the whole animal: running away, eating, curling up
and going to sleep, for example. To produce this sort of result, any of an enormous
class of patterns of firing would be sufficient. The brain is in many ways designed
with redundancy so that errors in operation, or the effects of injury, or even of minor
distractions, can be smoothed out.

It remains a matter for speculation to what extent the unpredictability of precise
details is ever reflected at the behavioural level. While that trout will certainly take
the mayfly, think how many trains of thought lie waiting to be shunted through the
brain of an idle human!

One consequence of unpredictability at the individual firing level is that neuro-
physiologists have found more stable properties, such as short term firing frequencies
to be more useful indicators of biologically significant information (Burns 1968). Nev-
ertheless, in order to give a simple mathematical definition of the state of a brain which
is abstract, in the sense that the state can be defined without knowing the nature
of the information being processed, and without arbitrary choices, such as would be
required to define a frequency analyser, it seems necessary to work at a level which,
in this sense, is sub-biological. For example, in the current version of the sodium
channel model we require to know precise times of local firings. Merely the huge
numbers of firings in the nervous system, each depending on what went before, will
make these times rapidly unpredictable to any degree of accuracy. At the crudest
level, a cell which through a feedback loop causes itself to fire 100 times per second
with an uncertainty in each firing time, due to external noise of 10−4 s has a millisec-
ond uncertainty after one second, and a ten millisecond uncertainty after a couple of
minutes.

The message of this section is that the brain is not a machine made out of hard
little wooden balls connected by strong sticks. Rather it is warm and wet and only has
those properties which are imposed on it by observation. The increasingly powerful
microscopes that have been brought to bear on the brain have given us a more and
more accurate listing of its components. They have also given us an increasingly false
picture of how those components exist. A microscope is designed to produce a picture.
The “collapse” that this implies is a “collapse” of the elements forming the picture
into definite places. Even this apparent “collapse” may be an illusion caused by a
genuine “collapse” of the brain of the microscopist into a state of seeing a definite
picture. That brain state can be seeing a definite picture without itself containing
anything as well localized as the elements of the picture. However, some properties
must be definite if a brain is to be aware. Choosing those properties to be definable
in terms of the status of sodium channels has turned out to raise difficult questions in
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specifying just what is meant by a sodium channel of definite status. Answers to some
of these questions may be constrained by new biological information, for example, on
the matter of the links holding channels to the cell structure, but this will not alter
the essential point of the necessity of frequent “collapse”.

7. Is the Sodium Channel really a Switch?.
(This section is designed to be comprehensible to neurophysiologists.)

The proposal that the interpretation of quantum mechanics can be simplified by
analysing brain functioning, depends entirely on the idea that the brain functions
through a finite number of switches. In §4, the neural model was rejected on the
grounds that a neuron is so complex. In particular, it seems unlikely that it will ever
return to close to the same state twice. It is clear that a sodium channel, which has
as its major component a glycopeptide subunit with a molecular weight of roughly
260,000, has, at body temperature, many degrees of freedom. This implies that it too
probably never returns to exactly the same state twice. In §5, a definition was given
for what it should mean for a quantum system to return to the neighbourhood of a
given state, where “the neighbourhood” is a set of states, which is close, in a natural
sense, to the original state. Only the long-term judgement of my quantum mechanical
peers will tell whether my use of the word “natural” in the last sentence is acceptable.
Be that as it may, I have proposed a specific and abstract definition for a quantum
mechanical switch. As will be seen in this and the following section, it is possible
to estimate the physical dimensions of a system which would satisfy this definition.
This will confirm that a whole neuron is indeed far too complex, but a portion of a
sodium channel large enough to carry a significant part of a gating apparatus would
be suitable. This is a contingent fact, which is already enough to make my definition
interesting.

It is in this section that I invoke the most specific properties of the human brain.
If some of those properties were other, then my theory would fail. Equally there may
be neurophysiological facts of which I am unaware which would make it untenable.
However, I would not really expect, at this stage, to find either proof or clear disproof
of a theory which might yet be developed in many directions. Thus the work of this
section should be seen more as an attempt to place the theory on the continuum
between plausibility and implausibility, and to describe in some detail what seems to
me at present to be the most plausible implementation and its possible variations.

The vagueness of the description of quantum mechanical “collapse” given in §2
may have left some readers with the impression that there is no problem to be con-
sidered because quantum theorists are free to change the state they assign to the
world whenever the one that they are working with becomes unsatisfactory. Were
this true, then an arbitrarily complex switch could be forced by “collapse” to return
to its original state. Of course this is not true, and the reason is that collapse is
always, not only a choice of one of the possibilities inherent in the initial state of the
world, but also a totally random choice. In other words, to return to our example of
an electron hitting a photographic plate, not only must the electron hit the plate, but
also we have no choice in where it hits the plate. For each region of the plate there
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is a predetermined a priori probability that we could eventually see the spot in that
region. If we perform the experiment often enough then, in a corresponding portion
of the trials, we shall see the spot in that region.

We have argued that “collapse” occurs frequently in the brain of a normally
functioning human. A description of that “collapse” will only be satisfactory if we can
describe the uncollapsed quantum state of that brain as allowing a choice of inherent
possibilities, each of which describes a “collapsed” brain quantum state. For example,
if the state of a sodium channel describes it as being “smeared” by thermal diffusion
all over the surface of a neuron, then it is possible, in many ways, to “collapse” the
state to one of a set of states, each with the channel localized at a different part of the
neuron. Nothing will be left over – there is no probability for the channel to leave the
neural surface, nor, leaving aside normal protein turnover, is there a non-negligible
probability for it to become something other than a functioning channel. Because
of this, the delocalization described in the previous section is not a serious problem.
The uncertainty in firing time for a neuron is also not a serious problem. States for
each individual channel can be “collapsed” into states with a well-defined phase in
the cycle through opening and closing. Each possible phase has a corresponding a
priori probability which is equal to the probability of the cell being observed at that
point in its cycle.

(As an aside, I should note that I am being somewhat disingenuous here. There
is certainly a problem for quantum theorists in giving an algorithmic description of
the sort of “collapse” which I am proposing. However, in my opinion, this problem
can be solved (see §9 and the remarks at the end of §5), and the heuristics that I am
presenting can be justified.)

On the other hand, suppose, as an absurd example, that we decided that a human
could only be aware of the opening of a sodium channel if during that opening an
even number of sodium ions passed through it. Assuming that there is no physical
mechanism which disallows an odd number of ions, there is no way that we can choose
to “collapse” the state of a channel into such even parity openings on every occasion
on which it opens. Indeed, it is clear that the a priori probability of such an opening
is one half. Nevertheless, it would still be possible to suggest the following model of
information processing in the brain:

The Sodium Channel Model (even parity opening version). The information
processed by a brain can be perfectly modelled by a three-dimensional structure con-
sisting of a family of switches, which follow the paths of the brain’s sodium channels,
and which open and close whenever those channels open, allow an even number of
sodium ions to pass, and then close.

Because of the large number of channels in any given neuron, this should still be
an adequate model of information processing, even although it only allows us to see
a randomly chosen sample of roughly half of the switchings that the first version (§4)
of the sodium channel model allows.

So far, contrary to the warnings given earlier, models of the information processed
by a brain have been presented as if there was no question about the existence of
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that information. Under a classical theory of physics, one does indeed imagine that
the brain exists with some definite structure and has some definite behaviour. One
is then only faced with the difficulty of analysing that behaviour. However, when
quantum physics is used, one also has to show how that behaviour comes to exist
or to be observed to exist. In this paper, I have been seeking to model information
processing in the brain by an abstract formalism. I claim that any finite family of
switches, moving along definite paths in space-time, and each obeying the definition
of a quantum switch given as hypothesis V in §5, could constitute the existence of
a mind. The complexity of information processed by that mind will depend on the
richness of the pattern of switching performed by the family. In §5, a formal method
is given for calculating the a priori probability of existence of any such family. I
claim that the only families which have the richness of pattern of switching that a
neurophysiologist, using classical physics, would think of the sodium channels of a
human brain as having, and which can exist with significant a priori probability, do,
in fact, correspond either to the sodium channels of a human brain or to some other
similar neural entities. This claim rests on two pillars. One is that there are no
other physical entities with switching structures like that of a brain. Arguments for
this pillar will be presented elsewhere (see §9). The second pillar is that a brain is a
structure which, with high a priori probability, can be observed to exist as a family
of switches in a quantum mechanical universe. Justifying this pillar, at the heuristic
level, is the central purpose of this paper. To do this, it would be sufficient even to
argue for the even parity version of the sodium channel model, although, of course,
the first and second versions (in §4 and §6, respectively) have richer structures.

From this point of view, we say that there may be many ways in which a brain
can observe itself as a family of switches. Each way corresponds to a model of the
kind that we have been presenting. At each switching in one of these models, we can
think of “collapsing” the quantum state of the brain into a new state in which the
switch concerned has definite status. Such a theory of collapse can only be valid if all
the possible futures which might be observed from any stage of the process, exist as
possible future collapse states from the state reached at that stage, and have relative
probabilities of coming to exist that agree with empirical experience. In other words,
we decide, by choosing a model, what constitutes a switch in a brain. The laws of
quantum mechanics then assign probabilities to every possible pattern of switching
that those switches can carry out over any future duration. Each pattern can be
forced into existence by a sequence of “collapses”. Every pattern can be interpreted,
we assume, as some particular processing of information in the brain. Our theory is
then justified as a step towards an interpretation of quantum mechanics, if there exists
some choice of switch for which the resulting patterns of information processing and
their probabilities form a satisfactory model for the way in which the world appears
to us.

Taking for granted in this paper that the state reached at each collapse is a brain
state with sodium channels having well-defined statuses, we shall try, in this section,
to analyse the channel quantum states which represent the statuses. We shall be
particularly concerned with the question of whether these states can be excessively
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altered by the normal range of environmental fluctuations. If they could, then it would
be impossible, with the correct relative probabilities, to “collapse” them back into the
states they would occupy in the absence of those fluctuations. We shall use as a guide
the understanding that the mathematical definition of the a priori probability of a
future collapse state should agree with the observable a priori probability of actually
experiencing that state in the future.

Up to this point, we have been describing the opening and closing of sodium
channels as if it were a simple two-state process. The reality is much more complex.
The original model of Hodgkin and Huxley (1952) assigns four mobile parts to each
channel. One part is an “inactivation gate”. This closes during the depolarization
of the neuron, and helps to bring firing to an end. The other three parts form the
“activation gate”, and it is their movement which opens the channel and initiates
firing. The Hodgkin-Huxley model provides an excellent description of the time course
of neural firing, and has proved to be a useful starting point for the interpretation
of the wide range of data that has been collected in the intervening years. As might
be expected, these data have shown that the more one probes the sodium channel,
the more one learns about new behaviours for new circumstances. There are many
reviews detailing these complexities, (e.g. Armstrong 1981; French and Horn 1983;
Aldrich, Corey, and Stevens 1983; Catterall 1986a; Begenisich 1987; and Hille 1984,
chapter 14). The entire protein has recently been sequenced (Noda et al. 1984, 1986a,
1986b) and the first models based on the implied atomic structure have now appeared
( Noda et al. 1984, 1986a, 1986b; Kosower 1985; Greenblatt, Blatt, and Montal 1985;
Guy and Seetharamulu 1986; Catterall 1986a, 1986b; and Salkoff et al. 1987). A
definitive picture of the workings of a sodium channel has yet to emerge, but may not
be long in coming now that the atomic structure is known. For this paper, the details
of the experimental analyses are not necessary. It is sufficient to work with a general
picture, since it will become clear that our definition of a switch can be compatible
with a wide range of possibilities. The following general scheme will suffice for our
purposes:

A sodium channel is a channel which, when open, allows sodium ions to cross
the membrane. It is closed through two distinguishable processes. One of these,
corresponding to the activation gate, is responsive to the voltage across the membrane,
and opens following depolarization. The other, corresponding to the inactivation gate,
closes the channel during depolarization. After the membrane returns to its resting
potential, the activation gate closes, the inactivation gate re-opens, and the cycle is
complete.

Although this scheme is uncontroversial, it only describes the average response
of a channel. From the point of view of the standard biochemical picture of a neuron,
some channels may not open at all during a depolarization, because the inactivation
gate may have remained shut throughout repolarization. Indeed, a frog preparation
has been described in which 50% of the channels have closed inactivation gates at rest
(Hille 1984, p.43, quoting Dodge 1961). Similarly, a channel may open in a resting cell.
The opening and closing of these gates constitutes a random process with probabilities
varying with the voltage across the membrane. Much attention has been given in the
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literature to the question of whether, by assigning enough states to the system, it
is possible to describe this process as a Markov process. The consensus seems to
be that this can be done, but there is debate on the number of states required. The
sixteen states that could be produced from the original Hodgkin-Huxley model by four
independently moving particles, can, for example, be reduced by placing constraints
on the order in which the particles can move, or, at least at the kinetic level, by
indistinguishability between some of the particles.

For the theory of this paper, it is not necessary that there be an underlying
Markov process. What is necessary is that we should find some part of the channel
and two quantum states for that part, which we shall denote by ρ1 and ρ2. These
quantum states must differ significantly. Let U (respectively V ) be the set of all
states neighbouring ρ1 (resp. ρ2). The precise meaning of “differ significantly” and of
“neighbouring” is given in §5. Then the following is required to be an adequate model
of information processing in the brain (what “adequate” means in this context raises
all sorts of philosophical difficulties, but these will not be addressed in this paper):

The Sodium Channel Model (general version). The information processed by
a brain can be perfectly modelled by a three dimensional structure consisting of a
family of switches, which follow the paths of the brain’s sodium channels, and which
open and close whenever the quantum state of the appropriate part of that channel
moves from U to V and back.

It is not necessary that there should be any experimental evidence to show that
the quantum state of the channel part invariably moves between U and V in the
course of the nerve firing cycle. It is sufficient that the occupation of a state in U be
indicative of a resting potential across the cell membrane, and that the occupation of
a state in V be indicative of a depolarized membrane, as, in this case, a neuron can
be described as at rest if a suitable number of its channel parts pass through states
in U , and as firing if a suitable number pass through states in V . Each of the three
previous versions of the sodium channel model satisfies this requirement.

Several examples of suitable states for channel parts will now be given. I do
not, at present, have sufficient information to choose clearly between these examples,
but, given further experimental data, the techniques of the remainder of this paper
might allow such a choice to be made eventually. It should be remembered also that
sodium channels are not the only possible switches in the brain. This multiplicity
of possibilities is not something which I see as a failure in the theory, although it
does perhaps raise further philosophical questions. I see it as a motivation both for
defining the physical manifestation of mind in abstract terms and for a many-worlds
approach to quantum theory. I intend ultimately to interpret all ways in which a
human brain can be analysed as a family of quantum switches as being ways in which
a mind observes that brain, but the purpose of this paper is to show, for its own
independent interest, that there is at least one way.

Example 1: Average States. ρ1 (resp. ρ2) is the thermal equilibrium quantum
state of a small volume in a piece of membrane, containing an immobilized channel,
which is held at the resting (resp. firing) potential and at body temperature.
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“Immobilized” here can be chosen to mean that the surrounding lipid is taken
to be in a crystalline phase. Alternatively, average states could be constructed by
releasing a channel from a fixed position and averaging over the state reached after a
suitably short diffusion time. The precise definition is irrelevant, because we shall only
really be interested in the sets U and V of near-by states. This example corresponds
to the second version (§6) of the sodium channel model.

Example 2: Inactivation Gate States. ρ1 (resp. ρ2) is the average quantum
state of a small volume containing an open (resp. closed) inactivation gate, or some
part of it.

This example depends on the assumption that the inactivation gate is a simpler
and more switch-like structure than the rest of the channel. It is not clear that this is
so, although it is suggested by the Hodgkin-Huxley theory. A molecular model for the
inactivation gate is proposed in (Salkoff et al. 1987). If human neurons are like the
frog preparation described above in which 50% of the inactivation gates are closed
at rest, then the interpretation of the corresponding information processing model
would be like that of the even parity version of the sodium channel model, in that
each gate will respond to only roughly half of all neural firings. However, while the
atomic structure of a frog sodium channel is probably very similar to that of a human,
the temperatures at which they operate are very different, and so the dynamics are
also likely to differ.

Example 3: Sliding Helix States. The most explicit molecular models of the
sodium channel suggest that the activation gate comprises four membrane spanning
helices, which, on opening, undergo screw-like motions, involving twists of about 60◦

and displacements of about 0.5nm away from the cell (Catterall 1986a, 1986b, Guy
and Seetharamulu 1986). ρ1 (resp. ρ2) can be assigned the average quantum state of
a small volume containing part of one of these undisplaced (resp. displaced) helices
and part of the fixed background against which it moves.

Example 4: Tight Shut and Wide Open States. ρ1 (resp. ρ2) is the average
quantum state of a small volume in a piece of membrane containing an immobilized
channel which would be observed to be in a fully shut (resp. fully open) configuration.

This example depends on the idea, which is widespread in the literature, that
a channel may have several open states and certainly has several closed states, but
that only one of these states is fully open, and only one is maximally closed. In
terms of examples 2 and 3, the fully open state will have all helices displaced and
the inactivation gate open, while the maximally closed state will have all helices
undisplaced and inactivation gate also open. As in example 2, it is possible, due to
the sluggishness of the inactivation gate, that, on average, the maximally closed state
is not visited between every neural firing, especially during a period of rapid firing.

There are two complementary aspects that must be considered in testing whether
these examples can satisfy the definition given in §5 for a quantum switch. One
question is whether the states ρ1 and ρ2 are sufficiently different, and the other is
whether the quantum state of a channel can, with high probability, be “collapsed”
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regularly into neighbourhoods of these states. In the remainder of this section, we shall
discuss the observational evidence bearing on these questions, leaving the detailed
translation into mathematics for the next section.

The definition of “sufficiently different” that has been adopted can be translated
as saying, roughly, that ρ1 and ρ2 are sufficiently different if there could exist a means
of observing each state, within the volume on which that state is defined, which would
allow them to be distinguished unambiguously on more than half of all observations.
This is a very weak definition of difference. The states in examples two, three, and
four are almost obviously sufficiently different, as long as the volume in question is
taken to be large enough to contain some of the molecular bonds that will necessarily
change shape or relative position as a result of the motion being considered. It is
possible, however, that the states in the first example may not differ by the amount
required. This possibility would arise, for example, if, regardless of potential, as
many as half the channels in a nerve were inactivated at any time, because then
when one observed the average state of a channel, one would usually come up with an
inactivated channel, whatever the potential across the membrane. In this case, one
would be forced to abandon example one, or perhaps to modify it as follows:

Example 5: Average States at Fixed Cycle Time. ρ1 (resp. ρ2) is the thermal
equilibrium quantum state of a small volume in a piece of membrane, containing an
immobilized channel, which has been held at the resting potential for some specified
time (resp. has been depolarized for some specified time).

The specified times in this example are to be chosen to allow the average channel
in ρ1 (resp. ρ2) time to close (resp. open).

Another example in which ρ1 and ρ2 seem not to be sufficiently different is the
following:

Example 6: Average Membrane States. ρ1 (resp. ρ2) is the thermal equilib-
rium quantum state of a small volume in a piece of membrane, which is held at the
resting (resp. firing) potential and at body temperature.

Channels are sparsely distributed over the membrane, so there is little probability
of hitting a channel in an average piece of membrane of the cubic nanometre size that
we shall be led to consider. Thus the main difference between ρ1 and ρ2 in this
example comes from the difference in the molecular polarization of the cell wall in
a changed electric field. In §8 (proposition 8.9C and equation 8.9) it will be shown,
at least for a fairly crude membrane model, that this difference is insufficient at the
scale required. It is because of this result that it is necessary to keep our channels
localized by requiring frequent “collapse”.

Turn now to the other question; that of whether the quantum state of a channel
can with high probability be “collapsed” regularly into neighbourhoods of the states
ρ1 and ρ2. We shall attack this question by considering what our observations tell
us in various circumstances about the expected (or average) state of a channel. I
have claimed, on the one hand, that, after a short period without observation, this
expected state will be diffused in space over the membrane, and diffused in time over
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the firing cycle, and that it is straightforward to “collapse” out of these diffusions.
Now we consider, on the other hand, indirect observations that tend to alter the
entire internal structure of the state and that cannot be resolved by simple state
decomposition.

We do observe our own brains in more ways than simply by being aware. Aware-
ness provides a mirror of the world, and according to the sodium channel model, that
mirror can be constructed from the statuses of sodium channels. We now have to
ask to what extent the sodium channels can see themselves in their own mirror. For
example, if a man has a fever, then he is aware of his sweats and his chills and his
general discomfort. He is not directly aware of his elevated blood temperature. Med-
ical science has discovered, however, that the signs are evidence for the symptom. In
other words, we know empirically that our physical constitutions are such that if we
feel feverish, then, most likely, we “have a temperature”. A consequence of elevated
blood temperature, of course, is a brain and sodium channels which are hotter than
usual. Thus the sodium channels of our patient do mirror themselves (whether he
knows it or not) as having altered in state.

Mean human blood temperature is around 310◦K, with a maximum range from
300◦K, at which temperature the oxidation of glucose ceases and a state of suspended
animation ensues, to 316◦K, when death ensues (Bell, Emslie-Smith, and Paterson
1980, chapter 26). In the next section, we shall model the quantum states of a sodium
channel as equilibrium states of a system with N independent degrees of freedom using
the specific definition given by hypothesis IV of §5. The larger N is, the more these
quantum states are influenced by the ambient temperature. If N is greater than 674,
then we can use (8.2) to show that a change in temperature from 300◦K to 316◦K
alters the state by more than the variation allowed by our definition. The point is, that
if N is greater than 674, then for λ = 316

300 , the right hand side of (8.2) is greater than
l, and this violates the constraint imposed by inequality (5.5). As a consequence, we
can claim that quantum switches as defined can only be constructed from fairly small
portions of body temperature macromolecules. Such a very large temperature change,
of course, is very rare, but even if we limited ourselves to a one degree change from
309.5◦K to 310.5◦K, which is the sort of change in human blood temperature that can
be produced by physical exertion and somewhat underestimates the standard diurnal
variation, we would not be able to take N to be greater than 175,000. This is of the
order of magnitude of the number of degrees of freedom, excited at body temperature,
of a complete macromolecule. This analysis of the effect of temperature variation
should be enough to demonstrate that the theory being presented is sufficiently specific
to be potentially falsifiable by neurophysiological information.

An alternative way of estimating the effect of a change in ambient temperature
on a physical system is given by proposition 8.9A. This estimates the effect in terms
of specific heat. Again, the larger the system, the greater the influence of temperature
change. By this method, the maximum volume of a system that could be a quantum
switch is given by a3, where estimates of a, in nanometres, range, depending on what
the switch is made of, from 1.1 to 1.5, if a temperature change from 300◦K to 316◦K
is allowed, and from 6.8 to 9.7, if a temperature change from 309.5◦K to 310.5◦K is
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allowed. In both cases, the smaller value corresponds to a switch made of water, and
the larger to one of phenol, with a variety other organic liquids and solids giving values
between these. The values are those which make the right hand side of (8.6) equal
1. 1(nm)3 will accomodate about 7.5 amino acid residues (an average computed from
table 2 of (Chothia 1975), and may be compared with the total volume of the sodium
channel protein of about 200(nm)3 (as assigned by Begenisich (1987) and Greenblatt,
Blatt, and Montal (1985)).

There are other situations in which a subject is aware of changes which may affect
the quantum state of his sodium channels without causing him to lose consciousness.
These fall into three categories. Firstly, there are large scale environmental effects
like changes in ambient pressure, or undergoing an NMR brain scan, or experiencing
weightlessness; secondly, there are chemical changes caused by the ingestion of any
sort of substance; and thirdly, there are changes in local regions of the brain caused
by its own functioning.

As far as changes of the first category are concerned, accepting the nanometre
dimension of a switch, just derived from the analysis of natural temperature variations
makes the switches too small to be significantly affected by sub-lethal amounts of any
such change that I can think of.

The second category is more interesting. A neural membrane is bathed by fluids
containing many different chemical species with continually varying concentrations.
We can construct a very simple model to measure the effect of such changes in concen-
tration, for species which do not specifically bind to sodium channels, by considering
a switch to consist of a small volume (V ) of the given species in solution at the phys-
iological concentration. At the nanometre scale, effects are only significant for the
most highly concentrated species, which are the various atomic ions. The highest
concentrations reached are for sodium and chloride outside the cell and for potassium
inside. They are each less than 0.2 mol l−1. The combined solute concentration in
blood plasma is around 0.3 mol l−1. Proposition 8.9B below shows that the quantum
state of an ideal solution in a fixed volume does not change by more than would be
allowed for variations in fixed status switch states as long as the change in number of
solute particles in the volume is limited to changes from an initial number N1 to a final

number N2 which satisfy N
1
2

1 logN1/N2 ≤ 1, where, without significant consequence,
we assume that N1 ≥ N2.

Given an initial concentration c1, the following table gives values of c1/c2 suffi-

cient to have N
1
2

1 logN1/N2 = 1, where Ni is the number of particles in volume V at
concentration ci:

V : (10−8m)3 (2× 10−9m)3 (10−9m)3

c1:
0.3 mol l−1 1.08 2.3 10
0.2 mol l−1 1.10 2.8 18
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Suppose that someone is given a potion by a chemist or by a witch, and that
having drunk it, although feeling pretty odd, he is still prepared to claim to be con-
scious. If we accept that the physical manifestion of the consciousness of the subject
can only be a patttern of switching of the kind defined in §5, which uses switches
of volume (10−8m)3 and if the effect of the potion was to change the concentration
of solutes in those switches by more than ten per cent from 0.2 mol l−1, then, we
must require that the claim of the subject is false. This is possible, although you
might think that that would depend on who the subject is. Normal values of sodium
concentrations in cerebrospinal fluid vary from 144 mmol l−1 to 152 mmol l−1 (Bell,
Emslie-Smith, and Paterson 1980, Table 19.10). This suggests that we might have to
face the dilemma just sketched were we indeed to take the volume of a switch to be
as large as (10−8m)3. Once again a nanometre scale is indicated.

The above argument is very crude. In particular, in the sodium channel model,
we are taking the bulk of a switch to consist of protein, so it is not clear that any
of the region that we choose to contain our element need be penetrated by the fluid
medium. However, the orders of magnitude involved are interesting, and the sodium
gate is certainly in contact with fluid.

In the category of chemical changes, we must also consider those molecules, like
some in scorpion toxin, which bind specifically to sodium channels. Such molecules
usually have a drastic effect on consciousness, and, in such cases, it is acceptable that
the result of binding with such a molecule is to cause loss of awareness of the sodium
channel concerned. However, there is also the hypothetical possibility of a paradox,
as one can imagine a toxin which could radically change the quantum states of a
channel but not disturb its function. In this case, one might have a person whose
consciousness had radically altered, while his functioning had hardly changed at all.
One might even think of that person as having been, at least in part, turned into
a computer. Such potential paradoxes are an inevitable consequence of seeking a
definition of consciousness by structure rather than by function. It does not, in fact,
seem to me that such paradoxes vitiate the theory, but they should not be ignored.

The third category of situation in which a subject is aware of changes which
may affect the quantum states of his sodium channels, concerns changes due to the
functioning of the brain itself. Since we are proposing a model in which the awareness
of a subject is built from awareness of every neural firing, he will, by definition, be
aware, albeit at a sub-verbal level, if a given neuron has fired with high frequency
over a long period. This means that we must consider “exhaustion” effects, or, in
other words, whether one can tell just from the quantum state of a small portion of
a sodium channel that the neuron that it belongs to is being over-worked. The other
effect that we might consider in the present category is that of changes in the local
electric field at a channel due to the firing patterns of neighbouring neurons, but these
changes can be neglected in comparison with the much larger electric field changes
that we shall come to.

One possible exhaustion effect might arise from changes in local ionic concen-
trations due to the repeated firing. Such changes certainly occur. A considerable
amount of work has been done on measuring changes in potassium concentrations
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outside nerve cells as a result of repetitive firing (see (Kuffler, Nicholls, and Mar-
tin 1984, chapter 13) for a review). A resting nerve cell has an external potassium
concentration of around 3 mmol l−1. Under artifically repetitive stimulation, this may
change to as much as 20 mmol l−1. However, if the size of our quantum switch is taken
to be (2nm)3, and the switch is taken to be entirely fluid filled, then applying propo-
sition 8.9B again shows that only a change from 3 mmol l−1 to 35 mmol l−1 would be
sufficient to change the switch state by more than the fluctuations that we would be
prepared to permit. This, and similar calculations for the other ionic species, suggest
that this sort of concentration change is more relevant because it alters the electric
potential across the membrane than because of direct changes in local ionic numbers.

The electric field in which a channel sits is affected, not only by the exhaustion
effect, but also by other observable changes. Most neurons in a human brain probably
have much more complex electrical behaviours than might be suggested by what has
been said so far in this paper. Neurophysiologists have done their most detailed work
on the axons of giant neurons from squid. It is now realised that these simple systems
do not display the full range of behaviours of mammalian central nervous system
neurons. Some of the possible complexities are reviewed by Crill and Schwindt (1983).
For example, one class of cerebellar neurons display a substantial modulation of the
normal sodium dependent action potential consequent on the opening of calcium
channels (Llinás and Sugimori 1980). These calcium channels react directly to the
input to the cells, and produce action potentials of their own which have a slower
time course than those of the sodium channels.

Such complexities suggest that instead of thinking of a sodium channel as being
in a cell which always rests at a potential of, for example, -70 mV, and always fires
to a maximum potential of, for example, +30 mV, we should be prepared, at least, to
think of the local resting potential of the cell as varying slowly over a range from, for
example, -85 mV to, for example, -50 mV.

Proposition 8.9C and the ensuing derivation of equation 8.9, provide a model
according to which this sort of modulation of the background potential of a cell does
not have a significant effect on the quantum state of a nanometre dimension volume of
sodium channel, except in as far as it alters the probability of the channel being open.
In other words, depolarizing a closed channel, even by as much as 100 mV, makes
the channel more likely to open, but, if it is seen not to open, then the difference in
apparent state due to the change in induced molecular polarization is not significant.

Accepting this argument, means that we can incorporate in our theory, both
those neurons which produce graded responses rather than action potentials (Roberts
and Bush 1981), and the partial local depolarizations of post-synaptic regions of a
neuron which do not necessarily lead to neural firing. The fact that the probability of
a channel opening will depend on the ambient electric field is not a problem. There is
no reason, under any model, to be concerned if the typical pattern of switching over
a neural surface varies with externally observable circumstances; it is only important
that the patterns be patterns of true switchings.

The model given by proposition 8.9C is very general, and is, with the caveats
mentioned in leading up to equation 8.9, probably applicable. The argument can be
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recapitulated by saying that there are parts of the sodium channel which have two
metastable states. The occupation probabilities of these states are electric field de-
pendent. Each state will vary continuously with the electric field, but the underlying
dichotomy always remains identifiable. It is the continuous variation which is esti-
mated by proposition 8.9C. If we are to satisfy the definition of a switch proposed in
§5, then this continuous dependence must not allow either state to change by more
than the minimum difference across the dichotomy. According to equation 8.9, this
requirement will be satisfied for our nanometre dimension switches. What is essential
is that the channel opens with a jump, and that, at any resting potential (resp. firing
potential) within the normal range, there is a significant probability of occupying a
state which is close to some fixed closed state (resp. some fixed open state). The the-
ory might fail if the channel opened steadily; if, for example, like a voltmeter needle,
it moved deterministically, with changing voltage, along a path of rapidly changing
states.

Nevertheless, even if this argument is valid, it is conceivable that consideration
of variations in electric field might allow us to choose between some of the versions of
the sodium channel model. For example, the definition of the states in examples 1,
5, and 6, depend on a clear distinction between resting and firing potentials. Such a
distinction may not be possible. In the sliding helices example, the precise state of one
particular helix may well depend on the states of the other helices. This could give
rise to a problem if the probabilities of occupancy of the states of the other helices
vary sufficiently rapidly with voltage. In that case, under a change of voltage, the
states of the particular helix that we choose as our switch, may be more affected due
to changes in the other helices than they are by the molecular polarization change
modelled by proposition 8.9C. Such an effect would require us to adopt a model like
that of example 4.

Similar comments can be made about the question of whether a rapidly repeated
firing has an observable effect on the state of a sodium channel. Following an action
potential, every nerve cell has a “refactory” period during which it is less likely to
fire again. This is believed to be caused by the inactivation gates; a neuron cannot
fire again until the inactivation gates of an adequate number of its sodium channels
have re-opened. If the state of a sliding helix, which forms part of the activation gate,
is significantly affected by the status of the inactivation gate, then example 3 would
have to be modified; either in the direction of example 4, or, as in example 5, by
choosing ρ1 and ρ2 to be average states of the helix at appropriate times in the firing
cycle.

One of the interesting consequences of the sort of specific definition of conscious-
ness that has been presented in this paper – “consciousness is the existence of a pattern
of switching” – is that it is possible to attack from a new angle the old question of
whether, complexity aside, a computer or a dog should be thought of as being con-
scious. In this section, we have been asking the rather more fundamental question of
whether, according to our definition, humans are conscious. Needless to say our defi-
nition would have to be rejected if we could not give an affirmative answer. I believe
that the work of this section has shown that we can give an affirmative answer, but
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I have little doubt that further analysis and further neurophysiological information
will allow a more precise identification of the class of switches in a human brain.

8. Mathematical Models of Warm Wet Switches.

(for physicists)

In this section, we shall establish the technical estimates used earlier. We shall use
(5.5) to test when two quantum states are sufficiently similar to represent one status of
a switch. We shall model our switch states as equilibrium density matrices on a Hilbert
space H of the general form ρ(β, µ,E) = exp{−β(H−µN−γE ·M)}/Z , where, with
k Boltzmann’s constant, k/β is the temperature, H the Hamiltonian, µ the chemical
potential, N the number operator, E the electric field, M the electric dipole moment,
and γ the local field correction factor. With this model, we assume that our switches
interact with the rest of the brain as with a heat bath. We shall assume that H,
N , and M all commute, and, under this assumption, it becomes straightforward to
translate the central result below (proposition 8.9) into the mathematics of classical
statistical mechanics.

Proposition 8.9 provides simple estimates in terms of thermodynamically defined
quantities. It is based mathematically on the inequality (8.3). The preliminary work
in this section is aimed at understanding (5.5) and its relation to (8.3). In example
8.3, we compute the norm difference (5.5) for a system of N harmonic oscillators.
In proposition 8.4, we prove that, for such a system, the estimate made through
inequality (8.3) of this norm difference is greatest in the classical regime. For most of
our applications, it is sufficient merely to have the sort of upper bound provided by
proposition 8.9, but lemma 8.10 shows that these upper bounds will often be of the
correct order of magnitude. Finally, in lemma 8.11, we prove (5.3) for a general von
Neumann algebra.

lemma 8.1 For all density matrices σ and ρ on H,

||σ − ρ|| = 2 sup{|(σ − ρ)(P )| : P is a projection }.

proof Set κ = σ − ρ.

For any projection P , 2P − 1 is a unitary map: (P − (1−P ))∗(P − (1−P )) = 1,
and so ||κ|| ≥ |κ(2P − 1)| = |κ(2P )|.

κ can be expressed as a self-adjoint trace class operator (Reed and Simon 1972,
§VI.6), so there exists an orthonormal basis (ψn)n≥1 ofH and a sequence (λn)n≥1 ⊂ R,
such that κ =

∑∞
n=1 λn|ψn><ψn|.∑∞

n=1 λn = κ(1) = σ(1)− ρ(1) = 0.

Set P+ =
∑
{n:λn≥0} |ψn><ψn| , P− =

∑
{n:λn<0} |ψn><ψn|. P± are orthogonal

projections with P+ + P− = 1.

Since κ(1) = 0, κ(P+) = −κ(P−) =
∑
{n:λn≥0} λn = 1

2

∑∞
n=1 |λn| .

But, for any bounded operator B, κ(B) = tr(κB) =
∑∞
n=1 λn<ψn|B|ψn> , so

|κ(B)| ≤ ||B||
∑∞
n=1 |λn|, and ||κ|| ≤

∑∞
n=1 |λn|. The result follows.
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The proof of this lemma shows that

||σ − ρ|| =
∞∑
n=1

|λn| = ||σ − ρ||tr, (8.1)

where ||σ − ρ||tr is the norm of σ − ρ considered as a trace class operator.

example 8.2 Suppose σ = |ϕ><ϕ|, ρ = |ψ><ψ|, where ϕ,ψ ∈ H, with ||ϕ|| =

||ψ|| = 1. Then ||σ − ρ|| = 2(1− |<ϕ|ψ>|2)
1
2 . In particular, ||σ − ρ|| = 2, if and only

if <ϕ|ψ> = 0.

proof Let ψ = αϕ + βϕ′ where ||ϕ′|| = 1, <ϕ′|ϕ> = 0. Then σ − ρ has the same

eigenvalues as

(
1 0
0 0

)
−
(
|α|2 αβ
αβ |β|2

)
.

Using |α|2 + |β|2 = 1, these eigenvalues are

±|β| = ±(1− |α|2)
1
2 = ±(1− |<ϕ|ψ>|2)

1
2 .

The result now follows from equation 8.1.

example 8.3 For a set of N independent non-identical harmonic oscillators with
common frequency ω,

||ρ(β1)− ρ(β2)|| = 2

N−1∑
n=0

(N +K)!

(K + 1 + n)!(N − 1− n)!
×

((1− t1)N−1−ntK+n+1
1 − (1− t2)N−1−ntK+n+1

2 ),

where ρ(β) is the equilibrium state at temperature k/β, t1 = e−β1h̄ω , t2 = e−β2h̄ω,
we choose t1 ≥ t2 , and K is the greatest integer smaller than or equal to

N log
(

(1−t2)
(1−t1)

)
log
(
t1
t2

) .

proof By equation 8.1,

||ρ(β1)− ρ(β2)|| =
∞∑

n1=0

. . .

∞∑
nN=0

|(1− t1)N tn1+...+nN
1 − (1− t2)N tn1+...+nN

2 |

=
∞∑
n=0

(N + n− 1)!

n!(N − 1)!
|(1− t1)N tn1 − (1− t2)N tn2 |,

where a Taylor expansion of (1−t)−N =
∞∑

n1=0

. . .
∞∑

nN=0

tn1+...+nN can be used to derive

the coefficients.
Using the assumption that t1 ≥ t2, gives

∞∑
n=0

(N + n− 1)!

n!(N − 1)!
|(1− t1)N tn1 − (1− t2)N tn2 |

= 2

∞∑
n=K+1

(N + n− 1)!

n!(N − 1)!
((1− t1)N tn1 − (1− t2)N tn2 ),
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since (1− t1)N tn1 − (1− t2)N tn2 is non-positive for n ≤ K and non-negative for n ≥ K,
and since

∞∑
n=0

(N + n− 1)!

n!(N − 1)!
((1− t)N tn = 1.

Now,
∞∑

n=K+1

(N + n− 1)!

n!(N − 1)!
tn =

1

(N − 1)!

dN−1

dtN−1

( ∞∑
n=K+1

tN+n−1

)

=
1

(N − 1)!

dN−1

dtN−1

(
tN+K(1− t)−1

)
.

This can be written as a sum over N terms by using the Leibniz formula, and the
result follows.

This example expresses the norm in a form in which numerical estimation is
possible. The norm tends to be larger for low frequencies. In the limit ω → 0 (i.e.
h̄ω � kT ) we have, using Stirling’s formula,

||ρ(β)− ρ(λβ)|| → 2
N−1∑
n=0

(
(xN)n

n!
e−xN − (yN)n

n!
e−yN

)
, (8.2)

where x = log λ
λ−1 and y = λ log λ

λ−1 .
In general, it is quite hard to make direct estimates using equation 8.1. An

alternative method is provided by the following inequality, proved by Hiai, Ohya, and
Tsukada (1981, theorem 3.1) :

For all pairs of density matrices σ and ρ,

||σ − ρ||2 ≤ 2 tr(σ log σ − σ log ρ). (8.3)

proposition 8.4 Choose λ ≥ 1 and let ρβ,N (ω) denote the equilibrium state of N
independent non-identical harmonic oscillators with frequencies (ωi)

N
i=1 at tempera-

ture k/β. Then

||ρβ,N (ω)− ρλβ,N (ω)|| ≤
√

2N(λ− 1− log λ).

proof ρβ,N (ω) and ρλβ,N (ω) are tensor product states, so,

tr(ρβ,N (ω) log ρβ,N (ω)− ρβ,N (ω) log ρλβ,N (ω))

=

N∑
i=1

tr(ρβ,1(ωi) log ρβ,1(ωi)− ρβ,1(ωi) log ρλβ,1(ωi)).

Using inequality 8.3, it is thus sufficient to prove that, for all ω ≥ 0,

tr(ρβ,1(ω) log ρβ,1(ω)− ρβ,1(ω) log ρλβ,1(ω)) ≤ λ− 1− log λ.

Set t = e−βh̄ω. Then

tr(ρβ,1(ω) log ρβ,1(ω)− ρβ,1(ω) log ρλβ,1(ω)) = log

(
1− t
1− tλ

)
+ (λ− 1)

(−t log t)

1− t
.

Set fλ(t) = log

(
1− t
1− tλ

)
+ (λ− 1)

(−t log t)

1− t
.
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limt→1 fλ(t) = − log λ+ λ− 1, so it is sufficient to prove that for all λ ≥ 1, fλ(t)
is increasing in t for t ∈ [0, 1].

f ′λ(t) =
(λ− 1)(1− tλ)(− log t)− λ(1− t)(1− tλ−1)

(1− t)2(1− tλ)
.

Set gλ(t) = (λ− 1)(1− tλ)(− log t)− λ(1− t)(1− tλ−1). It is sufficient to prove
that gλ(t) ≥ 0 for all λ ≥ 1 and t ∈ [0, 1].

lemma 8.5 g2(t) ≥ 0 for t ∈ [0, 1].

proof g2(t) = (1− t)(−(1 + t) log t− 2(1− t)).
Set h(t) = −(1+t) log t−2(1−t). Then h(1) = 0 and h′(t) = t−1(−t log t+t−1).
Set u(t) = −t log t+ t− 1. Then u(1) = 0 and u′(t) = − log t.
Thus u′(t) ≥ 0, u(t) ≤ 0, and h(t) ≥ 0.

lemma 8.6 gλ(t) ≥ 0 for λ > 2 and t ∈ [0, 1].

proof Using lemma 8.5,

gλ(t) ≥ 2(λ− 1)(1− tλ)(1− t)2/(1− t2)− λ(1− t)(1− tλ−1)

=

(
1− t
1 + t

)
(λ− 2− λt+ λtλ−1 − (λ− 2)tλ).

Set pλ(t) = λ− 2− λt+ λtλ−1 − (λ− 2)tλ.
pλ(1) = 0, p′λ(t) = −λ+ λ(λ− 1)tλ−2 − λ(λ− 2)tλ−1,
p′λ(1) = 0, p′′λ(t) = λ(λ− 1)(λ− 2)(tλ−3 − tλ−2) ≥ 0,
so p′λ(t) ≤ 0 and pλ(t) ≥ 0 for t ∈ [0, 1].

lemma 8.7 gλ(t) ≥ 0 for 1 < λ < 2 and t ∈ [0, 1].

proof gλ(t1/(λ−1)) = (λ − 1)gλ/(λ−1)(t), so this result can be deduced from lemma
8.6.

For N large and (λ − 1)N
1
2 small, the right hand side of 8.2 is asymptotic to

(λ−1)(2N/π)
1
2 , while

√
2N(λ− 1− log λ) = (λ−1)N

1
2 +O((λ−1)2), so proposition

8.4 and inequality 8.3 can give an estimate of the correct order of magnitude.

lemma 8.8 Let K and L be commuting operators on a finite dimensional Hilbert
space. Let ρa = e−K−aL/tr(e−K−aL), and write < Y >a= tr(ρaY ). Choose b ≥ a.
Then,

||ρa − ρb||2 ≤ (b− a)2 sup
0≤x≤b−a

(− d

dx
(< L >a+x)). (8.4)

proof This is a consequence of perturbation theory applied to (8.3). Set

f(x) = tr(ρa log ρa − ρa log ρa+x)

= <−K − aL− log(tr(e−K−aL)) +K + (a+ x)L+ log(tr(e−K−(a+x)L))>a

= x<L>a + log<e−xL>a.

f ′(x) = <L>a+ < (−L)e−xL >a /<e
−xL>a = <L>a −<L>a+x.
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f(0) = f ′(0) = 0, so Taylor’s formula with remainder shows that
f(b− a) = 1

2 (b− a)2f ′′(x) for some x ∈ [0, b− a].
8.4 now follows directly from 8.3.

The restriction to finite dimensional H is for simplicity of exposition. Note, that
in the notation of lemma 8.8,

f ′′(x) = (<e−xL>a<L
2e−xL>a −<(−L)e−xL>a<(−L)e−xL>a)/(<e−xL>a)2

= <L2>a+x − (<L>a+x)2 = <(L−<L>a+x)2>a+x,

from which it follows that

||ρa − ρb||2 ≤ (b− a)2 sup
0≤x≤b−a

(− d

dx
(< L >a+x))

= (b− a)2 sup
0≤x≤b−a

<(L−<L>a+x)2>a+x. (8.5)

This makes manifest the positivity of the bound (8.4). The relation between (8.4), or
(8.5), and thermodynamic quantities is well known, and yields our main result:

proposition 8.9
A) Let ρ(β) = e−βH/ tr(e−βH). Then

||ρ(β)− ρ(λβ)|| ≤ |λ− 1|(cva3/k)
1
2 (8.6)

where cv is the specific heat per unit volume, and a3 is the volume of substance.
B) Let ρ(β, µ) = e−β(H−µN)/ tr(e−β(H−µN )). Then

||ρ(β, µ1)− ρ(β, µ2)|| ≤ |µ1 − µ2| sup

(
β
∂N

∂µ

) 1
2

, (8.7)

and, in particular, for an ideal gas in the classical regime and for a dilute solution,

||ρ(β, µ1)− ρ(β, µ2)|| ≤ max{
√
N1,

√
N2}| logN1/N2|, (8.8)

where Ni is the mean number of particles in state ρ(β, µi).
C) Let ρ(β,E) = e−β(H−γE·M)/ tr(e−β(H−γE·M)). Then

||ρ(β,E1)− ρ(β,E2)|| ≤ |E1 − E2|(βγε0χV )
1
2

where χ is the electric susceptibility and V the volume of the system.

proof
A) Apply 8.4, setting K = 0, L = H, a = β, b = λβ.

− d

dβ
(<H>) = kT 2 d

dT
(<H>) = kT 2cva

3.

B) 8.7 is another direct application of 8.4. 8.8 follows, because, for an ideal gas in
the classical regime N = (V/VQ)eµβ where VQ is the quantum volume, while, for a
dilute solution, µ = µ0 + kT log c/c0, where c is the concentration and the suffix 0
refers to some standard state. (Our applications of this result will be so crude, that
there will be no need to distinguish between concentration and activity.)
C) This also follows from 8.4, using <M>E = ε0χVE.

The application of C requires some care. There is considerable literature relevant
to the task of estimating the electric field acting at a neural membrane (e.g. (Nelson,
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Colonomos, and McQuarrie 1975) and (McLaughlin 1977)). There are also various
models, depending on circumstances, for estimating γ, but it can be assumed to be of
order unity (see Che lkowski 1980). For a crude estimate, we put γ = 1, T = 310◦K,
|E1 − E2| = 3 × 107Vm−1 - corresponding to a potential drop of 100 mV across a 3
nm membrane, and V = (1.5 nm)3. Then corresponding to a volume V of membrane
of susceptibility χ = 2, we have

|E1 −E2|(βγε0χV )
1
2 = 0.11, (8.9)

while, even for water of susceptibility χ = 80, we only have

|E1 −E2|(βγε0χV )
1
2 = 0.71.

If we had 1 instead of 0.11 here, then we could argue that a small patch of
membrane would by itself act as a switch, even without the presence of a channel.
On the other hand, when using channels, the smallness of 0.11 allows us, as argued
in §7, to avoid difficulties with varying background potentials.

Lemma 8.8 and proposition 8.9 provide upper bounds for the norm differences
in which we are interested. For most of the applications made in this paper, such
upper bounds are sufficient. Thus, in §7, it was enough to know that a quantum
switch could be constructed from 1(nm)3 of sodium channel; to know that it might
be possible to use a volume greater than 1(nm)3, was of lesser importance. Even so,
it is useful to have an idea of how accurate the approximation provided by lemma 8.8
might be. In combination with (8.5), the next result shows that, if the right hand side
of (8.4) equals 1, then 1 ≥ ||ρa− ρb|| ≥ 1

4 +O((b− a)3). It follows that we can expect
the estimate provided by proposition 8.9 to be of the correct order of magnitude.

lemma 8.10 With the notation of lemma 8.8, set Z(a) = tr(e−K−aL). Then

||ρa − ρb|| ≥ 2

(
1−

Z( 1
2 (a+ b))√
Z(a)Z(b)

)
= 1

4 (b− a)2<(L−<L>a)2>a +O((b− a)3).

proof K and L have common eigenvector expansions, say, K =
∑N
n=1 κn|ψn><ψn|

and L =
∑N
n=1 λn|ψn><ψn|. Then, by (8.1),

||ρa − ρb|| =
N∑
n=1

|e−κn−aλn/Z(a)− e−κn−bλn/Z(b)|.

For x ≥ y ≥ 0, |x− y| = x− y = (
√
x−√y)(

√
x+
√
y) ≥ (

√
x−√y)(

√
x−√y),

so

||ρa − ρb|| ≥
N∑
n=1

(
e−

1
2κn− 1

2aλn√
Z(a)

− e−
1
2κn− 1

2 bλn√
Z(b)

)2

= 2

(
1−

Z( 1
2 (a+ b))√
Z(a)Z(b)

)
.

Let g(x) =
Z(a+ 1

2x)√
Z(a)Z(b)

.

Then g(0) = 1, g′(x) = 1
2g(x)(<L>a+x −<L>a+ 1

2x
), g′(0) = 0,

g′′(x) = − 1
4g(x)(2<(L−<L>a+x)2>a+x −<(L−<L>a+ 1

2x
)2>a+ 1

2x

−(<L>a+x −<L>a+ 1
2x

)2),
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and g′′(0) = − 1
4<(L−<L>a)2>a, so the given approximation is a Taylor expansion.

lemma 8.11 For all normal states σ and ρ on a von Neumannn algebra A,

||σ − ρ|| = 2 sup{|(σ − ρ)(P )| : P ∈ A is a projection}.

proof Set κ = σ − ρ.
As in lemma 8.1, for any projection P , |2κ(P )| ≤ ||κ||.
Let κ = κ+ − κ− be the decomposition of κ into positive and negative parts and

let P± be their support projections; these are proved to exist in most textbooks on
von Neumann algebras, e.g. (Strătilă and Zsidó 1979, theorem 5.17).

||κ|| ≤ ||κ+||+ ||κ−|| = κ+(P+) + κ−(P−)

= κ(P+)− κ(P−) = κ(P+)− κ(1− P+) = 2κ(P+).

9. Towards a More Complete Theory.

“What is an observed phenomenon?” That is the central question for the inter-
pretation of quantum mechanics. Bohr claimed that an observed phenomenon was
something that could be described in classical terms, while von Neumann claimed that
it was an eigenvector of a self-adjoint operator. In this paper it has been proposed
that an observed phenomenon is a pattern of switching in a human brain. Many ques-
tions remain to be tackled before this proposal can be confirmed as the foundation of
a complete interpretation of quantum mechanics. These include:

1) How does a pattern of switching correspond to an awareness?
2) Is the definition of a priori probability, given by (5.6), satisfactory?

While the first question can be considered from many angles, it is essentially
a re-statement of the age-old mind-body problem, and cannot be “solved” in any
absolute sense. As a re-statement it is interesting because it involves a definition of
“body” which is much more precise than is usual. Indeed, one goal of this paper is
to emphasize that, in a quantum mechanical universe, “body”, in this sense, is the
ultimate observed phenomenon, and, as such, the manner of its existence cannot be
taken for granted.

The second question is of a more physical character. Some of the questions it
leads to are:

3) What can be said about the state ω, defined in §5 as the state of the universe prior
to any “collapse”?
4) What are the mathematical properties of the function appB?
5) In what sense does the world external to the switches in an observer’s brain exist in
a state approximating the state in which he might describe it as appearing to exist?
6) Does the predicted a priori probability of appearance of a given experimental result
agree with the observed frequency of such results?
7) Are the apparent observations of different observers compatible?

For several years now, I have been working on the analysis of this theory. My
belief is that the questions above can be dealt with, and, in particular, that questions
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six and seven can be answered affirmatively. I hope eventually to publish a book on
the topic. At present, a preliminary draft of this book exists. The purpose of this
paper has been to abstract from the book an aspect of the theory which should be of
independent interest.
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