
Memory as a Programming Concept
in C and C++
by Frantisek Franek
Cambridge University Press Š 2004 (272
pages)
ISBN:052181720X

This methodical text aspires to present
various information relevant to operating
systems, computer architecture,
compilers, principles of programming
languages, and C and C++
programming, specifically.

Table of Contents
Memory as a Programming Concept in C
and C++
Chapter 1 - Introduction

Chapter 2 -From Source File to
Executable File

Chapter 3 -Variables and Objects;
Pointers and Addresses

Chapter 4 -Dynamic Allocation and
Deallocation of Memory

Chapter 5 -Functions and Function
Calls

Chapter 6 -One-Dimensional
Arrays and Strings

Chapter 7 -Multi-Dimensional
Arrays

Chapter 8 -Classes and Objects
Chapter 9 -Linked Data Structures

Chapter 10 -
Memory Leaks and
Their Debugging

Chapter 11 -Programs in Execution:
Processes and ThreadsAppendix One -Hanoi Towers Puzzle

Appendix Two -Tracing Objects in C++

Appendix Three -Tracing Objects and
Memory in C++

Appendix Four -
Thread-Safe and
Process-Safe Reporting
and Logging Functions

Glossary
List of Figures

Memory as a Programming Concept in C and C++
by Frantisek Franek
Cambridge University Press Š 2004 (272 pages)
ISBN:052181720X

This methodical text aspires to present various information
relevant to operating systems, computer architecture,
compilers, principles of programming languages, and C and
C++ programming, specifically.

Back Cover

The overwhelming majority of program bugs and computer crashes
stem from problems of memory access, allocation, or deallocation.
Such memory-related problems are also notoriously difficult to
debug. Yet the role that memory plays in C and C++ programming
is a subject often overlooked in courses and books because it
requires specialized knowledge of operating systems, compilers, and
computer architecture in addition to a familiarity with the language
themselves. Most professional programmers learn about memory
entirely through experience of the trouble it causes.

This book provides students and professional programmers with a
concise yet comprehensive view of the role that memory plays in all
aspects of programming and program behavior. Assuming only a
basic familiarity with C or C++, the author describes the
techniques, methods, and tools available to deal with the problems
related to memory and its effective use.

About the Author

Frantiske Franek is Professor of Computer Science at McMaster
University, where he helped found the Algorithms Research Group.
Franek’s academic career encompasses research in mathematics
(from the well-known Balcar-Franek theorem in Boolean algebra to
finite combinatorics) as well as in computer science (from
algorithms on strings to artificial intelligence). The author earned

his Ph.D. at the University of Toronto and has held positions at
several universities, including the Wesley Young Researchship at
Dartmouth College. Franek has worked as a consultant on many
commercial C/C++/Java projects internationally.

Memory as a Programming Concept in C and C++
FRANTISEK FRANEK ~ McMaster University

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE

The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

Copyright © Frantisek Franek 2004

This book is in copyright. Subject to statutory exception and to the provisions of relevant
collective licensing agreements, no reproduction of any part may take place without the
written permission of Cambridge University Press.

First published 2004

Printed in the United States of America

Typefaces Utopia 9.5/13.5 pt. and ITC Kabel System [FH]

A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication data

Franek, F. (Frantisek)
Memory as a programming concept in C and C++ / Frantisek Franek.
p. cm.
Includes bibliographical references and index.

ISBN 0-521-81720-X

ISBN 0-521-52043-6 (pb.)

http://www.cambridge.org/

1. Memory management (Computer science) 2. C (Computer program language) 3. C++
(Computer program language) I. Title.

QA76.9.M45F73 2003

005.4'35 - dc21 2003051543

ISBN 0 521 81720 X hardback

ISBN 0 521 52043 6 paperback

To my parents Prof. Dr. Jiří and Zdeňka Franĕk for everything; and my mentors and
best friends Dr. B. Balcar DrSc., Czech Academy of Sciences, Prof. Emeritus Dr. A.
Rosa, McMaster University, Honorable V. L. Rosicky, Consul of the Czech Republic,
formerly president of Terren Corp. for everything I know about computers and
mathematics; and my wife Marie and children Jacob and Nicole, for their love, support,
and understanding

Acknowledgments

Every book is to a significant degree a team effort; there are always many people
essential for the book's publication, from the author(s) all the way to the editors and
publisher. This book is no exception, and my sincere gratitude goes to all the people
who contributed to its publication. My special thanks go to George Grosman, a musician
and man of letters, for his help with the style and the grammar (English is not my mother
tongue), and to Dr. Jan Holub, a postdoctoral Fellow in the Department of Computing
and Software at McMaster University, for his careful reading of the manuscript and
checking of the technical aspects of the text.

Please note that lengthier sections of code - as well as solutions to selected exercises -
can be found on my website: www.cas.mcmaster.ca/~franek.

http://www.cas.mcmaster.ca/%7Efranek

Chapter 1: Introduction
The motivation for this book came from years of observing computer science students at
universities as well as professional programmers working in software development. I
had come to the conclusion that there seemed to be a gap in their understanding of
programming. They usually understood the syntax of the programming language they
were using and had a reasonable grasp of such topics as algorithms and data
structures. However, a program is not executed in a vacuum; it is executed in computer
memory. This simple fact exerts a powerful influence on the actual behavior of the
program - or, expressed more precisely, a subtle yet powerful influence on the
semantics of the particular programming language. I had observed that many students
and programmers did not fully understand how memory affected the behavior of the C
and C++ programs they were designing. This book is an attempt to fill this gap and
provide students and programmers alike with a text that is focused on this topic.

In a typical computer science curriculum, it is expected that students take courses in
computer architecture, operating systems, compilers, and principles of programming
languages - courses that should provide them with a "model" of how memory matters in
the behavior of programs. However, not all students end up taking all these courses, and
even if they do, they may not take them in the right order. Often the courses are
presented in a disjointed way, making it difficult for students to forge a unified view of
how memory affects the execution of programs. Additionally, not all programmers are
graduates of university or college programs that feature a typical computer science
curriculum. Whatever the reasons, there seems to be a significant number of computer
science students and professional programmers who lack a full understanding of the
intricate relationship between programs and memory. In this book we will try to pull
together the various pieces of knowledge related to the topic from all the fields involved
(operating systems, computer architecture, compilers, principles of programming
languages, and C and C++ programming) into a coherent picture. This should free the
reader from searching various texts for relevant information. However, in no way should
this book be viewed as a programming text, for it assumes that the reader has at least
an intermediate level of programming skills in C or C++ and hence simple programming
concepts are not explained. Nor should this book be viewed as an advanced C/C++
programming text, for it leaves too many topics - the ones not directly related to memory
- uncovered (e.g., virtual methods and dynamic binding in C++). Moreover, it should not
be seen as an operating system book, for it does not delve into the general issues of the
discipline and only refers to facts that are relevant to C and C++ programmers.

Unfortunately, there seems to be no curriculum at any university or college covering this
topic on its own. As a result, students usually end up with three or four disjointed views:
programming syntax and (an incomplete) C/C++ semantics; algorithms and data
structures, with their emphasis on the mathematical treatment of the subject; operating
systems; and possibly compilers. Although my ambition is to fill the gaps among these

various views - at least from the perspective of C/C++ programming - I hope that the
book proves to be a valuable supplement to any of the topics mentioned.

My own experience with software development in the real world shows that an
overwhelming number of computer program bugs and problems are related to memory
in some way. This is not so surprising, since there are in fact few ways to "crash" a
program and most involve memory. For instance, a common problem in C/C++ is
accessing an array item with an index that is out of range (see Chapter 6). A program
with such a simple bug can exhibit totally erratic behavior during different executions,
behavior that ranges from perfect to incorrect, to crashing at the execution of an
unrelated instruction with an unrelated message from the operating system, to crashing
at the execution of the offending instruction with a message from the operating system
that signals an invalid memory access.

With the advent of object oriented programming and the design and development of
more complex software systems, a peculiar problem has started to manifest itself more
frequently: so-called memory leaks (see Chapter 10). In simple terms, this is a failure to
design adequate house-cleaning facilities for a program, with the result that unneeded
earlier allocated memory is not deallocated. Such undeallocated and ultimately unused
memory keeps accumulating to the point of paralyzing the execution of the program or
the performance of the whole computer system. It sounds almost mystical when a
programmer's explanation of why the system performs so badly is "we are dealing with
memory leaks", as if it were some kind of deficiency of the memory. A more concrete
(and accurate) explanation would be "we did not design the system properly, so the
unneeded but undeallocated memory accumulates to the point of severely degrading the
performance of the system". The troubles that I have witnessed in detecting and
rectifying memory leaks strongly indicate that many students and programmers lack a
fundamental appreciation of the role and function of memory in programming and
program behavior.

We are not really interested in technical, physical, or engineering characteristics of
memory as such (how it is organized, what the machine word is, how the access is
organized, how it is implemented on the physical level, etc.); rather, we are interested in
memory as a concept and the role it plays in programming and behavior of C/C++
programs. After finishing this book, the reader should - in addition to recognizing
superficial differences in syntax and use - be able to understand (for example) the
deeper differences between the "compile-time index range checking" philosophy used in
C/C++ and the "run-time index range checking" philosophy used in Pascal (Chapter 6) or
between the "recursive procedure calls" philosophy used in C/C++ and the "nonrecursive
procedure calls" philosophy used in FORTRAN (Chapter 5). As another example, the
reader of this book should come to appreciate why Java requires garbage collection
whereas C/C++ does not (and in general cannot); why C/C++ cannot be interpreted in a
manner similar to Java; and why Java does not (and cannot) have pointers whereas
C/C++ does (Chapter 3) - because all these aspects are related in some way to

memory and its use. The reader should understand the issues concerning memory
during object construction and destruction (Chapter 8); learn how to compact or serialize
linked data structures so they can be recorded to a disk or transmitted across a network
(Chapter 9); and learn how to design programs that allow monitoring of memory
allocation/deallocation to detect memory leaks (Chapter 10). The reader will also be
exposed to important concepts not exclusively related to C/C++, concepts that are
usually covered in courses on operating systems but included here by virtue of being
related to memory: for example, concepts of process and thread and interprocess
communication (Chapter 11) facilitated by memory (shared memory segments, pipes,
messages). Of course, as always, our interest will be on the memory issues concerning
both the processes and the threads.

The book is divided into eleven chapters. Chapter 2 deals with the process of
compilation, linking, and loading in order to explain how the behavior of programs can be
discussed and examined as if they were executing in the source form, how the static and
the dynamic parts of memory are assigned to a program, and how the abstract address
space of the program is mapped to the physical memory. Most of the topics in Chapter
2 are drawn from the field of the principles of operating systems. We cover the topics
without referring to any particular operating system or any low-level technical details.
Otherwise, the text would become cumbersome and difficult to read and would distract
the reader from focusing on memory and its role in C/C++ programming. However,
knowledge of the topics covered in Chapter 2 is essential to almost all discussions of the
role of memory in the subsequent chapters.

Chapter 3 deals with variables as memory segments (data containers) and the related
notions of addresses and pointers, with a particular emphasis on various interpretations
of the contents of memory segments and possible memory access errors. In Chapter 4,
dynamic memory allocation and deallocation are discussed and illustrated using the C
allocators malloc(), calloc(), and realloc() and the C deallocator free(). In
Chapter 5, function calls are explained with a detailed look at activation frames, the
system stack, and the related notion of recursion. In Chapter 6, one-dimensional arrays
and strings, both static and dynamic, are discussed. Chapter 7 extends that discussion
to multi-dimensional arrays.

Chapter 8 examines in detail the construction and destruction of C++ objects together
with the C++ allocators (the operators new and new[]) and the C++ deallocators (the
operators delete and delete[]) in their global and class-specific forms. The focus of
the chapter is not the object orientation of C++ classes but rather the aspects of object
creation and destruction related to memory. Similarly, in Chapter 9 we discuss linked
data structures but not from the usual point of view (i.e., their definition, behavior,
implementation, and applications); instead, our point of view is related to memory (i.e.,
how to move linked data structures in memory, to or from a disk, or across a
communication channel). Chapter 10 is devoted to a classification of the most frequent
problems leading to memory leaks and their detection and remedy for both C and C++

programs.

We started our discussion with operating system topics related to programs -
compilation, linking, and loading - in Chapter 2, and in Chapter 11 we finish our book by
again discussing operating system topics related to programs in execution: processes
and threads, and how they relate to memory. Of course, this chapter must be more
operating system-specific, so some notions (e.g., the system call fork() and the
sample code) are specific to UNIX.

Finally, in the appendices we present some complete code and discuss it briefly. In
Appendix A we describe the Hanoi towers puzzle and provide a simple C program
solving it (for completeness, as the puzzle is mentioned in Chapter 5 in relation to
recursion). In Appendix B we present a simple C++ program on which we illustrate
object tracing: how to keep track of objects and of when and where they were allocated
(this includes localization tracing as well). We go through various combinations of turning
the features on and off. In Appendix C, a similar C++ program is used and object
tracing, localization tracing, and memory allocation tracing are all demonstrated.
Appendix B and Appendix C both illustrate debugging of memory leaks as discussed in
Chapter 10. Finally, Appendix D contains process-safe and thread-safe UNIX logging
functions (used in examples throughout the book) that serve to illustrate some of the
topics related to processes and threads discussed in Chapter 11.

Every chapter includes a Review section that contains a brief and condensed description
of the topics covered, followed by an Exercises section that tests whether the reader
has fully grasped the issues discussed. This is followed by a References section,
pointing the reader to sources for examining the issues in more depth. All special terms
used in the book are defined and/or explained in the Glossary, which follows Appendix
D.

I have tried to limit the sample computer code to the minimum needed to comprehend
the issues being illustrated, leaving out any code not relevant to the topic under
discussion. Hence some of the fragments of code within a given chapter are not
complete, though all were tested within larger programs for their correctness.

I wish you, dear reader, happy reading, and I hope that if somebody asks you about it
later you can reply: "if my memory serves, it was a rather useful book".

Chapter 2: From Source File to Executable File

Overview
Transformation of a source file to a load (executable) module. Why we can and do
discuss source programs and their behavior as if they were executing somewhere
in memory in their source form. Concepts of static memory allocation, dynamic
memory allocation, program address space, and program system stack.

It is useful and practical to discuss the behavior (often referred to as the semantics) of a
computer program written in a high-level language like C or C++ as if it were executing
in computer memory in its source form. For instance, the semantics of the statement x =
x+1 might be described as "the value of the variable x is incremented by 1", yet nothing
could be farther from the truth because the program in its source form is a simple ASCII
text file sitting quietly somewhere on a disk doing nothing. On the other hand, speaking
conceptually, this is exactly what happens to the variable x when the program executes -
although, to confuse matters even more, there is no variable x to speak of when the
program is running. In order to understand all of this, we must discuss the process of
compilation, linking, loading, and execution of programs. Most of the facts discussed in
this chapter can be found in various books and texts dealing with compilation and
compilers, operating systems, and computer architecture.

Both C and C++ belong to a family of high-level symbolic languages, meaning that
certain entities in such programs can be referenced by their names (symbols). In C
these entities can be data items called variables (innate data like char or int, or user-
defined structures using the struct construct or the array construct) and functions,
whereas in C++ the data items also include objects (defined by the user via classes) and
functions include class methods. In order to discuss C and C++ as if they were the same
language, we will thus use the term objects to denote innate data, data structures, or
arrays in C and innate data, data structures, arrays, or true objects in C++. The term
function will refer to functions in C and to functions and class methods in C++.

High-level symbolic languages were invented for one and only one purpose: to make it
simpler and more convenient for the programmer to write a program. Toward this end,
such languages exhibit (in highly simplified and reduced form) the syntax and symbolic
character of natural languages. As such they are not suitable for computers that
understand only one language, the machine code in its binary form. The instructions of
machine code can (oversimply) be described as instructions of the type "copy data from
memory to register", "copy data from register to memory", "copy data within memory",
or "do some calculation with data in one or two registers". It is the role of a computer
program known as the compiler to translate the program written in a high-level symbolic
language to the machine code. It is quite standard to call the simple ASCII text file in
which the "sentences" of the high-level symbolic language are stored the source file or
source module. The high-level symbolic language in which the program is written is
customarily referred to as source language, while the program written in the source

language is referred to as source code. The main purposes of the compiler are
translating each complex instruction of the source language into a set of machine
instructions and, of most interest to us, replacing each symbolic reference by an
address reference.

Usually, the result of compilation is a binary file referred to as object file or object
module, in which is stored the object code. Very often the program we are interested in
is divided (for convenience) into a set of many source files, and thus the compiler will
produce a set of object files. Almost any program written in C/C++ uses so-called
standard functions (i.e., subprograms written by others and included with the compiler
for the convenience of its users) that are prepared in object form. Therefore, after
compilation, we are presented with a group of object files. These must be somehow
forged together - in a process known as linking - into a single binary file called the load
file (or load module) or the executable file (module). The careful reader should note
that the term "linking" is commonly but misleadingly used for the whole process, which
actually consists of two distinct phases and activities, relocation and linking; similarly, the
term "compilation" is often used for the whole two-step process of compilation and
linking. See Figure 2.1.

 Figure 2.1: Compilation and
linking

The load module is ready to be executed. The term "load" indicates the main purpose of
the file: it can be loaded into memory (i.e., a complete copy of the file is stored in the
memory with some additional changes to address references in the load module) and
executed. The process of loading is rather complex and so we do not explain it in any
fine detail; instead, we simply paint a broad picture that is relevant to how a program
executes in memory.

Before we can embark on describing the main features of an object module, we must
clarify some important terminology concerning programs written in C and C++
languages. The structure of a C program is rather simple. It is often called a flat-table
approach, when a program consists of at least one function (and possibly more) and
some definitions of objects. In C++ the picture becomes a bit more complicated because
functions, data definitions, and objects can be lumped together into classes, but for the
time being we may ignore this added complexity. Objects defined outside of functions

have storage class static, meaning that they exist for the duration of the execution of the
program. They are often referred to as global objects, for they can be referenced by
their name in any function of the program (with some restrictions) regardless of the
particular source file in which they reside. Confusingly enough, defining a global object
with the keyword "static" does not change its storage class but does make it impossible
for the object to be referenced in a different source file. Objects defined within functions
(or within blocks) are referred to as local objects (i.e., local to the function or to the
block). Their storage class is by default auto, for they are "created" automatically upon
activation of their function and are automatically destroyed upon deactivation of that
function. However, if a local object is defined with the keyword "static" then its storage
class is changed, and it becomes a static object that exists throughout the duration of
the program's execution (yet this does not make it a global object for the purpose of
symbolic reference). Thus, when we speak of static data, we mean all global objects
and all local objects that are defined as static. In Figure 2.2, objects 1–6 are static.

Figure 2.2: Layout of a C/C++ source program and static objects

In order to discuss how an object module is created, we use the following simple C
program. The array a[] represents the initialized (global) static data, the local variable
k in main() represents the initialized (local) static data, and the array b[] represents
the uninitialized (global) static data. The local variable i in main() does not enter our
discussion until the end of this chapter.
 #include <stdio.h>

 int a[10]={0,1,2,3,4,5,6,7,8,9};
 int b[10];

 /* function main ----------------------------------- */
 void main()

 {
 int i;
 static int k = 3;

 for(i = 0; i < 10; i++) {
 printf("%d\n",a[i]);
 b[i] = k*a[i];
 }/*endfor*/

 }/*end main*/

An object module contains all source code statements translated to machine instructions
(this is one of the reasons why an object file must be binary). The header section (see
Figure 2.3) contains the sizes of all the other sections involved - including the size of the
uninitialized data section, which is not created until load time - in order to parse the
object module (because it is a binary file, no binary value can be used to indicate the end
or beginning of a section). We are mostly interested in the initialized data and symbol
table sections.

Figure 2.3: Object module structure

Figure 2.4 shows a simplified version of the object module for the sample program. The
X indicates some binary data whose precise nature is not important and would be overly
technical for understanding the principles behind creation of an object module. An
important aspect for our discussion is the transformation of symbolic references (of the
arrays a[] and b[], the variable k, the function main(), and the standard function
printf()) into address references in terms of offset (distance in bytes) from the
beginning of the object module (or a section). Thus "start executing function x()" will
become "start executing instructions at address y". Likewise, "store value in variable x"
will become "store value at address y" and "get value of variable x" will become "fetch
value from address y".

Figure 2.4: Object module (simplified) of the sample program

The object module of our sample program is then linked together with at least two library
object modules, one for the standard function printf() and the other containing the
code for program termination. In the first phase, relocation, the object files are merged
together and the internal address references within each object module must be updated
to reflect the offset changes brought on by merging all three object modules into one. In
the following phase, linking, external address references in each object module must be
resolved. In our example, the linker must resolve the explicit reference from the object
module of our sample program to the standard function printf() (i.e., replace it by
the appropriate address reference through the offset with respect to the beginning of the
load module being created) in the library object module and also resolve the implicit
reference from the object module of our sample program to program termination code in
another library object module. See Figure 2.5 for a schematic diagram of the whole
process.

Figure 2.5: Creation of load module

The load module (still without the uninitialized data section) represents the abstract
notion of the program address space. The loader finds all the required information about
the program address space in the load module. As mentioned previously, all address
references in the load module are in the form of the offset from the beginning of the load
module. Such addresses are often called relative (or logical) addresses. The loader
and/or operating system must map the logical addresses to physical addresses in the
main memory and then copy the binary information or data to these memory locations.

The process of memory mapping is quite complicated and depends in its technical
details on the particular operating system and hardware platform. In the simplest case,
a logical address is mapped onto a physical address by a simple addition of the logical
address (offset) to the base register (starting address of the loaded program). The
issue of memory mapping is complicated by the fact that most modern operating
systems (like UNIX or Windows) employ virtual memory systems, which allow execution
of programs with address spaces that are larger than the physical memory. Moreover,
such memory systems allow for noncontiguous mapping - that is, two logical addresses
that are consecutive in the logical address space of a program are mapped onto two
nonconsecutive physical addresses. Caching, which is offered by most modern
hardware platforms to speed up the execution of software, further complicates the issue
of memory mapping. As we discuss in Chapter 11 (which covers the fundamentals of
interprocess communication related to memory), shared memory segments are treated
as memory-mapped files, and this makes memory mapping even more complicated.
Figure 2.6 - rather schematic, but sufficient for our purpose - illustrates a program being
loaded into memory.

Figure 2.6: Loading and memory mapping

Notice that the loader "created" the uninitialized data as a part of static data of the
program address space; to do so, the loader only needs to know the section's size,
which is stored in the header section of the load module. We have seen that there is a
well-defined unequivocal process that leads from the source file (or files) to the program
address space. The program address space is mapped also in a well-defined
unequivocal process to various segments in the physical memory. It is thus possible for

us to make a mental quantum leap and discuss the behavior of a program based on its
address space as it is mapped into the memory; this is illustrated in Figure 2.7.

Figure 2.7: From source program to its "placement" in memory during
execution

The code and the static data parts of the program address space were in essence
prepared by the compiler and thus we speak of static memory allocation (or memory
allocation at compile time or memory allocated by the compiler) even though, strictly
speaking, the compiler does not allocate any memory when the program is run. It may
even be the case that, when a program is run, the compiler used to compile the program
no longer exists. The size and structure of code and static data sections will not change
during the execution of the program, though at various times they may be mapped into
various segments of physical memory.

The curious reader may at this point have three questions.

1. Where is the variable i located in the physical memory?

2. What is the stack section pictured in Figure 2.6?

3. What is the dynamic data section pictured in Figure 2.6?

The rest of this chapter is devoted to answering these questions that deal with dynamic
memory allocation.

Both C and C++ are recursive languages. We will discuss this in detail in Chapter 5, but
for now suffice it to say that this allows a function to eventually call itself (it may be a
direct call when a function A() calls the function A(), or an indirect call when a function

A() calls a function B() that calls a function C() ... that calls the function A()). There is
a certain penalty to be paid in speed of execution and memory requirements for
facilitating recursion, but it is more than balanced out by the problem-solving power
gained. The memory role in recursion is what interests us, bringing us to the program
system stack and dynamic memory allocation.

Very often a running program requires more memory than anticipated during its design
or even when its execution begins. Take, for example, a simple program that repeatedly
prompts the user for a word and then stores the word in the memory until the user
enters quit. Nobody can anticipate how much memory will be required. Thus, programs
in general need the ability to request and obtain more memory dynamically - that is,
during the program's execution. We will discuss the details of dynamic allocation and
deallocation in Chapter 4, but for now we simply state that the section marked as
"dynamic data" in the address space of a program (see e.g. Figure 2.6) can be
increased to accommodate the requested increase in memory (using high logical
addresses from the unused logical address space) and properly mapped to the physical
memory, as illustrated in Figure 2.8. This memory allocation is managed by the program
memory manager (which basically is the C allocator malloc() or the C++ allocator
new).

Figure 2.8: Dynamic memory allocation

When a function is called, an activation frame (or activation record)is dynamically
created (i.e., the required memory is dynamically allocated using low addresses of the
unused logical address space and the required data are stored in it) and pushed on the
stack. (Simply stated, a stack is a data structure resembling a deck of cards: you can
only put a new card on the top of the deck, which is called operation push, or remove
the top card from the deck, which is called operation pop.) The activation frame of the
function is its "address space", and all local automatic variables are "located" there. That
is why the variable i in our sample program has not figured in our discussion so far. It is

located in - and is part of the activation frame for - the function main(). The compiler
translates the symbolic references of the variable i to address references relative to the
beginning of the activation frame. Thus, when a function is called many times, there will
be many unrelated activation frames on the stack for that function and hence many
unrelated copies of the local variables of that function.

We conclude with a short note: For the purist, a program in execution is usually called a
process. Therefore, it would be more precise to talk of "process address space",
"process memory management", and a "process system stack". We will use such proper
terminology in later chapters, but in this introductory chapter we really wanted to focus
on what happens to a program and did not wish to sidetrack a reader not well versed in
operating system terminology. For the sake of simplicity, we will often refer to the
"system stack" instead of the "process system stack".

Review
A program written in C/C++ is stored in one or more source modules as plain ASCII text
files. These are compiled into object modules. Because we are focused on all memory-
related aspects of this process, we emphasize the fact that all symbolic references from
the source program are replaced by address references in the object module; the
address references are in the form of logical (or relative) addresses, which represent
the location of an object as the offset (distance) from the beginning of the load module
(or an activation frame for a local object). During relocation and linking, all object
modules are "forged" together into a single load module. During that process, all logical
addresses are updated vis-à-vis the beginning of the new load module being created.
This load module contains all information about what the abstract program address
space should look like.

When we request the operating system to execute a program, its load module is loaded
into memory - that is, the program address space is created and mapped to physical
addresses. Now the program can be executed one instruction at a time, in the usual
way. Thus, on a certain level of abstraction, we can pretend that the C/C++ instructions
of the source program are mapped onto sets of machine instructions stored in the
memory and that data (variables, objects, etc.) of the program are mapped to
appropriate segments of the memory. (Static data - i.e., global objects and local objects
defined with the storage class "static" - are mapped into the static data region of the
program's memory, while dynamic data are mapped into the dynamic data region of the
program's memory.) This level of abstraction is useful for discussions of programs and
their semantics. Each object in a program thus corresponds to a well-defined segment
of memory, and the program's instructions merely modify these objects; that is, the
instructions either read the data from or store new data in these memory segments.

Exercises
2.1 In a C/C++ program, can you define a global variable that is not accessible by a
certain function?

2.2 Can a global variable in a C/C++ program be located in the static data section of the
object module of the program? Can it be located in the dynamic section of the load
module?

2.3 What is the difference between logical address and physical address?

2.4 What is the difference between object module and load module?

2.5 What does "address space" refer to?

2.6 What is the system stack for?

2.7 Why does the load module have no dynamic data section even though the address
space does?

2.8 The statements of a C/C++ program are translated by the compiler to machine
instructions. Where are these instructions stored?

2.9 Is there any difference between linking and relocation? If so, describe it.

References
Some very good contemporary textbooks on principles of operating
systems:

Crowley, Ch., Operating Systems, A Design-Oriented Approach, Irwin/McGraw-
Hill, New York, 1997.

Silberschatz, A.,Galvin, P. B., and Gagne, G., Operating System Concepts, Wiley,
New York, 2002.

Stallings, W., Operating Systems - Internals and Design Principles, Prentice-Hall,
Englewood Cliffs, NJ, 2001.

Tanenbaum, A. S., Modern Operating Systems, Prentice-Hall, Englewood Cliffs,
NJ, 2001.

An excellent text (recommended in several chapters of this book) that is
focused on C++ and includes topics on effective memory management:

Sutter, H., Exceptional C++, Addison-Wesley, Reading, MA, 2000.

Fundamentals of compilers principles and techniques; an oldie, but still the
best text around:

Aho, A. V.,Sethi, R., and Ullman, J. D., Compilers - Principles, Techniques, and
Tools, Addison-Wesley, Reading, MA, 1988.

Other texts on the fundamentals of compiler principles and techniques:

Pittman, T., and Peters, J., The Art of Compiler Design, Theory and Practice,
Prentice-Hall, Englewood Cliffs, NJ, 1992.

Waite, W. M., and Carter, L. R., An Introduction to Compiler Construction,
HarperCollins, New York, 1993.

Fundamentals of computer architecture:

Hamacher, C.,Vranesic, Z., and Zaky, S., Computer Organization, McGraw-Hill,
New York, 2002.

Hennessy, J., and Patterson, D., Computer Architecture: A Quantitative
Approach, Elsevier, New York, 2002.

Murdocca, M., and Heuring, V. P., Principles of Computer Architecture, Prentice-

Hall, Englewood Cliffs, NJ, 1999.

Stallings, William, Computer Organization and Architecture - Principles of
Structure and Function, Prentice-Hall, Englewood Cliffs, NJ, 1996.

Fundamentals of programming languages:

Clark, R. G., Comparative Programming Languages, Addison-Wesley, Reading,
MA, 2001.

Mitchell, J. C., Concepts in Programming Languages, Cambridge University
Press, 2002.

Pratt, T. W., and Zelkowitz, M. V., Programming Languages - Design and
Implementation, Prentice-Hall, Englewood Cliffs, NJ, 2001.

The Internet is an excellent source for technical details about memory and
memory management in various operating systems, but there is no
guarantee of how the links will be maintained in the future:

Gorman, M., "Code Commentary on the Linux Virtual Memory Manager",
http://www.csn.ul.ie/~mel/projects/vm/guide/pdf/code.pdf.

Gorman, M., "Understanding the Linux Virtual Memory Manager",
http://www.csn.ul.ie/~mel/projects/vm/guide/pdf/understand.pdf.

Myers, N. C., "Memory Management in C++", C++ Report, July/August 1993 (part
1) and December 1993 (part 2); also at
http://www.cantrip.org/wave12.html.

Russinovich, M., "Inside Memory Management", part 1, Windows & .NET
Magazine, http://www.winntmag.com/Articles/Index.cfm?
IssueID=56&ArticleID=3686.

Russinovich, M., "Inside Memory Management", part 2, Windows & .NET
Magazine, http://www.winntmag.com/Articles/Index.cfm?
IssueID=58&ArticleID=3774.

An excellent site for links concerning technical knowledge of memory
management for various operating systems:

http://www.memorymanagement.org.

http://www.csn.ul.ie/%7Emel/projects/vm/guide/pdf/code.pdf
http://www.csn.ul.ie/%7Emel/projects/vm/guide/pdf/understand.pdf
http://www.cantrip.org/wave12.html
http://www.winntmag.com/Articles/Index.cfm?IssueID=56&ArticleID=3686
http://www.winntmag.com/Articles/Index.cfm?IssueID=58&ArticleID=3774
http://www.memorymanagement.org/

Chapter 3: Variables and Objects; Pointers and
Addresses

Overview

Variables as "data containers" with names. Values as data -
simple (innate or elementary) data, structures, and objects.
Referencing variables through pointers. Unnamed "data
containers" and their referencing through pointers. The dual role
of pointers as address holders and binary code "interpreters".
Various interpretations of the contents of a piece of memory.
Pointer arithmetic. Why C/C++ cannot be interpreted in a
platform-free manner like Java can. Why C/C++ cannot have a
garbage collector.

During the execution of a program, a variable of the program corresponds to a location in
memory, and the address of that location replaces all symbolic references to the variable in
the load module. This is one of the important facts touched upon in Chapter 2 when we
discussed why we can behave as if the program in its source form executes in the memory.
In this chapter we will refine this notion and discuss its consequences.

The idea of variable as "data container" is very natural. In its
crudest form we can imagine a variable to be a box, and whatever is
in the box is the value of that variable. If we want to evaluate the
variable (i.e., find its value), all we need do is look in the box and
see what is in there; when we want to store something in the
variable, we simply put it into the box. In fact, this crude notion is
not that far from reality.

Instead of a box, a variable corresponds to a segment in memory.
The contents of that segment - or, more precisely, the binary code
stored in that segment - is the value of the variable. If a program
needs to evaluate the variable, it must fetch or read the binary code
stored in that memory segment and then interpret it as the
appropriate value. If a program needs to store a value in a variable,
is must first convert the value to the appropriate binary code and
then store the binary code in the memory segment that corresponds
to the variable.

There are several important issues to ponder in the previous
paragraph alone.

The first important issue concerns binary codes. Memory can store only binary codes. Yet

even the C language requires several different data types: characters, integers, floats, and
so forth. Thus, different kinds of data must be converted to binary code in different ways.
This is why a compiler, when dealing with a particular data type, must first include
instructions to perform the conversion (or do the conversion itself if possible) to the
appropriate binary code before it can include instructions for storing it in memory or using it
in any way.

The second important issue concerns the size of the memory
segment that corresponds to a variable, and hence the length of the
binary code stored there. As stated previously, each symbolic
reference in the source code is replaced by an address reference of
the the beginning of the segment that corresponds to it (we will
refer to this as the "address of the variable"). But there is no record
of where the segment ends, so how does the computer know if it is
to fetch 1 bit, 10 bits, or 100,000 bits? The solution is rather simple,
though with poignant consequences. Each particular data type has a
definite size. That size may differ from platform to platform, but for a
particular platform it is fixed and unchangeable. For example, char
has the size of 1 byte on any machine, while int may have the size
of 2 bytes on the old 16-bit machines or the size of 4 bytes on
today's most common 32-bit machines (and will be the size of 8
bytes on the coming 64-bit machines). We will use the term "size of
variable" for the size of the memory segment that corresponds to it,
which in turn is determined by the data type of the variable.

One of the major consequences of a definite size for each data type
is a kind of "physical" aspect of the behavior of variables. Just like a
physical box, a memory segment of a definite size cannot be used to
store something that is "bigger". With a box it is physically
impossible (without either breaking the box or the item being stored
therein), but with a segment of memory the situation is different.
We could choose different strategies for attempting to store a binary
code longer than the size of the variable, a problem commonly
referred to as overflow. One strategy for dealing with overflow is to
prevent it by truncating the code to fit the space; another is to treat
it as an error or exception; and yet another is simply to let it happen
and try to store the longer binary code at that address anyway.

The C and C++ languages employ a mixed strategy: should overflow occur as a result of a
numeric operation (sort of left-end overflow), it is prevented by truncation; otherwise (sort

of right-end overflow), it is allowed to happen and the binary code is stored "as is",
regardless of the consequences (for which the programmer is held ultimately responsible).

Thus, the result of incrementing a value of a variable may be larger than the variable and
hence truncated. Let us discuss the following simple for-loop.

char i;
...
for(i = 0; i < 256; i++)
 printf("%d\n",i);

Though seemingly correct, it is an infinite (i.e., never-ending) loop. The problem is caused
not by the logic of the loop nor by the mathematical abstraction of the loop but rather by the
"physicality" of the variable i as represented by a memory segment. Since i is of data type
char, it follows that i has the size of 1 byte. Hence i attains the value of 255 when the
binary code stored in it is 11111111. When i is incremented by 1, the code 11111111
should be replaced by 100000000, but the leftmost bit is truncated and so 00000000 is
stored in i. The value of i ranges from 0 to 255, and after reaching 255 the next value is
zero again (like odometers in cars). Thus, i will never reach the terminating value of 256 and
so the loop goes on for ever and ever, or until the program is terminated from the outside (a
more likely scenario). A good compiler should alert us to the possible danger and give a
warning message that we are comparing distinct data types (char on the left-hand side is
being compared to int on the right-hand side in the expression i < 256) and that it could
be risky (or better yet, that the expression is always true). But not all compilers are good,
and many programmers completely ignore warning messages or leave too many seemingly
harmless warning messages unattended, so that an occasional important warning message
is overlooked. Furthermore, the operator < may be overloaded for this particular
combination of data types and hence no warning message will be produced by any compiler
(of course the overloading of < could not be done in C++ for this trivial example, since
classes or enumerated types would have to be involved instead of elementary data types,
but the principle is the same).

The same problem can manifest itself in an even more innocuous
form that would not be detected by a compiler unless it is set to
report all potential overflow errors. The code

 char i;
 int j;
 ...
 i = 255;
 ...
 i++;
 ...

 j = 510/i;

will crash the program (i.e., the operating system will terminate its
execution) because the value of the variable i is 0 when the division
is performed. Syntactically, everything is absolutely correct; there is
nothing obvious a compiler could flag as potentially dangerous.
Logically and mathematically it is correct. The only trouble is the
definite size of i as a piece of memory, which results in i
inadvertently having a zero value owing to overflow.

We have just illustrated that n incremented by 1 does not
necessarily have the value of n+1. This is something that we all take
for granted. Thus, numbers as they are represented in memory are
not a very faithful model of the abstract numbers we are used to.
They are sufficient for a wide variety of applications, but they must
be treated with respect and understanding to prevent programs
from being unreliable in their performance and in the results they
produce. The notion of variables as "data containers" or "memory
segments" of definite sizes is helpful for avoiding errors like the ones
just shown.

The other C/C++ strategy - of right-end overflows being ignored - is even more significant.
Consider the following fragment of a simple program:

 char i;
 int* p = (int*) &i;
 ...
 *p = 1234567892;
 ...

No compiler will complain; everything seems fine. Yet clearly we are
storing a binary code for the integer value 1234567892 that takes
32 bits (01001001100101100000001011010100) at the address of
the variable i that has the size of 8 bits (see Figure 3.1).

 Figure 3.1: Overflow

There are several possible outcomes.

1. If the whole part X of the memory in Figure 3.1 belongs to the running program
(process), then:

1. if X does not contain any data important for the rest
of the execution of the program, then the program
runs fine and there is no apparent problem;

2. if X does contain important data that are overridden
by the 100101100000001011010100 tail of the
binary code but by pure chance this does not change
anything (as the data stored therein just happened to
be the same), then the program runs fine and there is
no apparent problem;

3. if X does contain important data that are overridden and thus changed,
then

1. incorrect results may be produced or

2. the program may crash with all kinds of
possible error messages.

2. If all or part of X belongs to some other process, then the program is terminated
by the operating system for a memory access violation (the infamous UNIX
segmentation fault error).

Any of these situations could occur at any time during execution, and the program's user
has no control over the circumstances. Such a program exhibits erratic behavior: sometimes
runs fine, sometimes runs wrong, sometimes crashes for one reason, another time crashes
for a different reason. In fact, an erratically behaving program should immediately be
suspected of a hidden problem with memory access.

All these troubles just for trying to store an int value at the location of a char variable? A
most emphatic Yes! The notion of variables as "data containers" or "memory segments" is
again helpful in preventing such problems.

The sizeof operator can be used to calculate the size in bytes either of the result of an
evaluation of an expression (sizeof expr) or a data type (sizeof(type)). The size calculation
is performed during compilation and hence according to whatever platform the program is
being compiled on, and this becomes an important aspect of portability. In particular, the
size of a variable x can be calculated by sizeof x or sizeof(x) expressions. On a typical
32-bit machine, the C/C++ innate (or built-in or elementary or fundamental) data types
have the following sizes:

char and unsigned char values and variables have the size of 1 byte;

short and unsigned short values and variables have the size of 2 bytes;

int and unsigned int values and variables have the size of 4 bytes;

long and unsigned long values and variables have the size of 4 bytes;

float values and variables have the size of 4 bytes;

double values and variables have the size of 8 bytes;

any pointer value or variable has the size of 4 bytes.

In C/C++ programs one can define more complex data values and "data containers"
(commonly called structures or records, though the latter term has lately become obsolete)
using the struct construct. This construct can be used recursively (hierarchically), allowing
us to explicitly describe how a structure consists of simpler or elementary components.

 struct {
 char a;
 int b;
 }x;

The structure variable x consists of two components: the first,
named x.a, has data type char and so has a size of 1 byte; the
second, named x.b, has data type int and so has the size of 4 bytes.
The memory of a structure is contiguous. This simple example brings
us to the topic of padding.

The memory usually cannot be accessed one bit or byte at a time.
Its physical realization most commonly allows an access by one
"machine word" at a time. Thus, when the computer is fetching the
value of x.a from memory, it must in fact fetch the whole machine

word of which x.a is a part. The same is true for storing; when the
computer is storing a new value in x.a, the whole machine word
must be stored anew in memory.

If the structure x were placed in the memory improperly (see Figure
3.2) then access to x.b would be rather inefficient, for fetching the
value from or storing a value in x.b would require fetching or storing
two machine words, even though x.b on its own would fit into a
single machine word. It is much more efficient to waste some
memory and align the components with machine-word boundaries in
the physical memory, as indicated in Figure 3.3.

Figure 3.2: A structure improperly placed in memory

Figure 3.3: A structure properly placed in memory with the use of
padding

Now, access to x.a or x.b requires a single memory access. The
inclusion of this extra (otherwise unused) memory by the compiler is
called padding, and the data stored in it are never accessed by the
program and thus are complete junk, so in that respect the memory
is wasted. The only purpose of padding is to align items of the
structure with machine-word boundaries for efficient memory
access. From a logical point of view the padding does not matter.
But it does affect the size of a structure, and since it depends on the
platform and the compiler, the same structure may have different
sizes on different machines or when compiled by different compilers.

A frequent error of ignoring padding is illustrated by the following
fragment of code. Such an error may lead to erratic behavior of the
program due to an overflow, as discussed previously.

 struct mystruct {
 char a;
 int b;
 };
 ...
 ...
 void copy(void*,void*); /* prototype */
 ...
 ...
 char* p;
 struct mystruct x;
 ...
 p = malloc(5);
 ...
 copy(p,&x);
 ...

The programmer has calculated the size of mystruct to be 5 bytes, yet with padding the
size of mystruct is 8 bytes. In the program, 5 bytes are allocated for a copy of the variable
x, but when the contents of x are copied to the location that p points to, this causes an
overflow because the function copy() correctly copies 8 bytes.

It should be noted that the previous code fragment also illustrates
the common programming problem of using inconsistent conceptual
levels. The programmer of the code fragment is dealing
inconsistently with mystruct on two distinct conceptual levels: as a
structure consisting of various components, and as a contiguous
segment of memory or buffer. The function copy() is dealing with
mystruct in a consistent manner, as a buffer with size 8 bytes.

Using the sizeof operator would remedy the overflow problem,

 struct mystruct {
 char a;
 int b;
 };
 ...
 ...
 void copy(void*,void*); /* prototype */
 ...
 ...
 char* p;

 struct mystruct x;
 ...
 p = malloc(sizeof(struct mystruct));
 ...
 copy(p,&x);
 ...

though it does not address the problem of using inconsistent conceptual levels. The most
consistent and hence the safest approach is to deal with mystruct as a structure only and
leave the compiler to deal with it entirely:

 struct mystruct {
 char a;
 int b;
 };
 ...
 ...
 struct mystruct* p;
 struct mystruct x;
 ...
 p = malloc(sizeof(struct mystruct));
 ...
 *p=x;
 ...

The following code shows another error of ignoring padding (and
using inconsistent conceptual levels) that may lead to incorrect
results:

 struct mystruct {
 char a;
 int b;
 };
 ...
 ...
 void bytecopy(void*,void*,int);
 ...
 ...
 char* p;
 struct mystruct* p1;
 struct mystruct x;
 ...
 p = malloc(sizeof(struct mystruct));

 ...
 bytecopy(p,(char*)&x.a,1);
 bytecopy(p+1,(char*)&x.b,4);
 p1 = (struct mystruct*) p;
 ...

Here the value of item p1->a is correct (the same as x.a), but the
value of p1->b is incorrect because bytecopy(s1,s2,n) copies n bytes
from s2 to s1.

We have illustrated that improper programming and ignoring padding can lead to errors.
However, ignoring padding can itself lead to inefficient use of memory:

 struct mystruct1 {
 char a;
 int b;
 char c;
 }

requires 12 bytes on a typical 32-bit machine, while

 struct mystruct2 {
 char a;
 char c;
 int b;
 }

requires only 8 bytes.

In Chapter 8 we will discuss classes and objects of C++ and their relation to memory in
detail. At this point let us state that objects without methods are in fact very much like
structures created by the struct construct. In fact, struct in C++ is treated as a class with
no explicit methods and with all members being public. Nevertheless, for the purpose of our
discussion of the memory aspects of variables, this has no relevance and thus all we have
said about structures almost fully applies to objects as well.

Memory can never be empty. Therefore, when a variable is created as a "data container", it
cannot be empty. The value of the variable is then arbitrary because the contents of the
container are arbitrary, depending on circumstances that are totally beyond the
programmer's control or prediction. It is a common error to leave a variable uninitialized or
unset and then use it in an expression, which leads to incorrect results or crashing
programs. A good compiler, though, can detect the first use of an uninitialized or unset
variable in an expression and issue a warning message.

It may be important to know the logical address of a variable (e.g.,
in C it is used to emulate passing of arguments by reference; see
Chapter 5). Of course, the address can only be known at the time of
compilation. A C/C++ address operator & allows us to obtain that
address in the form of an appropriate pointer (more about pointers
later). We used it to pass the address of x.a or the address of x.b in
the call to bytecopy() and to pass the address of x in the call to
copy() in the previous code samples.

In order for a program to work with a "data container" it must know three attributes of that
container: its address, its size, and its coding. The last two are determined by the data type
of the container, so in a sense we need only two attributes: address and data type. During
compilation, the compiler keeps tabs on variables in its symbol section and consequently
knows all the attributes. Since each symbolic reference is ultimately replaced by an address
reference, it is natural to consider whether we could reference the data containers directly
by address and so avoid giving them explicit names. Having data containers without explicit
names is crucial if we want to create them dynamically during program execution. For that
we must somehow supply both attributes. This is the main purpose and role of the special
values and variables in C and C++ called pointers. A pointer as a value is a simple address,
and a pointer as a variable is a simple data container to hold an address. Moreover, the
data type of the pointer determines the type of the data container being referenced via that
pointer. The exception is void*, which represents just a plain address with no data type
reference. We say that a pointer points to address x if the value of the pointer is x (see
Figure 3.4).

Figure 3.4: A pointer points to a memory location

Notice the subtle distinction: a pointer points to an address (a single byte), not to a data
container of any kind. To determine what "lies at the end of the arrow" we must know the
data type of the pointer, and (as indicated in Figure 3.5) a "virtual data container" of the
same type is expected at the end of the arrow.

Figure 3.5: A pointer points to a "virtual data
container"

Referencing of a data container through its pointer is done by the indirection operator *,
and this operation is often called dereferencing of the pointer. If used as a so-called l-value
(roughly speaking, a value that can occur on the left-hand side of the assignment
expression, indicating storage), then dereferencing translates as "store the appropriate
binary code for the data type at the address the pointer is pointing to":

 char* p;
 ...
 *p = 'A';

More precisely, this example translates as "store the 8-bit ASCII binary code for character
'A' at the address stored in p". In any other context, dereferencing translates as "fetch the
binary code of the appropriate length from the address the pointer is pointing to":

 char* p;
 char x;
 ...
 x = *p;

More precisely, this code translates as "fetch the binary code of length 1 byte from the
address stored in p and store it in the variable x".

Pointers and their dereferencing are powerful programming features. Not only do they make
it possible to access any memory location, they also make it possible to interpret the binary
code stored in a certain memory location in different ways. My favorite "tricky" question for
beginning computer science students is depicted in Figure 3.6.

Figure 3.6: What is the value stored in the four bytes starting at
address 802340?

If you, dear reader, did not answer "I cannot tell", then you should brush up on the
fundamentals of C programming. The truth is that the binary code stored in the four bytes
starting at location 802340 can be interpreted in various ways; that is, the value is "in the
eye of beholder". The value could be interpreted as two short integer values 16916 and
17475 in a row, or as an integer value of 1145258561, or as a float value of 781.035217,
or as four consecutive characters 'A', 'B', 'C', and 'D' in a row, and so on. Somebody may
run the program code given next and come up with different values than given here.

This discrepancy is related to byte order - the order of significance of
bytes. Imagine a 2-byte short integer with value 1. One byte
contains all 0s, while the other byte contains all 0s and a single 1. In
the big endian byte order, the byte with all 0s (the more significant
byte) is on the left, while the byte with 1 (the less significant byte)
is on the right. The little endian byte order is reversed: the less
significant byte is on the left, while the more significant byte is on
the right. The same applies to data of more than 2 bytes such as
long integers.

For networking purposes (to establish in what order to transfer data
across a network), the standard network byte order is defined as
the big endian order. For the reasons just discussed, we have
included a run-time check for "endianess" in the following sample
program, which illustrates the technique of interpreting the contents
of memory in different ways.

#include <stdio.h>

char* Bits(char c);
int AmBigEndian();

 /* create a segment of static memory with the right data */
 char a[4] = {'A','B','C','D'};

/* function main --- */
int main()
{
 char* b = a; /* b points to the beginning of a */
 short* s = (short*) s; /* s points to the beginning of a */
 int* p = (int*) a; /* p points to the beginning of a */
 float* f = (float*) a; /* f points to the beginning of a */

 if (AmBigEndian())
 printf("I am big endian\n");
 else
 printf("I am little endian\n");

 /* show the data as a sequence of bits */
 printf("%s",Bits(a[0]));
 printf("%s",Bits(a[1]));

 printf("%s",Bits(a[2]));
 printf("%s",Bits(a[3]));
 putchar('\n');

 /* show the data as 4 characters */
 printf("'%c','%c','%c','%c'\n",*b,*(b+1),*(b+2),*(b+3));

 /* show the data as 2 short integers */
 printf("%d,%d\n",*s,*(s+1));

 /* show the data as 1 integer */
 printf("%d\n",*p);

 /* show the data as 1 float */
 printf("%f\n",*f);
 return 0;

}/*end main*/

/* function Bits --- */
char* Bits(char c)
{
 static char ret[9];
 int i;

 i = (int) c;
 if (!AmBigEndian()) i=i>>24;

 ret[0] = ((c&128) == 128)+'0'
 ret[1] = ((c&64) == 64)+'0'
 ret[2] = ((c&32) == 32)+'0'
 ret[3] = ((c&16) == 16)+'0'
 ret[4] = ((c&8) == 8)+'0'
 ret[5] = ((c&4) == 4)+'0'
 ret[6] = ((c&2) == 2)+'0'
 ret[7] = ((c&1) == 1)+'0'
 ret[8] = '\0';

 return ret;
}/* end Bits */

/* function AmBigEndian ------------------------------------ */
int AmBigEndian()

{
 long x = 1;
 return !(*((char *)(&x)));
}/* end AmBigEndian */

When executed on a big endian machine (most UNIX boxes), this
program will give the following output:

 I am big endian
 'A','B','C','D'
 01000001010000100100001101000100
 16706,17220
 1094861636
 12.141422

while on a little endian machine (Intel processors) the output is

 I am little endian
 'A','B','C','D'
 01000001010000100100001101000100
 16961,17475
 1145258561
 781.035217

A crude yet useful analogy can be made: a pointer has two
attributes. First, it points to a memory location, and second, it wears
"data type glasses" - wherever it points, there it sees (through
these "glasses") a virtual data container of the data type of the
"glasses". The pointer "sees" the data container there no matter
what, which is why we call it a "virtual" data container. This
segment of memory might have been defined as that kind of data
container or it might not; it makes no difference, as the sample
program shows. The pointer b looks at the address 802340 and
through its char "glasses" sees a char data container of 1 byte
there (see Figure 3.7). The pointer s looks at the address 802340
and through its short "glasses" sees a short data container of 2
bytes (Figure 3.8). The pointer p looks at the address 802340 and
through its int "glasses" sees a int data container of 4 bytes (Figure
3.9). The pointer f looks at the address 802340 and through its
float "glasses" sees a float data container of 4 bytes (Figure 3.10).

Figure 3.7: Looking through char* "glasses" at a char virtual data
container

Figure 3.8: Looking through short* "glasses" at a short virtual
data container

Figure 3.9: Looking through int* "glasses" at an int virtual data
container

Figure 3.10: Looking through float* "glasses" at a float virtual
data container

The analogy of virtual data containers makes the pointer arithmetic relatively simple and
clear. Pointer arithmetic expressions should always have the form of "pointer ± nonnegative
integer". The semantics of p+n is: "the address of the beginning of nth data container to the
right of where p is pointing now"; more formally, the address is calculated as
p+n*sizeof(X), where X is the data type of the pointer p. Likewise, the semantics of p-
n is: "the address of the beginning of nth data container to the left of where p is pointing
now"; more formally, the address is calculated as p-n*sizeof(X). Thus, the arrow
where a pointer points can only move in discrete steps, from the beginning of one virtual

data container to the beginning of another. It should come as no surprise that void*
pointers cannot be involved in pointer arithmetic (of course, there are some compilers that
may complain but still evaluate pointer arithmetic expressions involving void*, which they
treat as if it were char*).

How are the pointers set? There are many ways to do it, but four
are rather common, basic, and relatively safe.

1. A pointer is set with an address of a dynamically allocated memory segment
either through malloc(), calloc(),or realloc() (in both C and C++) or through
new or new[] (in C++) - mostly used to create dynamic objects and linked data
structures.

2. A pointer is set with an address of a named object through the address operator
& - mostly used to emulate passing by reference in C function calls.

3. A pointer is set with an address calculated from its own value and/or value(s) of
another pointer(s) -mostly used to traverse linked data structures.

4. A pointer is set with a special address - mostly used in
system programming for memory-mapped I/O operations and
the like.

What do we mean by "relatively safe"? If a pointer points to a
location in memory that does not belong to the running program and
if an attempt is made to store any value there, then most modern
operating systems will terminate the program immediately for a
memory access violation. It is clear that pointers set in ways 1 and
2 are safe in the sense that they point to a location within the
program's own memory space (as long as the allocation is properly
checked for failure). Number 4 is possibly dangerous, as the pointer
is set to a literal value and hence could be set to anything. But
system programming is not that common and is usually done in a
well-understood context by specialized system programmers; also, it
is usually easy to detect such errors, so in this sense number 4 is
not a source of big problems. It is number 3 that constitutes the
biggest source of possible memory access violations: the calculations
may be incorrect, leading to incorrect locations being pointed to.
Since the actual value of the pointer that caused the violation may
only be known at the moment of executing the expression of which

it is a part, these errors can only be detected and debugged at run
time.

There are two common situations associated with pointers that lead to memory access
violations. In the first, the uninitialized pointer, a pointer is not initialized or set and so it can
point to any random location (as discussed previously for uninitialized or unset variables).
An attempt to store something at the location the pointer is pointing to may result in a
memory access violation. The other situation is the dangling pointer (or dangling
reference). If a pointer is pointed to an object that is later deallocated, the pointer is left
dangling (i.e., pointing to a previously meaningful address that is no longer meaningful).
There are two ways for dangling to happen, explicit and implicit. In the explicit way, the
pointer is first pointed to a dynamically allocated segment that is later explicitly deallocated
without resetting the pointer appropriately. In the implicit way, the pointer is first pointed to
a local object that is then later deallocated (as a part of the activation frame) when its
function terminates, again without appropriate resetting of the pointer.

It has already been mentioned that a memory segment cannot ever be empty. This brings
us to the notion of a null pointer, a pointer that points nowhere. An "empty" pointer would be
ideal but is not possible, so we must find a possible address to mean null. Since it is
standard to reserve the lowest memory addresses for the operating system, no application
program ever stores anything at the very first byte - the byte with address zero. Thus we
can (and do) use the value of 0 as meaning "no address whatsoever". The C language
makes a conceptual distinction: in the stdio.h header file, a value NULL is defined (to be
actually '\0'). We can thus compare the value of pointer p with NULL or set p to NULL,
because the compiler expands '\0' to the appropriate value. However, the stricter C++
compilers treat such expressions as a type mismatch, and thus it is usually the best to
simply use 0 for null pointers; it does not stand out as nicely as NULL, but at least it does
not irritate the compiler. Lately the definitions of NULL have started to vary, using 0 or
(void*)0. In such cases, strict ANSI or C++ compilers have no problems dealing with
NULL.

A program written in a programming language does not necessarily have to be compiled
before it can be executed; instead, it may be interpreted. The interpretation is done by a
special program (interpreter) that reads the source statements, parses them, understands
them, and executes the necessary instructions to achieve the same goals as the original
source statements. It is clear that interpretation imposes certain restrictions on the
expressiveness of the language (the language constructs can only allow actions that the
interpreter is capable of) and that it is slower in execution when compared with compiled
programs (the parsing and understanding of the source statements is done at run time
rather than compile time). On the other hand, as long as you have the right interpreter on a
machine, any program can be run there. The Java designers opted for this platform-free
portability. To alleviate the problem with the speed of execution, Java programs are first
compiled to byte code and then interpreted by the Java virtual machine interpreter, which

greatly improves the speed of execution. Nevertheless, our comment about restrictions
imposed on a language designed for interpretation still applies.

There is a price to pay for the power of pointers and dereferencing: it allows so much
flexibility that it would be virtually impossible to design an interpreter capable of dealing with
them. Their use makes C/C++ programs possibly too platform-oriented. For instance,
special address locations for memory-mapped I/O operations are highly dependent on the
particular platform and could be totally meaningless on any other platform. Such a program
cannot and should not be made portable. Thus, any possible C/C++ interpreter would have
to be platform-specific in its capabilities, voiding the main advantage of interpretation while
leaving the disadvantages in place.

In Chapter 4 we will discuss dynamic memory allocation in more
detail. From our discussion of pointers it should be clear that explicit
dynamic memory allocation is fraught with a number of perils. In
Chapter 10 we will discuss memory leaks resulting from improper
memory deallocation. Simply put, having explicit memory allocation
and deallocation gives C/C++ programs immense flexibility while
keeping overhead to a minimum, but it opens the door to many
possible problems.

The Java designers opted for a different strategy. Java does not
allow any explicit memory allocation and deallocation, all allocations
are done implicitly through reference variables, and the deallocation
takes place automatically through garbage collection. The principles
of garbage collection are simple: every portion of dynamically
allocated memory has been allocated through a symbolic reference
and so, as long as it is being referenced by an object, the garbage
collector leaves it intact. But when memory is no longer referenced
by any "live" object, the garbage collector can deallocate it. This
strategy removes quite a few problems with memory access, but it
requires explicit symbolic referencing (and hence no pointers).
Besides that, the garbage collector can kick in any time more
memory is needed, degrading the performance of a program at
unpredictable moments.

Thus pointers prevent C/C++ from having a built-in garbage collector. This does not mean
that you cannot write your own garbage collector (or download somebody else's) and then
have all your programs written in compliance with the requirements of the garbage
collector. Rather, this means that garbage collection cannot be a generic feature of C/C++
compilers that is transparent to programmers as it is, for example, in Java.

Review
A variable in a C/C++ program can be conveniently viewed as an appropriate "data
container" of a definite size. In this (and the previous) chapter we have discussed this
container as a segment of memory. The address of the segment (i.e., the address of its
first byte) is referred to as the address of the variable and the length of the segment as
the size of the variable. The symbolic references to the variable in the source program
are replaced by the compiler with the address references to that segment. The data
type of the "container" determines which binary code is used to store the value or to
interpret the value stored there.

Pointers are special values and variables with two attributes - the first is an address, the
other is a data type. Thus a pointer determines which location in the memory we are
referencing as well as how to interpret the binary code at that location. In essence,
looking through the pointer's eyes, we can see where it points to a "virtual object" of the
appropriate data type. Thus, pointers allow us to interpret the contents of a memory
segment in various ways and to reference such virtual objects without using their names
or even giving them names. This gives C/C++ programs a lot of flexibility and problem-
solving power, but on the other hand it can be dangerous (since dangling or incorrectly
set pointers cause memory access faults) and in general prevents C/C++ programs
from being portable or interpretable in a Java-like platform-free manner.

Explicit dynamic memory allocation and deallocation goes hand in hand with pointers,
putting the onus for memory handling on the programmer. This has both positive and
negative consequences: memory handling can thus be made predictable and highly
efficient, but it can also end up being unpredictable, inefficient, or (even worse) outright
incorrect. The infamous "memory leaks" are result of such improper handling of memory
allocation and deallocation: not all the allocated (but no longer needed) memory is
deallocated and hence, as the program executes, the unused yet allocated memory
keeps accumulating to the point of becoming detrimental to the running program, other
running programs, or even the operating system. Thus, in a general setting, C/C++
cannot have a garbage collector - unless you are willing to refrain from a free-format
explicit memory allocation in favor of a restricted allocation handled through mechanisms
with which your custom-made garbage collector can work.

Exercises
3.1 While compiling a C program, the GNUC compiler gave us the error message
"warning: comparison is always true due to limited range of data
type". Does this message warrant a closer inspection of the statement it refers to, or can it
be safely ignored? If you think that it cannot be safely ignored, give an example of where it
may be essential.

3.2 Assume that the value of an int variable i is not zero. Is it
possible that i+=3*i will set the value of i to zero? If so, under what
circumstances?

3.3 Consider an int variable x and consider a pointer float* p =
(float*)&x pointing to x. If we store a float value 2.35 in x directly
using x = 2.35 or indirectly using *p = 2.35, will we get the same
bit pattern stored in x in both cases or instead different patterns?

3.4 Storing an int value in memory using a char* pointer can cause
all kinds of errors. Can storing an int value in a char variable cause
the same errors?

3.5 Calculate the size in bytes of the following structure:
 struct{
 int b;
 char a;
 int c;
 }

3.6 In a C program, we store two short integers in an int variable;
we then retrieve and display them later in the program:

 short* p;
 int x;
 ...
 p = (short*) &x;
 *p++ = 1;
 *p=2;
 ...
 printf("first short=%d,second short=%d\n",*p, *(p+1));

During execution, the screen displays first short=1, second short=2. What will the screen
display if we compile and execute our program on a machine that has the opposite
"endianess"?

3.7 Interpret the binary code 10010101010001010101010101000001 that is stored at the
address 8023456. Assume that the machine is a "little endian" one; if you still have a
problem with the interpretation, assume that the address is located in the static section of
the address space rather than the dynamic data section.

3.8 In our C program we have
 char* p;
 ...
 p = "ab";

The compiler does not complain and the program works fine. If we change this to
 int* p;
 ...
 *p = 23;

then will everything continue to work fine?

3.9 We are using a garbage collector with our C program. We know that, whenever a
memory segment previously allocated is no longer referenced in our program, the garbage
collector may deallocate it. In order to prevent an unwanted deallocation, we keep (in a
special file) addresses of segments that we do not want to lose. Will this help us?

3.10 Since we did not want to make an error in counting of bytes,
we used the code

 char *p;
 ...
 p = malloc(strlen("hello")+1);
 strcpy(p,"hello");

instead of the intended

 char *p;
 ...
 p = malloc(6);
 strcpy(p,"hello");

Compare the memory requirements of each version: which one requires less memory?

References
The following are very good texts on C or C++ programming and cover most
of the topics from this chapter:

Carrano, F. M., and Prichard, J. J., Data Abstraction and Problem Solving with
C++: Walls and Mirrors, Pearson, Harlow, U.K., 2002.

Harbison, S. P. III, and Steele, G. L., Jr., C: A Reference Manual, Prentice-Hall,
Englewood Cliffs, NJ, 2002.

Keogh, J., Introduction to Programming with C, Prentice-Hall, Englewood Cliffs,
NJ, 1996.

Kernighan, B. W., and Ritchie, D. M., The C Programming Language, Prentice-
Hall, Englewood Cliffs, NJ, 1988.

Kirch-Prinz, U., and Prinz, P., A Complete Guide to Programming in C++, Jones &
Bartlett, Sudbury, MA, 2002.

Perry, J., Advanced C Programming by Example, Thomson Learning, Boston,
1998.

Schildt, H., Advanced C, McGraw-Hill, New York, 1988.

Stroustrup, B., The C++ Programming Language, Addison-Wesley, Reading, MA,
1997.

Tondo, C. L.,Gimpel, S. E., and Kernighan, B. W., The C Answer Book, Prentice-
Hall, Englewood Cliffs, NJ, 1988.

An excellent C/C++ based web portal:

"C and C++ Programming Language Resources around the World",
http://www.eeng.brad.ac.uk/help/.packlangtool/.langs/.c/.resource.html

The following Internet links are a great source of information on garbage
collection in general and on C/C++ based programs in particular:

http://www.cs.ukc.ac.uk/people/staff/rej/gc.html;

http://www.hpl.hp.com/personal/Hans_Boehm/gc/;

http://www.cs.princeton.edu/~appel/modern/c/software/boehm/;

http://www.eeng.brad.ac.uk/help/.packlangtool/.langs/.c/.resource.html
http://www.cs.ukc.ac.uk/people/staff/rej/gc.html
http://www.hpl.hp.com/personal/Hans%5C_Boehm/gc/
http://www.cs.princeton.edu/%7Eappel/modern/c/software/boehm/

http://www.memorymanagement.org.

A good overview of Java:

Bolker, E. D., and Campbell, W., Java Outside In, Cambridge University Press,
2003.

Texts on the Java virtual machine:

Meyer, J., and Downing, T., Virtual Machine, O'Reilly, Sebastopol, CA, 1997.

Venners, B., Inside the Java Virtual Machine, McGraw-Hill, New York, 2000.

http://www.memorymanagement.org/

Chapter 4: Dynamic Allocation and Deallocation of
Memory

Overview
Fundamentals of dynamic allocation and deallocation of memory: free store
(system heap); per-process memory manager; C memory allocators malloc(),
calloc(), and realloc(); and C deallocator free().How to handle memory
allocation/deallocation errors.

In previous chapters we have mentioned dynamic allocation of memory several times. In
Chapter 2 we had quite a detailed look at the static allocation when we discussed the
process of compilation, linking, loading, and execution of a program. We mentioned
dynamic allocation from a general point of view or, to be more precise, from the
operating system point of view.

The reader should be comfortable with the idea that a running program is allocated
several segments - not necessarily contiguous - of memory to which its address space
is mapped during program execution. These segments together constitute "the
program's memory space", or the "memory it owns", where all the program's instructions
and data needed for the execution are stored and accessible. It is obvious that many
programs need to increase their memory during their execution; for instance, they might
need to store more data or even more instructions.

As mentioned at the end of Chapter 2, it would be more precise to talk about a process
rather than a running program. Modern operating systems like UNIX thus have a process
memory manager, software that is responsible for providing additional allocation of
memory to its process and for deallocation when the memory is no longer needed. Since
it is not our aim to discuss operating system issues (unless they are directly related to
programming in C/C++), suffice it to say that memory management on the operating
system level is usually a two-tier affair (see Figure 4.1): first an operating system
memory manager allocates rather large "chunks" of memory to individual process
memory managers and also keeps track of them. Then each process memory manager
allocates smaller "chunks" of the memory to its process and keeps track of allocated
and free segments: when its process requests deallocation of a segment, it puts that
segment on the list of free segments; if running out of memory, it requests another big
chunk from the operating system memory manager.

 Figure 4.1: Two-tier memory
management

But what does it really mean to "allocate a segment of memory"? In essence, memory
management is a very simple "accounting" of what process owns what part(s) of the
memory. (The reader must forgive us this oversimplification, but as stated previously we
do not want to be sidetracked by operating system issues not pertinent to C/C++
programming concepts.) Thus, memory allocation is nothing more or less than making an
entry in the "accounting book" that this segment is given to this process for keeps, and
memory deallocation is an entry that this segment is not needed by this process and
hence is "free". Obviously, decisions concerning which segment to allocate, how to make
sure that the fragmentation (subdividing bigger segments into smaller ones) does not
degrade performance, and many other issues are rather important and complex to
solve. However, the programmer must seek to understand the concepts of allocation
and deallocation of memory and so need not bother with such technical issues.

It is clear that we are interested in the process memory manager: what is happening
(and how) when our program requests more memory or returns some memory no longer
needed. It is actually more efficient not to have the process manager "return" freed
memory segments to the operating system memory manager; thus both allocated and
freed memory segments remained assigned to the process. The freed segments are
kept by the process memory manager for serving future requests and possibly for
unifying adjacent segments into bigger ones (to partially alleviate the fragmentation
caused by previous allocations). This may be surprising to some programmers because,
with most operating systems, frequent checks of memory usage while a program is
running will show that it never decreases (in LINUX it seems to decrease, but this is
caused by the way memory use is reported rather than by segments being returned to
the operating system). This does not necessarily mean that the program is suffering
memory leaks. Normally, memory usage should reach a certain steady state as either
no new memory is requested or the requests can be served by using the freed
segments. Only if memory usage keeps growing and growing do we face the
ignominious memory leakage.

The operating system process manager usually keeps track of allocated blocks in a data
structure called the binary heap (a binary tree in which each node is labeled by a label
that is smaller than labels of all its descendants), whose purpose is to facilitate fast and

efficient searching for a suitable free block. This heap is sometimes referred to as the
system heap or free store. The process memory manager usually keeps a dynamic list
of free segments. One implication is that, every time your program requests more
memory, the process memory manager must search through the list to find a suitable
segment; if none is found, more memory must be requested from the operating system
memory manager, which must search the system heap for a suitable block. After
delivery to the process memory manager, a suitable segment must be carved out from
the freshly allocated block. It is therefore impossible to estimate how long it will take to
execute a memory allocation request. Even though modern computers and operating
systems are very fast, if our program performs a significant number of allocations and
deallocations then the attendant yet unpredictable delays may affect the program's
performance. These issues must be considered for real-time software systems and for
all programs where performance is essential. We will look at these issues when we
discuss the concept of "allocation from arena" in Chapter 9.

In modern operating systems, the operating system manager is not a part of the
process code but instead is engaged by a system call from the process. The
appropriate system call is thus particular to each operating system and each hardware
platform. It is desirable and practical to shield an applications programmer from such
idiosyncrasies, so C/C++ compilers come equipped with standard functions that provide
OS- and platform-independent interfaces to the appropriate system calls. These C
standard functions are malloc(), calloc(), realloc(), and free() (the
appropriate prototypes and other relevant definitions can be found in the slightly
obsolete header file malloc.h or in the more up-to-date header file stdlib.h); even
though these C functions can be used without penalty in C++ programs, more
sophisticated versions of these are the C++ operators new, new[], delete, and
delete[], and programmers are strongly encouraged to use them. In this chapter we
focus on the "plain" C functions; we will discuss specific issues pertinent to the C++
operators in Chapter 8. From now on we may consider (albeit somewhat imprecisely)
these functions as programming interfaces to the process memory manager.

The synopsis (function prototype together with the necessary header files) of malloc()
is rather simple:

 #include <stdlib.h>

 void *malloc(size_t size);

The argument size is the size of memory requested in bytes; malloc() either returns
NULL if unsuccessful or returns the address (void* is just a plain address) of the
beginning of the allocated segment. The segment allocated is properly aligned. Note that
malloc() can fail for any of three reasons: if there is not enough memory left for
allocation (the free store is depleted); if the size requested exceeds the limit allowed for
allocation; or if the process memory manager has somehow been corrupted.

Let us state that we do not really need this previously unmentioned data type size_t,
since it is just the good old unsigned long in disguise. However, it is defined
according to ANSI-C standard to provide for more careful type checking.

It might come as a surprise to some, but malloc() may in fact allocate a bigger
segment than requested. You are guaranteed to receive at least as many bytes you
have requested, but you may also get more. The reasons concern both the way
malloc() works and the way memory and access to it are organized. From the
programmer's point of view it should not matter, for we can never be certain how many
bytes were in fact allocated to us; thus, we can only count on the number of bytes we
requested. This note's sole purpose is to put some programmers at ease when they
check their running program and notice that the memory allocated is more than what the
program is asking for (i.e., this is not necessarily symptomatic of a memory leak).

Let us repeat once again that memory can never be "empty". What, then, are the
contents of a malloc() allocated segment? A common error is to assume that it is
blanked (or cleared) when all its bits are set to 0. Even though it often happens this way
(depending on where the segment is drawn from), in fact the contents of the segment
are arbitrary and hence meaningless. Thus, the contents of a segment allocated by
malloc() should not be used until it is set by the program to hold some meaningful
value or values.

Besides assuming that the contents of a malloc() allocated segment are somehow
set, another common error is allocating an insufficient number of bytes, which results in
overflow when storing value(s) requiring more bytes. The reader is encouraged to refer
to Chapter 3 for more detailed discussion of this topic.

The synopsis of calloc() is as simple as that of malloc():

 #include <stdlib.h>

 void *calloc(size_t nelem, size_t elsize);

Whatever has been said for malloc() applies also to calloc(), except that
calloc() blanks (clears) the allocated segment and that the number of bytes allocated
is nelem*elsize (in simple words, we are asking calloc() to allocate enough
bytes for nelem elements of size elsize).

The synopsis of realloc() is also simple:

 #include <stdlib.h>

 void *realloc(void *ptr, size_t size);

though its semantics is more complex and its use is rather controversial.

Let us first address the semantics of realloc(). It is designed to expand or reduce an
already allocated segment. The role of the argument ptr is exactly that - it is a pointer
to the segment that we want to expand or reduce, while size stipulates the size in
bytes of the expanded or reduced segment (which we will refer to as new size; we use
old size when referring to the size of the segment prior to the call to realloc()). A null
value of ptr is interpreted as there being no segment yet to expand or reduce, and then
realloc() behaves like malloc().If size is 0, then realloc() works like free()
and the segment is deallocated. Note that realloc() guarantees the contents of the
segment to be unchanged (up to the smaller of the old size and the new size).

All that has been said so far about realloc() is rather straightforward and plausible,
so where is the controversy mentioned earlier? First, unless ptr points to a segment
previously allocated via malloc(), calloc(), or realloc(), unpredictable problems
may occur - including corruption of the process memory manager. Second, though it is
not a problem to reduce a segment, it may be a problem to expand it. If there is not
enough memory available to the right of the segment's end, then realloc() creates a
new segment of the extended size somewhere else in the memory, copies the contents
of the old segment up to the old size to the new segment, frees the old segment (see
our discussion of free() that follows), and returns the pointer to the new segment. In
essence, while the old segment is being extended, it may or may not move in the
memory. For many purposes it does not matter that the extended segment has moved,
but any meaningful links to the old segment in the program become dangling pointers,
with all the consequences discussed in Chapter 3.

Let us illustrate this problem on a small example that is actually quite common. Assume
that a program works with a binary tree, a fragment of which is depicted in Figure 4.2.
Let us further assume that the program needs to extend the node c and does so using
realloc(). Consider the situation when the expanded node (segment) did not move,
depicted in Figure 4.3. The fragment of the tree (and hence the whole tree) is sound.

Figure 4.2: Fragment of a binary tree

Figure 4.3: Node c was extended but has not moved

Now consider the situation depicted in Figure 4.4, where the node (segment) moves
while it is extended. The fragment of the tree is no longer sound; in fact, it is no longer a
tree because the right child link of the node a is dangling.

Figure 4.4: Node c was extended and has moved

It is no accident that the modern and better-designed memory allocators of C++ (new
and new[]) have no counterpart to realloc(). It is always safer to manage such
situations through an explicit allocation of a new segment, an explicit update of all links
pointing to the old segment so that they point to the new segment, an explicit copying of
all data from the old to the new segment, and finally an explicit deallocation of the old
segment.

The previous paragraphs have covered the fundamentals of dynamic memory allocation
in C. We are left with the task of returning the unneeded memory by a program to its
process memory manager, or memory deallocation. This is the role of the C deallocator
free(), whose synopsis is:

 #include <stdlib.h>

 void free(void *ptr);

The function free() inserts the segment pointed to by ptr back into the list of free
segments kept by the process memory manager. As with the realloc() function, ptr
must point to a segment previously allocated via malloc(), calloc(),or realloc().
Otherwise, unpredictable problems may result, which could even include corrupting the
process memory manager. If the value of ptr is NULL, no action takes place.

Throughout this chapter, we have mentioned the errors that can arise during dynamic
memory allocation and deallocation. Let us briefly summarize these errors and suggest
how to treat them. Note that the C functions we have discussed do not have any error
handling mechanisms (such as "exceptions" in C++), so it is up to the programmer to
decide how the errors should be dealt with programmatically.

Allocation (using malloc(), calloc(),or realloc() in allocation mode) can fail for

three reasons only: (i) not enough memory; (ii) asking for a bigger segment than the limit
allows; or (iii) some kind of corruption of the data kept by the process memory manager.
We therefore suggest immediate program termination in the event of a memory
allocation failure. Of course, the termination should provide the user with a report that is
as detailed and localized as possible (the most appropriate form is through logging,
discussed in Chapter 10) so that the nature of the error can easily be determined if
necessary.

Of course, such an approach cannot be used for safety-critical and/or fault-tolerant
software. Such software should be designed differently - for instance:

the dynamic memory allocation should be done prior to the execution of the
critical section of the program, so a crash would not cause severe problems;

the program should obtain as much dynamic memory as possible at the
beginning and then use its own memory manager to manage it (we will discuss
this together with "allocation from arena" in Chapter 9); or

the program should have the ability to build the most important dynamic data
structures it needs and work with them on disk in a special "error mode" -
although this degrades performance, it nevertheless allows execution of the
critical section to continue (even though in most cases the virtual memory system
of the operating system does exactly that).

Reallocation (using realloc() in reallocation mode) may fail for the additional reason
that the pointer of the segment to be reallocated is incorrect. Unlike allocation errors,
which do not usually indicate a badly designed program, a reallocation failure is usually a
programming error and as such should be discovered and treated during testing and
debugging. A debugging version of realloc() should be able to check if the pointer
value is correct (i.e., previously allocated) and, if not, allow for detailed debugging (see
Chapter 10).

Similarly, free() should only be checked in the testing and debugging phase, and only
for the purpose of preventing memory leaks (see Chapter 10). A debugging version of
free() should work along the same lines as indicated for realloc().

Errors caused by improper use of allocated and/or deallocated memory were covered in
Chapter 3.

It is clear that different versions of these functions, including custom-made ones, can be
used instead of the standard versions. There are many such replacements available,
providing either faster and more efficient allocation/deallocation or additional features
(such as debugging or reporting). We will discuss this further in Chapter 10.

Review
On the operating system level, memory management consists of keeping an account of
what process owns what memory block and allocating more memory to a process when
requested (thus the operating system can determine when a process is trying to access
a memory location that is not its own - and terminate the process for faulty memory
access). On the process level, memory management consists of keeping account of free
segments or reclaiming those segments that the process no longer needs.

Statically allocated memory for a process is the memory into which the program is
loaded prior to its execution. It does not change throughout the program's execution, and
its layout is completely determined by the compiler. Both the data and the instructions of
the program are stored in the statically allocated memory.

It is clear that many programs require more memory to store data or possibly additional
instructions. These requests for additional memory allocation during the execution of a
program - and the manner in which they are served - are generally referred to as
"dynamic memory allocation".

In modern operating systems, memory management is a two-tier affair with a single
operating system memory manager and different process memory managers specific for
each running process. The operating system manager allocates rather big "chunks"
(blocks) of memory to the process memory managers. A process memory manager
divides these blocks into suitable memory segments, which it allocates to its process.
For the process memory manager, dynamic memory allocation includes deciding which
segment to allocate (if need be, divide a bigger segment into two smaller ones) and
removing it from the list of free segments. The fragmentation caused by this division is
inevitable and may degrade program performance. Therefore, deallocation includes
(besides adding the freed segment to the list of free segments) possibly joining the freed
segment with adjacent free segments to counter somewhat the fragmentation.

When a request for more memory is issued by a program (through a malloc(),
calloc(),or realloc() call), its process memory manager allocates it a segment of
a size equal to or bigger than the size requested (if such a segment is not ready, the
process manager creates it from a bigger one; if this is not possible, the process
memory manager requests a new block from the operating system manager). If there is
not enough memory, the allocators return NULL; otherwise, they return the address of
the allocated segment. The contents of the allocated segment are arbitrary for
malloc(). All bits are cleared for calloc() and are preserved up to the minimum of
the old size and the new size for realloc() (in the extended/reduced part, the
contents are arbitrary). Allocation fails for three reasons only: not enough memory is
available, the requested size exceeds the limit, or the process memory manager is
corrupted.

The deallocator free() returns a segment to the list of free segments that is kept by
the process memory manager. The functions realloc() and free() can each cause
problems (including corruption of the process memory manager) if the pointer supplied is
not pointing to a segment previously allocated by malloc(), calloc(),or
realloc(), or if the segment it points to has meanwhile been freed.

There is not much to do about memory allocation errors, and a program should be
promptly terminated if it runs into such an error. Detailed information (e.g., a log entry)
about the error and its localization within the program should be provided so that the
nature of the problem can be determined later. Safety-critical and fault-tolerant software
systems should avoid dynamic memory allocation in their critical sections, possibly do
their own memory management, or even be able to work with disk (instead of main)
memory if allocation errors occur during execution of a critical section.

Exercises
4.1 What is the system heap and what it is used for?

4.2 Suppose our program requests just one memory allocation of a certain number of
bytes. Checking the memory usage by our program during its execution shows that the
dynamic memory increased more than we requested. Is this a sign of memory leaking?

4.3 Consider a simple program:
 #include <stdio.h>
 #include <string.h>

 int main()
 {
 char* p;

 p = malloc(20);
 strcpy(p,"hello");

 printf("%s\n",p);
 return 0;
 }

The C compiler gives the strange warning message "line 8: warning:
assignment makes pointer from integer without a cast", yet the
program works correctly when executed. What is your explanation, considering that C
compilers should allow void* to be stored in char* without complaining?

4.4 What is wrong with the following program?
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>

 int main()
 {
 char* p;
 p = realloc(p,100);
 strcpy(p,"hello");

 p = realloc(p,200);
 strcat(p," and good bye");
 return 0;
 }

4.5 In a program we allocated 20 bytes of memory using p = malloc(20), yet we only
need 10. For efficiency we decided to "return" a portion of the segment to the memory
manager using free(&p[10]). What will happen? Will it compile? If so, will the

program execute correctly and cause memory segment fragmentation? Or will it not
work as intended - the memory manager will not "accept" the memory and the program
will continue executing? Or will the program be terminated?

4.6 Will the following program crash? Always, sometimes, or never?
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>

 int main()
 {
 char *p, *q;

 p = malloc(20);
 strcpy(p,"hello");

 q=p;
 printf("%s\n",q);

 p = realloc(p,1000);
 printf("%s\n",q);
 return 0;
 }

4.7 In the following program we allocate a memory segment of 20 bytes. What will
happen to the memory segment after the program terminates?
 #include <stdlib.h>
 #include <string.h>

 int main()
 {
 char *p;

 p = malloc(20);
 strcpy(p,"hello");
 return 0;
 }

4.8 Can we use free(p) if previously p was set by a call to realloc() via p =
realloc(p,...)?

4.9 The allocators malloc(), calloc(), and realloc() and the deallocator
free() work in a close relationship with the operating system. So how can a program
using them be compiled by various compilers and executed on various machines?

4.10 How would you allocate a completely empty memory segment?

References
For general aspects of dynamic memory allocation, see the operating
systems texts listed in Chapter 2. For a basic description of the C allocators
and deallocators, see the C texts listed in Chapter 3.

Wilson, P. R.,Johnstone, M. S.,Neely, M., and Boles, D., Dynamic Storage
Allocation: A Survey and Critical Review, Proceedings of the 1995 International
Workshop on Memory Management (Kinros, Scotland, September 1995), Lecture
Notes in Computer Science, 986, Springer-Verlag, New York.

For the programming point of view, see the following articles from the
C/C++ Users Journal:

Allison, C., "Code Capsules - Dynamic Memory Management", part 1, C/C++
Users Journal, October 1994.

Allison, C., "Code Capsules - Dynamic Memory Management", part 2, C/C++
Users Journal, November 1994.

Halladay, S., "malloc-Related Errors", C/C++ Users Journal, May 1992.

Hogaboom, D., "A Flexible Dynamic Array Allocator", C/C++ Users Journal,
November 1990.

Jaeschke, R., "Doctor C's Pointers - The Memory Management Library", C/C++
Users Journal, January 1990.

Sutter, H., "Sutter's Mill: Containers in Memory: How Big Is Big?", C/C++ Users
Journal, January 2001.

For programmatic details and debugging versions of the allocators and
deallocators, see the following websites:

"Debugging Tools for Dynamic Storage Allocation and Memory Management",
http://www.cs.colorado.edu/homes/zorn/public_html/MallocDebug.html

"The Hoard memory allocator",
http://www.cs.utexas.edu/users/emery/hoard/.

Lea, D., "A Memory Allocator",
http://gee.cs.oswego.edu/dl/html/malloc.html.

"Malloc/Free and GC Implementations",
http://www.cs.colorado.edu/~zorn/Malloc.html.

http://www.cs.colorado.edu/homes/zorn/public_html/MallocDebug.html
http://www.cs.utexas.edu/users/emery/hoard/
http://gee.cs.oswego.edu/dl/html/malloc.html
http://www.cs.colorado.edu/%7Ezorn/Malloc.html

Watson, G., "Dmalloc - Debug Malloc Library", http://dmalloc.com/.

http://dmalloc.com/

Chapter 5: Functions and Function Calls

Overview

System stack, activation frame, activation frame as the storage
for local auto objects and for function arguments. Passing
arguments by value as opposed to by reference. Calling
sequence. Recursion and its relation to activation frames and the
system stack. The price of recursion.

Any program of even modest complexity must be modularized for many reasons:
readability, testability, validation, extendibility, maintainability, and many others, all outside
the scope of this book. However, we assume that the reader understands that any
reasonable programming language must allow for some modularization; C and C++ are no
exceptions. Besides modularization on the level of source files, virtually the only
modularization feature of C consists of structuring a program into separate functions. The
object orientation of C++ allows for a more complex and far better-controlled
modularization.

A C/C++ function is a programming module with a precisely defined interface that consists
of the function's header, which specifies the function's name, the data types of the
arguments (the input to the function - though it is possible for a function not to have any
arguments), and the data type of a single return value (the output of the function; again, it is
possible for a function to return nothing at all). Let us observe that computer scientists
prefer to speak of procedures (if no value is returned) and functions (if a value is returned
and the execution has no "side effects", meaning that it does not modify any data not local
to the function). However, we shall employ the usual C/C++ terminology and call them all
functions regardless of whether or not a value is returned or any side effects occur.
Similarly, the input to procedures and functions are generally called parameters, yet we will
use the more traditional C/C++ term arguments.

In this chapter we take a detailed look at the mechanism underlying the function calls, with
our customary focus on the role of memory.

The most important aspect of a function call is the sequence of
activities that take place or (more properly) the flow of control. This
sequence can be described in broad terms as:

1. the instruction just before the call is executed,

2. the function is called and its body is executed, and

3. the instruction following the function call is executed,

and the execution of the program then continues in its customary top-down fashion. During
a function call, control is passed to the callee (the function being called) and returned back
to the caller (the function doing the calling) upon termination of the callee. This flow of
control requires that the "execution environment" of the caller is somehow preserved and
that the "execution environment" of the callee is somehow installed and used for the
execution of the callee's body. On the termination of the callee, the execution environment
of the callee is somehow disposed of and the previously preserved execution environment
of the caller is reinstated. The flow of control during function calls is illustrated in Figure 5.1.

 Figure 5.1: Flow of control during
function calls

We are very much interested in the "execution environment" part,
for it is intimately tied to memory. The data structure to hold the
information of this environment is called an activation frame (or
activation record), since each call to (or invocation of) a function
represents an activation of the function. A schematized activation
frame is depicted in Figure 5.2.

Figure 5.2: A general activation frame

The returned value field is reserved for the value the function is
returning, and this is where the value is stored prior to termination
of the function. The actual arguments field holds the values of, or
references to, "objects" being passed to the function. The optional
control link field, if used, points to the activation frame of the caller,
and the optional access link field, if needed, is used to refer to
nonlocal data stored in other activation frames. The temporaries
field holds temporary values (such as those arising from the
evaluation of expressions); the saved machine status field holds the
values of system registers (e.g., program counter) at the moment of
the call; and, most interesting to us, the local data field is where all
local "objects" are stored. The precise nature and layout of the
activation frame depends on the particular compiler and is not really
important to us.

Before we embark on a detailed discussion of the steps involved in a
function call, the calling sequence and return sequence, we will
discuss general allocation strategies for activation frames. Generally,
there are three ways to allocate (create) the activation frames.

1. Static allocation - lays out storage for the activation frame at compile time.

2. Dynamic allocation on the system heap - each activation

frame is dynamically allocated on the system heap at run
time during the actual function call.

3. Dynamic allocation on the system stack - same as above but
with the system stack rather than the heap.

There are some trade-offs associated with each strategy. The static
allocation has the advantage in the performance it facilitates: the
compiler creates "empty" activation frames at compile time and,
during the actual function call, only the relevant data are stored
there, so the overhead of the function call remains low and thus
enables very fast execution. The downside of static allocation is that
multiple activations of the same function are not possible; in
particular, recursion is not permitted. Fortran (up to the Fortran77
standard) allowed only static allocation of activation frames, but the
later standards (Fortran87, 88, 89, now known under the umbrella
term of Fortran90) allow the programmer to choose whether a
procedure is static or recursive. However, computationally intensive
applications of an iterative nature (e.g., weather modeling or fluid
dynamics modeling), colloquially referred to as "number crunching",
benefit from a low-overhead strategy; this is why languages with
static allocation have their place in such applications.

Dynamic allocation on the system heap may cause the activation frame to "outlive"
activation of the function itself or even the caller's activation. Yet for such languages the
activation trees - which depict the way control enters and leaves activations or (more
roughly) the entering and exiting of functions during execution - do not correctly depict the
flow of control, so this strategy is generally not used.

Allocation on the system stack benefits from the system stack
functioning as a control stack of the function calls: the activation
frame is pushed onto the stack when the function is invoked and
popped from the stack when the function terminates. Thus, the top
of the stack correctly reflects the flow of control and this approach
neatly facilitates not only multiple activations of functions but also
recursion in its most general form. The disadvantage of this
approach lies in the significant overhead associated with (a) the
dynamic creation of a new activation frame, (b) pushing it onto the
system stack at the beginning of a function call, and (c) popping it

from the stack upon termination of the function. Nonetheless, in
most cases the trade-off is worthwhile: the slowdown in execution is
more than compensated by the problem-solving power gained.

We can now reward the patient reader and reveal that C and C++
are languages that follow the third strategy of dynamic allocation of
the activation frames on the system stack. As such, C/C++ allows
multiple invocation of functions and, in particular, recursion.
Unfortunately, we are still not ready to discuss the C/C++ calling
and return sequences. We have one more topic to cover, namely,
how arguments are passed to functions. Again, we first discuss
general strategies.

In essence, the simplest possible method is call-by-value, or passing
the arguments by value. Here the caller evaluates the arguments
prior to the call and passes the values (copies) to the callee as the
actual arguments. The advantage of this method is in the safety of
"information hiding", for operations performed on the actual
arguments do not affect the values in the activation frame of the
caller. The disadvantage is the memory required for copies of values
requiring large storage, such as complex structures and objects. The
C language passes arguments exclusively in this way (well, almost
exclusively - see the discussion of arrays in Chapters 6 and 7); C++
also uses call-by-value as its default call method.

In call-by-reference (also known as call-by-address or call-by-
location), arguments are passed by reference (also known as
passing by address or by location). In this case a reference
(address, location, pointer, etc.) of the argument is passed to the
function. Of course, this means the argument must have a reference
and, if an expression, the argument must evaluate to a reference.
The advantage of this method is lower overhead for the call (no
need to copy the values) and lower memory requirements,
especially if we are passing arguments requiring large storage. The
disadvantage is that the callee can modify data from the caller's
activation frame, with possibly serious implications. (See Chapters 6
and 7 for a discussion of why arrays are in fact passed by
reference.) In C++ the programmer is allowed to state explicitly
that an argument should be passed by reference.

The other two generally used methods are copy-restore and call-by-name. We may briefly
describe copy-restore as follows: First, use copies of arguments as in call-by-value; then,
at termination of the function, use the newly computed values as replacements for the
values of the original arguments. This "feels" like a call-by-reference, but it poses some
quirky and subtle problems. The call-by-name method has probably been encountered by
the reader in C/C++ macro-expansion or in ANSI C and C++ inlining. Both of these calling
methods lie outside our present interests.

We are finally ready to tackle the calling and return sequences. The actual details depend
on the compiler being used (as does the detailed structure of the activation frame), but for
our purposes a broad description will suffice. Some of the steps are performed by the
caller, whereas others are performed by the callee. This division is to some degree
arbitrary and may depend on such factors as the operating system, the target platform, and
so forth. However, in our discussion, "who does what" is less important than "what must be
done".

Here is the calling sequence.

1. The activation frame for the callee is created by the caller.

2. The arguments are evaluated by the caller. For an argument,
if passing by value is required, then the value of the
argument is stored in the "actual arguments" field; if if
passing by reference is required, the pointer to the argument
is stored there.

3. The callee saves the machine's status in its activation frame -
in particular, the value of the program counter that indicates
which instruction should be executed next (i.e., the one right
after the call).

4. The callee initializes its local data and starts executing.

The return sequence proceeds as follows.

1. The callee stores the return value in the "returned value"
field in its activation frame.

2. The callee uses the information from the "saved machine status" field and restores
the registers for the caller; this includes popping the system stack.

3. The callee branches to the return address of the caller.

4. The caller copies the returned value from the activation frame of the callee. Even
though the system stack was "popped", the data is still there because we do not
deallocate the memory but only manipulate the register that points to the top of
the stack.

5. If a value is returned, then the caller uses it for evaluation of an expression and
continues with its normal execution.

The reader may now better appreciate the overhead associated with dynamic function calls
and start wondering whether recursion is really worth the trouble. In the rest of this chapter
we will examine recursion in more detail and attempt to persuade the reader that it is worth
the cost.

Let us consider a simple C++ program:
#include <iostream.h>

#define dot 1
#define id 2
#define error 3

int A(char*,int&);
int B(char*,int&);
int Next(char*,int&);

// function main ------------------------------
int main()
{
int sp = 0;
 char s[]="..a..";

 if (A(s,sp))
 cout << "syntax correct\n";
 else
 cout << "syntax error\n";
 return 0;
}//end main

// function A ---------------------------------
int A(char* s,int& sp)
{
 if (!B(s,sp))
 return 0;
 if (Next(s,sp) != id)

 return 0;
 if (!B(s,sp))
 return 0;
 return 1;
}//end A

// function B ---------------------------------
int B(char* s,int& sp)
{
 int sp1 = sp;

 if (Next(s,sp) != dot) {
 sp = sp1;
 return 1;
 }
 if (!B(s,sp)) {
 sp = sp1;
 return 1;
 }
 return 1;
}//end B

// function Next ------------------------------
int Next(char* s,int& sp)
{
 if (s[sp]=='.') {
 sp++;
 return dot;
 }else if ('a'<=s[sp] && s[sp]<='c') {
 while('a'<=s[sp] && s[sp]<='c') sp++;
 return id;
 }else
 return error;
}//end Next

The program is a recursive descent parser for a language that consists of strings in the
form "a sequence of dots, possibly empty, followed by a sequence consisting of characters
'a', 'b', and 'c', followed by a sequence of dots, possibly empty". For instance,
"..a.." is a such a string. The input to the parser is a character string s (see more on
strings in Chapter 6), and sp is the string position variable, which keeps track of how much
of the input has been consumed. The function Next() is the "scanner" of this parser, and it
returns:

a "token" dot if it has recognized and consumed '.' on the input;

a "token" id if it has recognized and consumed a string
consisting of characters 'a', 'b', and 'c' on the input; or

a "token" error in all other cases.

If the input string is from the language, the program displays a
syntax correct message and exits; otherwise, it displays a syntax
error message and exits.

Let us discuss the program as it is running. We will take "snapshots" of the system stack at
various times to illustrate how the stack controls the execution and keeps track of the
recursion. All the functions involved, except main(), have two arguments passed by
reference: the input string s and the string position indicator sp. The function B() has, in
addition, a local variable sp1. Hence these three arguments are depicted in the schematic
activation frames.

In the function main(), a local variable s (a character array) is
initialized and holds a string "..a.." while another local variable sp is
set to 0. Then A() is called:

The activation frame for A() is created and pushed on the system stack (the arrows
indicate the "reference"), and A() calls B():

B() saves sp in sp1 and calls Next():

Next() consumes s[0] (the first '.'), updates sp (in the activation frame of main() as sp
is passed by reference), and returns dot:

Back to B(), B() calls B():

B() saves sp in sp1 and calls Next():

Next() consumes s[1] (the second '.'), updates sp, and returns dot:

Back to B(), B() calls B():

B() saves sp in sp1 and calls Next():

Next() consumes s[2] ('a'), updates sp, and returns id:

B() does not like id returned by Next(), restores sp to 2, and
returns 1:

Back to B(), it has finished its job and returns 1:

Back to B(), it has finished its job and returns 1:

Back to A(), A() calls Next():

Next() consumes s[2] ('a'), updates sp, and returns id:

Back to A(), A() calls B():

B() saves sp in sp1 and calls Next():

Next() consumes s[3], updates sp, and returns dot:

Back to B(), B() calls B():

B() saves sp in sp1 and calls Next():

Next() consumes sp[4], updates sp to 5, and returns dot:

Back to B(), B() calls B():

B() saves sp in sp1 and calls Next():

Next() consumes s[5], updates sp to 6, and returns error:

Back to B(), B() does not like the value error returned by Next(),
restores sp to 5, and returns 1:

Back to B(), B() returns 1:

Back to B(), B() returns 1:

Back to A(), A() returns 1:

Back to main(), main() displays syntax correct and exits:

The execution of the program is over.

So, is recursion worth the trouble? Obviously yes, for otherwise the programming language
and compiler designers would not bother. We are not really trying to beg the question, so

here is our real answer. There are many areas in which recursion is a powerful and
convenient tool: recursive descent parsers; implementation of backtracking algorithms;
algorithms for data structures (this alone would be sufficient reason to use recursion; see
Chapter 9); and, of course, the famous Hanoi towers puzzle and its (infamous?) recursive
solution. It is a well-established mathematical fact that whatever can be achieved by
recursion can also be achieved by plain old iteration (if you do not mind complex and messy
programs). It is the clarity, simplicity, and convenience of recursive solutions that compel us
to implement recursion in most general-purpose programming languages, including C and
C++.

Review
Any reasonable programming language requires some form of modularization. By this
we mean separating the program into well-defined and smaller modules that mutually
interact in a precise fashion. Toward this end, C/C++ provide the mechanism of
functions. In general, a data structure known as an activation frame is used to store all
relevant information for the function to execute. A function call can be implemented in
various ways, depending on the strategy for allocation of the activation frame. If a static
allocation is used (in Fortran, e.g.) then multiple activations of a function are impossible,
but the function call overhead is significantly reduced, leading to faster execution. If a
dynamic allocation is used, the activation frame can be allocated on either the system
heap or the system stack. Allocation on the system stack is more generally used
because it gives the stack a role as the "control" stack; in such cases, the top of the
stack and the activation tree truly represent the flow of control. Since C/C++ features
dynamic allocation on the system stack, recursion can be used.

During a function call, control is passed to the callee (the function being called) and
returned back to the caller (the function doing the calling) upon termination of the callee.
There are several ways that arguments can be passed to functions. The copy-restore
was used by early Fortran compilers but seldom since. Call-by-name for C/C++ is seen
in macro-expansion and inlining. Call-by-value is exclusively used by C and is the default
for C++.

In call-by-value, the arguments are passed by value - that is, their copies are passed.
Whatever the function does with the arguments has no effect on the originals' values,
thus providing an environment that is safe in terms of the "information hiding" principle. In
call-by-reference, the arguments are passed by reference (or by address or location),
which really means passing a pointer to the argument. This facilitates direct access to
the argument and thus allows the function to modify whatever is passed to it in this
fashion. In C++, passing by reference of selected arguments is allowed (by explicit
statement).

The activation frame also serves as the storage for all local objects of the function (that
are not declared as static). Since the activation frame is "erased" after the function
terminates, the values of local auto objects cannot be held between different activations.

Allowing multiple activations and hence recursion slows the execution, but the price is
well worth it. Many problems have a convenient and relatively simple solution when
recursion is used.

Exercises
5.1 What is the difference between invocation and activation of a function?

5.2 Where is storage for the "auto" variables located?

5.3 Does every local variable have the "auto" storage class?

5.4 Explain why the variables of a function f() cannot retain values between two
consecutive activations of f().

5.5 What are the differences between the system stack and the system heap? Try to list
all differences - in their roles and purpose as well as in their implementations.

5.6 Define the following terms: calling sequence, calling convention, return sequence,
flow of control. How are they related to execution of functions?

5.7 If a local variable is defined as static, does this make it global?

5.8 Is there any difference between C and C++ with regard to calling functions and
passing arguments to them?

5.9 Which of the calling methods discussed in this chapter are relevant for C? Which are
relevant for C++?

5.10 Rewrite the following simple C function, which receives an integer parameter, so
that it emulates receiving the parameter by "reference".
 void doit(int x)
 {
 printf("%d\n",x);
 x++;
 printf("%d\n",x);
 }

5.11 Rewrite the recursive descent parser used in this chapter to display (in a schematic
fashion) what the system stack "looks like" during the execution: when a function is
entered, display the "new activation frame"; when the function is exited, display the
"previous activation frame". Use indentation to indicate how the stack grows (moving the
indentation to the right) and how it shrinks (moving the indentation to the left). Then
execute the program with input string "..a..". Compare your result with the diagrams
shown here.

5.12 Repeat Exercise 5.11 for the Hanoi towers puzzle program listed in Appendix A.

5.13 Rewrite the recursive descent parser used in this chapter so that s and sp are
global variables.

5.14 The following recursive program generates and displays all bit combinations for a
byte.
 #include <stdio.h>

 char byte[8];

 void bits(int n,char byte[])
 {
 int i;

 if (n == 8) {
 for(i = 0; i < 8; i++)
 putchar(byte[i]);
 putchar('\n');
 return;
 }
 byte[n] = '0';
 bits(n+1,byte);
 byte[n] = '1';
 bits(n+1,byte);
 }
 int main()
 {
 bits(0,byte);
 return 0;
 }

We now rewrite it using global variables instead of arguments being passed along. Will it
work? Justify your answer.
 #include <stdio.h>

 char byte[8];
 int n;

 void bits()
 {
 int i;

 if (n == 8) {
 for(i = 0; i < 8; i++)
 putchar(byte[i]);
 putchar('\n');
 return;
 }
 byte[n] = '0';
 n = n+1;
 bits();
 n = n-1;

 byte[n] = '1';
 n = n+1;
 bits();
 }

 int main()
 {
 n=0;
 bits();
 return 0;
 }

References
A basic understanding of function calls and C or C++ calling conventions
may be gleaned from the C and C++ texts listed in references for Chapters 2
and 3.

The flow-of-control aspects of function calls and use of the system stack are
described in the operating system texts listed in Chapter 2.

Theoretical aspects of recursion:

Cormen, T. H.,Leiserson, C. E.,Rivest, R. L., and Stein, C., Introduction to
Algorithms, McGraw-Hill, New York, 2002.

Felleisen, M.,Findler, R. B.,Flatt, M., and Krishnamurthi, S., How to Design
Programs - An Introduction to Computing and Programming, MIT Press,
Cambridge, MA, 2001.

Mendelson, E., Introduction to Mathematical Logic, 4th ed., Chapman & Hall /
CRC Press, Boca Raton, FL, 1997.

Odifreddi, P., Classical Recursion Theory, North-Holland, Amsterdam, 1999.

Programmatic aspects of recursion:

Smith, O. J. A., "Stack Free Recursion",
http://www.olympus.net/personal/7seas/recurse.html.

Syck, G., "Removing Recursion from Algorithms", C/C++ Users Journal, February
1991.

http://www.olympus.net/personal/7seas/recurse.html

Chapter 6: One-Dimensional Arrays and Strings

Overview
Static one-dimensional arrays and their representation as pointers. Array indexing
as indirection. Why an array index range check cannot be performed in C/C++.
The price of run-time array index range checking; "compile-time checking" versus
"run-time checking" philosophies. Passing static one-dimensional arrays as
function arguments. Definition versus declaration of one-dimensional arrays.
Dynamic one-dimensional arrays. Strings as static or dynamic one-dimensional
char arrays terminated with NULL. How to add a custom-made run-time index
range checker in C++.

The most frequently used composite data structures in programming are arrays. Since
their use is so ubiquitous, they are provided as almost built-in data types in C/C++.
Unfortunately, the emphasis is on "almost" and not on "built-in". On the one hand,
"almost" here means that you need not provide any programmatic means of creating
(building) and indexing the array and that any C/C++ compiler will provide both
automatically. The array definition/declaration and access to the array items through
indexing are thus integral parts of the C/C++ language. On the other hand, "almost" also
means there is no innate data type array in C/C++ that is treated in its own special
way, so each array is represented by an appropriate pointer pointing to an appropriate
storage according to appropriate conventions. This has some unexpected consequences
for "index out of range" run-time errors and for passing array arguments to functions.

The fundamental notion of an array is just an extension of the basic model of computer
memory: an array of bytes accessible through indexes (their addresses). Thus an array
of a data type D is a data structure where each array item is a "data container" of the
same data type D and can be accessed through its index. This notion is taken to its most
abstract form in C++, where you can define an indexing operator operator[] on any
class and thereafter use the objects of the class as arrays.

Proper arrays in C/C++ are in fact even more "faithful" memory models, for not only
does their indexing start from 0, also they really do consist of identical adjacent "data
containers" (i.e., they reside in a contiguous memory segment); see Figure 6.1. It is
quite natural (the reader may refer back to Chapter 3) to see the array items as "virtual
data containers" accessed via the appropriate pointer. Thus, if a pointer p points to the
very first item of an array, then we can see that *p represents the very first item in the
array, *(p+1) represents the second item of the array, ..., *(p+i) represents the ith
item of the array; see Figure 6.2.

 Figure 6.1: Concept of one-dimensional

array

Figure 6.2: Accessing a one-dimensional array via a pointer

Seeing how natural it is to access array items through a pointer, we cannot be surprised
to learn that C/C++ treats one-dimensional arrays in this fashion. For instance, an int
array x[] with six items defined by int x[6]; is thus represented by the C/C++
compiler as a constant pointer (meaning that the pointer cannot be reset) int* x and a
statically allocated memory segment to accommodate six virtual data containers of the
data type int, as indicated by Figure 6.3.

Figure 6.3: Representation of the int x[6] array

It also comes as no surprise that C/C++ compilers really do translate array indexing
expressions like x[i] into indirection expressions like *(x+i). Moreover, pointers can
be "indexed": If p is any pointer (except void*), then the expression p[i] makes
sense when translated by the compiler to *(p+i) and so the program can be perfectly
well compiled and executed. As we can see, arrays are treated as constant pointers,
and the indexing mechanism is nothing but the dereferencing of these pointers. In fact, a
static array is nothing but a constant pointer that points to a properly (statically)
allocated memory segment.

This was rather convenient for the designers of C and also for the builders of C/C++
compilers in that there was no real need to deal with an innate data type array.
However, it turns out that there are some unpleasant consequences.

The first of these concerns the "size" of an array. It is clear that, upon encountering a
definition of an array, the compiler (a) creates a constant pointer, (b) allocates a
sufficiently large memory segment (whose address is often referred to as the base of
the array), and (c) points the pointer to it. Although the compiler knows the size of the
array and the size of the allocated segment, the size is not recorded in any way and
hence at run time the pointer holds only the base address, which is all that is known
about the array; the knowledge of its size is gone. Unless the programmer remembered
correctly the size of the array and worked with it properly in the rest of the program, all
kind of problems can crop up during execution (as detailed in Chapter 3). There simply is

no way a C/C++ program can make a run-time check of whether an array index is within
the proper range.

This approach to arrays in C and C++ was deliberate. One of the aims of the C
language designers was a language compiling to an object code that is as "lean" as
possible. If one wants a language (e.g., Pascal) that facilitates run-time range checking,
then arrays must be represented by special data structures that "remember" the range,
increasing memory requirements. Moreover, every array access instruction of that
language must be translated to a code that validates the range of the index before
access to the array's storage, significantly increasing the size of the object code and
memory requirements. (It is an interesting exercise to write two simple identical
programs dealing with arrays, one in C and the other in Pascal, and - after compiling
both - to compare the sizes of their respective object files.) Thus C and C++ compilers
follow the philosophy of "compile-time checking": if you try to store more than the array
can hold (e.g., during initialization of an array) or if some other "clear" violation of the
index range occurs, the compiler will give you an error or a warning message. Run-time
checking was deliberately omitted because of the associated costs. Consequently, the
onus is on the programmer - which means you, the reader - to make sure that the range
is not violated.

The second unpleasant consequence of having no array data type concerns passing of
array arguments to functions during function calls. The C language professes to pass
arguments exclusively by value, yet many a programmer has experienced (intentionally
or unintentionally) a function call that somehow modified the array passed to it, as if it
were passed by reference. In contrast, C++ is more flexible and gives you a choice
between passing by value or by reference. Nevertheless, when passing an array by
value, the program behaves as if it were passed by reference and when trying to pass it
by reference, the compiler will not compile it! Consider the following simple program.
 /* function doit --- */
 void doit(int y[])
 {
 y[0] = 0;
 y[1] = 1;
 }/*end doit*/

 /* function main --- */
 int main()
 {
 int i;
 int x[6]={10,11,12,13,14,15};

 doit(x);

 for(i = 0; i < 6; i++)
 printf("%d ",x[i]);

 putchar('\n');

 return 0;
 }/*end main*/

This program will display, as values of the array x after the call to doit(), the numbers
0112131415; whereas we know that, prior to the call to doit(), they were 10 11 12
13 14 15. Definitely, x has been modified and hence not passed by value.

The truth is that C does pass x by value; doit() receives the base address via the
pointer y and then modifies the first two items that pointer y points to - in effect, the first
two items of array x. For instance, let us assume that the base of array x is 80804048.
When passing the array x to doit(), instead the base address 80804048 is passed to
doit() by value. Locally in doit(), then, y was set to 80804048. In fact, y[0]=0 is
the indirection *y=0 and so an integer value of 0 is stored at the address 80804048.
The address 80804048 happens to be the address of x[0]. Similarly y[1]=1 was
translated to *(y+1)=1 and so an integer value of 1 is stored at the address
80804052, which happens to be the address of x[1] (see Figure 6.4). Case closed.

Figure 6.4: The array x is accessible from the function doit()

An interesting curiosity: C programmers sometimes use the struct construct to "wrap"
the arrays and so protect them from being modified by functions if passed to them. The
following sample illustrates this technique.
 typedef struct { int array[6]; } wrap;

 /* function doit --- */
 void doit(wrap y)
 {
 y.array[0] = 0;
 y.array[1] = 1;
 }/*end doit*/
 /* function main --- */
 int main()
 {
 int i;
 wrap x;

 x.array[0] = 10;
 x.array[1] = 11;
 x.array[2] = 12;
 x.array[3] = 13;
 x.array[4] = 14;
 x.array[5] = 15;

 doit(x);

 for(i = 0; i < 6; i++)
 printf("%d ",x.array[i]);
 putchar('\n');

 return 0;
 }/*end main*/

This program will display values of the "wrapped" array x, after the call to doit(),
which are unchanged (10 11 12 13 14 15). The explanation is simple: the object x
(the reader will forgive us for borrowing this C++ terminology, which is not fully
appropriate here) is passed to doit() by value and hence the object y has the same
value as x (i.e., it is a copy of x). This copy gets modified, but the original x remains
unchanged.

The reader should examine the header of the function doit(int y[]). The program
would work equally well if it were defined either as doit(int* y) or as doit(int
y[6]). This is the first meaningful example of a difference between a definition and a
declaration that we have encountered in the book. A definition involves the "creation" of
an object (data container) out of "raw" memory. A declaration, on the other hand, only
introduces a symbol to the compiler together with what its type is and what it
represents. Since we are passing an array to doit() as if by reference, no "creation"
takes place; in reality, only a reference (pointer with the base address) is passed. Thus
the expression used in the header of doit() is only a declaration, rather than a
definition, because the compiler does not have to create the array. It is therefore
perfectly acceptable to use either int y[6] (since conceptually we are passing an
integer array of size 6 to doit())or int *y (since we are really passing a pointer) or
int y[] (since we are really passing an array reference).

The reader should now be comfortable with the notion that a static one-dimensional
array is a pointer holding the base address and pointing to a (statically) allocated
segment where the array items are stored. Similarly, readers should be comfortable
with the idea that pointers can be indexed. In some sense, a pointer is like an array
without a "body" - the segment to store the array items. It does not require a quantum
leap of imagination to realize that we could provide the "body" dynamically during
execution. This brings us to the concept of dynamic arrays.

A dynamic array is simply a pointer that is set to point to a dynamically allocated
segment that will hold the array items. An illustration follows.
 /* function main --- */
 int main()
 {
 int i;
 int* x;

 x = malloc(6*sizeof(int));
 if (x == NULL) exit(1);

 x[0] = 10;
 x[1] = 11;
 x[2] = 12;
 x[3] = 13;
 x[4] = 14;
 x[5] = 15;

 for(i = 0; i < 6; i++)
 printf("%d ",x[i]);
 putchar('\n');

 return 0;
 }/*end main*/

The only difference from using a static array consists of the lines in which (i) the memory
is allocated dynamically and (ii) the allocation is checked to see whether it has worked.

When should we use a dynamic rather than a static array? A static array is always
preferable for two reasons: it is faster (dynamic memory allocation is a complex task;
see Chapter 4) and it does not pose any danger of leaking memory. But if we do not
know in compile time what would be a reasonable cap on the size of the array, or if the
array needs to change to accommodate some more dynamically incoming data, then the
safer and more efficient way is to use dynamic arrays. An obvious error (especially with
novices) is to "forget" the allocation part. This leaves the pointer uninitialized, and any
attempt to store anything in its direction may well lead to the ill effects discussed in
Chapter 3. A more ominous error consists of failing to deallocate the dynamic array
once it is no longer needed (especially when the array is frequently extended and when
realloc(), with its implicit deallocation of the old segment, is not used for the task),
which may result in memory leaking; more on this in Chapter 10.

Having covered static and dynamic arrays, we can now turn our attention to strings.
Unlike arrays, which are almost innate data types for C/C++, strings are much less so.
The C/C++ language does not provide any means of defining and working with strings,
with one exception: literal strings. Yet strings are immensely useful and even more
ubiquitous than arrays, so something must be done to facilitate their use. In C/C++

programs the compiler stores literal strings in memory as character arrays terminated
by the NULL character ('\0'), so the same convention is used for all strings. Simply
stated, a string is a char array terminated with NULL. Thus a string can be stored in a
static array,
 char x[30] = "hello";

or
 char x[30];
 strcpy(x,"hello");

as well as in a dynamic array,
 char* x;
 x = malloc(30);

 strcpy(x,"hello");

In any case, a string is represented by a char* pointer that points to its beginning, and
the string continues until NULL. All standard C functions dealing with strings (their
prototypes are in the standard header file string.h) expect the strings to be
represented by char* pointers and terminated by NULL. Of course, these functions are
not a part of the C/C++ language - they are not terms in the language. For instance,
strcpy is not a reserved keyword of C/C++, nor is it meaningful in any way. The
compiler realizes only that it is a call to a function, and the linker will try to find the object
code for it and link it with the program. However, any C/C++ compiler comes equipped
with object libraries that ought to include the object code for strcpy. Thus the
programmer's task is (a) to "tell" the compiler what strcpy is (by including the standard
header file string.h), (b) to direct the compiler to the proper object libraries
(automatic for the standard functions), and (c) to use the function properly.

For an illustration, we will examine two of the standard string functions: strcpy() and
strcat().
 char* strcpy(char* dest,const char* src)

 {
 char *dest1 = dest;
 while((*dest++ = *src++) != NULL);
 return dest1;
 }

There are two interesting aspects of the function strcpy() that concern memory. First,
it is the user's responsibility to provide sufficient memory for the string to be copied to
(the pointer to points to it); this is often a source of overflow problems (see Chapter 3)
when the memory provided is insufficient, or a source of memory access problems when

the argument to is not set properly. Second, it neatly illustrates the essential role of the
terminator NULL, since strcpy() will continue merrily copying until it reaches NULL. If
NULL is not there, strcpy() will go through the whole memory (of course, the
operating system will terminate it for memory access violation long before that). The
sample program
 int main()
 {
 char* p;
 strcpy(p,"hello");
 return 0;
 }

will exhibit the whole range of erratic behavior described in Chapter 3, for we are trying
to store a copy of the string "hello" wherever p happens to point. Similarly, the
following code may exhibit erratic behavior owing to overflow:
 int main()
 {
 char* p;
 p = malloc(4);
 strcpy(p,"hello");
 return 0;
 }

The most frequent error is forgetting to allocate storage for the terminating character at
the end of the string. Thus, when making a copy of a string q, we must not forget to add
1 to the length of q as computed by strlen() (which does not include the terminator
NULL):
 char* p;

 p = malloc(strlen(q)+1);
 strcpy(p,q);

The function strcat() is used to concatenate strings:
 char* strcat(char* dest,const char* src)
 {
 char* dest1 = dest;

 while(*dest++ != NULL);
 while((*dest++ = *src++) != NULL);
 return dest1;
 }

As with strcpy(), it is the user's responsibility to provide enough memory after the end
of the string dest to accommodate a copy of the string src. And again, if either of the
strings is not properly terminated, the function will go through all memory until terminated
by the operating system. Unfortunately, it is not always the case that the programmer is

responsible for the allocation of memory; char* strdup(const char* src) will
allocate the memory for a copy of the string src itself. This inconsistency may lead to
programs with memory leaks (see Chapter 10).

The problem of when to use the static rather than the dynamic version of strings is the
same as that for arrays, and likewise for the possible perils of using the dynamic
version.

The final topic of this chapter will turn our attention to C++ and how we can provide
arrays with run-time index range checking. Although we cannot provide this for the
proper arrays, we can define a special class of such arrays. The following code
illustrates a class of essentially int arrays that performs the index range checking (see
the method Array::operator[]) for any access.
class Array {
 protected:
 int* body;
 int last_index;

 public:
 Array(int k) { //constructor
 body = new int[k];
 last_index = k-1;
 }//end constructor

 //destructor
 ~Array() { if (body) delete[] body; body=0; last_index=-1; }

 //subscript operator
 int& operator[] (int i) {
 if (i < 0 || i > last_index) // index is out of range
 exit(1); // exit or throw an appropriate exception
 // or take an appropriate action
 return body[i];
 }//end subscript operator
};//end class Array

// function main ---
int main()
{
 Array x(4);
 x[0] = 1;
 printf("%d\n",x[0]);
 return 0;
}//end main

Of course, the class could be defined as a template class and as such would allow us to
have all kinds of arrays, not only int. Nor would it be too complicated to make the array

grow dynamically if need be, but for the sake of simplicity we did not include these
variations. For the same reason we did not include the copy constructor. We could have
also defined body statically (for fixed-length arrays), but we wanted to include some
dynamic memory allocation in the example. The reader should examine the destructor
~Array(), which guarantees that once an object of this class (static or dynamic) is
destroyed, all dynamic memory linked to it is deallocated as well. Hence no memory will
leak on account of the Array objects.

In Chapter 9 we will discuss linked data structures and will also briefly focus on arrays
as models of memory, showing how linked data structures can be created without
pointers and pointer arithmetic.

Review
A static one-dimensional array in C/C++ is represented by a constant pointer, which
holds the base address of the array and points to a statically allocated memory segment
that stores the array items. The indexing expressions of type x[i] are translated by
C/C++ compilers into indirection expressions of type *(x+i). For these reasons, the
size of an array is unknown at run time and so a run-time index range check cannot be
performed. Only a simple compile-time index range check is performed by C/C++
compilers (e.g., during initialization). This philosophy is deliberate, a response to the
significant costs (as in Pascal) of run-time index range checking. Another consequence
of the representation of arrays as pointers concerns passing of array arguments to
functions. Though C can only perform passing by value and though the C++ default is
also passing by value (passing by reference must be explicitly stated), it is actually the
pointer representing the array that is passed by value, and this value (the so-called base
address of the array) is then used to access the actual array. This results in the
possibility of a function modifying the array that has been passed to it.

Because indexing expressions are translated into indirection expressions, all pointers
(with the exception of void*) can be indexed. Pointers can therefore be regarded as
"arrays without bodies" and hence a body can be provided dynamically. A dynamic one-
dimensional array is a pointer that points to a dynamically allocated segment to store the
array items. Such arrays behave in all respects as static ones, but they can be extended
or reduced if need be. Common errors associated with the use of dynamic arrays
include (a) using the pointer without allocating the segment to store the array items
(discussed in Chapter 3 as "uninitialized pointer" error), (b) allocating insufficient storage
(discussed in Chapter 3 as "overflow" error), and (c) forgetting to deallocate unneeded
dynamic arrays or unneeded segments that may lead to memory leaks.

Strings are treated in C/C++ as character arrays terminated by NULL. They can be
stored in either statically or dynamically allocated arrays. In either case, a string is
represented by a char* pointer that points to the beginning of the string, and the string
spans the memory from its beginning to the first NULL. Even though strings are not an
innate data type of C/C++ and the language provides no means to deal with them,
standard functions (declared in the string.h header file) that come with any C/C++
compiler cover the whole range of necessary operations with strings including copying,
duplication, concatenation, length, and so on.

In C++ the programmer is allowed to overload the index operator operator[], which
can thereby be defined for any class, and then treat objects of this class as arrays.
These arrays may have all kind of properties; for example, they can dynamically grow
and shrink as needed or can provide for run-time index range checking.

Exercises
6.1 Let x and y be two integer variables, and let int* p. Let x = p[0] while y=*p.
Are the values of x and y the same? Under what circumstances may they differ?

6.2 Let int x[4] be an integer array. Let int *p and int *q be pointers. Let p=x
and q = &x[0]. Are both pointers pointing to the same location or to different ones?

6.3 Let int *p and let int x[4] = {10,11,12,13}. Let p = &x[2]. What is the
value of p[2]?

6.4 Once I saw the following problem in a C++ code. The programmer had a good idea
for a "variable length dynamic array": as long as the array is not too big (10 in our
example), store it in a static segment for efficiency; but when it gets too long, use a
dynamically allocated segment for the extra storage needed. The class definition is
shown here:
 class Array {
 public:
 Array() { cont = 0; }
 ~Array() { if (cont) free(cont); }
 char& operator[] (int i) {
 if (i < 10)
 throw exception;
 if (i < 10)
 return base[i];
 i-=10;
 if (cont == 0) {
 cont = (char*) malloc(i+1);
 length = i+1;
 return cont[i];
 }
 if (length <= i) {
 cont = (char*) realloc(cont,(i+1));
 length = i+1;
 return cont[i];
 }
 return cont[i];
 }
 void Strcpy(char* x) { strcpy(base,x); }

 protected:

 char base[10];
 char *cont;
 int length;
 };//end class Array

The program (not shown here) seemed to work fine, but once in a while it behaved
erratically, sometimes crashing at the statement a.Strcpy(x); where Array a; and
char* x. Can you explain why sometimes it works and sometimes it does not?

6.5 What will be the output of the following program?
 int main()
 {
 int i, a[3] = {0,1,2};
 doit(a,&a[1]);
 for(i = 0; i < 3; i++)
 printf("a[%d]=%d\n",i,a[i]);
 return 0;
 }

 void doit(int *a, int* b)
 {
 a[0] = b[0];
 a[1] = b[1];
 }

6.6 Will this compile? If so, will it run correctly?
 char a[3] = {'('a),'('b),'('c)};
 ...
 printf("%s\n",a);
 ...

6.7 We have a C program in two separate source files. In the first we define as a global
variable a buffer char mybuf[100];. In the other source file we declare mybuf as
external: extern char* mybuf;. When we compile and link our program using a C
compiler, the program works correctly, but not when we compile and link it using a C++
compiler. What is your explanation?

6.8 We need a dynamic array of objects, and we expect frequent repetitions. Hence we
keep a dynamic array with just one copy of each object and a dynamic array of pointers
to the objects in the first array (see Figure 6.5). Because both arrays are supposed to
be dynamic when needed, we extend them using realloc(). But sometimes this does
not work. Why?

 Figure 6.5: Dynamic array (Exercise
6.8)

References
All the C and C++ books listed in Chapters 2 and 3 treat arrays and strings
quite adequately.

A bit of history:

Ritchie, D. M., "Variable-Size Arrays in C", Journal of C Language Translation,
September 1990; also http://cm.bell-
labs.com/cm/cs/who/dmr/vararray.pdf.

The following papers discuss topics from the programmer's point of view:

Marcok, Z., "Dynamic Arrays with Expression Templates", C/C++ Users Journal,
July 1998.

Meyers, R., "The New C: Why Variable Length Arrays?", C/C++ Users Journal,
October 2001.

Saks, D., "Stepping Up to C++ - Dynamic Arrays", C/C++ Users Journal,
November 1992.

Web-based material concerning arrays:

"C On-line Tutorial", http://cplus.about.com/library/blctut.htm.

"C++ On-line Tutorial",
http://cplus.about.com/library/blcplustut.htm.

"Ted Jensen's Tutorial on Pointers and Arrays in C",
http://home.netcom.com/~tjensen/ptr/cpoint.htm.

"RedHat Course: Pointers and Arrays in C",
http://www.redhat.com/training/elearning/catalog/courses/c_pointers.html

Summit, S., "Pointers and Arrays", http://www.eskimo.com/~scs/C-
faq/s6.html.

http://cm.bell-labs.com/cm/cs/who/dmr/vararray.pdf
http://cplus.about.com/library/blctut.htm
http://cplus.about.com/library/blcplustut.htm
http://home.netcom.com/%7Etjensen/ptr/cpoint.htm
http://www.redhat.com/training/elearning/catalog/courses/c_pointers.html
http://www.eskimo.com/%7Escs/C-faq/s6.html

Chapter 7: Multi-Dimensional Arrays

Overview
Static multi-dimensional arrays and their representation. Row-major storage format
and the access formula. Passing multi-dimensional arrays as function arguments.
Dynamic multi-dimensional arrays.

It is natural and practical to extend the notion of one-dimensional arrays - that is, arrays
accessible via a single index - to multi-dimensional arrays accessible through multiple
indexes. We will illustrate the concepts on two-dimensional arrays, since the principles
and issues are the same as for higher-dimensional arrays yet the notation and
visualization are much simpler.

Consider a simple definition of a static two-dimensional int array x, where the first
index ranges from 0 to 2 and the second index ranges from 0 to 3. For a better
illustration, let us fill the array with some distinctive values using the C/C++ initialization:
 int x[3][4] = {0,1,2,3,10,11,12,13,20,21,22,23};

A typical visualization of such an array is a table, as depicted in Figure 7.1.

 Figure 7.1: Visualization of the two-dimensional array
x

Since memory is the focal interest of this book, the first question the reader must ask
concerns the "dimension" of the visualization: the memory is dimensionless (or at best it
is a one-dimensional array of bytes), so how is it that we can visualize the array x as a
two-dimensional table? The second question ought to be: Why is the first index
represented as rows of the table and the second index as columns? Moreover, is this
really an accurate representation? The following simple program will "visualize" the array
in both the row/column and the column/row manner.
 int main()
 {
 int x[3][4] = {0,1,2,3,10,11,12,13,20,21,22,23};
 int i, j;

 for(i = 0; i < 3; i++) {
 for(j = 0; j < 4; j++)
 printf("%2d ",x[i][j]);
 putchar('\n');
 }

 putchar('\n');

 for(j = 0; j < 4; j++) {
 for(i = 0; i < 3; i++)
 printf("%2d ",x[i][j]);
 putchar('\n');
 }

 return 0;
 }

producing output
 0 1 2 3
 10 11 12 13
 20 21 22 23

 0 10 20
 1 11 21
 2 12 22
 3 13 23

The answer to both questions is simple. The visualization has nothing to do with the
physical dimensions of the storage. We are quite used to this; for example, a two-
dimensional fax image is sent across one-dimensional phone wires. It is simply a
convention to visualize two-dimensional arrays in this particular way. You could just as
well visualize them in the column/row fashion (the second part of the program's output)
and everything would be satisfactory, as long as you consistently worked with the same
visualization. Hereafter, we shall work with the standard row/column visualization of two-
dimensional arrays.

Now we can examine how a two-dimensional array is really stored in memory. The
C/C++ language uses the row-major format, in which the array is (like the one-
dimensional static array case discussed in Chapter 6) a contiguous statically allocated
memory segment and the "rows" of the array are stored there one after another, as
shown in Figure 7.2. And just as in the one-dimensional case, a single pointer suffices to
hold the base address.

Figure 7.2: The row-major storing format of a two-dimensional array
x

Access to the array items is performed according to the row-major access formula,
which transforms a reference x[i][j] to an indirection expression *(x+i*n+j),
where n is the row size of x. For example: x[0][0] is translated to *(x+0*4+0)=*x,
hence the item with the value 0 is being accessed; and x[1][2] is translated to *
(x+1*4+2)=*(x+6), hence the item with the value 12 is being accessed.

The reader should note a subtle difference between the indexing mechanism of one-
dimensional arrays and that used for multi-dimensional arrays. For one-dimensional
arrays, the indexing really is the indirection and so x[i]=*(x+i), whereas for multi-
dimensional arrays the indexing is only based on the indirection with some additional
information needed and so x[i][j]=*(x+i*n+j) (where n is the additional
information in this example). Hence, we cannot simply view a two-dimensional array as a
pointer with a "body" as we did for the one-dimensional case, even though Figure 7.2
does not look that much different from Figure 6.3. The compiler represents the two-
dimensional array x as depicted in Figure 7.2 and "knows" the row size of x (which
happens to be 4) from the definition of x; thus it can translate any expression x[i][j]
to *(x+i*4+j). Throughout the compilation, the compiler simply must treat the pointer
int* x differently from "regular" int* pointers - unlike the one-dimensional case, for
which the compiler treats int* x like any other pointer.

We have just illustrated that a multi-dimensional array is accessed at run time as a one-
dimensional array, for the stored version of the array really is one-dimensional. The
multiple indexes are transformed to proper single indexes via the row-major access
formula. Thus, as in the one-dimensional case, in the multi-dimensional case the pointer
representing the array is passed by value; this allows direct access to the actual array
locally from within the function, as if the array were passed by reference. In order to
facilitate access to array items through indexing, the compiler must have additional
information (in the two-dimensional case, the row size) in order to translate the indexing
to a proper indirection.

It is essential for the compiler to know the row size, but how does it obtain this value?
While parsing the array's definition, the compiler extracts the row size - for instance, in
int x[3][4], the last index limit (4) is the size it needs to know. However, in the
previous chapter we learned that when declaring a one-dimensional array (most often as
a function argument) we need not bother to specify the size. Can we do the same for
multi-dimensional arrays? Clearly not, for the compiler must have this additional
information in order to do its job. Thus, we may leave out the size of the first index but
cannot leave out the size of any other index. We may therefore declare x either as x[3]
[4] or as x[][4].

We briefly consider the three-dimensional array int x[3][4][2]. The row-major
format will store the items in the following order (we list only the indexes):
 000,001,010,011,020,021,030,031,100,101,110,111,120,121,130,

 131,200,201,210,211,220,221,230,231

The first eight entries constitute a two-dimensional array x0[4][2] with the first index
fixed at 0 (i.e., x0[i][j]=x[0][i][j]), consisting of four rows of size 2:
{000,001}, {010,011}, {020,021}, {030,031}. The middle eight entries
constitute a two-dimensional array x1[4][2] with the first index fixed at 1, consisting of
four rows of size 2: {100,101}, {110,111}, {120,121}, {130,131}. Finally, the
last eight entries constitute a two-dimensional array x2[4][2] with the first index fixed
at 2, also consisting of four rows of size 2: {200,201}, {210,211}, {220,221},
{230,231}. The row-major formula comes to x[i][j][k]=*(x+i*8+j*2+k).

In general, row-major storage is a recursive format that stores an n-dimensional array
x[i1]..[in] as a contiguous sequence of L1 arrays that are (n-1)-dimensional:
x0[i2]..[in], x1[i2]..[in],...,and [i2]..[in], where xk[i2]..[in] denotes
the array x with the first index fixed as k and where L1 denotes the limit of the first
index. The row-major formula in its generality is given by
 x[i1][i2]..[in]=*(x+i1*L2*..*Ln + i2*L3*..*Ln +..
 + in-2*Ln-1*Ln +in-1*Ln + in)

where Li denotes the size (limit) of the ith index, i =2,..., n.

The standard visualization of a three-dimensional array is a cube, where the first index is
interpreted as the height (see Figure 7.3), the second index as the width (Figure 7.4),
and the third index as the depth (Figure 7.5).

Figure 7.3: The "slice" when the first index is fixed as 1

Figure 7.4: The "slice" when the second index is fixed as 2

Figure 7.5: The "slice" when the third index is fixed as 2

Even though it is simple and efficient, the treatment of multi-dimensional arrays as if they
were one-dimensional poses some problems for the dynamic version. In the one-
dimensional case we need only provide a "body" for a pointer and, voilà, we have an
array. With multi-dimensional arrays we cannot do this, for the compiler cannot treat a
pointer p as an array and translate p[i][j] to *(p+i*n+j). Not only is the compiler
unaware of what n can possibly be - even the programmer might not know. We must
therefore rely on the automatic indexing as indirection for the one-dimensional case. Let
us illustrate this on int** p. We have p[i][j]=*(p[i]+j)=*(*(p+i)+j) and this
does make sense, since int** p, so *(p+i) is of the type int* and hence *(*
(p+i)+j) is of the type int. We thus require a two-stage solution, for p+i must point
somewhere, and application of the indirection operator *(p+i) gets the address stored
there; hence *(p+i)+j points somewhere, and another application of the indirection
operator *(*(p+i)+j) retrieves the number stored there. Here is a code to create a
dynamic two-dimensional int array p[3][4]:
int** p;

p = malloc(3*sizeof(int*));
if (p == NULL) error();
for(i = 0; i < 3; i++)
 p[i]= malloc(4*sizeof(int));

/* let us put in values as sample accessing of the array items */
a=0;
for(i = 0; i < 3; i++)
 for(j = 0; j < 4; j++)
 p[i][j] = a++;

Figure 7.6 illustrates the dynamic two-dimensional array p[2][3] created in this
sample program.

Figure 7.6: Dynamically created two-dimensional array p

Note that we have actually created four one-dimensional arrays. One is an array of
pointers; let us call this the row array, as each item of this array is a pointer to a one-
dimensional int array representing a row. The pointer p that represents the whole
array points to the row array. In a sense we have created a dynamic one-dimensional
array of dynamic one-dimensional arrays. For a three-dimensional dynamic array we
would do exactly the same and create a one-dimensional dynamic array of two-
dimensional dynamic arrays, and similarly for higher dimensions.

Let us now investigate exactly what (say) p[1][1] refers to in our previous sample
code. The automatic indexing through indirection of p[1] refers to the pointer to the
middle row, and hence the automatic indexing through indirection of p[1][1] refers the
second item of the middle row (with value 5). Thus the structure exhibits the correct kind
of behavior with respect to indexing.

It is interesting that - despite the high cost of their creation - dynamic multi-dimensional
arrays may facilitate faster execution in comparison to static arrays. Access to a static
array must always be calculated using the row-major formula and hence employs
multiplication, an expensive operation. Yet access to a dynamic array is just a simple
series of dereferencing, which is much less expensive. Thus, for a program with a large
number of accesses to the array, the dynamic version may improve over-all
performance. For a program running in a system with constrained memory size and
needing a large multi-dimensional array, it may be advantageous for the dynamic version
of the array to consist of many unrelated smaller segments rather than a single large
one as the static version requires. However, there are also potential drawbacks: a
dynamic multi-dimensional array that spans a wide portion of the address space may
complicate and slow down caching and/or paging and thus degrade performance.

Review
Multi-dimensional arrays are represented in the same way as one-dimensional arrays:
by a pointer holding the base address and pointing to a contiguous statically allocated
segment where all the array's items are stored. The array's dimension is a logical
concept, not a physical one, and the compiler translates multi-dimensional access to the
array items into ordinary one-dimensional access to the underlying one-dimensional
array by using the so-called row-major formula. In other words, the array is stored as a
one-dimensional array using the row-major format. For the two-dimensional case, the
row-major format means that rows of the array are stored consecutively. In order to do
this, the compiler must know the sizes of all indexes of the array (except for the very
first one), and the programmer must deliver this information through appropriate
definitions or declarations that include the explicit sizes of all indexes (save the first).

Because multi-dimensional arrays are actually stored and accessed as one-dimensional
arrays, they exhibit the same behavior when passed to functions and so behave as if
passed by reference.

For dynamic multi-dimensional arrays, we cannot rely on the automatic indexing that
translates directly to indirection (as in the one-dimensional case), for the compiler lacks
information about the explicit size of all indexes except the very first one. Thus, in the
multi-dimensional case we create dynamic arrays of dynamic arrays in order to obtain
the right kind of behavior with respect to indexing.

Exercises
7.1 We discussed static two-dimensional arrays (and their row-major storing) as well as
implementation of two-dimensional dynamic arrays. Static and dynamic arrays both use
the same "syntax" for access (e.g., x[2][3]); how is this possible given the totally
different storage methods?

7.2 Write a simple C program in which a two-dimensional dynamic array is used. Now
add a function that adds a new row to the array. How complicated was it?

7.3 Take the program from Exercise 7.2 and add a function that adds a new column to
the array. How complicated was this in comparison to Exercise 7.2?

7.4 Implement a dynamic array of strings in the form of a dynamic array of pointers to
strings. Use an implementation that is similar to a two-dimensional character array,
where each string is stored in a row of different size.

7.5 In C, use the row-major approach to implement an integer dynamic two-dimensional
pseudo-array that is always stored in a contiguous segment of memory. For access you
must use two functions, Get(i,j) (to fetch a value) and Set(i,j,value); it is
because you need these two access functions that we use the term pseudo-array. In
C++, implement this as a class that allows the proper indexing x[i][j].

References
In addition to the references from Chapter 6:

Bavestrelli, G., "A Class Template for N-Dimensional Generic Resizable Arrays",
C/C++ Users Journal, December 2000.

Connely, J., C through Objects, Scott/Jones, El Granada, CA, 2002.

Rahimi, A., "A Multidimensional Array Class", C/C++ Users Journal, July 1997.

A good website discussing multi-dimensional arrays:

http://www.csc.liv.ac.uk/~frans/COMP101/AdditionalStuff/multiDarrays.html

http://www.csc.liv.ac.uk/%7Efrans/COMP101/AdditionalStuff/multiDarrays.html

Chapter 8: Classes and Objects

Overview
Basic ideas of object orientation; the concepts of classes and objects. Operators
new, new[], delete, and delete[], and related issues. Constructors and
destructors.

In this chapter we will take the concept of "data container" introduced in Chapter 3 one
step further. There we discussed some concepts concerning C++ objects; in particular,
we mentioned that a structure defined by the struct construct is treated by C++ as the
simplest class, with no explicit (user-defined) methods and with all (data) members
being public. We will see that such a structure actually has a default constructor and
destructor, but no other methods. We will describe these notions more precisely and will
discuss them fully in the context of object-orientation as provided by C++.

Whether C++ is a "procedural language with classes" or rather a "real object-oriented"
programming language is debatable. However, we shall neither discuss nor resolve the
dilemma. We will simply work on the premise that - since it exhibits the three
fundamental characteristics of object orientation (encapsulation, inheritance, and
polymorphism) - C++ can be considered enough of an object-oriented language to call it
so and hence to discuss some issues in an object-oriented context.

The encapsulation characteristic in C++ is facilitated by data abstraction and data
hiding. The data abstraction is intended to shield the user of the abstract data types
from implementation details. As long as the user knows how an abstract data type is
supposed to behave, it is "safe" to use that type regardless of implementation. Data
hiding (or information hiding) is a principle stipulating that a module should hide as much
as possible of its innermost workings from other modules and should interact with them
only through a specific and highly selective interface. The main objectives are safety
(preventing accidental data corruption) and shielding users of the modules from
implementation details.

In C++ the modules are objects. Thus encapsulation means that both the data and
operations with the data - known as methods - are enclosed within the object itself and
can only be used by others via requesting services from the object. The data abstraction
part is provided by the mechanism of classes that can be viewed as "blueprints" for
objects: for each class, the programmer defines the data and its behavior as well as the
methods that can be performed on the data, including the services provided for other
modules (see Figure 8.1). The reader is encouraged to compare this setting with the
function concept; it is no coincidence that they are similar, since both are a form of
modularization. However, the interface of a function is simple and rigid, and so is the
conduit for the data passed to the function or returned by it. In contrast, the interface of
an object can be as varied and flexible as desired, and likewise for the data "passed" to
or from the object.

 Figure 8.1: An object and its
encapsulation

The inheritance characteristic in C++ is facilitated by subclasses (or, more properly,
derived classes), which allow the programmer to "reuse" the definition of properties
from one class in another class without any need to stipulate them explicitly. That is, an
object from a subclass "inherits" all properties of objects from the superclass (or, more
properly, the base class).

The polymorphism characteristic in C++ is facilitated by overloading, which allows: (a)
having several functions (including methods) with the same name if the compiler can
discern (from a call's unique signature) which function should really be called; and (b)
extending any C++ operators to work with user-defined data types and in a way the
programmer desires. In Chapter 6 we presented a class Array as an example of an
array that provides for run-time index range checking with the subscript operator
operator[], which we overloaded to perform the checking.

Because of our focus on the role of memory, we will concentrate on creation and
destruction of objects - activities much more complex than creation and destruction of
the variables, arrays, and structures discussed so far.

Static variables, arrays, and structures in a program are "pre-created" at compile time
as a part of the program's address space (see Chapter 3). Hence their creation
coincides with the beginning of the execution of the program when the address space is
mapped to memory, and their destruction coincides with termination of the program.
Automatic variables, arrays, and structures in a function are created automatically as a
part of the activation frame of the function when the function is activated and are
destroyed when the activation frame is destroyed at function termination (see Chapter
5). A dynamic construction of any kind of data requires a two-step process fully under
the control of the programmer: first "raw memory" is allocated, and then it is filled with
required values (see Chapter 4). The destruction is thus a direct responsibility of the
programmer and is accomplished via explicit use of the deallocator free().

Since activation frames are allocated on the system stack whereas dynamic allocation
uses the system heap, some authors simply state that the allocation of variables, arrays,
and structures in C is either static, on the stack, or on the heap. The neat thing about
this classification is its use of the "exclusive or" - that is, an array is either static, or on
the stack, or on the heap. It is not possible for part of it to be static while some other
part is on the heap or with yet another part on the stack. For objects, however, this

complex situation is quite possible. This gives the programmer enormous flexibility but is
fraught with dangers, especially with respect to memory leaks.

As just discussed, the situation in C is simple: the programmer need not worry about the
destruction of static or automatic entities yet is fully responsible for the destruction of
dynamic data. With C++ objects, the programmer must now worry about dynamically
allocated parts of automatic objects. It comes as no surprise that automatic objects with
dynamically allocated parts are the largest cause of memory leaks.

The construction of an object of a class (in some literature you may find the terms
instantiation for creation and instance for object) proceeds according to the "blueprint"
of one of several possible constructors. Let us consider a C++ program fragment
featuring a simple class Sample with a single constructor Sample(char*). The
constructor expects the object to be initialized with a string:

 class Sample {
 public:
 char* salutation;
 Sample(char* c) { //constructor
 if ((salutation=(char*)malloc(strlen(c)+1))==0) {
 cerr << "memory allocation error\n";
 exit(1);
 }
 strcpy(salutation,c);
 }//end constructor Sample
 };//end class Sample

 Sample sample("hey"); // static object of class Sample

 // function main --------------------------------------
 int main()
 {
 cout << sample.salutation << '\n';
 return 0;
 }//end main

The execution of the program displays hey on the screen. Figure 8.2 illustrates that the
static object sample's location "spans" the static and dynamic memory both.

Figure 8.2: Memory allocation for sample

How has this come to be? Is not the object sample a static one? Is it not created by
the compiler? Yes, but it is the "static" part of the object - in this case, the pointer
salutation - that is created by the compiler and is a part of the static memory. But
this is only the first step in creating the object.

Prior to the C99 standard, C required a strict separation of executable and
nonexecutable statements in each block. Each block had to start with nonexecutable
statements (mostly declarations and definitions) and then be followed by executable
ones. It made sense, since the nonexecutable statements are intended mainly for the
compiler and only executable statements play a role during execution. Although simple
and effective, this separation was rather rigid. Hence C99 and C++ allow significantly
more flexibility in freely mixing executable and nonexecutable statements. For instance,
with C++ it is possible to define the object sample as in our example program fragment:
a kind of "classical" definition that is also an executable statement. The creation of
sample is therefore finished at the beginning of the execution, when the constructor
Sample("hey") of the object sample is executed. This execution allocates the
dynamic memory segment, stores its address in salutation, and copies the string
"hey" to that address.

We will discuss the operators new and new[] later in this chapter, but they were not
used in our sample program because we did not want to distract the reader from
focusing on the concept of object creation. Besides, it is perfectly valid (though not
recommended) to use C allocators in C++.

To underscore some more subtle aspects of object creation, let us examine the same
program and create one more extra global object, sample1. The definition of class
Sample is the same:

 class Sample {
 ..
 ..
 };//end class Sample

 Sample sample("hey");
 Sample sample1("good bye");
 // function main --------------------------------------
 int main()
 {
 cout << sample.salutation << '\n';
 cout << sample1.salutation << '\n';
 return 0;
 }//end main

The program will display hey on one line and good bye on the other. Figure 8.3
illustrates the memory allocation for the two objects. When the creation of sample is

concluded by executing the constructor Sample("hey"), it only works with the data of
the object it was invoked for - in this case, sample. At this point, sample1 is still only
half-created. Then the creation of sample1 is concluded by executing Sample("good
bye") on the data of sample1.

Figure 8.3: Memory allocation for global sample and sample1

Now imagine that we are running our original program with just one object sample under
a strange operating system: one that reclaims static memory after termination of the
program but for some reason does not reclaim dynamic memory. Hence the static
memory is reclaimed whereas the dynamic memory is still "allocated" to programs that
have already finished. After executing our program repeatedly, the system will run out of
dynamic memory. The memory is leaking.

We don't really need to posit a strange operating system. Instead, we can present our
program in a slightly different setting and still arrive at the same outcome:

 class Sample {
 ..
 ..
 };//end class Sample

 // function doit -------------------------------------
 void doit()
 {
 Sample sample("hey");
 cout << sample.salutation << '\n';
 }//end doit

 // function main --------------------------------------
 int main()
 {
 while(1) doit();
 return 0;
 }//end main

Every time doit() is called, sample is created as a part of the activation frame and -
at the beginning of the function's execution - the creation is completed by executing the

constructor. The constructor allocates dynamic memory and copies the initialization
string therein. The situation is almost identical to the "strange" one described previously,
with the activation frame of doit() playing the role of the static memory (see Figure
8.4).

Figure 8.4: Memory allocation for local sample

Every time the function doit() terminates, its activation frame is destroyed and hence
the object sample with it - but not the dynamic string "attached" to it. We are running
the function doit() in an infinite loop. Hence these undeallocated dynamic strings
cumulate to the point of halting the execution. The memory is leaking in a major way.

If we only used the object sample a few times in our program, no serious harm would
ensue. The problem manifests itself only when we use sample many, many times.
However, when designing a class, we might not be able to anticipate how often it will be
used and in what contexts. It therefore makes sense to provide a blueprint not only for
construction but also for destruction. This is the role of yet another special method, the
destructor. Let us illustrate:

 class Sample {
 public:
 char* salutation;
 Sample(char* c) { // constructor
 if ((salutation=(char*)malloc(strlen(c)+1))==0) {
 cerr << "memory allocation error\n";
 exit(1);
 }
 }//end constructor Sample
 ~Sample() { free(salutation); } // destructor
 };//end class Sample

 // function doit -------------------------------------
 void doit()
 {
 Sample sample("hey");
 cout << sample.salutation << '\n';
 }//end doit

 // function main --------------------------------------
 int main()

 {
 while(1) doit();
 return 0;
 }//end main

The destructor for class Sample is the method ~Sample(). As you can see, it has only
one task: to deallocate the dynamically allocated part (if any) of the object. Now our
program will run forever. Every time the function doit() terminates, the objects in its
activation frame must be destroyed; for that purpose, the destructor is called and it
deallocates the string. Then the whole activation frame is deallocated, a process that
destroys the automatic parts of the object. Thus, the object is completely obliterated,
memory is not leaking, and our rather uninteresting program can continue unimpeded
and run for as long as we like.

We have established the need for both a constructor and a destructor for each class. Of
course, it stands to reason that the programmer may want to have many constructors,
each corresponding to a different way of initializing an object. The possible multitude of
constructors does not cause any problems, since the programmer explicitly controls
which of the constructors ought to be used by specifying it in the object's definition.
However, we cannot have multiple destructors: the object's destruction is implicit, and
the compiler would have no way of deciding which of the many destructors to use. If a
constructor or a destructor is not provided explicitly by the programmer, the compiler will
provide its default version. However, the compiler cannot anticipate the programmer's
intentions with objects of the class. The default constructor is therefore rather simple,
merely making sure that all data items of the object that are themselves objects have
their appropriate constructors called; the default destructor is equally simple in just
making sure that the appropriate destructors are called. It is customary to refer even to
an explicitly given constructor that has no arguments as the default constructor.

In our previous example of the class Sample (with one explicit constructor and no
destructor), the compiler provides a default destructor. However, since there is only one
data item, a pointer salutation, the default destructor does nothing and so does not
prevent memory from leaking.

An important issue regarding classes and objects is control of access to the data items
and the methods, but since this does not concern memory we shall not delve into it.
Suffice it to say that any class member (a data item definition or a method) can either
be public, which allows access to it from outside the object (any constructor or
destructor must by its nature be public), or private or protected, which allows access
only from within the object or from other objects declared as friends. The only difference
between "private" and "protected" class members concerns inheritance: the latter can
(whereas the former cannot) be inherited.

Before we embark upon a discussion of memory handling operators, let us summarize

the basic properties of constructors and destructors. Like other methods, constructors
and destructors are declared within a class definition. Constructors and destructors do
not have return types, nor can they return values. For obvious reasons, unions cannot
contain objects that have constructors or destructors, for the size of such objects cannot
be ascertained at compile time. Constructors and destructors obey the same access
rules as all other methods. For instance, if a constructor is declared with the keyword
"protected", then only derived classes and friends can use it to create class objects. You
can call other class methods from constructors or destructors, which is often used to
modularize complex constructors and destructors. Typically, memory allocation should
be the last activity of a constructor after all other computations have successfully taken
place; we do not want the memory to leak if the construction fails at some point.

A subtle yet critical fact that is seldom fully appreciated by programmers concerns
inheritance: derived classes do not inherit constructors or destructors from their base
classes; instead, they have their own. The default constructor of the base class may be
invoked implicitly, but if all base constructors require arguments then they must be
specified in the derived class constructor and the base constructor must be invoked.
Similarly, the base destructor is not inherited but will be called implicitly:

 class C {
 public:
 char* salutation;
 C() { salutation=0; }
 C(char* c) {
 salutation=new char[strlen(c)+1];
 strcpy(salutation,c);
 }//end constructor
 ~C() {
 if (salutation) delete[] salutation;
 cout << "~C() invoked\n";
 }//end destructor
 };//end class C

 class CC : public C {
 public:
 char* name;
 CC() { name=0; } // C() will be invoked implicitly
 CC(char* s,char* n) : C(s) { // C(s) invocation requested
 name=new char[strlen(n)+1];
 strcpy(name,n);
 }//end constructor
 ~CC() { // ~C() will be invoked implicitly
 if (name) delete[] name;
 cout << "~CC() invoked\n";
 }//end destructor
 };//end class CC

 // function main --
 int main()
 {
 CC* x = new CC("hey","Joe");

 cout << x->salutation << ',' << x->name << '\n';
 delete x;

 return 0;
 }//end main

The program will display hey, Joe and then (the main purpose of this illustration)
~CC() invoked followed by ~C() invoked. Notice the reverse order in which the
destructors are called.

The C memory allocators malloc(), calloc(), and realloc() and the deallocator
free() (see Chapter 4) are treated as standard functions from the programmer's point
of view. In C++ their role is taken on by the more sophisticated memory operators new
(and its array version new[]) and delete (and its array version delete[]). Calling
them more sophisticated is warranted: they do more than simply allocate or deallocate
segments of raw memory as their "plain vanilla" C cousins do; these operators are
active and often main participants in the processes of object creation and destruction.

First of all, C++ allocators and deallocators are treated as operators and as such they
can be overloaded. Thus, each class may have its own class-specific version of a
memory operator. This is useful when dealing with memory leaks (as we discuss in
Chapter 10) or when allocating from a specific arena (see Chapter 9). Besides these
user-defined memory operators, there also exist the innate (often referred to as global)
versions of the memory operators. As far as the management of raw memory is
concerned, new behaves like malloc() and delete behaves like free. The main
difference is in the interaction between new and constructors and between delete and
destructors. Let us illustrate: the C++ code

 int* x;
 x = new int;

does not essentially differ from the C version,

 int* x;
 x = malloc(sizeof(int));

beyond using a more succinct and comprehensible notation. The same result will ensue,
and a suitable segment of raw memory will be allocated. We may notice the first
difference when we try to check for a possible failure of the allocation:

 int* x;
 x = new int;
 if (x==0) error(....);

in comparison with the C version,

 int* x;
 x = malloc(sizeof(int));
 if (x==NULL) error(....);

The C++ version may not actually work. Even though the original C++ required new to
return a null pointer on failures, later versions included handling of the failure through a
special handler, in essence giving two different ways of handling the allocation failures:
(i) if new_handler was defined and the allocation failed, new called the function
new_handler to handle the situation (which usually involved throwing an exception and
catching it somewhere else in the program); (ii) if new_handler was not set, a null
pointer was returned. Ever since acceptance of the 1998 C++ standard, new either
handles the failure by new_handler or throws an exception of type bad_alloc. It
thus depends on the implementation whether or not new returns a null pointer on failure.
Therefore, a prudent approach prescribes handling allocation failures either by explicit
new_handler, or through the exception mechanism, or by defining new_handler to
return a null pointer.

There are other aspects to new that differ more remarkably from the C allocators. The
first and most significant is the deep involvement of new in the process of object
creation: the code

 class X {
 public:
 X(..) // constructor
 ..
 };//end class X

 ..
 X* ptr;
 ..
 ptr = new X(..);

will not only allocate raw memory for the object referenced via the pointer ptr, it will
also call the constructor X(..) and thus complete construction of the object. Observe
that the object is completely allocated on the heap. If some of data items of the object
being created are themselves objects, their respective constructors will be called, and
so on. In short, new is as involved with the creation of dynamic objects as the compiler
is with the creation of static or automatic objects.

Additional arguments can be supplied to new using placement syntax. If placement

arguments are used, a declaration of operator new with these arguments must exist. For
example:

 #include <new>
 ..
 class X {
 public:
 void* operator new(size_t,int,int) ...
 ..
 ..
 };//end class X

 // function main --------------------------------------
 int main ()
 {
 X* ptr = new(1,2) X;
 ..
 return 0;
 }//end main

results in a call of operator new(sizeof(X),1,2). The additional arguments of
placement syntax can be used for many specialized tasks. For instance, if we do not
have a compiler that supports nothrow (a placement parameter that suppresses
throwing an exception on allocation failure), then we can easily emulate it:

 //in our custom header file "mynew.h"
 struct nothrow { }; // dummy struct
 void* operator new(size_t, nothrow) throw();
 ..
 ..
 // implementation in a program
 #include "mynew.h"
 ..
 void* operator new(size_t s, nothrow) throw()
 {
 void* ptr;
 try {
 ptr = operator new(s);
 }
 ..

 catch(...) { // ensure it does not propagate the exception
 return 0;
 }
 return ptr;
 }//end new

If ptr = new X is used in a program, it results in a call of the "normal" operator new

(the one that throws exceptions on failure), whereas if ptr = new(nothrow) X is
used, it results in a call to the specialized new that is guaranteed to return a pointer and
throw no exceptions.

The term "placement syntax" comes from the most intended use of the extra
argument(s): to be used to "place" an object to a special location. This particular
overload of new can be found in the Standard Library. It takes a void pointer to a
segment of memory as an additional argument, and is intended to be used whenever
memory for the object has already been allocated or reserved by other means. This so-
called placement-new does not allocate memory; instead, it uses the memory passed to
it (the programmer is responsible for ensuring the memory segment is big enough) and
then calls the appropriate constructor. We will discuss some of the applications of
placement-new in the next chapter.

The operator new is intended for dynamic creation of individual objects. For creation of
arrays of objects, the operator new[size_t] must be used. Everything we have
discussed so far for new applies equally to new[] with one exception: new[] can only
be used for classes that have a default constructor and can only be used in conjunction
with that default constructor (this just means that objects in an array cannot be
initialized). The additional argument in [] is the number of objects in the array we want
to create. The placement syntax as described for new can be used with new[] in the
same way.

class C {
public:
 char* salutation;
 C() { salutation=0; } // explicit default constructor
 void Mod(char* c) {
 // allocation failure handled by exception, not in this example
 salutation=new char[strlen(c)+1];
 strcpy(salutation,c);
 }
};//end class C

// function main --
int main()
{
 C* x = new C[5];
 x[2].Mod("hey");
 cout << x[2].salutation << \n;
 return 0;
}//end main

Just as new is more than simply a memory allocator (it is involved in object construction
by calling the appropriate constructor), delete is more than simply a memory
deallocator. Though memory deallocation is an important aspect of delete, object

destruction is another important aspect. Thus, when a dynamic object is to be deleted,
the operator delete should be used, whose responsibility it is to call the appropriate
destructor. Note that there is no need for any explicit calls to destructors in a C++
program; all the calls ought to be implicit and performed by delete. Whatever memory
was allocated using new[] must be deallocated using delete[].

 class C {
 public:
 char* salutation;
 C(char* c) {
 salutation=new char[strlen(c)+1];
 strcpy(salutation,c);
 }//end constructor
 ~C() { if (salutation) delete[] salutation; }
};//end class C

// function main --
int main()
{
 C* x = new C("hey");

 cout << x->salutation << \n;
 delete x; // calls ~C()

 return 0;
}//end main

The operators delete and delete[] can each be used with the placement syntax
described previously for new under the same rules and with the same meaning. But
there is one important difference. Unlike placement-new, placement-delete cannot be
called explicitly, so why bother to have it at all? For one and only one purpose: if the
construction of an object fails through an exception, the partial construction is rolled
back. The compiler is aware of all allocations so far and by whom they have been done.
To undo the construction, the compiler calls the corresponding deallocators and so, if
some allocation during the construction has been done by a placement-new, the
corresponding placement-delete will be called. We will expand on this topic in Chapter
10 when discussing memory leaks and their debugging.

Here are a few guidelines to make sure that the process memory manager does not
become corrupted.

Never pass a pointer to free() that has not been returned previously by
malloc(), calloc(),or realloc().

Deallocate segments allocated by malloc(), calloc(), and realloc()
using exclusively free().

Never pass a pointer to delete that has not been returned previously by new.

Deallocate segments allocated by new using exclusively delete.

Never pass a pointer to delete[] that has not been returned previously by
new[].

Deallocate segments allocated by new[] using exclusively delete[].

If your program uses placement-new, it should have a corresponding
placement-delete (even though it will be only called implicitly by the compiler
when an exception is thrown during the construction of an object).

Besides constructor(s) and a destructor, a class may need two more specialized
methods that also deal with the construction of the objects of the class. The first -
usually called the copy constructor - is a special kind of constructor necessary when an
object is passed by value to a function. A value of an object is the object itself and hence
copying the value of the object to a function's activation frame requires making a copy of
that object (see Chapter 5). If the copy constructor is missing, the compiler just copies
all data items of the object with their values (this is known as memberwise copy). If the
object has some dynamically built parts then they will not be copied. Let us illustrate:

class C {
public:
 char* salutation;
 C() { salutation=0; } // explicit default constructor
 C(char* c) { // initializing constructor
 salutation=new char[strlen(c)+1];
 strcpy(salutation,c);
 }//end constructor
 C(const C& c) { // copy constructor
 salutation=new char[strlen(c.salutation)+1];
 strcpy(salutation,c.salutation);
 }//end constructor

 ~C() { if (salutation) delete[] salutation; } // destructor
};//end class C

// function doit ---
void doit(C d)
{
 cout << d.salutation << '\n';
}//end doit
// function main ---
int main()
{
 C c("hey Joe");

 doit(c);
 return 0;
}//end main

This program will work fine, displaying hey Joe on the screen. The object c created in
main() using the constructor C(char*) will be copied to the activation frame of
doit() using the copy constructor C(const C&). When doit() terminates, the
object d - as built in the activation frame of doit() - is destroyed using ~C().

On the other hand, had we not provided the copy constructor, our sample program
would have crashed. It is most interesting to see why. When a copy of the object c is
made in the activation frame of doit(), the data items are copied with their values.
Hence d.salutation in doit() has the same value (i.e., points to the same string)
as c.salutation in main(). Hence we will see the proper message on the screen
(hey Joe), but then d is destroyed using ~C(). During the destruction, the string "hey
Joe" is deallocated. Function doit() terminates, function main() continues its
execution, and when it terminates, the object c is destroyed via ~C(). Then ~C() will try
to deallocate the string "hey Joe", most likely causing a memory access violation
error.

An error I have seen many times occurs along these lines: A class C is defined without
the copy constructor. A function doit() is first defined as getting the argument by
reference - for example, doit(C& d).Everything works fine. Then somebody (perhaps
even the original designer) worries about the object being passed by reference (which is
unsafe from the standpoint of data protection) and, since the object is not modified in the
function, the function is modified to receive the argument by value: doit(C d). From
that moment on, the whole program does not work correctly, but the problem is subtle
and usually leads to the kinds of erratic behavior described in Chapter 3. And the culprit
is - the missing copy constructor. Let as remark that for greater efficiency a complex
object should be passed by reference, and that protection of the passed object should
be achieved by other means (e.g., using the const declaration).

The other specialized method involved somehow in the "business" of object construction
is assignment or, more precisely, the operator=. This method specifies how to
perform assignments of type o1=o2 between two objects (which is, in a sense, a form
of copying, from o1 to o2). In the absence of an explicit assignment, the memberwise
assignment is performed, and the same problems as discussed for the missing copy
constructor may ensue. However, a missing assignment is even more dangerous
because it can lead to memory leaks:

 class C {
 ...
 ...

 };//end class C

 // function doit --
 int doit()
 {
 C c1("hey Joe"), c2;

 c1=c2;
 return 0;
 }//end doit
 ...
 ...

Here c1 is created and c1.salutation points to a dynamically created string "hey
Joe". Then c2 is created using the default constructor and so the value of
c2.salutation is set to NULL. When the c1=c2 assignment is made, the
memberwise copy is performed (because no assignment method was explicitly defined
for the class C) and thus c1.salutation is set to NULL. When c1 and c2 are
destroyed, neither is linked to the string "hey Joe" and so that string is never
deallocated and "leaks".

The difference between assignment and copying is that the latter is concerned with
"forming raw memory into an object" whereas the former must deal with a "well-
constructed object"; thus, in essence the assignment must deconstruct the object before
copying can proceed:

class C {
public:
 char* salutation;
 C() { salutation=0; } // explicit default constructor
 C(char* c) { // initializing constructor
 salutation=new char[strlen(c)+1];
 strcpy(salutation,c);
 }//end constructor
 C& operator=(const C& c) { // assignment
 if (c!=this) { // don't copy itself
 if (salutation) delete[] salutation; // deconstruct
 salutation=new char[strlen(c.salutation)+1]; // reconstruct
 strcpy(salutation,c.salutation);
 }
 return *this;
 }//end operator=
 ~C() { if (salutation) delete[] salutation; } // destructor
};//end class C

// function main --
int main()
{

 C c1("hey Joe"), c2;

 c1=c2;
 return 0;
}//end main

The program now does not leak any memory.

Review
The two aspects of object orientation - encapsulation and inheritance - are facilitated in
C++ by classes. Classes can be viewed as "blueprints" for objects. In a class, the
programmer thus defines all data items that each object of the class should have (the
so-called data members of the class) and also defines all operations with the data that
can be performed and how (member methods). By stipulating which of the data
members can be accessed from outside the object and by whom - as well as which of
the member methods can be called from outside the object and by whom - the
programmer manages both the encapsulation and the interface to the outside word.
Though the concept of "object" is not very different from the concept of "function" (both
are a form of modules), the C++ "class" approach allows for a much more flexible and
controlled specification of the interface and of data transfer.

Every class is supposed to have one or more specialized methods that include
constructors. A constructor is a blueprint of how to build an object and how to initialize it
once it has been built. A constructor with no arguments is called a default constructor. If
a class does not have an explicit constructor, the compiler builds a default constructor of
its own. A derived class does not inherit the constructor(s) of its base class, yet they
may need to be invoked explicitly in the definition of the derived class constructs. Each
class is supposed to have a single destructor; if one is not explicitly specified, the
compiler provides a default one. A derived class does not inherit the destructor of its
base class, which nonetheless is called at the onset of executing the destructor of the
derived class.

The operator new is used both to allocate raw memory for a dynamic object and to call
the appropriate constructor that actually creates the object. Its counterpart, delete, is
used both to call the appropriate destructor and to deallocate the memory. In order to
create arrays of dynamic objects, the new[] operator must be used. The operator
new[] can only be used in conjunction with the default constructors. Arrays created
using new[] must be destroyed using the operator delete[]. The operator new[], in
conjunction with innate data, functions just as a raw memory allocator; for example, x =
new char[1000]; simply allocates 1000 bytes. All C++ memory operators can be used
with the so-called placement syntax when additional arguments are passed to them.
Unlike their global versions, placement-syntax versions must be explicitly defined by the
programmer. A particular version of memory allocators using placement syntax
(placement-new and placement-new[], with a single additional argument void* pointer)
are in the C++ Standard Library; their task is not to allocate any memory but rather to
construct an object (or objects) in memory secured by other means. All memory
operators can be overloaded, and thus a class may have its own versions of memory
operators.

If an object needs to be copied (passed by value to a function), an explicit copy

constructor ought to be provided in the definition of the class. In its absence, a
memberwise copy is used by the compiler, which may lead to subtle memory problems
as discussed in Chapter 3.

If an object needs to be assigned to another object, an explicit assignment (operator=
()) ought to provided in the definition of the class. In its absence, a memberwise copy is
used by the compiler, which may lead to the same kind of problems as in the missing
copy constructor case; moreover, memory leaks can thereby be created.

Exercises
8.1 Consider the following C++ class:
 class A {
 public:
 int a;
 char b;
 A() { a = 0; b = '\0'; }
 };//end class A

Is it a problem that this class does not have a destructor? Is it a problem that the class
does not have a copy constructor? Is it a problem that the class does not have an
assignment?

8.2 Consider a C++ class:
 class A {
 public:
 B* b;
 A() { b = new B(1,2); }
 ~A() { delete b; }
 void* new(size_t size) {
 ...
 }
 };//end class A

When an object of class A is being constructed, which new is being used to create the
object of class B: the class-A specific new, or the class-B specific new, or the global
new?

8.3 What is wrong with the following class, and what kind of problems might it cause
during execution?
 class A {
 public:
 A() { string = 0; }
 A(char* x) {
 string = new char[strlen(x)+1];
 strcpy(string,x);
 }
 ~A() { if (string) free(string); }
 A& operator= (const A& a) {
 string = new char[strlen(a.string)+1];
 strcpy(string,a.string);
 return *this;
 }

8.4 The C++ compiler is complaining about "no appropriate default constructor for class

A" but points to the Bb; statement. Why? How would you fix this problem?
 class A {
 public:
 char string[10];
 A() { strcpy(string,"good bye"); }
 A(char* s) { strcpy(string,s); }
 };//end class A

 class B : public A {
 public:
 int x;
 B(char* s) : A(s) { }
 };//end class B

 int main()
 {
 A a("hello");
 printf("%s\n",a.string);

 B b;
 printf("%s\n",b.string);

 return 0;
 }

8.5 The following program is leaking memory. Find where and correct it.
 #include <iostream>

 extern "C" {
 #include <stdio.h>
 #include <string.h>
 #include <stdlib.h>
 }
 class A {
 public:
 char* string;
 A(char* s) { string = strdup(s); }
 A& operator=(const A& a) {
 string = a.string;
 return *this;
 }
 };//end class A

 int main()
 {
 A a("hello");
 printf("%s\n",a.string);
 A b("good bye");

 printf("%s\n",b.string);
 b=a;
 printf("%s\n",b.string);

 return 0;
 }

8.6 Having used placement-new in our program, we should also define a corresponding
placement-delete. Can we call it explicitly within our program?

8.7 Write a C++ program in which an object is created that has some static data, some
data on the stack, and some data on the heap. Do not peek at the next exercise.
Designing programs like this is not advisable in real life!

8.8 What will happen in the following C++ program if the display statement in main() is
uncommented and the program is recompiled and executed? Can you describe the
output?
 class A {
 public:
 char* heap_string;
 char* stack_string;

 A() { heap_string = stack_string = 0; }
 void AttHStr(char* x) { heap_string = x; }
 void AttSStr(char* x) { stack_string = x; }
 friend ostream& operator << (ostream& os,const A& a) {
 os << "heap string=" << a.heap_string << "\n";
 os << "stack string=" << a.stack_string << "\n";
 return os;
 }
 };

 Aa;

 void doit()
 {
 char s[] = "..stack..";
 a.AttSStr(s);

 cout << a << '\n';
 }

 int main()
 {
 a.AttHStr(strdup("..heap.."));
 doit();
 //cout << a << '\n';

 return 0;
 }

References
All C++ texts listed for Chapters 2 and 3. In addition:

Horstmann, C. S., Mastering Object-Oriented Design in C++, Wiley, New York,
1995.

Milewski, B., C++ in Action: Industrial-Strength Programming Techniques,
Addison-Wesley, Reading, MA, 2001.

Stroustrup, B., The Design and Evolution of C++, Addison-Wesley, Reading, MA,
1994.

Stroustrup, B., C++ Programming Language, Special Edition, Addison-Wesley,
Reading, MA, 2002.

Sutter, H., More Exceptional C++: 40 New Engineering Puzzles, Programming
Problems, and Solutions, Pearson, Harlow, U.K., 2001.

Objects and the operators new and delete from the programmer's point of
view:

Allison, C., "What's New in Standard C++?", C/C++ Users Journal, December
1998.

Becker, P., "The Journeyman's Shop: Wrapping up Error Handling Techniques",
C/C++ Users Journal, February 1999.

Glen McCluskey & Associates LLC, "C++ Tutorial, Operators new and delete",
http://www.glenmccl.com/bett_003.htm.

Saks, D., "C++ Theory and Practice - Class-Specific new and delete", C/C++
Users Journal, March 1997.

Saks, D., "C++ Theory and Practice: Thinking Even Deeper", C/C++ Users
Journal, July 1999.

Sutter, H., "Sutter's Mill: To New, Perchance to Throw" (part 1 of 2), C/C++ Users
Journal, March 2001.

Sutter, H., "Sutter's Mill: To New, Perchance to Throw" (part 2 of 2), C/C++ Users
Journal, May 2001.

Some interesting polemics on the design of C++ operators new and delete:

http://www.glenmccl.com/bett_003.htm

Mazières, D., "My Rant on C++'s Operator new",
http://www.scs.cs.nyu.edu/~dm/c++-new.html.

Some web-based material:

"Constructors and Destructors Overview",
http://www.cascv.brown.edu/compute/cxxmanual/language/concepts/cncdovvu.htm

Some discussion about object orientation:

Wise, G. B., "Object Orientation and C++" (part I), ACM Crossroads,
http://www.acm.org/crossroads/xrds1-2/ovp.html.

Wise, G. B., "Object Orientation and C++" (part II), ACM Crossroads,
http://www.acm.org/crossroads/xrds1-3/ovp.html.

http://www.scs.cs.nyu.edu/%7Edm/c++-new.html
http://www.cascv.brown.edu/compute/cxxmanual/language/concepts/cncdovvu.htm
http://www.acm.org/crossroads/xrds1-2/ovp.html
http://www.acm.org/crossroads/xrds1-3/ovp.html

Chapter 9: Linked Data Structures

Overview
Fundamentals, advantages, and disadvantages of linked data structures. Moving a
linked data structure in memory, or to/from a disk, or transmitting it across a
communication channel - techniques of compaction and serialization. Memory
allocation from a specific arena.

Linked data structures are intimately related to memory, where they are created,
located, and processed. Naturally for this book, this relationship with memory is our
principal focus in this chapter. It is not our intention to provide a comprehensive
presentation of linked data structures in C or C++ and their applications. There are many
excellent books on the topic of algorithms and data structures, particularly in C and C++.

Linked data structures and their applications are one of the great successes of the early
decades of computer science. The reader can easily imagine how useful software would
be if it worked solely with numbers and arrays. But how then would we model and
program such things as lists, graphs, stacks, queues, charts, diagrams, and many other
abstract notions that are needed to deal with today's complex programming tasks?

Philosophically, a linked approach to data structures is used for any of the following
reasons: the data structure must be created dynamically; each part of it is created at a
different time; the mutual relations of the parts change in time. Sometimes links are used
as a "physical" implementation of "logical relations" (the best example would be
databases and the use of foreign keys as "links"). Technically, linked data structures are
built in a simple sequence: (i) create a part and (ii) link it with the structure. This simple
sequence is repeated many times, often in a recursive manner. A typical example would
be a linked list, but it is a bit too simple for some of the aspects we wish to discuss.
Hence we have decided to use trees - as ubiquitous and well-understood as lists, and
nicely treatable in recursive ways.

We will illustrate the issues using simple binary search trees for characters. Such a tree
is a binary tree (each node has at most two children), each node stores a character
value, and the value stored in the left (resp., right) child is smaller (resp., larger) than the
value stored in the parent node. Among the nice properties of such a tree are: a search
for a value has the average-case complexity O(log n), where n is the number of
elements stored in the tree; and in-order traversal of the tree lists the characters stored
in the tree in an ascending order.

Let us consider a classical recursive function Insert(), which inserts (creates and
links) a new node for a given character c, and a recursive function Show() performing
in-order traversal of the tree:
struct NODE_STRUCT {
 char value;
 struct NODE_STRUCT* lch; /* link to left child */

 struct NODE_STRUCT* rch; /* link to right child */
};

typedef struct NODE_STRUCT NODE;
typedef struct NODE_STRUCT* PNODE;

/* function Insert -- */
NODE Insert(PNODE n,char c)
{
 if (n == NULL) { /* at the end of path, or tree not built yet */
 if ((n = malloc(sizeof(NODE))) == NULL) merror();
 n->value = c;
 n->lch = n->rch = NULL;
 return n;
 }
 if (c < n->value) /* go left */
 n->lch = Insert(n->lch,c);
 else /* go right */
 n->rch = Insert(n->rch,c);
 return n;
}/*end Insert*/

/* function Show -- */
void Show(PNODE n)
{
 if (n == NULL) return;
 Show(n->lch);
 printf(" %c",n->value);
 Show(n->rch);
}/*end Show*/

For the sake of simplicity, we made Insert() return the "root" every time so we do
not have to pass the root by reference (which in C can only be emulated). Thus, every
time a character c is to be inserted in the tree with root tree, one must use tree =
Insert(tree,c). (To keep the sample code as simple as possible, we also skipped
dealing with insertion of a value already stored in the tree.) Show(tree) will display the
list of characters stored in the tree in ascending order.

The first topic we would like to discuss is the nature of links. In the previous example we
used pointers, which are quite suitable to the task. However, we may use something
else. In our next example we have Insert1() and Show1() do likewise - build a
search tree and traverse it, displaying the nodes visited in order - while using arrays and
array indexes instead of pointers.
 #define null -1
 typedef int PNODE1; /* a node */
 char value[100]; /* value */
 int lch[100]; /* left child links */

 int rch[100]; /* right child links */
 int mem = null; /* fake top of memory */

 /* function Insert1 -------------------------------------- */
 PNODE1 Insert1(PNODE1 n,char c)
 {
 if (n == null) {
 n = ++mem;
 value[n] = c;
 lch[n] = rch[n] = null;
 return n;
 }
 if (c < value[n])
 lch[n] = Insert1(lch[n],c);
 else
 rch[n] = Insert1(rch[n],c);
 return n;
 }/*end Insert1*/

 /* function Show1 -- */
 void Show1(PNODE1 n)
 {
 if (n == null) return;
 Show1(lch[n]);
 printf(" %c",value[n]);
 Show1(rch[n]);
 }/*end Show1*/

For a tree with up to100 nodes, this will work as well as Insert(). In Chapter 6 we
mentioned that arrays are such faithful models of memory that they can actually be used
as memory, which is exactly what we have done here. However, using the arrays is
rather a "static" approach - if the tree has only a few nodes then most of the memory is
wasted, and if the tree needs more than 100 then it cannot be accommodated - unless
the arrays themselves are dynamic (see Chapter 6). Nevertheless, we might consider
this approach if we needed a simple and natural way to serialize the tree. We will
discuss that topic later in the chapter.

The function Insert() (in the first example of this chapter) builds the tree completely
on the heap. However, it is possible to build a linked data structure on the stack, as our
next example demonstrates. Building on the stack is not usually advisable, but for some
special cases it may be considered. In the code of the next example, List() is
basically a recursive descent parser for a list of characters separated by commas. The
function Next() (its scanner) returns the character it scanned, or -2 if it scanned a
comma, or -1 when the end of the input string s is reached. Here sp - the string position
indicator - is passed by reference for the sake of simpler code; only for that reason are
we using C++ rather than C. List() builds the tree from multiple versions of the node
n, which is a local auto variable, and so the tree is completely built on the system stack.

The tree is used only at the bottom of the descent, when the whole input has been
parsed. This is the point at which the whole tree is available and can be traversed by
Show() as before. For this reason, the insertion of each new node is done via iteration
rather than recursion (as in the previous examples). The advantage of such a linked data
structure can be summarized simply: no explicit memory allocation is needed and hence
there is no need for memory deallocation - unwinding of the stack will take care of the
deallocation. The disadvantage is that such a data structure is only available to the
bottom activation of List(). I have used such an approach only for a specialized class
of problems: enumeration of combinatorial objects (like graphs or designs) in a recursive
implementation of backtracking. In such problems you are only interested in the object
when it is completely finished, and all you want to do with it is count it, display it, or store
it in a file. Moreover, during enumeration, there may be many false starts and the
partially constructed objects need to be destroyed. Building the objects entirely on the
stack relieves the programmer from dealing with these issues. However, I cannot
imagine another class of problems where such an approach would be useful.
 // function List ----------------------------------
 void List(PNODE tree,char* s,int& sp)
 {
 NODE n;
 PNODE p;

 n.value = Next(s,sp);
 n.lch = n.rch = NULL;
 if (tree == NULL)
 tree = &n;
 else{
 p = tree;
 while(1) {
 if (n.value < p->value) {
 if (p->lch == NULL) {
 p->lch = &n;
 break;
 }else
 p = p->lch;
 }else{
 if (p->rch == NULL) {
 p->rch = &n;
 break;
 }else
 p = p->rch;
 }
 }//endwhile
 }

 if (Next(s,sp) == -1) { // we parsed the whole string
 Show(tree); // display the characters
 putchar('\n');

 }else
 List(tree,s,sp);
 }//end List

The foregoing two examples serve as a reminder that linked data structures need not
necessarily be linked through pointers, nor do they have to be completely built in
dynamic memory. That being said, for the rest of this chapter we will assume the most
common type of linked data structures: those built in dynamic memory and linked by
pointers.

We have mentioned and illustrated the flexibility of linked data structures. One can easily
add a piece, remove a piece, or reshuffle the pieces, for most of these activities require
only some modifications of the links. But this "rubbery" nature of the links poses three
major problems.

1. How can we move the whole structure to a different location in memory?

2. How can we record such a structure in a file and recreate it from the record?

3. How can we to transmit such a data structure across a communication link?

The first problem could be "solved" by simply recreating the structure and deleting the
original one. But it would be impossible to control the placement of the new structure
(except by using placement-new, if you were programming in C++). Nevertheless, such
a solution would not work for problems 2 and 3. Possible solutions are compaction or
serialization of the structure. By compaction we mean creating the data structure in a
single contiguous segment of memory with a simultaneous "relativization" of addresses
with respect to the beginning of the segment. By serialization we mean creating the
data structure so that it consists of several compacted segments. For an illustration of
serialization, take the tree we built in the three arrays value[], lch[], and rch[].
Ifwemove the arrays (which is easy to do - just copy their contents byte by byte to a
new location) then at the target location we will find the tree intact. If we record the
arrays in a file, byte by byte, then we can later read them byte by byte from the disk
and recreate them - and thus the tree. Similarly, we can transmit each array byte by
byte in a serial fashion across a communication channel, recreating the arrays (and
hence the tree) on the recipient side. All these scenarios are plausible because the links
are array indexes, and an array index is essentially a relative address with respect to
the beginning of the array.

Our binary search tree is rather simple and so it was easy to build it already serialized,
as we did in the three-arrays example. It would be more complicated for more complex
structures; it may even be unfeasible to conceive of some data structures as serialized
right from the beginning. Moreover, unless you really need to move, record and restore,
or transmit the data structure, there is no need to embark on a complex serialization of
the initial construction. We will discuss instead the taking of a given data structure and

then compacting or serializing it.

Compaction requires the data structure to be stored in a single segment, so it would be
possible to build the structure in compacted form only if we had a reasonable cap on its
size before construction began. The appropriate raw memory segment could be
allocated and forged into the data structure. Of course, we could embark upon dynamic
extension of a given segment if more memory were needed, but that would slow
processing and bring costs up significantly (since all the links must be updated when the
segment is extended) and thus is not very practical. In contrast, for serialization we may
have many segments as long as the addresses are properly relativized. This allows the
building of serialized data structures directly and with little overhead.

The next example of serialization incorporates a strategy called memory allocation from
a specific arena, which is implemented using the class-specific operators NODE::new
and NODE::delete as well as overloads of the operators new and delete.
Therefore, any dynamic object of class NODE is created by using the operator
NODE::new and not the global one. The case is similar for destruction: we use the
class-specific NODE::delete that does not do anything, for if we want to deallocate
the memory then we will deallocate the whole arena. Note that each object of class
NODE has a static item, ARENA* arena, a pointer to the arena assigned to the whole
class. This is set by a public method TREE::SetArena(), which invokes a protected
method NODE::SetArena() (it can do so because it is a "friend"). Each object of
class TREE or class NODE points to the same object of class ARENA.

The arena allocates memory from segments - in our example, segments of an
unreasonably small size of 24 bytes, a size chosen to force the arena to allocate several
segments even for a small tree. The operator NODE::new uses the memory allocated
from its arena. Thus, when a tree is created, it is built completely in several segments of
the arena. Note that the arena can accommodate any allocation by dynamically creating
more segments as needed. Even though the tree is stored in these segments, it is not
serialized yet, for the addresses are still actual addresses and not relative to the
beginning of each segment. The public method TREE::Relativize() starts a
recursion of the protected method TREE::Relativize1() that replaces each
address in the tree by a pair of two short integers: the first is the index of the segment
the address happens to come from; the second is the offset from the beginning of the
segment. For technical reasons the index of the segment is shifted upward by1, since
otherwise the relativized address of the very first byte in the very first segment would be
0 (segment 0, byte 0) and then we could not tell a genuine NULL pointer from the one
that pointed to the beginning of the arena before relativization. (Note that this did not
bother us in the example of the tree stored in three arrays, for we were using null =
-1 as a fake null "pointer".)

After relativization, the segments of the arena represent a serialized version of the tree.

To illustrate this, in main() we make a copy of the arena (b = arena;) using the
method ARENA::operator= (i.e., ARENA-specific assignment) and absolutize the
addresses in the copy - a kind of reverse process to relativization, where each address
interpreted as a pair (segment +1, offset) is replaced by the actual address. Using
TREE::Show() on the re-created tree demonstrates that we indeed have the same
tree. It is not hard to see that, had we stored the segments on a disk and then read
them from the disk again (or transmitted them across a communication channel), after
reassembling them and absolutizing the addresses we would have a perfect copy of the
original linked tree.

The code presented next is simplified as much as possible in order to focus on allocation
from arena and on relativization and absolutization of addresses. Hence all inessential
checking is omitted, and the memory alignment is handled by passing the appropriate
parameter to ARENA() during the instantiation (4 in our example) rather then being
obtained for each platform in a more independent way.
class ARENA
{
public:
 ARENA(int ss,int a) {
 arena = NULL;
 last_segment = -1;
 segment_size = ss; //arena segment size
 align = a; //memory alignment boundary
 }

 ~ARENA() {
 for(int i = 0; i <= last_segment; i++)
 delete[] arena[i];
 delete[] arena;
 }

 ARENA& operator= (const ARENA& ar) {
 int i, j;

 for(i=0; i <= last_segment; i++) // destroy old data
 delete[] arena[i];
 delete[] arena;
 arena = NULL;

 segment_size = ar.segment_size; // copy new data
 next_ind = ar.next_ind;
 last_segment = ar.last_segment;
 align = ar.align;

 arena = new char* [last_segment+1];
 for(i = 0; i <= last_segment; i++) {
 arena[i] = new char[segment_size];

 for(j = 0; j < segment_size; j++)
 arena[i][j] = ar.arena[i][j];
 }
 return *this;
 }

 void* Alloc(size_t s) { //alloc. memory of size s from its segment
 char** a; //obtains a new segment if need be
 int i;
 void* ret;

 if (arena == NULL) { //alloc 1st segment
 arena = new char*[1];
 last_segment = 0;
 arena[0] = new char[segment_size];
 last_segment = 0;
 next_ind = 0;
 }else if (s > (size_t) segment_size-next_ind) {
 last_segment++;
 a = new char*[last_segment+1];
 for(i = 0; i < last_segment; i++)
 a[i] = arena[i];
 delete[] arena;
 arena = a;
 arena[last_segment] = new char[segment_size];
 next_ind = 0;
 }
 ret = (void*) &arena[last_segment][next_ind];
 next_ind += s;
 // align next_ind for future use
 while(((long)&arena[last_segment][next_ind]%align)! = 0)
 if (next_ind >= segment_size) break;

 // if next_ind runs to the end of the segment, no problem
 // on next Alloc() a new segment will be enforced
 return ret;
 }

void* Relativize(void* s) { //relativizes address s with respect
 short segment, offset, *ip; //to the segment that s belongs to
 void* res;

 if (s == NULL) return NULL;

 for(segment = 0; segment <= last_segment; segment++) {
 if (s < arena[segment])
 continue;
 if (s >= arena[segment]+segment_size)
 continue;

 // so we have the right segment
 offset = (short) ((long)s - (long)arena[segment]);
 segment++; // shift segment by 1 so the beginning
 ip = (short*)&res; // does not get relativized to NULL
 *ip++ = segment;
 *ip = offset;
 return res;
 }
 return NULL;
 }

void* Absolutize(void* s) { //absolutize relative address s
 short *ip, segment, offset;
 void* r;

 if (s == NULL) return NULL;
 r=s;
 ip = (short*) &r;
 segment = *ip++;
 segment--; // undo the shift
 offset = *ip;
 return (void*)&arena[segment][offset];
 }

protected:
 char** arena;
 short last_segment;
 short segment_size;
 short next_ind;
 short align;

};//end class ARENA

class TREE;

class NODE
{
 friend class TREE;
public:

 NODE() { value = 0; lch = rch = NULL; }
 NODE(char c) { value = c; lch = rch = NULL; }

 NODE& operator = (NODE& n) {
 if (lch) delete lch;
 if (rch) delete rch;
 value = n.value;
 lch = n.lch;
 rch = n.rch;

 arena = n.arena;
 return *this;
 }

protected:
 char value;
 NODE *lch, *rch;
 static ARENA *arena;

 //the following methods are only for arena allocation
 static void* operator new(size_t s) { return arena->Alloc(s); }

 // we will deallocate the whole arena instead
 static void operator delete(void* s) { return; }

 static void SetArena(ARENA* a) { //set the arena for NODE object
 static int first = 1;
 if (first) {
 arena = a;
 first = 0;
 }
 }
};//end class NODE

ARENA* NODE::arena = NULL;

class TREE
{
public:
 TREE() { root = NULL; }

 void Insert(char c) { //start recursive insertion
 NODE* p;
 p = new NODE(c);
 p->lch = NULL;
 p->rch = NULL;
 if (root == NULL) {
 root = p;
 return;
 }else
 Insert1(root,p);
 }
 void Show() {
 if (root == NULL) return;
 Show1(root);
 cout << '\n' << flush;
 }
 void SetRoot(NODE* r) { root = r; }
 NODE* GetRoot() { return root; }

 static void SetArena(ARENA* a) { //set arena for TREE object
 static int first = 1;
 if (first) {
 arena = a;
 NODE::SetArena(a);
 first = 0;
 }
 }

 void Relativize() { //start recursive relativization
 Relativize1(root); //at the root
 root = (NODE*)arena->Relativize(root);
 }

 void Absolutize() { //start recursive absolutization
 //at the root
 root = (NODE*)arena->Absolutize((void*)root);
 Absolutize1(root);
 }

protected:
 NODE* root;
 static ARENA* arena;

void Insert1(NODE* n,NODE* p) { //continue recursive insertion
 if (p->value < n->value)
 if (n->lch == NULL)
 n->lch = p;
 else
 Insert1(n->lch,p);
 else
 if (n->rch == NULL)
 n->rch = p;
 else
 Insert1(n->rch,p);
 }
 void Show1(NODE* p) {
 if (p == NULL) return;
 Show1(p->lch);
 cout << ' ' << p->value;
 Show1(p->rch);
 }

 void Relativize1(NODE* n) { //continue recursive relativization
 if (n == NULL) return;
 Relativize1(n->lch);
 Relativize1(n->rch);
 n->lch = (NODE*)arena->Relativize((void*)n->lch);

 n->rch = (NODE*)arena->Relativize((void*)n->rch);
 }

 void Absolutize1(NODE* n) { //continue recursive absolutization
 if (n == NULL) return;
 n->lch = (NODE*)arena->Absolutize(n->lch);
 n->rch = (NODE*)arena->Absolutize(n->rch);
 Absolutize1(n->lch);
 Absolutize1(n->rch);
 }
};//end class TREE

ARENA* TREE::arena = NULL;

// function main ---
int main()
{
 ARENA arena(24,4), b(0,0);
 TREE t, t1;

 t.SetArena(&arena);
 t.Insert('d');
 t.Insert('c');
 t.Insert('e');
 t.Insert('a');
 t.Insert('b');
 t.Show();
 t.Relativize();

 b = arena;
 t1.SetArena(&b);
 t1.SetRoot(t.GetRoot());
 t1.Absolutize();
 t1.Show();

 return 0;
}//end main

Let us now visualize the arena after each stage of the process. After node for 'd' is
created:

After node for 'c' is created:

After node for 'e' is created:

After node for 'a' is created:

And finally, after the last node for 'b' is created:

This clearly shows how the arena allocation keeps the tree quite "compact", even though
it is a fully linked data structure and all pointers hold actual addresses.

In the following diagram we indicate the relativized addresses as pairs of (segment+1,
offset) values. The tree is relativized:

The arena is copied into a different location. The data kept in the arena (and so the
relativized tree) is the same as in the original one:

The addresses are absolutized and the tree "pops out" again:

If we had known the size of the tree before we created it (it is 60 bytes including
padding), then we might have initialized the arena as ARENA arena(60,4) and stored
the tree in a single segment; in fact, we would have compacted it. Another possibility for
compacting the tree would be to create it normally (without arena allocation), count its
size, and make a copy using arena allocation to fit it into a single segment. Note that,
with a single segment, the relativized addresses are actually just offsets from the
beginning of the segment. This is not hard to do, since the code for TREE and NODE will
work perfectly well if we just omit references to the arena there and in the overloaded
new and delete. But it may be complicated to establish the size of an existing tree that
includes padding, since the size may depend on such elusive aspects as the order in
which items are defined. The only reasonable approach to counting the size of a linked
data structure is doing so during construction - allocate some memory and add it to the
count.

Our approach to serialization preserves padding. This may or may not be desirable. If
we preserve padding then all the items remain "justified" and hence can be accessed
(before relativization and after absolutization) in the normal way; for instance, the usual
pointer notation works correctly. If we intend to move the data structure (either via a
disk or across a communication channel) to a different platform, then there is no reason
to preserve the padding and transmit all that junk. We could compact the tree without
the padding, but then we might not be able to use the convenient pointer or membership
notation for accessing the individual items.

We deliberately designed the structure/class NODE so that it has size of 12 bytes, but 3
bytes are wasted on padding (see Figure 9.1). If we compact it without the padding then
the space is saved - but now we cannot use p->lch or p->rch to refer to the pointers
to the child nodes; see Figure 9.2.

 Figure 9.1: A node with 'a' stored in
it

Figure 9.2: A compacted node with 'a' stored in it

In order to work with such a compacted structure, we must have our own custom-made
functions for accessing items that are not properly aligned. The following example
creates a regular tree, computes its size without padding, and creates a compacted
version of the tree that can only be accessed using the specialized access functions;
then the compacted version is relativized. The resulting relativized compacted version
can be transferred to a machine with a different memory alignment, absolutized, and
accessed by again using the specialized access functions. For the sake of simplicity we
have omitted the code dealing with different "endianess" (see Chapter 3). Class NODE
remains the same as before.
class TREE
{
public:
 TREE() { root = NULL; }

 void Insert(char c) {
 NODE* p;
 p = new NODE(c);
 p->lch = NULL;
 p->rch = NULL;
 if (root == NULL) {
 root = p;
 return;
 }else

 Insert1(root,p);
 }

 void Show() {
 if (root == NULL) return;
 Show1(root);
 cout << '\n'<< flush;
 }

 int Size() {
 return Size1(root);
 }

 char* Compact(char*& croot) {
 char* segment;
 int ind = 0;

 segment = (char*) new char[Size()];
 croot = Compact1(ind,segment,root);
 return segment;
 }

 void CShow(char* segment,char* cnode) {
 if (cnode == NULL) return;
 CShow(segment,GetLch(cnode));
 cout << ' ' << GetValue(cnode);
 CShow(segment,GetRch(cnode));
 }

 char* Relativize(char* segment,char* croot) {
 char* p;
if (croot == NULL) return NULL;
p = GetLch(croot);
if (p != NULL) {
Relativize1(segment,p);
PutLch(croot,(char*)(p-segment+1)); // shift by 1 to
// distinguish from NULL
}
p = GetRch(croot);
if (p != NULL) {
Relativize1(segment,p);
PutRch(croot,(char*)(p-segment+1)); // shift by 1 to
 // distinguish from NULL
}
return ((char*)(croot-segment+1)); // shift by 1 to
 // distinguish from NULL
}
char* Absolutize(char* segment,char* croot) {
if (croot == NULL) return NULL;

// undo the shift
croot = ((char*)(segment+((unsigned long)croot)-1));
Absolutize1(segment,croot);
return croot;
 }

protected:
 NODE* root;

 void Insert1(NODE* n,NODE* p) {
 if (p->value < n->value)
 if (n->lch == NULL)
 n->lch = p;
 else
 Insert1(n->lch,p);
 else
 if (n->rch == NULL)
 n->rch = p;
 else
 Insert1(n->rch,p);
 }

 void Show1(NODE* p) {
 if (p == NULL) return;
 Show1(p->lch);
 cout << ' ' << p->value;
 Show1(p->rch);
 }

 int Size1(NODE* p) {
 if (p == NULL)
 return 0;
 return p->Size()+Size1(p->lch)+Size1(p->rch);
 }
 char GetValue(char* p) { // use instead of p->value
 return *p;
 }
 void PutValue(char* p,char c) { // use instead of p->value
 *p=c;
 }
 char* GetLch(char* p) { // use instead of p->lch
 char *q, *q1, *q2;
 int i;

 q2 = (char*)&q;
 q1 = p+sizeof(char);
 for(i = 0; i < sizeof(char*); i++)
 *q2++ = *q1++;
 return q;

 }
 void PutLch(char* p,char* addr) { // use instead of p->lch
 char *q, *q1, *q2;
 int i;

 q = addr;
 q2 = (char*)&q;
 q1 = p+sizeof(char);
 for(i = 0; i < sizeof(char*); i++)
 *q1++ = *q2++;
 }
 char* GetRch(char* p) { // use instead of p->rch
 char *q, *q1, *q2;
 int i;

 q2 = (char*)&q;
 q1 = p+sizeof(char)+sizeof(char*);
 for(i = 0; i < sizeof(char*); i++)
 *q2++ = *q1++;
 return q;
 }
void PutRch(char* p,char* addr) { // use instead of p->rch
 char *q, *q1, *q2;
 int i;

 q = addr;
 q2 = (char*)&q;
 q1 = p+sizeof(char)+sizeof(char*);
 for(i = 0; i < sizeof(char*); i++)
 *q1++ = *q2++;
}

char* Compact1(int& ind,char* segment,NODE* n) {
 char *lch, *rch, *ret;

 if (n == NULL) return NULL;
 lch = Compact1(ind,segment,n->lch);
 rch = Compact1(ind,segment,n->rch);
 //copy n to segment to location segment[ind]
 ret = &segment[ind];
 PutValue(&segment[ind],n->value);
 PutLch(&segment[ind],lch);
 PutRch(&segment[ind],rch);
 ind += n->Size();
 return ret;
}

void Relativize1(char* segment,char* cnode) {
 char* p;

 p = GetLch(cnode);
 if (p != NULL) {
 Relativize1(segment,p);
 PutLch(cnode,(char*)(p-segment+1)); // shift up by 1 to
 // distinguish from NULL
 }
 p = GetRch(cnode);
 if (p != NULL) {
 Relativize1(segment,p);
 PutRch(cnode,(char*)(p-segment+1)); // shift up by 1 to
 // distinguish from NULL
 }
}

void Absolutize1(char* segment,char* cnode) {
 char* p;
 if ((p = GetLch(cnode)) != NULL) {
 // undo the shift
 p = ((char*)(segment+((unsigned long)p)-1));
 PutLch(cnode,p);
 Absolutize1(segment,p);
 }

 if ((p = GetRch(cnode)) != NULL) {
 // undo the shift
 p = ((char*)(segment+((unsigned long)p)-1));
 PutRch(cnode,p);
 Absolutize1(segment,p);
 }
}
};//end class TREE

After a tree is built in the normal way, it can be compacted using croot =
Compact(segment,croot). Note that char* croot must be initialized to NULL
prior to the call. The function Compact() will allocate a contiguous segment of the
correct size, will make segment point to it, and will then store the tree in a compacted
form; it also returns a pointer to the root, which need not be the very first node in the
segment. The compacted tree cannot be accessed normally, but it can be viewed using
CShow() - show compacted tree. We can then relativize it, absolutize it, and show it
again using CShow() to verify that the program has worked properly. Again, we must
ensure that a genuine NULL pointer can be distinguished from the very first byte in the
segment.

In Figure 9.3, the compacted tree (as built and compacted in the previous example) is
shown. Figure 9.4 illustrates the compacted tree after relativization.

Figure 9.3: Compacted tree from the example

Figure 9.4: Compacted tree from the example— after relativization

It is clear that many other methods could be used to serialize or compact linked data
structures. In real life, an ad hoc method pertinent to a particular structure is normally
used. However, in this chapter we have tried to provide some insight into the issues and
furnish the reader with some ideas of how to go about resolving them. In our age of
networking and distributed computing, moving data structures among different machines
and different platforms is fast becoming commonplace.

Allocation from a specific arena can be used for problems other than serializing linked
data structures. Any application that needs to perform a lot of allocation/deallocation of
small chunks of memory may have its performance dramatically improved if the
allocation is handled through a specific arena. Some authors claim that the time spent by
a running program on allocation and deallocation is by far the most significant component
in overall performance, so any improvement in these functions should yield welcome
dividends.

Review
Linked data structures are extremely useful in both C and C++ programming, and they
are employed for modeling many diverse aspects of real systems. They are used in
situations where the data structure must be built dynamically, or where its parts are built
at different times, or where the mutual relationships among the constituent parts change
in time. They are extremely flexible, making it easy to add, remove, or modify a part of
the data structure. They can also be fashioned to provide maximally efficient access to
the data they store. Usually, linked data structures are created on the heap (dynamic
memory), and pointers are used as the links. However, it is also possible to build linked
data structures on the system stack and/or without pointers.

The flexibility of linked data structures, though desirable and welcome, is an obstacle to
three increasingly common tasks in an age of networks and distributed computing: (a)
moving a structure to another place in memory; (b) storing a structure in a disk file and
restoring it from the disk file; and (c) transmitting a structure across a communication
channel.

We say that a linked data structure is serialized if it is stored in several contiguous
memory segments and if all the addresses in the structure are relative to the beginning
of the segment in which they are located. We use the term relativization to denote the
process of replacing the actual addresses by these "relative" ones. The reverse
process, which restores the relative addresses back to actual addresses, is called
absolutization. We have shown by example how to serialize a binary tree using the
technique of memory allocation from a specific arena and properly overloading operators
new and delete. A handy aspect of this approach is the need to append just slightly to
the existing code for the data structure, code that otherwise remains intact. Besides
that, our approach preserves padding and so the usual referencing of items by pointers
or as members works well. A serialized structure can be easily moved,
recorded/restored, or transmitted as long as source and destination places have the
same memory alignment.

We call a linked data structure compacted if it is stored in a single contiguous memory
segment and if all the addresses in the structure are relative to the beginning of the
segment. We gave an example of compacting a search tree. In our approach, the
padding is intentionally not preserved. A compacted structure can be easily moved,
recorded/restored, or transmitted even if the source and destination places have
different memory alignments. However, items in a compacted structure cannot be
accessed through the usual referencing by pointers or members. Specialized access
functions allowing retrieval and storage in locations not properly aligned must be
provided.

Allocation from a specific arena can greatly improve the performance of any program
that does a lot of allocation and deallocation of small chunks of memory. In the arena

approach, only the whole arena is allocated via a call to the process memory manager
(malloc(), new) and deallocated as a whole when no longer needed; the allocation
and deallocation of smaller items is handled within the arena much faster and more
efficiently.

Exercises
9.1 Why is it that linked data structures cannot be copied to a disk and then later read
from the disk and reinstalled? For instance, take a search tree and write each node to a
disk. Then just read it back, and store it in the memory. Don't we get the same tree?

9.2 Write access functions that can retrieve or store a float value at any memory
location without regard to memory alignment.

9.3 Write a program that compacts a structure (including an int array, a float, a
double, and a char) and then relativizes the segment where the structure is compacted.
Write access functions that can access (store or retrieve) the relativized compacted
form of the structure.

9.4 Write a program that creates a linked tree in which each node has an arbitrary
number of children. Then write a function that uses the allocation from arena strategy to
create the tree in a serialized way. Relativize the serialized tree, copy the segments
somewhere else in the memory, absolutize the tree, and check that it is the same tree.
You may modify the code presented in this chapter.

9.5 Modify the code from Exercise 9.4 for some other linked data structure.

9.6 Redo Exercise 9.4 to obtain a serialized version of the tree.

9.7 Redo Exercise 9.5 to obtain a serialized version of the data structure.

9.8 Using two arrays of size N, implement a serialized version of a doubly linked list of
integers in the range 0..N-1.

References
Data structures in C and C++:

Dale, N., C++ Plus Data Structures, Jones & Bartlett, Sudbury, MA, 1999.

Ford, W., and Top, W., Data Structures with C++, Prentice-Hall, Englewood Cliffs,
NJ, 1996.

Kirch-Prinz, U., and Prinz, P., A Complete Guide to Programming in C++, Jones &
Bartlett, Sudbury, MA, 2002.

Standish, T. A., Data Structures, Algorithms and Software Principles in C,
Addison-Wesley, Reading, MA, 1995.

Weiss, M. A., Data Structures and Algorithm Analysis in C++,
Benjamin/Cummings, Redwood City, CA, 1994.

Allocation from arena:

Austern, M., "The Standard Librarian: I/O and Function Objects: Containers of
Pointers", C/C++ Users Journal, October 2001.

Hanson, D., "Fast Allocation and Deallocation of Memory Based on Object
Lifetimes", Software Practice and Experience, January 1990.

Milewski, B., C++ in Action: Industrial-Strength Programming Techniques,
Addison-Wesley, Reading, MA, 2001.

Stroustrup, B., C++ Programming Language, Special Edition, Addison-Wesley,
Reading, MA, 2002.

Some web-based material:
http://users.bestweb.net/~ctips/tip049.html.

http://users.bestweb.net/%7Ectips/tip049.html

Chapter 10: Memory Leaks and Their Debugging

Overview
Classification of the causes of memory leaks. Tracing memory leaks in C
programs using location reporting and allocation/deallocation information-
gathering versions of the Callocators and deallocators. Tracing memory leaks in
C++ programs: overloading the operators new and delete and the problems it
causes. Techniques for location tracing. Counting objects in C++. Smart pointers
as a remedy for memory leaks caused by the undetermined ownership problem.

As mentioned previously, I do not like the terms "memory leaks" or "leaking memory".
They somehow put the onus on memory, as if it were the memory's inadequacy that
caused the problem. Every time I hear a project manager or a student explain in a grave
tone of voice that "the project is delayed because we have memory leaking", I feel like
retorting "OK, find a better memory that doesn't leak". In truth, it's not the memory but
rather the program that is inadequate. We should be talking about leaking programs, not
about leaking memory. In this chapter we will classify the most common problems
leading to memory leaks and discuss how to identify and locate them. We will start with
trivial and obvious problems and proceed to more subtle ones that are harder to deal
with.

The first class of memory leaks is called orphaned allocation and is characterized by
allocation of a memory segment whose address is not preserved for later deallocation.
This is seldom intentional and usually results from insufficient knowledge of the C or C++
language. We present a few classic examples with strings (though any kind of object
could be involved). First,
 char* p;
 ...
 p = malloc(strlen(s)+1);
 p=s;

The memory for a copy of the string s is allocated, yet the pointer p is merely set to
point to the same place as the pointer s. Even if free(p) is subsequently invoked, it
does not free the segment previously allocated. The program may seem to work (at
least p seems to be the "correct" string), but trying to free p and then s may induce a
crash because some operating systems (like LINUX) will terminate a program that is
trying to free a segment not currently allocated. A similar situation holds for
 char* p;
 ...
 p = malloc(4);
 p = "abc";

The next class of memory leaks is referred to as the hidden allocation problem. It is
characterized by a call to another function to deliver an object without realizing that the
object has been created on the heap. As an example, consider the standard function

strdup(). It duplicates a string and returns a pointer to it. The duplicated string is
created on the heap. If not deallocated later, the memory leaks. However, shouldn't all
C/C++ programmers know what a standard function such as strdup() does? Of
course, but do they all know everything that standard functions do? And how about their
knowledge of the particular operating system being used? Very often we need the
services of external procedures, as in particular system calls. For instance, consider the
UNIX system call
 struct group *getgrnam(const char *name)

Is the structure group allocated on the heap or somewhere else (say, in the kernel of
the operating system)? Should it be deallocated by the user when no longer needed? Or
consider the following Windows example:
 HBRUSH br;
 ...
 br = CreateSolidBrush(RGB(255,255,255));

Here br is a handle to a brush. We created a solid brush of certain color and captured
the reference to it in br. Is the brush an object on the heap? Do we need to deallocate
it? A diligent and thorough programmer would find answers to these questions, but often
the questions are simply not asked. It's almost as if the programmer is behaving
according to the principle "I am not responsible for what I have not done explicitly". The
consequences of implicit actions are too often ignored.

The third class of memory leaks is a close relative to the previous one of hidden
allocation; we call it the undetermined ownership problem. When discussing resources
and their allocation, it is customary to refer to the entity responsible for "releasing" an
unneeded resource as the "owner" of the resource. Thus the owner of a memory
segment is (as far as we are concerned) the module that is responsible for deallocating
it. The undetermined ownership problem is characterized by a module obtaining a
memory segment without realizing that it is now the owner and therefore responsible for
its deallocation. A typical scenario runs along the following lines. A module A requests a
module B to provide an object. The object is created dynamically and thus it cannot be
owned by B. But the programmer of module A is not aware of the ownership issue -
thinking perhaps that the object will be deallocated by some other module somewhere
else, for the programmer is just "using" the object here. This confusion is usually
compounded by the path of an object being more complex; for example, an object might
have been created by a module D, which passed it to C, which passed it to B, which
passed to A. Hence the programmer responsible for the design and/or coding of A may
not even know the object's origin, let alone its intended future or who should deallocate
it. The further apart the place where a dynamic object is created and the place where it
is used, the more likely the object will be forgotten and undeallocated. Because objects
are sometimes - for the sake of efficiency - passed in static "containers" (e.g., a function

returns a pointer to a string that was not created dynamically but was stored in a static
buffer), the problem cannot be avoided by following some simple rule like "always
deallocate the object you received if you do not pass it along".

The fourth class of memory leaks, which is specific to C++, are those caused by an
incorrect or missing destructor (as discussed in Chapter 8). We call this the insufficient
destructor problem, and it arises when an object has some dynamic parts that are
created by constructor(s) or other means yet are not specifically deallocated in the
destructor. If an explicit destructor is omitted, the default destructor may be insufficient
for the task.

Similar to the insufficient destructor problem is the fifth class of memory leaks (again,
particular to C++ and detailed in Chapter 8), known as the incorrect assignment
problem. When assigning new values to all the various members of an object, if any
member is a dynamically allocated segment then it must be explicitly deallocated prior to
assigning a new value. Most often this situation occurs when an explicit assignment is
missing and so a default memberwise assignment is used instead.

The sixth class of memory leaks is also specific to C++; we call it the exception-unsafe
code problem. It can be described as the following scenario:
 void doit()
 {
 TYPE *t = new TYPE;
 ...
 ... // the code here can throw an exception
 ... // that is caught outside of doit()
 ...
 delete t;
 }

If an exception is thrown by the code in the middle of the function doit() then the fully
formed dynamic object that t points to will not be deallocated, because dynamic objects
can be explicitly deallocated only by delete or delete[] (though delete or
delete[] themselves may be called implicitly by a destructor).

Exceptions thrown in a constructor are not a problem, since all objects that have been
created up to the throw point are automatically destroyed when the system stack is
unwinding. In this case a memory leak could occur only if some raw memory had been
allocated using the Callocators. Automatic objects are always destroyed when they go
out of scope, no matter what the reason. Thus, they will also be destroyed during the
stack unwinding.

The real problem is with exceptions in destructors: if an exception is thrown in a
destructor, the deallocation that was to take place after the throw point does not
happen. However, exceptions in destructors can be prevented by adhering to a simple

principle: do not use any code that can throw an exception in a destructor. No matter
how careful we are in the design of constructors and the destructor, the function
doit() in the previous code will still leak memory if an exception is thrown.

Writing code that is exception-safe must be implemented in a design that is centered on
the safety issue. Exception safety is an important programming issue in C++, and many
excellent texts are available that deal with the whole range of its aspects. Let us simply
mention that, in its abstract form, "exception safety" refers to making sure that no
resources have leaked and that certain invariants are preserved when an exception is
thrown. In broader, colloquial terms: after an exception has occurred, a thorough
housecleaning is performed that brings the system back to the state before the
"offending" module was activated. Later in the chapter we will discuss some possible
solutions, but for now let us illustrate how insidious the problem can be. If you think that
the offending code can easily be modified along lines like this:
void doit()
{
 TYPE *t = new TYPE;
 try {
 ... // the code here can throw an exception
 ... // that used to be caught outside of doit()
 }
 catch(...) {
 ...
 delete t;
 throw; // re-throw the same exception so it can be caught
 } // at the original site outside of doit()
 ...
 delete t;
}

then beware of the same problem in a much more innocuous setting. The order of
evaluation of subexpressions in an expression (or of arguments to a function) are not
specified by the language, in order to allow some flexibility in the design of compilers.
Thus an exception thrown by a TYPE2 constructor in the call
 void doit(TYPE1*,TYPE2*); // prototype
 ...
 doit(new TYPE1,new TYPE2); // call

cannot be rectified because we do not know whether the object of TYPE1 has been
constructed yet. This is just poorly designed code. Another example:
 class COMP_NUMB { //complex numbers
 ...
 friend COMP_NUMB& operator+(COMP_NUMB&,COMP_NUMB&);
 ...
 ...

 };//end class COMP_NUMB
 ...
 p=p+ (*(new COMP_NUMB(2,3)) + *(new COMP_NUMB(3,5)));

If new COMP_NUMB(3,5) throws an exception, we do not know whether
COMP_NUMB(2,3) has been created yet.

In neither of the previous two examples can we rectify the problem by placing an extra
try{} and catch{} to provide the opportunity for a housecleaning. Instead, such code
should simply be otherwise designed in the first place.

Finally, the last class of memory leaks is labeled the external component problem. It is
quite conceivable that a memory leak occurs in an external component we are using
(e.g., some operating system function or class, or some commercial software for
distributed computing, or some database system, etc. - just search the Internet to see
how common this actually is). With the complexity of software rapidly increasing, more
and more software systems use components that come from external sources and not
from where the software system is being developed.

Let us summarize our classification of memory leaks by stating to what language each
type applies, identifying the usual cause, and assessing how difficult it is to rectify the
problem.

1. Orphaned allocation (C and C++) - caused by poorly developed programming
skills; can easily be rectified when detected and located.

2. Hidden allocation (C and C++) - caused by insufficient knowledge of the
modules being used; can be rectified when detected and located, though
changes in the code could be significant.

3. Undetermined ownership (C and C++) - caused by poor design and
integration; can be rectified when detected and located, though changes in the
code could be significant.

4. Insufficient destructor (C++) - caused by poor design and/or poor
programming skills; can be relatively easily rectified when detected and located
(it's the detection that is difficult).

5. Incorrect assignment (C++) - caused by poor design and/or poor programming
skills; can be relatively easily rectified when detected and located (it's the
detection that is difficult).

6. Exception-unsafe code (C++) - caused by poor design and/or poor
programming skills; rectification requires a significant redesign of the code (this
problem is difficult to detect and localize).

7. External component (C and C++) - caused by tough luck; not too much you
can do about it except contact the external source or work around the problem.

In the following we will turn our attention to tracing memory leaks resulting from C
allocators and from C++ operators. By my own reckoning, the undetermined ownership
problem is the most prevalent cause of memory leaks in C-based software; whereas in
C++ software the undetermined ownership, insufficient destructor, and incorrect
assignment problems (in that order) are the most prevalent causes of memory leaks. I
believe that there is a lot of exception-unsafe code out there, but the memory leaks
associated with such software manifest themselves rarely, so finding them is crucial only
for fail-safe and mission-critical applications. The only remedy for memory leaks
associated with exception-unsafe code is to redesign the software, which of course is
beyond the scope of this book. Similarly, memory leaks associated with the insufficient
destructor and incorrect assignment problems are evidence of poor programming and
must be rectified by providing or fixing the constructors and/or assignments. This is also
outside the scope of this book, yet we hope that the material in Chapter 9 provides
sufficient understanding of these issues to help the reader avoid the leaks. At the end of
this chapter we shall deal with the undetermined ownership problem by discussing a
possible C++ remedy in the form of so-called safe or smart pointers.

Tracing Memory Leaks in C
Allocation of memory using the C allocators malloc(), calloc(), and realloc()
was covered in Chapter 4. The C approach to allocation presents a slight problem
because the allocation is not type-safe; for instance, p = malloc(sizeof(NODE)) will
yield a totally different result than p = malloc(sizeof(NODE*)), an easy error to
make. On the other hand, all C allocators are standard functions and hence are not tied
to the compiler by which we mean that, unlike in C++, the compiler need not be aware
that any allocation or deallocation is taking place. It is thus extremely simple to use
replacement versions of these functions that can provide much more than just the
allocation/deallocation. This is an invaluable tool for tracing memory leaks in C
programs. For simplicity we will discus only malloc() and free(), though the same
remarks may be applied to calloc() and realloc(). The basic idea is to have
malloc() record what was allocated, who (i.e., which piece of the code) requested the
allocation, and when it was allocated; likewise, we use free() to keep track of what
has been deallocated, by whom, and when. We want to do this with the least effort and
without significantly modifying the program.

The simplest approach utilizes the ANSI C preprocessor. If we merely add to our
program the preprocessing directive
 #define malloc(size) debug_malloc(__FILE__,__LINE__,size)

then (for example) an occurrence of p = malloc(sizeof(NODE)); in the source file
source.c on line 321 will be expanded prior to compilation to p =
debug_malloc("source.c",321,67);. We link with the program our debugging
version of malloc() using the prototype
 void* debug_malloc(const char* src,int line,size_t size)

Besides allocating the requested amount of memory (through a call to ordinary
malloc()), debug_malloc() can record the information in a log file and/or keep it in
a private data structure that is accessible only by debug_malloc() and
debug_free(). Similarly, we can add the preprocessing directive
 #define free(ptr) debug_free(__FILE__,__LINE__,ptr)

and, for instance, an occurrence of free(p); in the source file source.c on line 457
will be expanded to debug_free("source.c",457,p);. Our debugging version of
free() with prototype
 void debug_free(const char* src,int line,void* ptr)

must also be linked to the program; this version can log the information (in the same log
file as debug_malloc() or in a separate log) and/or remove the information from the
private data structure. Of course, debug_free() deallocates the requested memory
using the ordinary free().

We can also have statistics - on what remains undeallocated - printed out or logged at
program termination. The least intrusive method is to add (to the beginning of main() of
our program) an atexit registration of a function that prints or logs the statistics; the
ANSI C function atexit() provides the registration. A function registered "atexit" will
be automatically executed by the ANSI C function exit() used to terminate programs -
unless the program uses some other means of termination (e.g., _exit() under UNIX)
that bypasses atexit.

By examining the log or the exit statistics after program execution, we can determine
whether all dynamically allocated memory has been deallocated - that is, whether
memory is leaking. Information concerning what has not been deallocated and which
part of the code requested the offending allocation can help determine if there really is a
memory leak.

If debug_malloc() and/or debug_free() log the information in a file, it is prudent to
execute fflush(log) after each entry to the log so that the log will be current if a
crash occurs. (If our program spawns multiple processes or executes in a multithreaded
fashion then the logging becomes more complicated, because some form of file locking
must be provided in order to prevent two processes or two threads from writing into the
log simultaneously; we will touch upon this topic in Chapter 11.) As Figure 10.1
illustrates, our approach to tracing memory leaks requires just small changes to the
program.

 Figure 10.1: Modifying a C program in order
to trace memory leaks

The localization provided by __FILE__ and __LINE__ may not be sufficient. Consider
a service function doit() that is called in a large number of lines of the code of the
program. We may determine that the leaks occur in doit() based on the data passed
to doit() by its caller. But which caller is it? There is a solution, but it must be built into
the coding practice; it cannot be just "magically added on" when we need to trace

memory leaks as we did with debug_malloc() and debug_free(). It is always
prudent in serious software development - especially if network-based - to require
programmers to denote entry into modules in some standard way and so enable
extensive logging in test versions of the system. For instance, we may use something
like
 void doit(....)
 {
 TRACE(doit)
 ...
 ...
 ...
 RETURN
 }

where TRACE is defined through a macro to set some global variable with the unique
designation of the function doit() upon its activation. This can provide run-time
localization of the log entry. Similarly, RETURN is defined as a macro as needed. Logs
with such entries are easier to read and examine than mere references to lines in the
source files. If desired for more detailed debugging (as a compilation option), the macro
TRACE is defined to actually stack the function references during execution and the
macro RETURN is defined to pop the stacked function references, thus providing the
means to trace a whole thread of execution for debugging. For a production build,
RETURN is simply defined as return (a more detailed treatment of this topic may be
found in the following section on tracing memory leaks in C++ programs).

There are many reasons for not using macros. The most important reason is that they
may change the "common sense" semantics of the code - for example, #define
add(a,b) subtract(a,b) (purposefully an extreme example) will confuse everyone
reading the program, since they would naturally think that add(a,b) in the code actually
adds the values. However, enabling detection of leaks is one of the few cases for which
I recommend using macros to alter the code. Using macros to define TRACE() and
RETURN for tracing (as illustrated previously) is similarly justified. It does not confuse
anybody because it is not used in any context other than designating the entry or exit of
a function. Macros provide a speedy and efficient way to handle certain tasks, and they
can be of great help if used sparingly and cautiously.

The approach described here works well for C programs developed in-house, but is not
very helpful if the system includes external C-based object code where the leak may
have occurred. All calls to malloc() and free() in the object code linked with our
program will be linked with the system malloc() and free(), not our debugging
versions. In this situation we must use some replacement versions of malloc() and
free(), say rmalloc() and rfree(). We also need intimate knowledge of the
compiler being used.

First we need a new function malloc() that does essentially the same job as
debug_malloc() but gets its location information from global variables (rather than
arguments) and uses rmalloc() for the actual allocation. Second, we now need a new
debug_malloc() function: it has the same prototype as the previous version but now
merely sets the global variables for malloc() and calls malloc(). Similarly, our new
deallocator free() does essentially the same job as debug_free() did previously,
getting its location information from the global variables and using rfree() for the
actual deallocation. The new debug_free() sets the global variables and calls
free(). Prior to each call to a function from the offending object code, we add
instructions setting the localization global variables accordingly. We link with our program
the object codes of malloc() and free() (avoiding the standard malloc() and the
standard free(); this is where we need a good knowledge of the C compiler we are
using), debug_malloc(), debug_free(), Thus we have a program in which
every call to malloc() in the part programmed by us is a call to debug_malloc(),
which sets the location global variables and calls our version of malloc(). Every call to
malloc() within the external object code is now a call to our version of malloc(), and
likewise for free(). As before, we can log or store the information about allocation and
deallocation and use it to determine if (and where) memory leaks have occurred. See
Figure 10.2.

Figure 10.2: Modifying a C program that has an external object code in order to
trace memory leaks

There are many public-domain or commercial versions of malloc() and free()
available. Many of those have debugging features along the lines described here. The
decision of whether to obtain them or to use your own debugging versions of malloc()
and free() depends on many factors outside the scope of this book. In any case,
understanding how the debugging feature works is essential to a proper use of the

debugging versions of malloc() and free().

Tracing Memory Leaks in C++
Unfortunately, the situation here is not as straightforward as with C programs; in fact, it
is downright convoluted. Of course, we can overload the global operators new and
delete as in the following sample code.

extern "C" {
 #include <stdio.h>
 #include <string.h>
 #include <stdlib.h>
}
#include <iostream>

//location new
void* operator new(size_t size,const char* src,int line)
{
 void *p;
 p = malloc(size);
 cout << "location new in " << src << " at line "
 << line << " size " << size << " alloc "
 << (unsigned int)p << '\n';
 return p;
}

//location delete
void operator delete(void* p,const char* src,int line)
{
 cout << "location delete in " << src << " at line "
 << line << " alloc " << (unsigned int)p << '\n';
 free(p);
}

//overloaded delete
void operator delete(void* p)
{
 cout << "overloaded delete alloc " << (unsigned int)p << '\n';
 free(p);
}

#define new new(__FILE__,__LINE__)
class X
{
public:
 int *val;
 char filler[2];
 X() { val=NULL; }
 X(int x) {
 cout << "CON\n"; //entering constructor

 val = new int;
 *val = x;
 cout << "EXIT CON\n"; //exiting constructor
 }
 ~X() {
 cout << "DES\n"; //entering destructor
 delete val;
 cout << "EXIT DES\n"; //exiting destructor
 }
};//end class X

void doit();

// function main --
int main()
{
 doit();
 return 0;
}//end main

// function doit --
void doit()
{
 X x(32);
 cout << "address of object x is " << (unsigned int) &x << '\n';

 X *p = new X(33);
 cout << "p="<< (unsigned int) p << '\n';
 delete p;
}//end doit

Execution of the program will output something like this (of course, we added the
annotations in [brackets]).

CON [entering constructor for the auto object x]
location new in x.cpp at line 43 size 4 alloc 4391008
 [allocated x.val]
EXIT CON [exiting constructor for the auto object x]
address of x is 1244952
location new in x.cpp at line 69 size 8 alloc 4398224
 [allocated p]
CON [entering constructor for the dynamic object *p]
location new in x.cpp at line 43 size 4 alloc 4390960
 [allocated p->val]
EXIT CON [exiting constructor for the dynamic object *p]
p = 4398224
DES [entering destructor for *p]
overloaded delete alloc 4390960
 [deleted p->val]

EXIT DES [exiting destructor for *p]
overloaded delete alloc 4398224
 [deleted p]
DES [entering destructor for x]
overloaded delete alloc 4391008
 [deleted x.val]
EXIT DES [exiting destructor for x]
done

As you can see, the global operator new has been replaced by the location operator
new (due to the macro #define new new(__FILE__,__LINE__)), but the location
operator delete apparently did not participate though the overloaded delete did.
Unfortunately, as discussed in Chapter 8, the operator delete cannot be called explicitly
in a program with placement syntax. This is why the global (and overloaded) delete is
called instead. So why have the location delete at all? During construction of an object
of class X, the compiler keeps track of which new is used; when an exception is thrown
during the construction, the pieces constructed so far are destroyed using the
appropriate delete. However, once the construction is completed, the information
concerning which new was used is erased; hence the compiler has no way of selecting
the appropriate delete and thus the global one is used by default. To summarize: we
have the location delete there just for the case of an exception during construction, and
any other delete is performed by the overload of the global delete. So here is our first
disappointment with the approach that worked so well with C. There is no simple way to
have delete announce its location. Our second problem involves placement of the macro
#define new new(__FILE__,__LINE__). If placed after the definition of the class X, then
the new used in the constructor of X would not be location new. The picture can get
even murkier, for we might have a class-specific new that we do not want to "modify" to
the location new. In a given class there can actually be mixed use of new: in some
places the global new is used and elsewhere the class-specific new is used. We might
not want to "change" the former, but we might want to "change" the latter.

On the other hand, if we want each new to report its location and if we want to log and
keep track of what is allocated (as in the debug version of malloc()), we would have
to "change" not only the global operators but also every new and delete in all classes in
the program - not an easy task. Since new and delete are operators and not (as in C)
standard functions, they cannot be "replaced" and thus you have no chance of detecting
memory leaks in external object code that is written in C++. And we have not even
discussed new[] and delete[] yet. All these troubles arise because new and delete are
operators (and hence a part of the language) - unlike in C, where the allocators are
simply standard functions that can be plugged in or unplugged at will.

By now the reader must be convinced that, without significant changes to the C++
program being debugged for memory leaks, the task cannot be done. However, we can
certainly employ certain programming strategies to produce a C++ code that at least

facilitates reasonable tracing.

Mark an entry to any function using TRACE(function name). If the program is
already written, a simple preprocessor can provide this. Mark every exit from a void
function using RETURN and from a nonvoid function using RETURN1(..), and do not let
the code "fall off" at the end of a function; use either RETURN or RETURN1. (Again, if it
has not been done, a simple preprocessor can do it.) Thus we have each entry and exit
of any function marked in a special way. Introduce a global variable char* LOC. For a
production build, use
 #define TRACE(a) LOC=#a;
 #define RETURN return;
 #define RETURN1(a) return(a);
 #define FILELOC(0) LOC

Thus, for instance, for a production run

 void doit()
 {
 TRACE(doit)

 RETURN

 RETURN
 }

will be preprocessed to
 void doit()
 {
 LOC="doit";

 return;

 return;
 }

In the program we can use FILELOC(0) as a location reference for logging (if our
system is supposed to provide logging in production runs); this will report the function in
which the report is being made. The overhead during execution is minimal.

For a debugging run we can define
 #define TRACE(a) push_on_stack(#a);
 #define RETURN {pop_stack(); return;}
 #define RETURN1(a) {pop_stack(); return(a);}
 #define FILELOC(n) show_stack(n)

which will modify our example to

 void doit()
 {
 push_on_stack("doit");

 {pop_stack(); return;}

 {pop_stack(); return;}
 }

We must now link the program that is being debugged with our additional debugging
functions void push_on_stack(char*), void pop_stack(), and char*
show_stack(int n). The role of the first two functions is self-explanatory; the
function show_stack(n) returns the string that is located n positions from the top of
the stack. In the program we can use as location references FILELOC(m) ...
FILELOC(0), which will report the sequence of the last m calls in the correct order. The
overhead during execution is not trivial, but this is for a debugging run and so
performance is not an issue. FILELOC(m) ... FILELOC(0) together with __FILE__ and
__LINE__ will give us a decent location reference for debug_malloc() and for location
overloaded new and delete, while FILELOC(m) ... FILELOC(0) will give us a somewhat
less decent location reference for overloaded delete.

For each class suspected of leaking memory, we can employ two strategies. In the first
we overload its class-specific new and delete (as we did for the global operators) and
then check the logs and the final statistics to determine if memory is leaking in these
objects. In the second strategy we implement an "object counting" approach to see if
there exist some objects that remain undeallocated. Which approach is more suitable
depends on the circumstances. Generally speaking, the first strategy should be used if
you suspect that memory is leaking somewhere in the destruction of the objects,
whereas the latter one should be used if you suspect that memory is leaking on account
of whole objects not being deallocated. In the worst case, both approaches can be
combined.

Doing all of this for a large program that is leaking memory may prove to be quite
laborious. It is thus highly advisable to design the program with these debugging
features right from the start and to have these features turned on or off based on
compilation flags (in this way, the program may be compiled either for a production build
or for debugging).

Counting Objects in C++
Every object of a class must be constructed using one of the constructors, so it is a
simple idea to have some kind of a counter that is incremented by the constructors every
time they construct a new object of the class. Similarly, the destructor can decrement
the counter every time it destroys an object. At termination of the program we can
display a count of the remaining objects to determine if they leak or not.

The idea is simple, but its realization is more complex. Providing such a counter for a
single class - and modifying all its constructors and the destructor to work with the
counter - is not too complicated. But we do not want to do this for each class
separately, so we need an approach that is a bit more sophisticated. (Of course, as
before, we would like to be able to turn the counting on or off in a simple way that
entails minimal overhead during the program's execution when it is turned off.) There are
basically two approaches that feature a special class OBCOUNT, which takes care of the
counting business. In the first approach, an OBCOUNT object is embedded in the
definition of every class; in the second approach, each class to be part of the counting
process is derived from class OBCOUNT. The former technique is a bit easier to
understand, but its implementation requires more memory during execution and it is a bit
awkward to turn on and off, so I have decided to discuss the latter approach here.

We want the class OBCOUNT to be usable with any class in our program, so we
parameterize it with a template class X. This will allow us to make OBCOUNT class-
specific for any class.
#ifdef _COUNT_ON
 class X; //just for the compiler so it can deal with the template

 template <class X> class OBCOUNT
 {
 public:
 OBCOUNT() { count++; }
 OBCOUNT(const OBCOUNT& c) { count++; }
 ~OBCOUNT() { count--; }
 protected:
 static size_t count;
 };//end class OBCOUNT
#endif //_COUNT_ON

We then modify every class definition of a class that we are interested in counting as
follows:
#ifdef _COUNT_ON
 class ACLASS : private OBCOUNT<ACLASS>
#else
 class ACLASS
#endif

{
public:
 ACLASS() { ... }
 ... //all other constructors
 ~ACLASS() { ... }
 #ifdef _COUNT_ON
 static void ReportCount() {
 cout << "ACLASS::count=" << count << '\n' << flush;
 }
 #endif
 ...
 ...
};//end class ACLASS

#ifdef _COUNT_ON
 size_t OBCOUNT<ACLASS>::count=0; // define and init ACLASS counter
#endif

You can see the coding is straightforward, and if the counting is turned off (_COUNT_ON
is not defined) then the class ACLASS has no overhead due to counting. There are two
comments to be made, though. First, the reader may ask why the class ACLASS is
derived from the class OBCOUNT as private. The reason is rather simple: we want to
prevent having anywhere in our program a statement like delete p where OBCOUNT
*p. By deriving ACLASS from OBCOUNT as private, the compiler will not allow such a
statement. Had we not done so, we would have to provide a virtual destructor for
OBCOUNT and thus greatly complicate our program. However, since OBCOUNT is there
only for debugging purposes when the count is turned on, such statements should not be
in our program anyway, so this restriction is a price we gladly pay. The second comment
concerns the actual definition of the counter for the class ACLASS. Here we placed it
right after the class definition, but if the class definition is in a header file included in
many source files of our program, the compiler would complain. It has to be simply
defined only once in the body of the program.

It is clear from our discussion that tracing memory leaks in C++ programs is not an easy
task, primarily because memory allocation and deal-location is handled by operators that
are a part of the language and are not outside entities like the standard allocators in C.
The question of whether this could be designed differently is still being discussed within
the C++ community. There is no simple answer, since unwinding the system stack after
exceptions requires the compiler to know about the allocations and deallocation during
construction of an object. The finer points of this discussion are not part of this book's
focus, but I encourage the interested reader to get involved in the debate. On the other
hand, C++ provides some powerful techniques that can be employed to detect or
prevent memory leaks, as our example of object counting illustrates. There is one more
topic that fits in this chapter and has a reasonable solution in C++: the problem of
undetermined ownership.

Smart Pointers and the Undetermined Ownership
Problem
As mentioned previously, the undetermined ownership problem is characterized by a
module obtaining a dynamic object from some other module without also obtaining the
ownership (i.e., the responsibility of deallocating it). In most cases a dynamic object is
acquired through a reference - that is, a pointer. In this discussion we will call the
ordinary pointers naked pointers. From the ownership point of view, a naked pointer has
the following property: the default state is to "preserve untouched" the object it
references when it goes out of scope, and if the object is to be deallocated then this
must be done explicitly before the pointer goes out of scope. In many situations we
would like to reverse things and have as the default the "destruction" of the object being
referenced; then by some explicit means we could achieve "preserving" the object
untouched when the pointer goes out of scope. This is the main idea behind safe or
smart pointers.

Let us illustrate the concept of smart pointers for a class ACLASS, a kind of "wrapper"
around the naked pointer.
class ACLASSPtr
{
public:
 ACLASSPtr(ACLASS *a) : naked_ptr(a) { } //init naked_ptr
 ~ACLASSPtr() { delete naked_ptr; } //delete the object *naked_ptr
 ACLASS* operator->() const { //define ACLASSPtr->
 return naked_ptr;
 }
 ACLASS& operator*() const { //define *ACLASSPtr
 return *naked_ptr;
 }
private:
 ACLASS* naked_ptr;
};//end class ACLASSPtr

Let as assume that A is an object of type ACLASS and that a naked pointer p points to
it. The instruction ACLASSPtr smartp(p) creates and initializes a smart pointer
smartp referencing the same object as p. From now on in the program p->... and
smartp->... give the same result, and so will *p and *smartp. The behavior of p
and smartp are undistinguishable with one significant difference: when smartp goes
out of scope, the object A will be deleted.

We could easily add the counting of objects of the class ACLASSPtr (as discussed
previously) and allow deletion in the destructor only if it is the very last smart pointer
pointing to A . This would provide us with an automatic system, almost a garbage

collector, where objects referenced via smart pointers are destroyed when no longer
referenced by any smart pointer. The least intrusive implementation uses linking of the
smart pointers that reference the same object, which adds two more pointers to each
smart pointer (prev points to the previous smart pointer pointing to the same object,
and next points to the next smart pointer pointing to the same object). A construction of
such a smart pointer must insert it in the appropriate list of smart pointers, and its
destruction must delete it from the list.

In the form just illustrated, the smart pointers would not be too helpful because there are
no means of passing them across function boundaries (either up using return or down
as arguments). For that we need to augment our definition of ACLASSPtr by the
appropriate copy constructor and assignment. For reference-counting smart pointers,
both the copy constructor and the assignment must properly update the linked list of
pointers pointing to the same object.

In programs with large number of objects referenced through smart pointers, the
processing and memory overhead associated with reference counting may be
significant. The fundamental idea of smart pointers is of course fraught with perils. If a
smart pointer is made referencing an object on the stack or a static object, then any
attempt to delete that pointer when it goes out of scope will result in a crash. If a single
smart pointer were to reference an object that never goes out of scope (either because
it is static or is dynamic and never deleted), then no object of class ACLASS would ever
be deleted through a smart pointer. Thus, rather than automatic deletion based on
reference count, we more often prefer smart pointers that transfer ownership so that
there is just a single owner at any given moment. Usually the ownership transfer is
achieved by zeroing the transferor, so when the transferor goes out of scope there is no
object to be deleted. If we had some need for the transferor still to reference the object,
then we could add an extra member (the ownership flag owner) to the definition of
ACLASSPtr in order to indicate who is the owner. However, in both cases the principle
of ownership transfer is the same, so the interested reader can easily modify the
following code, which uses zeroing for ownership transfer, to a code that uses
ownership flags.
ACLASS* Transfer() { //provides transfer of ownership
 ACLASS* p = naked_ptr; //by zeroing the transferor
 naked_ptr = 0;
 return p;
}

//copy constructor with the transfer of ownership
//since Transfer() modifies the transferor, we cannot
//have the usual (const ACLASSPtr& p) declaration of the argument
ACLASSPtr (ACLASSPtr& p) : naked_ptr(p.Transfer()) { }

//assignment with the transfer of ownership
//since Transfer() modifies the transferor, we cannot

//have the usual (const ACLASSPtr& p) declaration of the argument
ACLASSPtr& operator= (ACLASSPtr& p) {
 if (naked_ptr != p.naked_ptr)
 delete naked_ptr;
 naked_ptr = p.Transfer();
 return *this;
}

It does not matter if we use static or dynamic smart pointers - as long as these "never
go out of scope" smart pointers transfer the ownership. But it still is true that, if a smart
pointer that is going out of scope references a static object or an object on the stack, a
crash will ensue. However, a smart pointer as a local variable going out of scope in any
fashion (including via stack unwinding after an exception) will delete the object it owns
and thus yield code that is far more exception-safe than if the naked pointers were used.
Moreover, the transfer of ownership using zeroing prevents smart pointers from
dangling.

Smart pointers as discussed here are in essence the auto_ptr<X> defined in the C++
Standard Library. There it is implemented using templates, so it can be defined for any
class X.

Review
Memory leaks can be caused by a variety of problems. Some are easy to detect and
can be remedied in a simple way; some are difficult to detect yet can be easily
remedied; and some are extremely difficult to detect and remedy.

1. The orphaned allocation problem applies to both C and C++ programs. Here
the pointer to an allocated segment is not stored for later deallocation, but this
can be easily rectified when detected and located.

2. The hidden allocation problem applies to both C and C++ programs and is
caused by insufficient knowledge of what is being used - usually in the form of
obtaining an object from another module without knowing that the object was
allocated on the heap and that it should be deallocated. This problem can be
rectified when detected and located, though changes in the code could be
significant.

3. The undetermined ownership problem applies to both C and C++ programs
and is caused by poor design and integration - usually in the form of obtaining
a dynamic object from another module without assuming the responsibility for
its deallocation. This problem can be rectified when detected and located,
though changes in the code could be significant.

4. The insufficient destructor problem applies only to C++ programs. In this case
there is usually no explicit destructor provided for a class that has some of its
members created dynamically. Though relatively easy to rectify when detected
and located, this problem is difficult to detect.

5. The incorrect assignment problem also applies to C++ programs only and is
usually caused by a missing assignment for a class that has some members
created dynamically. This problem can be rectified fairly easily once detected
and located, but again it is the detection that is difficult.

6. The exception-unsafe code problem applies only to C++ programs. It usually
takes the form of code that, when interrupted by an exception, does not
properly clean up whatever has been allocated prior to the exception. This
problem is quite difficult to detect and localize, and rectification requires a
significant redesign of the code.

7. The external component problem applies to both C and C++ programs. There
is not too much you can do about it besides contacting the external source or
working around the problem.

Tracing memory leaks in C programs is relatively easy. Using the preprocessor, all calls
to the C allocators and the deallocator can be transformed to calls to their respective

debugging versions. These versions can keep track of the location from which they were
called and/or log this information, and upon program termination they may display or log
statistics concerning what remains undeallocated. Together with the location information,
this helps detect and localize memory leaks. For a simple location reference the
preprocessing directives __FILE__ and __LINE__ can be used. For a more detailed
location reference, the entrances and exits of all functions must be marked by
specialized functions that keep a global stack of names of functions being called. With
replacement allocators and a replacement deallocator, even leaks in an external C-
based object code can be traced.

Tracing memory leaks in C++ programs is much more complex, for two reasons. First,
the allocators and deallocators in C++ are not (as in C) standard functions and hence
cannot be unplugged and replaced; they are operators and as such are part of the
language. Second, C++ programs may use any mixture of C allocators and the
deallocator, global new and delete, class-specific new and delete, their array
versions (new[]...) and possibly overloaded versions of all of these. In essence, the
first reason explains why you cannot trace memory leaks from an external object code
that is written in C++. With regard to the second reason, an approach similar to that
used for C programs may be used for C++ programs: news and some deletes may be
overloaded so as to become location-sensitive and provide tracking and/or logging of
what has been allocated/deallocated by whom. However, unlike in C, such an effort will
probably require significant modifications to the program.

A simple aid in tracing C++ memory leaks one that requires only modest changes in the
program and that can easily be turned on and off may be obtained using object counting.
Upon termination of the program, we can display or log statistics of how many objects
remain undeallocated. The counting can be made location-sensitive (i.e., keeping track
not only of how many objects were created but also where and/or when they were
created).

The flexibility of C++ can be used to remedy the problem of undetermined ownership
through the use of so-called safe or smart pointers. These are implemented in the C++
Standard Library in the form of auto_ptr<X>. Smart pointers are objects that behave
like pointers with the additional property that their destructors deallocate the object they
reference when the pointers go out of scope. If used in a disciplined way, smart pointers
can prevent the undetermined ownership problem and also provide for an exception-safe
design.

Exercises
10.1 Create a minimal C++ or C-based program that exhibits the orphaned allocation
problem.

10.2 Create a minimal C++ or C-based program that exhibits the undetermined
ownership problem. Then rectify the problem by using smart pointers.

10.3 Create a minimal C++ program that exhibits the insufficient destructor problem and
then correct it.

10.4 Create a minimal C++ program that exhibits the incorrect assignment problem and
then correct it.

10.5 Write a simple C program that performs some allocation and deallocation of
memory, and make sure that it uses realloc(). Then use the techniques from this
chapter to make all the memory handling functions location-sensitive (using __FILE__
and __LINE__) and write into a log all memory transactions (you can use the logging
functions from Appendix D).

10.6 Extend the program from Exercise 10.5 to include localization tracing by using a
stack for function names (see Appendix C).

10.7 Write a simple C++ program incorporating smart pointers that use nonintrusive
reference counting, and have them written into a log (you can use the logging functions
from Appendix D).

References
Levine, D. L.,Gill, C. D., and Schmidt, D. C., "Object Lifetime Manager - A
Complementary Pattern for Controlling Object Creation and Destruction", in L.
Rising (Ed.), Design Patterns in Communication, Cambridge University Press,
2000.

Milewski, B., C++ in Action: Industrial-Strength Programming Techniques,
Addison-Wesley, Reading, MA, 2001.

Stroustrup, B., "Programming with Exceptions", InformIt, 2001; also at
http://www.research.att.com/~bs/eh_brief.pdf.

Sutter, H., Exceptional C++, Addison-Wesley, Reading, MA, 2000.

Sutter, H., More Exceptional C++: 40 New Engineering Puzzles, Programming
Problems, and Solutions, Pearson, Harlow, U.K., 2001.

Memory leaks from the programmer's point of view:

Batov, V., "Extending the Reference-Counting Pattern", C/C++ Users Journal,
September 1998.

Batov, V., "Safe and Economical Reference-Counting in C++", C/C++ Users
Journal, June 2000.

Colvin, G., "Smart Pointers for C++ Garbage Collection", C/C++ Users Journal,
December 1995.

Doe, R. B., "How to Leak Memory in C++", C/C++ Users Journal, March 1997.

Gareau, J. L., "Tracking Memory Leaks under Windows CE", C/C++ Users
Journal, February 2000.

Guisado, E., "Debugging Component-Based Memory Leaks", C/C++ Users
Journal, January 2000.

Koenig, A., and Moo, B. E., "C++ Made Easier: Handles and Exception Safety,
Part 1: A Simple Handle Class", C/C++ Users Journal, August 2002.

Koenig, A., and Moo, B. E., "C++ Made Easier: Handles and Exception Safety,
Part 2: Intrusive Reference Counting", C/C++ Users Journal, October 2002.

Koenig, A., and Moo, B. E., "C++ Made Easier: Handles and Exception Safety,
Part 3: Non-Intrusive Reference Counting", C/C++ Users Journal, December

http://www.research.att.com/%7Ebs/eh_brief.pdf

2002.

Meyers, S., "Counting Objects in C++", C/C++ Users Journal, April 1998.

Ngai, K., "A Template for Reference Counting", C/C++ Users Journal, August
1997.

Schmidt, B., "Uncaught Exceptions: Remembrance", C/C++ Users Journal, May
2000.

Sutter, H., "Using auto ptr Effectively", C/C++ Users Journal, October 1999.

Sutter, H., "The New C++: Smart(er) Pointers", C/C++ Users Journal, August
2002.

Trudell, B., "The Application Watchman Class", C/C++ Users Journal, July 2002.

Vlasceanu, C., "Generalizing the Concepts behind auto ptr", C/C++ Users Journal,
August 2001.

Wagner-Krankel, A., "Smart Pointers in C++", C/C++ Users Journal, August 1992.

White, R. G., "Copy-on-Write Objects for C++", C/C++ Users Journal, August
1991.

A major web portal concerning tools for detecting memory leaks and their
debugging:

Zorn, B., "Debugging Tools for Dynamic Storage Allocation and Memory
Management",
http://www.cs.colorado.edu/homes/zorn/public_html/MallocDebug.html

All sorts of postings on detecting and debugging memory leaks:

http://search.microsoft.com/.

Some related web-based material:

"C++ Tips: Exceptions",
http://cpptips.hyperformix.com/Exceptions.html.

Jelovic, D., "C++ without Memory Errors",
http://www.jelovic.com/articles/cpp_without_memory_errors_slides.htm

Mazières, D., "My Rant on C++'s Operator new",
http://www.scs.cs.nyu.edu/~dm/c++-new.html.

http://www.cs.colorado.edu/homes/zorn/public_html/MallocDebug.html
http://search.microsoft.com/
http://cpptips.hyperformix.com/Exceptions.html
http://www.jelovic.com/articles/cpp_without_memory_errors_slides.htm
http://www.scs.cs.nyu.edu/%7Edm/c++-new.html

Sharon, Y., "Smart Pointers - What, Why, Which?",
http://ootips.org/yonat/4dev/smart-pointers.html.

"Writing Exception Safe Classes",
http://www.infrasoft.co.at/hn/exceptions.txt.

http://ootips.org/yonat/4dev/smart-pointers.html
http://www.infrasoft.co.at/hn/exceptions.txt

Chapter 11: Programs in Execution: Processes and
Threads

Overview
Environment and environment variables, command-line arguments and command-
line argument structure. A process and its main attributes - user space and
process image. Spawning a new process (UNIX fork() system call) from the
memory point of view. Principles of interprocess communication; SystemV shared
memory segments and" shared memory leaks". Threads and lightweight
processes; advantages and disadvantages of threads over processes. The need to
protect the "common" data in threads. Memory leaks caused by careless
multithreading.

In this chapter we will complete the circle that took us through Chapters 2 to 10. This
tour of the memory-related aspects of C and C++ programs started with a discussion of
programs in execution and how their address spaces relate to memory. Most of what
was said in Chapter 2 is not specific to C/C++ programs - it applies to all programs no
matter what programming language is used for their creation. However, all the
discussions in subsequent chapters assumed a reasonable understanding of that
material. Here we return to examining the run-time environment of programs, but now
with particular emphasis on the notions of process and thread. As in Chapter 2, most of
this material is not specific to C/C++ programs, but an understanding of processes and
threads is essential for development of software based on the C/C++ language. The
run-time environment of a program is really a matter of the operating system.
Nevertheless, when discussing processes and threads, we will focus on the fundamental
concepts that are common across various operating systems. For examples (and when
we must take the OS into account), we will assume UNIX as the operating system
because I am more conversant with it than with any other OS.

A program executes in an environment, which consists of a block of named environment
variables with string values. Through system calls the program can access an
environment variable to fetch or modify its value. In a sense, an environment variable has
the same relationship to a program as a global variable has to a function. The primary
purpose of environment variables is to be set up appropriately (i.e., to create an
appropriate environment) prior to the start of program execution.

Let us give a simple example: Our program is to read a file "file1" from a specialized
directory. However, on different systems the specialized directory may be installed in
different places. We can solve the problem by using an environment variable. The
information concerning where the specialized directory is located will be stored in an
environment variable called SPECDIR.
#include <stdio.h>
#include <stdlib.h>
char* p;
FILE* fp;
char pathname[100];

...
p = getenv("SPECDIR"); //get the pathname of spec. directory
sprintf(pathname,"%s/file1",p);//create pathname for the file
fp = fopen(pathname,"r"); //open the file
...

It is clear that, had the environment variable SPECDIR not been created and set
properly prior to execution of our program, an error would have ensued. Our example
used the UNIX system call getenv() to obtain a value of the environment variable. A
corresponding system call putenv() can be used to set a value of an environment
variable or to define a new environment variable and set its value. With UNIX,
environment variables can be used for "interprogram" communication whereby a
sequence of programs is executed within the same process: program A executes and,
based on its execution, sets environment variables appropriately for a program B to use.

Where and how the actual values of the environment variables are stored depends on
the operating system. It is therefore better to assume that they are not stored within the
user space of your program. Do not try to manage or access the space directly; use
exclusively the system calls to fetch or modify the values of environment variables or to
create them. In some UNIX systems, getenv() returns the value in a static buffer, so
use only one call to getenv() at a time. The corresponding Windows system calls are
GetEnvironmentVariable and SetEnvironmentVariable, which employ a user-
defined buffer to receive or pass the values.

Besides these environment variables, a C/C++ program has additional means of
receiving some information when it is starting up. This feature is called command-line
arguments because values for the arguments are part of invoking the program, usually in
the form of a command. To run a program called prog and supply it with two arguments
Arg1 and Ar2, in UNIX you type the command prog Arg1 Ar2 and hit enter; in
Windows you click on Run, type the command into the dialog box that pops up, and then
click on OK (or use the command prompt window and type in the command). If we
instead want to run the program with three arguments A, B2, and C45, we use the
command prog A B2 C45.

The operating system creates a structure very much like the dynamic two-dimensional
array we discussed in Chapter 7; the only difference is that the "rows" are not
necessarily of the same length. In each of the "rows", one argument (a string) is stored.
Thus, prior to startup of the program prog using the command prog Arg1 Ar2, the
operating system creates a command-line argument structure as depicted in Figure
11.1. If we invoke the program using the command prog A B2 C45, the operating
system creates a different command-line argument structure; see Figure 11.2.

 Figure 11.1: Command-line argument structure for
prog Arg1 Ar2

Figure 11.2: Command-line argument structure for prog A B3
C45

How is the command-line argument structure made available to our program, and how
can our program access it? This is accomplished by way of two special arguments of
the function main(): one is the int argument argc and the other is the char** (or,
equivalently, char* [])argument argv. The pointer argv points to the beginning of the
commandline argument structure, and (as explained in Chapters 6 and 7) argv[0],
argv[1],...are strings in the individual "rows" of the structure. There are argc+1 rows
in the structure, where the last one is empty to mark the end of the command-line
structure even in the absence of argc. (It is traditional for the int argument of main()
to be called argc and for the char** argument to be called argv, but of course they
could be called anything.)

In some operating systems (e.g., Windows) the very first string is the pathname of the
program; in some (e.g., UNIX) it is just the program name. In our diagrams we used the
program name for simplicity. The second string is the first command-line argument, the
third string is the second command-line argument, and so forth. The command-line
argument structure thus always has at least two rows, the first one holding the name of
the program being executed and the last one being empty. As far as storage for the
command-line argument structure is concerned, whatever we have said for environment
variables applies here as well. Therefore, you should not try to manage or access the
memory directly; instead, treat it as read-only memory that is not really a part of your
user space.

In an age of graphic user interfaces for operating systems, it is not clear why we need
anything like command-line arguments, but it is clear from a historical perspective. Take
for example the UNIX command cat file to display the contents of a file: it is quite
natural to have the name of the target file passed to the program cat as a command-

line argument, for it really is a part of the command. Even though it is rooted in the past
era of character-oriented interfaces for operating systems, it is nevertheless a useful
feature and so is still kept intact. Besides, it ought to remain intact for backward
compatibility reasons alone - we still want our old programs to be executable under
contemporary or future operating systems.

What is a process and what is a thread cannot really be precisely defined without
reference to the operating system. In UNIX, the process is the basic concept around
which the operating system is built whereas the thread is a derived concept. In fact,
UNIX features two kinds of threads: lightweight processes, which are threads scheduled
and managed by the operating system; and user threads (or simply threads), which are
scheduled and managed by the process itself and of which the operating system has no
knowledge. On the other hand, for Windows the fundamental concept is the thread, and
it is scheduled and managed by the operating system. For Windows the process is a
derived concept - in fact, it is just a "bunch of threads" (possibly a single one) running
within the same context (the same address space).

A popular definition of a process is "a program in execution". This is not very precise; for
instance, UNIX distinguishes between a process and a program in execution because
within a process you can switch to execute a different program. However, for our
discussion the definition is reasonable and sufficient. The most important attributes of a
process from our point of view are that (a) it has a unique user space in which the
process image is stored and in which the process is running and (b) it has a unique
process ID. In Chapter 2 we discussed the notion of program address space: the user
space is the memory into which the address space is mapped, and the contents of that
(i.e., the image of the address space) is often referred to as the process image. Thus
every time the process is running on the processor, its process image is mapped to its
user space; during context switching, the changes of the contents of the process image
are recorded. Throughout the execution of a process, the exclusive relationships
between the process and its image and its process ID are preserved.

In UNIX there is no system call to create a new process, so you can only duplicate the
existing process through a system call fork().Even though this may seem rather
limiting, in fact it is more than sufficient. If we need two processes - one with behavior A
and the other with behavior B, then we can write a program to create the desired variety
of behavior along the following lines: function A() defines behavior A, and function B()
defines behavior B. In main() we duplicate the process: one copy (the parent process)
continues with the original process ID; the other copy (the child process) continues with
an entirely new process ID. After fork() we put a test to determine whether A() is to
be executed (if it is the parent process) or whether B() is to be executed (if it is a
child). Until fork() there will only be a single process running, but after fork() there
will be two processes running; the one with the original process ID will be exhibiting
behavior A while the other exhibits behavior B. This technique can be used to create N

different processes with N different types of behavior. This program could be coded as
follows.
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 #include <sys/types.h>
 #include <unistd.h>
 #include "log.h" //reporting and logging functions

 void A();
 void B();

 /* function main --- */
 void main()
 {
 pid_t pid;

 printf("I am the process before fork(), my pid=%u\n",
 getpid());
 if ((pid = fork()) < 0)
 sys_exit("fork error");

 if (pid == 0) // child process
 B(); // B does not return, it exits
 else // parent process
 A(); // A does not return, it exits

 }/* end main */

 /* function A -- */
 void A()
 {
 printf("I am doing A, my pid=%u\n",getpid());
 fflush(stdout);
 exit(0);

 }/* end A */

 /* function B -- */
 void B()
 {
 printf("I am doing B, my pid=%u\n",getpid());
 fflush(stdout);
 exit(0);

 }/* and B */

In this example we have used one of the reporting and logging functions presented in

Appendix D, sys_exit().If fork() did not work, then the program would be
terminated and the error number (errno) would be translated to a corresponding error
message. Here is some sample output from the program:
 I am the process before fork(), my pid=8425
 I am doing A, my pid=8425
 I am doing B, my pid=8426

The careful reader may object that this approach is rather inefficient: even though the
parent process is executing only the function A(), it still carries in its process image a
complete code for the function B(), and the child process is executing only the function
B() yet carries a complete code for A() in its process image. The objection is valid
and, indeed, the program is inefficient with respect to storage requirements. Had the
code for behavior A and behavior B been extensive, in real-world programming neither
A() nor B() would carry a complete code for the alternate behavior. Instead, using one
of the family of exec() system calls, A() would execute a program for behavior A and
B() would execute a program for behavior B. The overhead would be minimal because
the parent process would never execute the program for behavior B and the child
process would never execute the program for behavior A. The exec() system calls
replace the process image of the process currently running by the process image based
on the address space of the program being executed.

Note how a process discovers whether it is the parent process or the child process: this
is determined by the value returned by the system call fork(). For the child process, 0
is returned; for the parent process, the process ID of the newly created child process is
returned.

From the memory point of view, fork() makes a copy of the process image of the
current process and creates a new process with an identical copy of the process image
as the original process. In the process image of the original process the return value of
fork() is set to the process ID of the newly created process, while in the process
image of the new process (otherwise a perfect copy of the original process image) the
return value of fork() is set to 0. Hence all data values within the process image as
computed up to the moment of fork() are the same for both processes; the only
difference is the return value of fork(). Of course, after fork() each version of the
process image has its own life, and what is happening in one is not happening in the
other. An analogy of fork() as a photocopy machine and the process image as a
picture might help. The existing picture is "photocopied". Then the original picture and the
new copy are altered slightly (but in different ways). Though the pictures were identical
immediately after photocopying, now they are slightly different. If the owner of the
original picture (the parent process) makes some changes to his picture, they are not
reflected in the copy (owned by the child process) and vice versa. Another way to
visualize fork() is as if the original process image and the copy were running in
physically separate sections of the memory. After fork(), they have no memory in

common.

On the one hand, the total and physical separation of the user spaces of the two
processes is a nice feature. We do not have to worry about the two processes trying to
access the same memory location and work with the same data. If the parent process
sets a variable to some value, we do not have to worry about the child process changing
it. In OS terminology the two processes are not "sharing the memory as a resource". On
the other hand, this separation prevents any straightforward communication (data
exchange) between the two processes. How, for example, can the child process pass
any data to its parent process? At best we can use the process image to pass some
data from the original process (before it becomes the parent) to the child if the data is
available prior to fork(), since the child "inherits" a perfect copy of the process image.

Interprocess communication is an important topic in operating systems. Although the
actual implementation of each particular communication system is OS-dependent, they
are usually based on similar ideas. The following brief overview of interprocess
communication systems is based on these common approaches. It is most interesting
for us that all (except the "signals") rely on memory as the medium facilitating the
communication.

Messages. Both UNIX and Windows have this feature, and in Windows it is the
fundamental approach to interprocess communication. The idea is
straightforward: at some predetermined location in the memory that is
accessible by all processes involved, a message is stored in a message queue.
The recipient process (or processes) is "notified" and so can access the
memory location and retrieve the message from there. Since the messaging
system directly manages the memory for the message queues, this technique is
not interesting from our point of view.

Signals - in UNIX, a kind of 1-bit message that cannot queue (simply a
notification that some event has occurred). Because signals are defined by ANSI
as a part of C, in Windows some signals are available: SIGABRT, SIGFPE,
SIGILL, SIGINT, SIGSEGV, and SIGTERM. Since memory is not really
involved, this technique also is not interesting from our point of view.

Shared memory. Again the idea is simple: a segment of memory is set aside
and made available to both processes as an extension of their respective user
spaces, and hence the image of its contents is an extension of their respective
process images. So if one process stores some data in the shared memory
segment, the other process will find it there. Of course, sharing a memory
segment brings forth the problem of synchronization - for instance, we do not
want a process to use data from the shared memory segment before the other
process has finished its update. Most UNIX systems support the System V
shared memory segments mechanism; in Windows, a similar effect can be

achieved using memory-mapped files or memory-mapped page files. Since
shared memory segments can "leak" profusely, we will discuss this topic in more
detail later.

Pipes. Used in both UNIX and Windows for processes of common ancestry, this
feature is based on a communication buffer created in a memory segment that is
accessible to both processes. When the processes using the pipe terminate, the
pipe "disappears" (such pipes are thus sometimes referred to as temporary
pipes). When a pipe is established between two processes, one process writes
into the pipe using the file system calls for writing while the other process reads
the pipe using the file system calls for reading. In reality, the sender writes the
data into the communication buffer of the pipe and the recipient reads it from the
very same buffer. This creates some synchronization problems, including how
long the recipient should wait on the pipe if there are no data (blocking versus
nonblocking read), how long the sender should wait to write data into the pipe if
the pipe is "full" (blocking versus nonblocking write), and how to emulate end-of-
file. Pipes come in two varieties: duplex (bidirectional - the communication can
flow both ways) and semi-duplex (unidirectional - the communication can flow
only one way). Since the main issues in using pipes concern synchronization
rather than memory, we will not discuss them any further.

FIFOs, or named pipes, are used in UNIX (and in some versions of Windows)
for processes that may not be related. These are similar to pipes but have a
fixed name that is used for access; they are usually implemented as
communication buffers, one for each pair of communicating processes. As with
pipes, both duplex and semi-duplex versions are available but neither is
interesting from a memory standpoint.

Working with a shared memory segment exhibits some of the pitfalls of memory access
discussed in previous chapters, most notably with respect to the overflow. If a program
tries to store more data in a shared memory segment than can fit there and the
boundary of the segment is exceeded, the whole spectrum of problems discussed in
Chapter 3 can occur and result in an erratically behaving program. However, owing to
the nature of the shared memory segments, the most likely outcome of the overflow is a
memory access violation.

The main problem with shared memory segments is their "persistence". All memory
dynamically allocated to a process is reclaimed by the operating system upon
termination of the process. So even if a program has plenty of memory leaks, the
system recovers immediately after program termination. This is not the case with shared
memory segments. They remain until explicitly deallocated or until the next boot, and
they can easily outlive the processes that created them. This leads to the most common
problem with shared memory segments - the failure of a program to clean up. Shared
memory segments can leak in a truly significant way. One real-world example is a

database system under UNIX that relies on shared memory segments for communication
with various clients. If the segments are not properly cleared away then eventually the
system limit is reached and no new shared memory segments can be created;
communication between the database system and its clients is no longer possible and
the whole system grinds to a halt. I have seen this happen. It goes without saying that
over the years my OS-course students have many times brought the entire system to a
standstill through unremoved shared memory segments.

In the following example a shared memory segment is created, some data is stored in it,
and some data is fetched from it. This is all simple. However, the reader should notice
that - even prior to creating the shared memory segment - we took the care to remove it
as long as the program terminates via exit(). The cleanup is provided by the atexit
registered function cleanup.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include "log.h" //reporting and logging functions

void cleanup();

//variables for indexing of messages by logging functions
int logindex = 0;
int *logi = &logindex;

//variables for shared memory segments
int shmid = -1; //id
void* shmaddr; //address where it is attached
struct shmid_ds shmbuf; //structure with info

/* function main -- */
int main()
{

 int i;
 int *p;

 if (atexit(cleanup)<0)
 sys_exit("atexit error");

 if ((shmid = shmget(IPC_PRIVATE,100,S_IRUSR|S_IWUSR))<0)
 sys_exit("shmget error");
 else
 msg("shared memory segment of size 100 with id=%d created\n",

 shmid);
 shmaddr = shmat(shmid,(const void *)0,S_IRUSR|S_IWUSR);
 if (((int)(shmaddr)) == -1)
 sys_exit("shmat(%d,.....) error",shmid);
 else
 msg("shared memory segment id=%d attached at address %u\n",
 shmid,shmaddr);

 // store int 235 in it
 p = shmaddr;
 *p = 235;

 //fetch the value from it
 msg("int value stored in the shared memory segment is %d\n",*p);

 exit(0);

}/* end main */

/* function cleanup --- */
void cleanup()
{
 if (shmid >= 0) {
 if (shmctl(shmid,IPC_RMID,&shmbuf)<0)
 sys("shmctl(%d,IPC_RMID,...) error",shmid);
 else
 msg("shared memory segment id=%d removed\n",shmid);
 }

}/* end cleanup */

In UNIX, when a program is terminated by the operating system (colloquially speaking,
the program has "crashed") it is always by means of a signal. It is possible to catch all
signals and terminate the program through exit() in the signal handler. This strategy
takes care of the cleanup of unwanted shared memory segments under almost all
circumstances. Why "almost"? There are three signals that cannot be caught: SIGKILL,
SIGSTOP, and SIGCONT. SIGSTOP makes the program pause, and SIGCONT wakes
it up from the pause. Thus we need only worry about SIGKILL, which terminates the
recipient process. If something terminates our program by sending it the SIGKILL signal,
there is nothing we can do about it and the shared memory segment will remain in the
system unremoved.

We observe (for the sake of completeness) that UNIX semaphores exhibit the same
"persistence" as shared memory segments and should be treated similarly. The UNIX
command ipcs allows the user to view statistics on all shared memory segments and
semaphores of the whole system, while ipcrm allows users to remove manually the
shared memory segments or semaphores that they own. Source code for the reporting

and logging functions used within this chapter is presented and discussed in Appendix D.
Since it utilizes shared memory segments, the code illustrates their use as well as some
other UNIX programming concepts.

The term thread is short for thread of execution. When a program executes, the CPU
uses the process program counter to determine which instruction to execute next. The
resulting sequence of instructions is called the thread of execution. A thread is the flow
of control in the process and is represented by the sequence of addresses of the
instructions as they are being executed. We can visualize it as a path through the
address space (see Figure 11.3).

Figure 11.3: A single thread of execution

In contrast to processes with their separate address spaces (process images),
concurrency can be achieved within the same address space via the method of multiple
threads. For illustration, imagine that the thread of execution of our process is a
sequence {a1, a2,..., a1000}of instruction addresses. Let us assume that the process is
finished in three turns on the CPU: during the first turn, the process executes instructions
with addresses {a1,..., a300}; during the second turn, the process executes the
instructions with addresses {a301,..., a600}, and during the third turn, the CPU executes
the instructions with addresses {a601,..., a1000}. This is single-thread executing. Now
imagine that, at every turn, the process actually executes two different threads: in the
first turn, the instructions {a1,..., a150} of thread A are executed and then instructions
{a1,..., a150} of thread B; on the second turn, first the instructions {a151,..., a300}of thread
A are executed and then instructions {a151,..., a300} of thread B; and so on - for six turns
on the CPU. In essence, the same program is simultaneously executed twice with
virtually no overhead for switching from one thread to another. If we ran the processes
simultaneously, there would be a significant overhead in switching the context from one

process to another. In a nontrivial program the flow of control is not simple, and the
course of action is determined by the data being processed. It is thus clear that the two
threads would actually differ, since the one executing slightly later would be encountering
different data. For a visualization of multiple threads, see Figure 11.4.

Figure 11.4: Two different threads of execution

The overhead for switching from one thread to another is virtually nil: we need only store
the next instruction address of thread A somewhere and restore the program counter to
the saved next instruction address of thread B. There is nevertheless a penalty for using
threads - now, when two or more threads are using the same address space, we face
real problems with the synchronization and protection of data integrity. Take the
following simple example of a "for" loop:
 ...
 for(i = 0; i < 100; i++) {
 ...
 }
 i=0;
 ...

If we are not careful and hence thread A gets past the loop before thread B, it will reset
the value of i before it reaches 100 in thread B and as a result the loop will start anew
in thread B. In fact, as long as both threads can use the "same" i, the loop may end up
a total mess.

Can careless multithreading lead to memory leaks? Let us examine the following simple
multithreaded program:
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>

 #include <pthread.h>
 #include "log.h"

 //variables for indexing of messages by logging functions
 int logindex=0;
 int *logi = &logindex;
 //thread mutex lock for access to the log
 pthread_mutex_t tlock = PTHREAD_MUTEX_INITIALIZER;

 void* doit(void*);
 char* p = 0;
 pthread_t tid1, tid2;

 // function main ---
 int main()
 {
 create_log("log.txt");

 Msg("going to create the first thread");
 pthread_create(&tid1,NULL,doit,NULL);

 Msg("going to create the second thread");
 pthread_create(&tid2,NULL,doit,NULL);
 Msg("going to wait for the first thread to exit");
 pthread_join(tid1,NULL);
 Msg("the first thread exited");

 Msg("going to wait for the second thread to exit");
 pthread_join(tid2,NULL);
 Msg("the second thread exited");

 exit(0);

 }//end main

 // function doit --
 void* doit(void* x)
 {
 pthread_t me;

 me = pthread_self();
 Msg("I am thread %u (p=%u)",me,p);

 p = malloc(10);
 Msg("I am thread %u and I allocated segment %u",me,p);
 if (me==tid1) // allow thread B to do the
 sleep(2); // allocation and deallocation

 if (p) {

 free(p);
 Msg("I am thread %u and I deallocated segment %u",
 pthread_self(),p);
 p = NULL;
 }

 pthread_exit(NULL);
 return NULL;

 }//end doit

Here is log.txt, the log created by the program:
message number = 0, process id = 19560, time and date = 21:39:16 01/12/03
 going to create the first thread
message number = 1, process id = 19560, time and date = 21:39:16 01/12/03
 going to create the second thread
message number = 2, process id = 19560, time and date = 21:39:16 01/12/03
 going to wait for the first thread to exit
message number = 3, process id = 19560, time and date = 21:39:16 01/12/03
 I am thread 4 (p=0)
message number = 4, process id = 19560, time and date = 21:39:16 01/12/03
 I am thread 4 and I allocated segment 151072
message number = 5, process id = 19560, time and date = 21:39:16 01/12/03
 I am thread 5 (p=151072)
message number = 6, process id = 19560, time and date = 21:39:16 01/12/03
 I am thread 5 and I allocated segment 151096
message number = 7, process id = 19560, time and date = 21:39:16 01/12/03
 I am thread 5 and I deallocated segment 151096
message number = 8, process id = 19560, time and date = 21:39:18 01/12/03
 the first thread exited
message number = 9, process id = 19560, time and date = 21:39:18 01/12/03
 going to wait for the second thread to exit
message number = 10, process id = 19560, time and date = 21:39:18 01/12/03
 the second thread exited

It is quite clear that the segment with address 151072 has never been deallocated;
hence we have a memory leak.

Now let us make a simple change in our program and move the global definition char*
p = NULL; inside the function doit(). As a result, p is no longer a global variable but
rather a local variable in doit(). Let us run the program again and examine the log:
message number = 0, process id = 20254, time and date = 21:55:48 01/12/03
 going to create the first thread
message number = 1, process id = 20254, time and date = 21:55:48 01/12/03
 going to create the second thread
message number = 2, process id = 20254, time and date = 21:55:48 01/12/03
 going to wait for the first thread to exit
message number = 3, process id = 20254, time and date = 21:55:48 01/12/03

 I am thread 4 (p=0)
message number = 4, process id = 20254, time and date = 21:55:48 01/12/03
 I am thread 4 and I allocated segment 151024
message number = 5, process id = 20254, time and date = 21:55:48 01/12/03
 I am thread 5 (p=0)
message number = 6, process id = 20254, time and date = 21:55:48 01/12/03
 I am thread 5 and I allocated segment 151048
message number = 7, process id = 20254, time and date = 21:55:48 01/12/03
 I am thread 5 and I deallocated segment 151048
message number = 8, process id = 20254, time and date = 21:55:50 01/12/03
 I am thread 4 and I deallocated segment 151024
message number = 9, process id = 20254, time and date = 21:55:50 01/12/03
 the first thread exited
message number = 10, process id = 20254, time and date = 21:55:50 01/12/03
 going to wait for the second thread to exit
message number = 11, process id = 20254, time and date = 21:55:50 01/12/03
 the second thread exited

This time both segments have been deallocated and no memory is leaking. The
explanation for the difference is simple. In the first run, the first thread allocated the
segment and saved the address in the global variable p. Then we let it sleep for 2
seconds in order to mess up the synchronization and allow the second thread to do both
the allocation and deallocation. After the second thread finished the deallocation, it set
the pointer p to NULL. When the first thread woke up from sleep and got to the "if"
statement, no deallocation took place because the value of p was NULL. In fact this
problem is quite common (though of course not in such a simple form, but identical in
principle), yet the memory leaks associated with it manifest themselves only
occasionally. If the first thread succeeded in freeing p before the second thread
allocated its segment, there would be no memory leak and all would be well (the
purpose of the sleep(2) call in our program was exactly to keep it from accidentally
running without a memory leak).

Should we not prevent such leaks by simply enforcing the rule "do not
allocate/deallocate memory in more than one thread"? This might be too drastic and
would limit the usefulness of multithreading. Besides, in the second run of our sample
program, when p was a local variable, everything was in order and no memory leaked.
The explanation is again rather simple: each thread requires its own system stack (else
function calls would be a total mess) and thus all auto variables are private to each
thread. The problem of simultaneous access to memory by different threads is a
concern for static objects only.

In Chapter 10 we discussed the concept of smart pointers in C++ programs. It is not too
complicated to include the thread ID in the ownership information. In such a form,
thread-safe smart pointers can prevent the undetermined ownership problem from
occurring even if one thread allocates something while another thread is using it. But it is
always better not to design programs in such a convoluted way in the first place.

The rules of thumb for memory allocation and deallocation in a multithreaded program
can be stated as follows.

Never use static objects to reference dynamically allocated memory in a thread.

If a thread A allocated memory that is supposed to be deallocated, then the
deallocation should be the responsibility of the same thread A; otherwise, we
can easily create the undetermined ownership problem (as discussed in Chapter
10).

It is not a good idea to have a dynamic object created by thread A and used by
thread B, since this too can easily create the undetermined ownership problem.

Review
A program executes in a particular environment that consists of environment variables,
which have the same relationship to a program as global variables have to a function.
The purpose of environment variables is to set up an appropriate environment for
program execution, and they also represent a possible data input into a program. Most
operating systems provide the programmer with system calls to create environment
variables and to set or fetch their values.

Besides environment variables, C/C++ programs have other means of receiving small
amounts of data upon startup in the form of commandline arguments. The operating
system creates a dynamic structure that is akin to a dynamic two-dimensional array, and
one of the command-line arguments (words) is stored as a string in each of the "rows"
of the structure. The very first row carries the program pathname and the very last one
is empty. A C/C++ program receives this structure via the char** (or equivalently the
char* []) argument of the function main().

A process is a fundamental concept in UNIX, while in Windows it is a concept derived
from the fundamental concept of thread. A simple definition of a process is "a program in
execution", though in UNIX they mean slightly different things. The UNIX system call
fork() is used to create a copy of a running process (of its process image) and install
it as a new process. The original process is then called the parent process while the
new process is called the child process. The respective process images are almost
identical; the only difference is that in the parent process the return value of fork() is
the process ID of the child process, whereas in the child process this value is 0. The
return value of fork() is used to determine whether a given process is the parent or the
child. Even though no new processes can be created directly in UNIX, this mechanism
suffices for all practical purposes. In Windows, a new process can be created by a
proper system call without being a copy of the parent process. The same effect is
achieved in UNIX by using one of the exec() calls to switch to the execution of a different
program within the same process. From our point of view, two attributes of a process -
the uniqueness of the process image and the process ID - are of interest and are
maintained throughout the life span of the process. Because the user spaces of the two
processes are completely and physically separated, there is no reason to worry about
simultaneous access of the two processes to data stored in the memory. However, this
separation prevents the processes from communicating and exchanging data. For that
purpose, special interprocess communication systems must be provided. These may be
summarized as follows.

Messages - message queues are used in both UNIX and Windows; they use
memory to store messages where the recipient processes can find them. The
memory for messages is explicitly controlled by the messaging system.

Signals - a kind of 1-bit message that cannot queue; a notification that some
event happened. No memory is involved.

Shared memory - a memory segment is made available to several processes,
and it becomes an extension of their respective user spaces and can be
accessed like "ordinary" memory. The shared memory segments can be very
persistent (i.e., can outlive the process that created them) and can leak in a
significant way. Under almost all circumstances, simple programming techniques
can be used to prevent the leaks.

Pipes, or temporary pipes - usually are implemented as memory buffers
accessible by two related processes; they allow one process to write into the
pipe and the other process to read from the pipe. Besides the buffer residing in
memory, no memory handling is involved. The pipes can be unidirectional or
bidirectional.

FIFOs, or named pipes - like the temporary ones, but these can be used for
unrelated processes and are accessed (like files) using a fixed name.

The term "thread" is derived from "thread of execution", which is represented by a
sequence of instruction addresses as they are being executed. It is possible to run more
than one thread within the same context (the same address space). The flow of control
depends on the data being processed, and two threads are usually not identical because
the latter may encounter different data. In UNIX, the so-called lightweight process
consists of threads that are scheduled and controlled by the operating system, whereas
user threads are scheduled and controlled by the process and so the operating system
is not aware of them. On the other hand, threads in Windows are scheduled and
controlled by the operating system. Like processes, threads are used to implement
concurrent processing. Two of the advantages of threads are (i) the virtually nonexistent
overhead for switching from one thread to another and (ii) the fact that only one process
image (address space) needs to be maintained, whereas for processes two images
must be maintained at the possibly significant cost of disk space and/or memory. The
disadvantage of threads is that all kinds of resources are shared by the threads,
compelling us to synchronize the threads and to provide protection for both the code
(critical sections) and the data (mutexes). Careless multithreading can lead to memory
leaks, but a proper programming approach can easily prevent this.

Exercises
11.1 A shared memory segment cannot be extended. Write a C program that has, as an
argument, an attached shared memory segment and some data. This program will
create and attach a new and bigger shared memory segment. It will copy the data from
the old shared memory segment to the new one and will also store there the additional
data. It will then detach from the old memory segment and destroy it. It essentially does
the same as realloc() when that function cannot physically extend a memory
segment. Here, though, there are some synchronization problems that realloc() does
not have to deal with. First, your program must "lock" the segment for the duration so
that no other process can use it. Then it must make sure that all other processes know
that the segment "has moved" and "where". Try to complete this exercise using
semaphores and shared memory segments only.

11.2 Write a simple C program that forks one or more child processes. Use the logging
functions from Appendix D, but do not create a shared memory segment for logi.
Create a single log before the very first fork() so that all the child processes will
inherit it. Check the log and the sequential numbers of messages from all the processes
involved.

11.3 Repeat Exercise 11.2 with one change: let the program create a shared memory
segment before the first fork() and let logi point to it. Check the log and the
sequential numbers of messages from all the processes involved. Compare this with the
log from Exercise 11.2.

11.4 Repeat Exercise 11.2 with the following change: each child process will open its
own and different log after the fork(). Compare the logs.

11.5 Write a simple multithreaded C program in which one thread creates a dynamic
object and a different thread deallocates it. What kind of "communication" must take
place?

11.6 Write a simple multithreaded C++ program using smart pointers that are "thread
aware" - that is, deallocation takes place only in the thread that is the "owner".

11.7 Write a simple multithreaded C program in which some linked data structure is built
and then the data structure is destroyed. Deliberately write the program so that a
memory leak can occur. Your program should be a more sophisticated version of the
example from this chapter.

References
Reeves, R. D., C++/C# Programmer's Guide for Windows 2000, Prentice-Hall,
Englewood Cliffs, NJ, 2002.

Robbins, K. A., and Robbins, S., Practical UNIX Programming, A Guide to
Concurrence, Communication, and Multithreading, Prentice-Hall, Englewood
Cliffs, NJ, 1996.

Stevens, W. R., Advanced Programming in the UNIX Environment, Addison-
Wesley, Reading, MA, 1992.

Stevens, W. R., UNIX Network Programming, Interprocess Communications, vol.
2, Prentice-Hall, Englewood Cliffs, NJ, 1999.

Tracing memory leaks, objects, processes, and threads from the
programmer's point of view:

Broadman, A., and Shaw, E., "Executing a Class Member in Its Own Thread",
C/C++ Users Journal, December 1999.

Calkins, C., "Integrating Threads with Template Classes", C/C++ Users Journal,
May 2000.

Chaudhry, P., "Per-Thread Singleton Class", C/C++ Users Journal, May 2002.

Freda, W. J., "UNIX Interprocess Communications", C/C++ Users Journal,
November 1990.

Freed, A., "Guidelines for Signal Processing Applications in C", C/C++ Users
Journal, September 1993.

Halladay, S., and Wiebel, M., "A Practical Use for Multiple Threads", C/C++ Users
Journal, January 1992.

Manley, K., "Improving Performance with Thread-Private Heaps", C/C++ Users
Journal, September 1999.

Plauger, D., "Making C++ Safe for Threads", C/C++ Users Journal, February
1993.

Richards, E., "Adding Level-2 Thread Safety to Existing Objects", C/C++ Users
Journal, February 1999.

Sutter, H., "Optimizations That Aren't (In a Multithreaded World)", C/C++ Users

Journal, June 1999.

Weisfeld, M., "Synchronizing Processes Using Critical Sections", C/C++ Users
Journal, September 1992.

Weisfeld, M., "A Synchronization Class Using Critical Sections", C/C++ Users
Journal, November 1995.

Weisfeld, M., "Building Command Lines for Child Processes", C/C++ Users
Journal, November 1996.

Texts concerning debugging in general:

Bugg, K., Debugging Visual C++ Windows, CMP Books, Gilroy, CA, 1998.

Ford, A. R., and Teorey, T. J., Practical Debugging in C++, Prentice-Hall,
Englewood Cliffs, NJ, 2002.

Lencevius, R., Advanced Debugging Methods, Kluwer, Dordrecht, 2000.

Pappas, C. H., and Murray, W. H. III, Debugging C++: Troubleshooting for
Programmers, McGraw-Hill, New York, 2000.

Robbins, J., Debugging Applications, Microsoft Press, Redmond, WA, 2000.

Appendix One: Hanoi Towers Puzzle
In Chapter 5 we discussed recursion and mentioned the Hanoi towers puzzle and its
recursive solution. For completeness we include a simple C program to solve the
problem. The puzzle consists of three pegs, with wooden disks stacked on one. The
disks are of different sizes. The only rule of the game is that a bigger disk can never rest
atop a smaller one. The task is to move all the disks from the leftmost peg to the
rightmost peg - with the aid of the middle peg (see Figure A.1). We shall refer to the
peg from which we are moving the disks as origin, the peg to which we must move the
disks as destination, and the peg we can use in the interim as help.

 Figure A.1: Hanoi towers
puzzle

The recursive solution is based on the following observations. Moving two disks is easy
(the top disk to help, the bottom disk to destination, the top disk to destination on top of
the bottom disk). Moving three disks is also easy: pretend that the bottom disk is a part
of the base; move the remaining two disks from origin to help using destination (easy to
do, we did two disks just a few sentences back); now we have two disks nicely stacked
on help; move the remaining third disk from origin to destination and pretend that it is a
part of the base; now move two disks from help to destination using empty origin. And
so on, More generally: To move n disks from origin to destination using help, we
move the top n - 1disks from origin to help using destination, then the remaining disk
from origin to destination, then the remaining n - 1 from help (using origin) to destination.

The C program presented is rather simple (no graphics), but it does represent the pegs
"graphically" on the screen in a schematic way. After each move, the program pauses
and waits for the user to hit "enter" and so continue to the next move.
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define HEIGHT 10

typedef int PEG[HEIGHT];

PEG A, B, C;

void set_pegs(int nofdisks);
void ht(int nofdisks,PEG origin,PEG help,PEG destination);

int remove_top(PEG peg);
void put_top(PEG peg,int disk);
void move(PEG from,PEG to);
void show_pegs(void);
char *make_disk(int disk);

/* function main -- */
int main(int argc,char** argv)
{
 if (argc != 2) {
 printf("usage - %s <nofdisks>\n",argv[0]);
 exit(1);
 }
 if (sscanf(argv[1],"%d",&nofdisks) != 1) {
 printf("number of disks must be 2 - %d\n",HEIGHT);
 exit(0);
 }

 if (nofdisks < 2 || nofdisks > HEIGHT) {
 printf("number of disks must be 2 - %d\n",HEIGHT);
 exit(0);
 }

 set_pegs(nofdisks);
 show_pegs();
 ht(nofdisks,A,B,C);
 printf("done\n");
 return 0;

}/*end main*/

/* function set_pegs ---------------------------------- */
void set_pegs(int nofdisks)
{
 int i;

 if (nofdisks > HEIGHT) {
 printf("too many disks (%d) for the height of the pegs (%d)\n",
 nofdisks,HEIGHT);
 exit(1);
 }

 for(i = 0; i < HEIGHT; i++)
 A[i] = B[i] = C[i] = -1;

 for(i = 0; i < nofdisks; i++)
 A[i] = nofdisks-1-i;

}/* end set_pegs */

/* function ht -- */
void ht(int nofdisks,PEG origin,PEG help,PEG destination)
{
 if (nofdisks == 2) { // base case
 move(origin,help);
 show_pegs();
 move(origin,destination);
 show_pegs();
 move(help,destination);
 show_pegs();
 return;
 }

 // recursion
 ht(nofdisks-1,origin,destination,help);
 move(origin,destination);
 show_pegs();
 ht(nofdisks-1,help,origin,destination);

}/* end ht */

/* function remove_top ------------------------------------ */
int remove_top(PEG peg)
{
 int i, res;

 for(i = 0; i < HEIGHT; i++)
 if (peg[i] == -1) break;

 if (i == 0) {
 printf("peg is empty\n");
 exit(0);
 }

 i--;
 res = peg[i];
 peg[i] = -1;
 return res;

}/* end remove_top */

/* function put_top --------------------------------------- */
void put_top(PEG peg,int disk)
{
 int i;

 for(i = 0; i < HEIGHT; i++)
 if (peg[i] == -1) break;

 if (i == HEIGHT) {
 printf("peg is full\n");
 exit(1);
 }

 peg[i] = disk;

}/* end put_top */

/* function move -- */
void move(PEG from,PEG to)
{
 int disk;

 disk = remove_top(from);
 put_top(to,disk);

}/* end move */

/* function show_pegs ------------------------------------- */
void show_pegs(void)
{
 int i;

 for(i = HEIGHT-1; i >= 0; i--) {
 printf("%s",make_disk(A[i]));
 printf(" %s",make_disk(B[i]));
 printf(" %s\n",make_disk(C[i]));
 }

 printf("%s",make_disk(-2));
 printf(" %s",make_disk(-2));
 printf(" %s\n",make_disk(-2));
 fflush(stdout);
 getchar();
 fflush(stdin);

}/* end show_pegs */

/* function make_disk -------------------------------------- */
char *make_disk(int disk)
{
 static char buf[26];
 int i, j;

 if (disk == -2) /* make base */
 strcpy(buf,"HHHHHHHHHHHHHHHHHHHHHHHHH");
 else if (disk == -1) /* make peg */

 strcpy(buf," | ");
else{
 for(j = 0; j < 1+HEIGHT-disk; buf[j++] = ' ');
 for(i = 0; i <= disk; buf[j++] = '=',i++);
 buf[j++] = '|';
 for(i = 0; i <= disk; buf[j++] = '=',i++);
 for(i = 0; i < 1+HEIGHT-disk; buf[j++] = ' ',i++);
 buf[j] = '\0';
 }

 return buf;
}/* end make_disk */

Appendix Two: Tracing Objects in C++
In Chapter 10 we discussed some possible strategies for tracing memory leaks in C++
programs. In the following code we illustrate both localization tracing and object tracing.
The program itself is the file count.cpp.
 extern "C" {
 #include <stdio.h>
 #include <string.h>
 #include <stdlib.h>
 #include "trace.hpp"
 }

 #ifdef _OBTRACE_ON
 #include "obtrace.hpp"
 #endif

 #ifdef _OBTRACE_ON
 class XClass : private OBTRACE<XClass>
 #else
 class XClass
 #endif
 {
 public:
 XClass() { value=0; }
 XClass(int i) { value=i;}
 #ifdef _OBTRACE_ON
 // method ReportAll -------------------------------------
 static void ReportAll() {
 OBTRACE<XClass>::ReportAll(stdout,"XClass");
 }end ReportAll

 // method ReportCount -----------------------------------
 static void ReportCount() {
 OBTRACE<XClass>::ReportCount(stdout,"XClass");
 }end ReportCount
 #endif // _OBTRACE_ON

 protected:
 int value;

 };//end class XClass

 #ifdef _OBTRACE_ON
 class YClass : private OBTRACE<YClass>
 #else
 class YClass
 #endif
 {

 public:
 YClass() { string[0]='\0'; }
 YClass(char* p) { strcpy(string,p); }

 #ifdef _OBTRACE_ON
 // method ReportAll -------------------------------------
 static void ReportAll() {
 OBTRACE<YClass>::ReportAll(stdout,"YClass");
 }//end ReportAll

 // method ReportCount -----------------------------------
 static void ReportCount() {
 OBTRACE<YClass>::ReportCount(stdout,"YClass");
 }//end ReportCount
 #endif // _OBTRACE_ON
 protected:
 char string[10];

 }//end class YClass

 #ifdef _OBTRACE_ON
 char* OBTRACE<XClass>::init=NULL;
 char* OBTRACE<YClass>::init=NULL;
 #endif

 XClass ox1(2);
 YClass oy1("hello");

 // function doit1 --------------------------------------
 int doit1()
 {
 TRACE(doit1)

 XClass* ox2 = new XClass(12);
 //delete ox2;

 RETURN1(1)

 }//end doit1

 // function doit2 ---------------------------------------
 void doit2()
 {
 TRACE(doit2)

 XClass ox3(3);
 XClass* ox4 = new XClass(0);

 doit1();

 //delete ox4;
 YClass* oy2 = new YClass("by");
 #ifdef _OBTRACE_ON
 YClass::ReportCount();
 #endif

 //delete oy2;

 RETURN
 }//end doit2
 #ifdef _OBTRACE_ON
 void Report()
 {
 XClass::ReportAll();
 YClass::ReportAll();
 }
 #endif

 // function main --
 int main()
 {
 TRACE(main)

 #ifdef _OBTRACE_ON
 atexit(Report);
 #endif

 doit2();

 RETURN1(0)

 }//end main

Let us examine what is in the program. Two classes, XClass and YClass, are defined
- just simple classes, for we are mainly interested in tracing them. Note that each entry
to a function is marked with TRACE(name) and that each return from a function is
RETURN whereas each return with a value of an expression is
RETURN1(expression). Observe also that no ; is used after these "commands". We
#included our own header file for tracing, trace.hpp:
 #ifndef _TRACE_HPP
 #define _TRACE_HPP

 extern "C" {
 #include <stdio.h>
 #include <string.h>
 #include <stdlib.h>
 }

 #ifdef _TRACE_ON
 extern "C" {
 extern void POP_TRACE();
 extern void PUSH_TRACE(char*);
 extern char* REPORT_TRACE(int);
 }
 #define TRACE(a) PUSH_TRACE(#a);
 #define RETURN { POP_TRACE(); return; }
 #define RETURN1(a) { POP_TRACE(); return(a); }
 #define REPORT() REPORT_TRACE(3)
 #else
 char* TRACELOC="global";
 #define TRACE(a) TRACELOC=#a;
 #define RETURN return;
 #define RETURN1(a) return(a);
 #define REPORT() TRACELOC
 #endif

 #endif // _TRACE_HPP

This means that if our program count.cpp is compiled without defining _TRACE_ON,
our tracing will consist simply of setting the global variable TRACELOC to the function's
name (thus a call from function A to function B will reset the name to B and on the return
to A it will still be B). RETURN and RETURN1 are each defined as an ordinary return.
On the other hand, if our program count.cpp were compiled with a definition of
_TRACE_ON, then TRACE would translate to pushing the name onto the stack of function
names, RETURN would translate to popping the stack of function names and then plain
return, and RETURN1(exp) would translate to popping the stack of function names
and then plain return(exp). These functions are defined in the source file trace.c,
which must be compiled and linked with our program.
#include <stdio.h>
#include <string.h>

// the function trace stack is a simple linked list of
// pointers to function identifiers
// the head of the list is the top of the stack
struct TRACE_NODE_STRUCT {
 char* floc; // ptr to function identifier
 struct TRACE_NODE_STRUCT* next; // ptr to next frame
};
typedef struct TRACE_NODE_STRUCT TRACE_NODE;
static TRACE_NODE* TRACETop = NULL; //ptr to top of the stack

/* function PUSH_TRACE ------------------------------------- */
void PUSH_TRACE(char* p) // push p on the stack
{

 TRACE_NODE* tnode;
 static char glob[]="global";

 if (TRACETop==NULL) {
 // initialize the stack with "global" identifier

 TRACETop=(TRACE_NODE*) malloc(sizeof(TRACE_NODE));

 // no recovery needed if allocation failed, this is only
 // used in debugging, not in production
 if (TRACETop==NULL) {
 printf("PUSH_TRACE: memory allocation error\n");
 exit(1);
 }

 TRACETop->floc = glob;
 TRACETop->next=NULL;
 }
 // now create the node for p

 tnode = (TRACE_NODE*) malloc(sizeof(TRACE_NODE));

 // no recovery needed if allocation failed, this is only
 // used in debugging, not in production
 if (tnode==NULL) {
 printf("PUSH_TRACE: memory allocation error\n");
 exit(1);
 }

 tnode->floc=p;
 tnode->next = TRACETop; // insert fnode as the 1st in the list
 TRACETop=tnode; // point TRACETop to the first node

}/*end PUSH_TRACE*/

/* function POP_TRACE -------------------------------------- */
void POP_TRACE() // remove the op of the stack
{
 TRACE_NODE* tnode;
 tnode = TRACETop;
 TRACETop = tnode->next;
 free(tnode);

}/*end POP_TRACE*/

/* report 'depth' top entries from the stack in the form
 fun1:fun2:fun3:....:funk meaning fun1 called from fun2
 that was called from fun3 ... that was called from funk
 where k = depth

 The calling path may be up to 100 characters, if longer
 it is truncated */

/* function REPORT_TRACE ------------------------------------ */
char* REPORT_TRACE(int depth)
{
 int i, length, j;
 TRACE_NODE* tnode;
 static char buf[100];

 if (TRACETop==NULL) { // stack not initialized yet, so we
 strcpy(buf,"global"); // are still in the 'global' area
 return buf;
 }

 /* peek at the depth top entries on the stack, but do not
 go over 100 chars and do not go over the bottom of the
 stack */

 sprintf(buf,"%s",TRACETop->floc);
 length = strlen(buf); // length of the string so far
 for(i=1, tnode=TRACETop->next;
 tnode!=NULL && i<depth;
 i++,tnode=tnode->next) {
 j = strlen(tnode->floc); // length of what we want to add
 if (length+j+1 < 100) { // total length is ok
 sprintf(buf+length,":%s",tnode->floc);
 length += j+1;
 }else // it would be too long
 break;
 }
 return buf;
}/* end RPORT_TRACE */

The stack in trace.c is as simple as possible - a linked list, with the top of the stack
as the head of the list. The location is reported in the form fun1:fun2:...:funK,
meaning function fun1 called from fun2 that itself was called from fun3 The depth
K of this reporting is controlled in trace.hpp by the preprocessing directive
 #define REPORT() REPORT_TRACE(3)

when _TRACE_ON is defined; in our example, K =3.

The classes for object counting, tracing, and reporting are defined in the header file
obtrace.hpp, which is #included for compilation if _OBTRACE_ON is defined and
otherwise not. Note all the places in our program that are related to object tracing - they
are all conditionally included based on the flag _OBTRACE_ON. Besides the #inclusion of
obtrace.hpp we need a different class header for each class involved (in our

example, for XClass and YClass), and each class must include the reporting functions
ReportAll() and ReportCount() and, most importantly, the definition and
initialization of the static part of each tracing class,
 char* OBTRACE<XClass>::init=NULL;

and
 char* OBTRACE<YClass>::init=NULL;

The method ReportCount() will report the total number of objects at the moment of
its invocation; ReportAll() will report all undeallocated objects and where they were
created.

We will be playing with several variations, so we include a simple Makefile (in this
example we are using a public domain GNU C compiler gcc and a public domain GNU
C++ compiler g++ under Solaris operating system). The Makefile:
 CFLAGS=

 count: count.o trace.o
 g++ -o count count.o trace.o $(CFLAGS)
 count.o: count.cpp trace.hpp obtrace.hpp
 g++ -c -D_TRACE_ON -D_OBTRACE_ON count.cpp $(CFLAGS)

 count1: count1.o
 g++ -o count1 count1.o $(CFLAGS)
 count1.o: count.cpp trace.hpp obtrace.hpp
 g++ -c -D_OBTRACE_ON count.cpp $(CFLAGS)
 mv count.o count1.o

 count2: count2.o trace.o
 g++ -o count2 count2.o trace.o $(CFLAGS)
 count2.o: count.cpp trace.hpp obtrace.hpp
 g++ -c -D_TRACE_ON count.cpp $(CFLAGS)
 mv count.o count2.o

 count3: count3.o
 g++ -o count3 count3.o $(CFLAGS)
 count3.o: count.cpp trace.hpp obtrace.hpp
 g++ -c count.cpp $(CFLAGS)
 mv count.o count3.o

 trace.o: trace.c
 gcc -c trace.c $(CFLAGS)

Let us first make count - it is the form with both localization tracing and object tracing
on. Executing the program yields the following output:
[doit2:main:global] number of objects of class YClass = 2

undeallocated object of class XClass created in doit1:doit2:main
undeallocated object of class XClass created in doit2:main:global
undeallocated object of class XClass created in global
undeallocated object of class YClass created in doit2:main:global
undeallocated object of class YClass created in global

The first line is produced by call to YClass::ReportCount() doit2() called from
main() and the next three lines by XClass::ReportAll() invoked by the atexit
registered function Report() when the program exits. The last two lines are produced
by YClass::ReportAll() invoked by Report(). We tried to keep the reporting
simple and so it is writing only to standard output (not every operating system keeps
standard files open and accessible past exit(), so it may not be executable in this
form on your particular machine). Let us check the output to see whether it is correct.
When YClass::ReportCount() is invoked there are two YClass objects, oy1 and
*oy2. The "undeallocated object of class XClass created in doit1:doit2:main" is *ox2
(note the commenting out of the delete). The "undeallocated object of class XClass
created in doit2:main:global" is *ox4 (again its delete is blocked) - ox3 was deleted
automatically when it went out of scope. The "undeallocated object of class XClass
created in global" is the global object ox1. The "undeallocated object of class YClass
created in doit2:main:global" is *oy2 (its delete is also commented out), and finally the
"undeallocated object of class YClass created in global" is the global object oy1. Let us
uncomment all the commented deletes, recompile, and execute again; correctly we
obtain
 [doit2:main:global] number of objects of class YClass = 2
 undeallocated object of class XClass created in global
 undeallocated object of class YClass created in global

Commenting the deletes again and recompiling our program as count1, which keeps
the object tracing on but turns off the localization tracing, produces the output
 [doit2] number of objects of class YClass = 2
 undeallocated object of class XClass created in doit1
 undeallocated object of class XClass created in doit2
 undeallocated object of class XClass created in global
 undeallocated object of class YClass created in doit1
 undeallocated object of class YClass created in global

which we know is correct from our previous analysis - notice the "flat" localization
reporting. Also notice in the Makefile that for count1 we did not link our program with
trace.o. If we uncomment the deletes, we get the same correct response with "flat"
localization. Now we compile our program as count2, which keeps the localization
tracing on but turns the object tracing off (again we must link our program with trace.o
as we did for count); this time we get no output because there is no reporting. The
reader is encouraged to play with the localization tracing and reporting. Compiling our
program as count3 turns off both the localization tracing and the object tracing; this

time our program is again not linked with trace.o and there is no output. There is
practically no overhead, and the program behaves almost as if we never programmed it
to do localization or object tracing.

Appendix Three: Tracing Objects and Memory in C++
Our aim here is to take count.cpp and change it to trace not only objects but also
allocation and deallocation by global operators new and delete. Toward this end we
work with just one class YClass and have its only data member value be dynamically
allocated. We therefore added a destructor to deallocate value. Here is the file
memtrace.cpp:
 extern "C" {
 #include <stdio.h>
 #include <string.h>
 #include <stdlib.h>
 #include "trace.hpp"
 }

 #ifdef _OBTRACE_ON
 #include "obtrace.hpp"
 #endif

 #include "memtrace.hpp"
 // now redefine new
 #ifdef _TRACE_ON
 #define new new(__FILE__,__LINE__,REPORT_TRACE(3))
 #else
 #define new new(__FILE__,__LINE__,TRACELOC)
 #endif

 #ifdef _OBTRACE_ON
 class XClass : private OBTRACE<XClass>
 #else
 class XClass
 #endif
 {
 public:
 XClass() { value=0; }
 XClass(int i) {
 value = new int;
 *value = i;
 }
 ~XClass() { if (value) delete value; }
 #ifdef _OBTRACE_ON
 // method ReportAll -------------------------------------
 static void ReportAll() {
 OBTRACE<XClass>::ReportAll(stdout,"XClass");
 }//end ReportAll

 // method ReportCount -----------------------------------
 static void ReportCount() {

 OBTRACE<XClass>::ReportCount(stdout,"XClass");
 }//end ReportCount
 #endif // _OBTRACE_ON

 protected:
 int* value;

 };//end class XClass

 #ifdef _OBTRACE_ON
 char* OBTRACE<XClass>::init=NULL;
 #endif

 XClass ox1(1);

 // function doit1 ---
 int doit1()
 {
 TRACE(doit1)

 XClass* ox2 = new XClass(2);
 //delete ox2;

 RETURN1(1)

 }//end doit1

 // function doit2 ---
 void doit2()
 {
 TRACE(doit2)

 XClass ox3(3);
 XClass* ox4 = new XClass(4);

 doit1();

 //delete ox4;
 #ifdef _OBTRACE_ON
 XClass::ReportCount();
 #endif

 RETURN
 }//end doit2

 void Report()
 {
 #ifdef _OBTRACE_ON
 XClass::ReportAll();

 #endif
 new_report(stdout);
 }

 // function main --
 int main()
 {
 TRACE(main)

 #ifdef _OBTRACE_ON
 atexit(Report);
 #endif
 doit2();

 RETURN1(0)

 }//end main

The overloaded operators new and delete are in the file memtrace.hpp that is
#included. That is where the reporting function new_report() is defined as well. Note
that (a) we redefine new in two different ways, depending on whether or not we trace
the functions, and (b) as discussed in Chapter 10, we do not redefine delete. Here is
the file memtrace.hpp:
#ifndef _MEMTRACE_HPP
#define _MEMTRACE_HPP

extern "C" {
 #include <stdio.h>
 #include <string.h>
}

struct NEW_STRUCT
{
 void *addr;
 char* file;
 int line;
 char* local;
 size_t size;
 struct NEW_STRUCT* next;
};
typedef NEW_STRUCT NEW;
NEW* newlist = 0;

void* operator new(size_t size,const char* file,
 int line,char* local) {
 void *p;
 NEW* newp;

 // every allocation should be checked and exception
 // thrown if error
 newp = (NEW*) malloc(sizeof(NEW));
 newp->addr = malloc(size);
 newp->file = strdup(file);
 newp->line = line;
 newp->local = strdup(local);
 newp->size = size;
 newp->next = newlist;
 newlist = newp;
 return newp->addr;
}

void operator delete(void* p) {
 NEW *newp, *newp1;

 if (newlist == 0) {
 // here we should throw, spurious deallocation
 return;
 }
 if (newlist->addr == p) {
 newp = newlist;
 newlist = newlist->next;
 free(newp->file);
 free(newp->local);
 free(newp);
 return;
 }
 for(newp1 = newlist, newp = newlist->next;
 newp != 0;
 newp1 = newp, newp = newp->next) {
 if (newp->addr == p) {
 newp1->next = newp->next;
 free(newp->file);
 free(newp->local);
 free(newp);
 return;
 }
 }
// here we should throw, spurious deallocation
}

void operator delete(void *p,const char* file,
 int line,char* local) {
 operator delete(p);
}

void new_report(FILE *fp) {
 NEW* newp;

 if (newlist == 0) {
 fprintf(fp,"all deallocated :-)\n");
 fflush(fp);
 return;
 }

 for(newp = newlist; newp != 0; newp = newp->next) {
 fprintf(fp,"undealloc. segment at address %x from file=%s,\n",
 newp->addr,newp->file);
 fprintf(fp," line=%d, local=%s, size=%u\n",
 newp->line,newp->local,new->size);
 }

 fflush(fp);
}

#endif // _MEMTRACE_HPP

Again, for keeping track of allocation and deallocation we chose a simple linked list,
newlist. The files trace.hpp, trace.c, and obtrace.hpp are as before. The
Makefile:
CFLAGS=

trace.o: trace.c
 gcc -c trace.c $(CFLAGS)

memtrace: memtrace.o trace.o
 g++ -o memtrace memtrace.o trace.o $(CFLAGS)
memtrace.o: memtrace.cpp memtrace.hpp trace.hpp obtrace.hpp
 g++ -c -D_TRACE_ON -D_OBTRACE_ON memtrace.cpp $(CFLAGS)

As in Appendix B, we first compile it as memtrace with both localization tracing and
object tracing. We obtain the following output:
[doit2:main:global] number of objects of class XClass = 4
undeallocated object of class XClass created in doit1:doit2:main
undeallocated object of class XClass created in doit2:main:global
undeallocated object of class XClass created in global
undealloc. segment at address 22500 from file=memtrace.cpp,
 line=31, local=doit1:doit2:main, size=4
undealloc. segment at address 224f0 from file=memtrace.cpp,
 line=65, local=doit1:doit2:main, size=8
undealloc. segment at address 224d0 from file=memtrace.cpp,
 line=31, local=doit2:main:global, size=4
undealloc. segment at address 224c0 from file=memtrace.cpp,
 line=79, local=doit2:main:global, size=8
undealloc. segment at address 22460 from file=memtrace.cpp,
 line=31, local=global, size=4

The object count and undeallocated objects are clear (see the discussion in Appendix B).
More interesting are the undeallocated segments. The one of size 4 at address 22500 is
value of the global object ox1. The one of size 8 at address 224f0 is the dynamic
object *ox2. The one of size 4 at address 224d0 is value of the object *ox2. The one
of size 8 at address 224c0 is the dynamic object *ox4, while the one of size 4 at
address 22460 is its value. There is no trace of the object ox3 and its value, for both
were "destroyed" when it went out of scope. Now uncomment the deletes in
memtrace.cpp and recompile. Running it again yields:
 [doit2:main:global] number of objects of class XClass = 2
 undeallocated object of class XClass created in global
 undealloc. segment at address 224b8 from file=memtrace.cpp,
 line=31, local=global, size=4

There is only one undeallocated object, the global ox1, and only one un-deallocated
segment of size 4 at address 224b8, its value. Now, let us comment out the global
object ox1, recompile, and run again:
 all deallocated :-)

So there, a smiley!

Appendix Four: Thread-Safe and Process-Safe Reporting
and Logging Functions
Here we present the reporting and logging functions referred to in the text of the book on
several occasions, especially in Chapter 11. This particular example is POSIX 1
compliant.

All functions comply with the same syntax and semantics for arguments as the
printf() function (i.e., variable number of standard arguments). Functions named in
all lowercase (sys_exit(), sys__exit(), msg(), msg_exit(), msg__exit(),
and msg()) write their messages to the standard output (i.e., to the screen of the
terminal under normal circumstances), whereas functions whose names begin with an
uppercase letter (Sys_exit(), Sys__exit(), Sys(), Msg_exit(), Msg__exit(),
and Msg()) write into a single log file.

The functions sys(), msg(), Sys(), and Msg() save on entry the current signal mask,
block all signals, and than write the message - hence they cannot be "interrupted". On
return, they reinstate the original signal mask.

The functions sys_exit(), sys__exit(), msg_exit(), msg__exit(),
Sys_exit(), Sys__exit(), Msg_exit(), and Msg__exit() block all signals on
entry. They do not save the original signal mask because they do not return; these
functions exit using the system call exit(1) (functions sys_exit(), msg_exit(),
Sys_exit(), and Msg_exit())or _exit(1) (functions sys__exit(),
msg__exit(), Sys__exit(), and Msg__exit()).

Functions msg_exit(), msg__exit(), msg(), Msg_exit(), Msg__exit(), and
Msg() just write the requested message and either return (msg() and Msg()) or exit
using exit(1) (msg_exit() and Msg_exit())or _exit(1) (msg__exit() and
Msg__exit()).

Functions sys_exit(), sys__exit(), sys(), Sys_exit(), Sys__exit(), and
Sys() write a more elaborate system error message (together with the requested
message) describing the error that happened based on errno. Thus they should be
used only after a system call failed. These functions either return (sys() and Sys()) or
exit using exit(1) (sys_exit() and Sys_exit())or _exit(1) (sys_exit() and
Sys__exit()).

Functions Sys_exit(), Sys__exit(), Sys(), Msg_exit(), Msg__exit(), and
Msg() on entry lock the log file for writing (an exclusive lock); upon exit or return, they
unlock the log file (using functions writelock() and fileunlock()). The file locking
protects the integrity of the file if different processes try to write into it. If compiled with
the _multithread flag, the POSIX mutexes (a mutual exclusion implementation for

POSIX threads, a kind of a lock) are installed and used to protect the log.

All the functions use an integer pointer logi (declared in the log.h file), which must
point to a location where the next sequential message number is stored. Each function
uses that number for its message number and then increments its value by 1 so that the
next function can use it. The location could be within the dataspace of the process (as
we used it in several examples): first define and initialize the real index, int
logindex=0, and then define logi and point it there - int* logi = &logindex. Or
it could be a shared memory segment. If the logging functions are used for many
processes for the same log then the message numbering will be out of sequence, for
each process will keep track of the message numbering for itself only. If we want a
correct numbering for all processes together then they must all use the same index, so
we keep it in a shared memory segment. This would be a typical and intended use:
#include "log.h"
...
create_log("mylog");
int logindex=0;
int* logi=&logindex;
...
1. register atexit a cleanup function for a removal of a shared
 memory segment for logi, provided you are the parent process
2. create a shared memory segment, attach to it, its address is
 in logaddr
...
logi = loagddr;

3. fork all child processes
 they inherit both the shared memory segment and logaddr
 so the logging functions will be OK

Access to the shared memory segment need not be protected (since only the "owner" of
the log will access it), so the mutual exclusion is enforced via file locking. For the
multithreaded version:
 #include "log.h"
 ...
 create_log("mylog");
 int logindex=0;
 int* logi=&logindex;
 ...
 1. create all threads
 they inherit logi
 so the logging functions will be OK

There is likewise no need to safeguard access to logindex since only the "owner" of
the log will access it; here the mutual exclusion is enforced using the mutual exclusion of
the log.

All reporting and logging functions return a char pointer that consists of a string with a
possible error message. If a function executes without an error, a null pointer is returned
(meaning no error message). If the pointer returned is not null then the string it points to
contains an error message about what has happened. It is up to the programmer who is
using these functions to decide what to do if an error has occurred.

The program using the logging functions must #include log.h and must define and
initialize the mutex tloc as follows:
 pthread_mutex_t tlock = PTHREAD_MUTEX_INITIALIZER

Here is log.h file:
 #ifndef _log_h
 #define _log_h

 extern int *logi;
 #ifdef _multithread
 extern pthread_mutex_t tlock;
 #endif

 #ifdef __cplusplus
 extern "C"
 #include <stdio.h>
 #include <string.h>
 #include <sys/types.h>
 #include <fcntl.h>
 #include <errno.h>
 #include <stdarg.h>
 #include <stdlib.h>
 #include <unistd.h>
 #include <time.h>
 #include <signal.h>
 #include <sys/stat.h>
 #include <pthread.h>

 char* sys_exit(char *fmt, ...);
 char* sys__exit(char *fmt, ...);
 char* sys(char *fmt, ...);
 char* msg_exit(char *fmt, ...);
 char* msg__exit(char *fmt, ...);
 char* msg(char *fmt, ...);
 char* Sys_exit(char *fmt, ...);
 char* Sys__exit(char *fmt, ...);
 char* Msg_exit(char *fmt, ...);
 char* Msg__exit(char *fmt, ...);
 char* Sys(char *fmt, ...);
 char* Msg(char *fmt, ...);
 char* create_log(char*);
 #else

 #include <stdio.h>
 #include <string.h>
 #include <sys/types.h>
 #include <fcntl.h>
 #include <errno.h>
 #include <stdarg.h>
 #include <stdlib.h>
 #include <unistd.h>
 #include <time.h>
 #include <signal.h>
 #include <sys/stat.h>
 #include <pthread.h>

 extern char* sys_exit(char *fmt, ...);
 extern char* sys__exit(char *fmt, ...);
 extern char* sys(char *fmt, ...);
 extern char* msg_exit(char *fmt, ...);
 extern char* msg__exit(char *fmt, ...);
 extern char* msg(char *fmt, ...);
 extern char* Sys_exit(char *fmt, ...);
 extern char* Sys__exit(char *fmt, ...);
 extern char* Msg_exit(char *fmt, ...);
 extern char* Msg__exit(char *fmt, ...);
 extern char* Sys(char *fmt, ...);
 extern char* Msg(char *fmt, ...);
 extern char* create_log(char*);
 #endif

 #endif /* _log_h */

To view or download the complete code, please visit Prof. Franek's website:
www.cas.mcmaster.ca/~franek.

http://www.cas.mcmaster.ca/%7Efranek

Glossary

Symbols
_exit()

UNIX system call that terminates its process; similar to exit() but does not
execute "atexit" functions.

A-B
absolute address

A synonym for physical address.
absolutization

The process that replaces relative addresses of the form (segment, offset) - or
just plain offset for a single segment - by the actual addresses.

activation (of a function)
An execution of the function.

activation frame
A data structure to save all data relevant for running of a function (procedure),
including the storage for all local objects and input parameters.

activation record
A synonym for activation frame.

address operator &
An operator for calculating the logical address of a variable in compile time.

address reference
Referring to an item by its address.

allocation from arena
Technique of allocating an arena first and then managing the
allocation/deallocation within the arena by the program itself (rather then by the
process memory manager); used for compaction and serialization of complex
data structures and objects, or for managing memory in safety-critical and/or
fault-tolerant systems.

ANSI-C standard
Standardization of the programming language C by the American National
Standards Institute.

argument(of a function)
An input to the function; can be viewed as a named "slot" (sometimes referred
to as dummy variable) that is filled with a value just prior to a call to the
function, and during execution the function works with the argument as if it were
a regular variable.

argument passing
Parameter passing to functions.

array index range checking
Checking whether an index used to access an array item is within the correct
range.

assignment method

A synonym for operator=.

auto(C/C++ keyword)
Storage class automatic.

auto_ptr<X>

The template-based C++ Standard Library definition of smart pointers.
backtracking algorithm

A class of algorithms that systematically generate or traverse a space of
solutions. The name alludes to their main feature: when they are stuck, they
"backtrack" to the previous position from which they can once again start
generating or traversing.

base class
If a class A is an extension of a class B, then B is called the base class of A; a
synonym for superclass.

big endian byte order
A byte order for numbers of at least 2 bytes in which the more significant byte is
placed to the left of a less significant byte; most UNIX boxes use big endian
byte order.

binary code
A sequence of bits (customarily depicted as 0s and 1s) representing a particular
value. In C/C++ there are three fundamental binary codes employed - coding for
characters, coding for integers, and coding for real numbers. Some might
recognize only two since the coding for characters and integers is the same, but
we ought to make a conceptual distinction between them.

binary heap
A labeled binary tree in which every node has a label that is strictly bigger than
the labels of all its descendants.

binary search tree
A binary tree with nodes storing values; the tree is organized so that a parent
node has a value strictly larger (resp., smaller) than the left (resp., right) child
node. This arrangement allows access to nodes in no worse than O(n) time with
average O(log n) access time.

binary tree
Linked data structure consisting of nodes; each node (parent) is at most linked
to two other nodes (its children), and no node is linked to its predecessor node.
(In the terminology of graph theory, this is an acyclic graph.)

blanked memory
Memory in which each of its bits is cleared (set to 0).

blocking/nonblocking system call

A system call dealing with some I/O devices; for instance, read on a pipe may
either wait until some data arrives (so-called blocking call) or, if there is no data
waiting to be had, it returns (so-called nonblocking call).

buffer
A common term referring to a contiguous segment of memory used for storing
binary data.

byte code
A special code to which Java programs are "compiled" in order to speed their
interpretation by the Java virtual machine.

C
C++ standard

Current standard for Programming Language C++, JTC1.22.32, ISO/IEC
14882, published 1 September 1998.

C++ Standard Library
A set of common classes and interfaces that greatly extend the core C++
language.

C99
The current standard for Programming Language C, ISO/IEC 9899:1999,
published 1 December 1999.

cache
A fast and expensive (and hence small) memory used to store prefetched data
in order to speed up execution; access to the cache is much faster than access
to the main memory.

caching
The process of pre-fetching data anticipated to be needed by the running
program into the cache and attendant memory mapping, so that the running
program has no "knowledge" of the fact that it is working with data in the cache
rather than with data in the main memory; caching is used to speed up the
execution.

call(to a function)
A C/C++ language construct indicating that the function should be executed at
the point where the construct is located.

call-by-address
A synonym for call-by-reference.

call-by-location
A synonym for call-by-reference.

call-by-name
A particular way of implementing a function call, in which the variables passed to
the function replace the names of arguments; used for macro-expansion and
inlining.

call-by-reference

A particular way of implementing a function call, in which the arguments are
passed by their references.

call-by-value
A particular way of implementing a function call, in which the arguments are
passed by their value (i.e., their copies).

callee
The function being called.

caller
The function doing the calling.

calling convention
The type of calling sequence used; thus we speak of the C calling convention,
the Java calling convention, the Pascal calling convention, and so on.

calling sequence
A sequence of steps performed prior to the execution of the called function.
Some of the steps are performed by the caller, some by the callee.

calloc()

A standard C/C++ function that provides a platform-independent interface to the
process memory manager; used to allocated and clear the memory.

child process
After a fork() in UNIX, one of the copies of the (parent) process being forked
continues with a new process ID, customarily called the child process; the term
is also used in the context of other operating systems for a process created by
another process.

class
A collection of definitions of data items and operations intended to model some
important commonality among many objects.

class member
A data item or a method.

class method
A function that belongs to the class definition; intended to be used by all objects
of the class and mainly on the object's own data.

cleared memory
A synonym for blanked memory.

command line
The prompt line offered by many operating systems to type in a command.

command-line argument
If program execution is initiated by a command typed on the command line,
additional words after the command are passed to the program being invoked;
these are referred to as command-line arguments.

command-line argument structure
The data structure created by the operating system using the command-line
arguments passed to the program being invoked.

compaction
A process that stores a linked data structure in a single contiguous segment of
memory.

compile-time array index range checking
Checking during compilation whether the indicated operation violates the known
range of the array (e.g., during initialization).

constructor
One of a set of specialized methods that is invoked during an object's creation;
can be viewed as a "blueprint" for object creation.

copy constructor
A constructor used by the compiler for passing objects by value (i.e., copying
them); the signature of the copy constructor for a class C is C(const C&).

copy-restore
A call method in which arguments are passed to the callee by value; upon
termination of the callee, the newly computed values are copied to the activation
frame of the caller.

D
dangling pointer

A pointer pointing to a previously meaningful location that is no longer
meaningful; usually a result of a pointer pointing to an object that is deallocated
without resetting the value of the pointer.

dangling reference
A reference to an object that no longer exists.

data abstraction
A principle by which implementation details of an abstract data type are hidden
so that the user manipulates only the well-defined abstract properties of
abstract data types.

data hiding
A synonym for information hiding.

data structure
A collection of simpler data items linked through explicit links or through implicit
links. (

See also linked data structure.

declaration(of an object)
A C/C++ construct informing the compiler that a particular symbol represents an
object of a given type; no creation is involved.

default constructor
An explicit constructor with no arguments, or an implicit constructor provided by
the compiler.

definition(of an object)
A C/C++ construct that causes the compiler to create an object out of "raw"
memory.

delete

A C++ operator to delete a memory segment previously dynamically allocated
by the operator new; unlike the C allocators, delete can be overloaded to
provide a custom-made or debugging version, and errors can be handled
through exceptions.

delete[]

A C++ operator to delete a memory segment previously dynamically allocated
by the operator new[]; unlike the C allocators, delete[] can be overloaded
to provide a custom-made or debugging version, and errors can be handled
through exceptions.

dereference operator *
A synonym for indirection operator.

derived class
A class extending another class; a synonym for subclass.

destructor
A special method of each class that is automatically used when an object of the
class is being destroyed (either implicitly when a function in which it is local is
terminating, or explicitly when an object is being deallocated using the operator
delete).

distributed computing
Setup of a computing environment in which data and/or code used by a program
may physically reside on other machines of the network yet be accessible for
the program as if they resided on the same machine; in particular, this enables
many programs running on different machines to cooperate toward the same
goal.

dynamic data
Data stored in dynamically allocated memory; also, a section in the program
address space for dynamically allocated memory.

dynamic memory allocation
The process of requesting and obtaining additional memory segments during the
execution of a program.

dynamic memory deallocation
The process of "returning" previously allocated dynamic memory to the process
memory manager.

dynamicmulti-dimensionalarray
A dynamically created data structure that allows access through multiple
indexes with the same syntax as that used for static multi-dimensional arrays.

dynamic one-dimensional array

An array whose segment to hold the array items has been allocated
dynamically.

E-F
elementary data type

Data types that a programming language recognizes and can deal with
automatically; in C/C++ these include char, int, float, and pointers to these
and pointers to pointers (recursively).

encapsulation
A principle according to which both the data and the operation with it are
enclosed within a module and not generally available to other modules.

environment
Usually, a set of environment variables for a process.

environment variable
A set of variables that are set prior to a program's execution and to which the
program has access.

exception
An event that occurs during program execution that disrupts the normal flow of
instructions.

exception-safe code
Code that preserves certain invariants (usually the use and ownership of
resources) after an exception occurs - usually by restoring the state of the
process to the one that obtained before the exception.

exception-unsafe code
Code that is not exception-safe.

exec()

A family of UNIX system calls to execute a program within the process in which
it is used.

executable file
A synonym for load module.

executable module
A synonym for load module.

extendibility
A characteristic of software whose functionality may be extended if necessary.

fault-tolerant software
A software system so designed that it continues to work even if fatal errors in
execution are encountered.

FIFO
A named pipe; an acronym standing for "first in, first out".

flat-table approach
A program structure resembling cards spread on a flat table, where a function
(procedure) is likened to a card; the main implication is that functions cannot be
defined within functions.

flow of control
Sequence indicating which of the functions has "control" (i.e., is being executed).

foreign key
An item in a table A of a relational database whose value comes from another
table B. Only in table B can the value be modified; in table A, the value is used
as a "link" - in essence linking A to B. Foreign keys are used to capture
relationships among tables.

fork()

A UNIX system call to create a new process.

fragmentation
During dynamic memory allocation, the process manager may need to carve out
a segment to allocate from a bigger one. The left-over segment may be too
small to be of any use; this unpleasant aspect of allocation is often called
fragmentation.

free()

A standard C/C++ function providing a platform-independent interface to the
process memory manager; used to deallocate memory.

free store
A synonym for system heap.

function
A subprogram module in C/C++ with a precisely defined interface; in general the
term function refers to a module that returns a value. In C/C++, modules are
presumed to return a value (even if they do not), so the term is used for all
subprogram modules.

function argument
A synonym for argument (of a function).

function call
A synonym for call (to a function).

function header
A construct in C/C++ syntax that describes the function's interface.

G-I
garbage collection

If only implicit dynamic allocation is allowed then deallocation must also be done
by implicit means, which is often called garbage collection.

garbage collector
Software that provides implicit memory deallocation by deallocating objects that
are no longer referenced by some other object.

getenv()

A UNIX system call to obtain the value of a particular environment variable.

GetEnvironmentVariable

A Windows system call to obtain the value of a particular environment variable.

global item
An item that can be referenced (accessed) in all functions (with some
restrictions) of the program.

Hanoi towers puzzle
The Hanoi towers puzzle was invented by the French mathematician Edouard
Lucas in 1883. Three pegs are given, one of which contains a certain number of
wooden disks of different sizes. The disks must always be organized so that
only a smaller disk can sit on top of a bigger one. The monks are supposed to
move the disks from one peg to another. This is a complex problem that
nevertheless can easily be "solved" using recursion (see Appendix A).

hidden allocation
A problem that arises when a service or object is requested from a module
without realizing that the module has allocated some memory to serve that
request.

incorrect assignment
An assignment that does not properly destroy the dynamic parts of an object
before assigning them new values; usually in the form of a missing explicit
assignment.

index-out-of-range run-time error
An attempt to access an array item with an index that is outside of the range.

indirection operator *

An operator referencing the "virtual object" at the address a pointer is pointing
to; used for fetching and storing of values.

information hiding
A principle akin to the military term "need to know basis" whereby only the
module that "guards" the data should have direct access to it while all other
modules should gain access only through the "guard"; this enables much safer
programming, for it prevents accidental data corruption.

inheritance
A mechanism by which objects of a derived class automatically have the same
properties as objects of the base class without those properties being explicitly
restated.

inlining
A method by which a compiler, in order to reduce the function overhead, places
a direct code instead of a function call while maintaining the syntax convention
and convenience of function calls.

innate data type
A synonym for elementary data type.

instance
A synonym for object.

instantiation
A synonym for object construction.

insufficient destructor
A destructor that does not properly deallocate all the dynamic parts of an
object; usually in the form of a missing explicit destructor.

interpreted program
A program that is read in its source form by an interpreter that then does
whatever the statements of the program indicate should be done.

interpreter
A program that reads (interprets) programs in their source form and executes
whatever the statements of the program being interpreted indicate should be
done.

invocation(of a function)

A synonym for function call.

ipcrm

A UNIX command for removal of a shared memory segment or a semaphore
(provided the user has the required permissions to do so).

ipcs

A UNIX command for generating statistics on all shared memory segments and
semaphores within the system.

J-M
Java virtual machine

An interpreter for Java byte code.

lightweight process
A UNIX term denoting a thread that is implemented by the operating system.

linked data structure
A data structure consisting of components connected by links, usually pointers.

linking
Term used to denote either the whole process of forging a set of object
modules into a single load module or the second phase of that process, when
address references from one object module to another (so-called external
references) are resolved with respect to the beginning of the load module being
created.

list
A linked data structure consisting of nodes to hold data and links to the next
element in the list (so-called singly linked list) or, in addition, links to the previous
element in the list (doubly linked list).

little endian byte order
A byte order for numbers of at least 2 bytes in which the less significant byte is
placed to the left of a more significant byte; Intel processors use little endian
byte order.

load file
A synonym for load module.

load module
A file containing a binary code of a program with all address references
resolved and ready to be loaded to the memory and executed.

loading
The process of copying the contents of a load module to memory while
modifying logical addresses to physical.

local item
An item defined within a function (or block) with default storage class auto.

logical address
An address in the form of an offset from either the beginning of the load module
or an activation frame.

macro-expansion
A method by which a macro defined through the #define preprocessor
directive is replaced by the code.

maintainability
A property of software allowing reasonably easy modifications as requirements
change during the software's lifetime.

malloc()

A C/C++ standard function that provides an interface to the process memory
manager; used for requesting additional dynamic memory.

malloc.h

A slightly obsolete standard C header file for dealing with allocation and
deallocation of memory.

memory alignment
Usually refers to the fact that the address of an item starts at a machine-word
boundary in memory (to enable a more efficient memory access in terms of
machine words).

memory allocation
A synonym for dynamic memory allocation.

memory deallocation
A synonym for dynamic memory deallocation.

memory leak
A commonly used term indicating that a program is dynamically allocating
memory but not properly deallocating it, which results in a gradual accumulation
of unused memory by the program to the detriment of other programs, the
operating system, and itself.

memory manager
A synonym for process memory manager.

memory-mapped I/O operation
An operating system approach to "sending" data to various I/O devices; for

instance, "storing data" at a special address X is interpreted by the operating
system as a request to send the data to a disk.

memory mapping
The process of assigning physical addresses to logical addresses.

memory segment
A contiguous section of memory; referred to in other contexts as a buffer.

messaging
A system of sending and receiving messages by processes.

modularization
Breakup of a program into smaller and more manageable modules with
precisely defined mutual interaction, usually through precise interfaces.

multithreading
Running several threads in a process simultaneously.

mutex
A binary semaphore implementing mutual exclusion for threads.

N-P
named pipe

A pipe between unrelated processes; a synonym for FIFO.

network byte order
A standard byte order for numbers of at least 2 bytes to be transferred across
a network; the big endian byte order is used as the network byte order.

new or new[]
A C++ operator providing an interface to the process memory manager, in some
ways similar to malloc() but in many other ways quite different; used to
allocate dynamic arrays. In particular, it can be overloaded to provide a custom-
made or debugging version, and errors can be handled through exceptions.

NULL

A special C constant, defined in stdio.h as '\0' (or 0, or (void*)), that
can be used as the null value for pointers.

null pointer
A pointer with value 0 or an address of 0 that is interpreted as "no address".

object
A complex data structure together with methods (functions) that can manipulate
the data contained in the object.

object code
The contents of an object file; in essence, a program translated to machine
instructions including the binary code for data.

object file
A synonym for object module.

object module
A binary file containing essentially the binary code for machine instructions and
the data of a program.

one-dimensional array
A synonym for static one-dimensional array.

operating system memory manager
The top-level memory manager that allocates large blocks of memory to

individual process memory managers (it also serves other purposes for the
operating system).

operator[]

An indexing operator that can be overloaded (redefined) for any class defined in
C++.

operator=

Predefined C++ operator known as assignment; by default, it uses
memberwise copy.

orphaned allocation
A problem that arises when the address of an allocated segment is not
preserved for later deallocation.

overflow
Generally, when a binary code to be stored at some location is longer than the
memory space reserved for it; in a narrower interpretation, a result of an
arithmetic operation that is too big for the size of the result's data type.

overloading
Using the same name for operations on different data types.

padding
"Junk" space attached to some items in a structure in order to facilitate easy
memory access based on machine-word boundaries.

parameter(of a function)
A synonym for function argument.

parent process
A process that creates another process - it is the parent of the newly created
process.

passing by address
A synonym for passing by reference.

passing by location
A synonym for passing by reference.

passing by reference
A method in which - instead of values of the arguments - their references (in

C/C++, a pointer) are passed.

passing by value
A method in which the values (copies) of arguments are passed to the function.

physical address
The address of a byte in the physical memory.

pipe
A memory-implemented special file for data exchange between related
processes.

placement syntax
A special syntax for memory operators that enables the use of additional
arguments.

placement-delete
A user-defined "counterpart" to placement-new; used for overloading of delete
or delete[].

placement-new
An overload of new or new[]; most often used to build objects in memory
obtained by other means (and hence without allocation).

pointer
A value or a variable with two attributes: (i) an address and (ii) a data type of
what should be found at that address.

pointer arithmetic
A way of moving pointers left or right in discrete "jumps" according to their data
types.

pointer dereferencing
Referencing the "virtual object" to which a pointer points (

See also indirection operator *.

polymorphism
A synonym for overloading.

pop
An operation on stack: the item on the top is removed.

preprocessing directives
A command in C or C++ that is not a part of the program to be compiled;
destined for the preprocessor of the compiler, its goal is to modify the source
code before it is actually compiled. Most preprocessing directives start with #.

preprocessor
Part of the compiler that scans the source file prior to compilation and modifies
it according to preprocessing directives embedded in the program; in essence, it
works as a sophisticated text replacement facility.

private
A designation of class members that are not generally accessible and whose
properties are noninheritable.

procedure
A term reserved for a module that does not return a value; in C/C++, it is
assumed that every module returns a value (even if it does not) and thus the
term function is always used.

process
A program in execution.

process image
Image of the address space of the program running as the process.

process memory manager
A program that: keeps track of dynamically allocated and deallocated memory
in terms of the process with which it is associated; serves the allocation and
deallocation requests of this process; and (if it runs out of memory to allocate)
requests a large block of free memory from the operating system memory
manager.

process system stack
A dynamic stack, unique to the running process, that is used for saving the
context of a function (procedure) when calling another function (procedure) and
for returning a value by the called function.

program memory manager
A synonym for process memory manager.

program system stack
A synonym for process system stack.

protected
A designation of class members that are not generally accessible but whose
properties are inheritable.

pthread_create()

A POSIX system call to initiate a new thread.

pthread_exit()

A POSIX system call to terminate the running thread.

pthread_join()

A POSIX system call to wait for a thread.

pthread_self()

A POSIX system call to obtain the thread ID.

public
A designation of class members that are generally accessible.

push
An operation on stack: a new item is placed on the top.

putenv()

A UNIX system call to define a new environment variable or to change its value.

R-S
readability

Characteristic of a source program that can be read and comprehended easily
by those who did not design or write the program.

realloc()

A C/C++ standard function providing an interface to the process memory
manager; used for requesting additional dynamic memory or extending/reducing
an already dynamically allocated segment with the preservation of data in it.

real-time system
A software system that guarantees a response within fixed time limits
regardless of the data being processed; the limits usually require a fast
response.

recursion
A programming language feature in which a function can call itself; it is the
construction counterpart to mathematical induction.

recursive descent parser
A parser for a grammar that is written using the "recursive descent" technique,
in which nonterminal symbols of the grammar are represented and the execution
of these functions reflect the grammar rules; not all context-free grammars can
be parsed in such a manner.

relative address
A synonym for logical address.

relativization
A process in which actual addresses in a data structure stored within one or
more contiguous segments of memory are replaced by offsets from the
beginning of the segment in which they are located.

relocation
The first phase of the process of forging a set of object modules into a single
load module when the address references within an object module (so-called
internal references) are resolved.

resource owner
The module using the resource and responsible for "releasing" it when no longer
needed.

return sequence
A sequence of steps undertaken at the termination of a function; some of the
steps are performed by the callee, some by the caller.

row-major formula
A formula that translates multiple indexes into a single index, thus allowing
proper access to a one-dimensional array in which a multi-dimensional array is
stored.

row-major storage format
A format used to store multi-dimensional arrays in one dimension.

run-time array index range checking
A check performed during program execution before any access to the array;
used to see whether the index is within proper range.

safety-critical software
A software system that cannot fail because its working is critical for safety
(e.g., nuclear power plant control system, aircraft flight control system, etc.).

scanner
A "lexical analyzer" - usually an input module for a parser that turns the input
from a stream of characters to a stream of tokens according to lexical analysis
of the language.

semaphore
A data structure - a synchronization primitive - to implement mutual exclusion for
various processes sharing the same resource.

serialization
A process in which a linked data structure is stored within several contiguous
segments of memory with all addresses relativized.

SetEnvironmentVariable

A Windows system call to set a value of an environment variable.

shared memory
Memory that is shared by several processes.

shared memory segments
The implementation, in UNIX SystemV, of shared memory.

signal handler
A function that is executed when the particular signal for which it is intended is
delivered to a process and caught by the process.

signals
One-bit messages signifying that some event has happened; sometimes
referred to as software interrupts.

simple data type
A synonym for elementary data type.

size_t

An ANSI-C defined data type to facilitate tight type checking; defined as
unsigned long.

sizeof operator

A C/C++ operator calculating (in compile time) the size of memory required by a
particular data type or by the resulting data type of an expression.

sleep()

A UNIX system call to put a process in suspension for a specified amount of
time.

smart (or safe)pointer
A C++ object, which behaves and is used like a pointer, that deallocates the
object being referenced when it goes out of scope.

source code
A program written in source language.

source file
A synonym for source module.

source language
A high-level language (like C or C++) in which a program is written.

source module
An ASCII text file containing a program or a part of a program written in a high-
level language like C or C++.

spawning a process
Creating a new process and running a new program within it; in UNIX this usually

refers to fork() followed by an exec().

stack
A data structure resembling a deck of cards; a new item can only be put on top
of the deck (the push operation) or removed from the top of the deck (the pop
operation).

standard function
A function whose behavior is guaranteed irrespective of platform and that comes
with most compilers. In other contexts such functions are usually called built-in
or innate, but for C/C++ they are provided as an addition for the programmer's
convenience.

static(C/C++ keyword)
Changes the storage class of a local variable from auto to static; restricts the
lexical scope of a global variable to the source file where the definition is
located.

static data
The data whose memory layout is prepared by the compiler and stored within
an area of the program address space that does not change its layout
throughout the whole execution of the program; also, a section in the object
module, the load module, and the program address space holding static data
that in C/C++ programs correspond to global objects and local objects of
storage class static.

static memory allocation
Memory layout for static data prepared by the compiler.

static multi-dimensional array
An array created by the compiler at compile time and accessible through
multiple indexes; C/C++ uses the row-major storage format to store this as
(essentially) a one-dimensional array.

static one-dimensional array
An array allocated by the compiler during compilation; the programmer does not
have to allocate or deallocate the store, since these operations are performed
automatically.

stdlib.h

A more up-to-date (than malloc.h) standard C header file for dealing with
allocation and deallocation of memory.

strcat()

A standard function for string concatenation.

strcpy()

A standard function for copying a string from one location to another.

string
In essence, a character array terminated by NULL.

strlen()

A standard function for computing the length of a string (the terminator NULL is
not counted).

structure
A data structure created by application of the C/C++ constructor struct.

subclass
A synonym for derived class.

superclass
A synonym for a base class.

symbolic reference
A reference to an item by its name.

system call
A call to an operating system function providing some service; the usual
interface with the operating system is through a set of system calls.

system heap
A set of free memory blocks maintained in the form of a binary heap by the
operating system memory manager.

system stack
A synonym for process system stack.

system stack unwinding
If an exception is thrown then the system stack is unwound - deallocating all
local variables on the stack along the way - to the point where the last catch
statement is located.

System V

A special variant of the UNIX operating system.

T-V
template class

A type-parameterized C++ class; for a particular definition, the actual type must
be specified. The compiler "creates" the proper definition for the given type from
the template.

testability
Property of software that lends itself to testing and debugging in a reasonable
and systematic way.

testing and debugging
A phase in the software cycle when a freshly designed or modified software
component is tested for correctness of its execution and the discovered errors
(commonly called bugs) are rectified.

thread
A software object that can be dispatched to - and executes in - an address
space.

traversal
A systematic process in which every component of a linked data structure is
visited.

tree
A linked data structure consisting of nodes to store data and links to so-called
child nodes.

undetermined ownership
A memory problem that results when we obtain an object from another module
without realizing that we are now responsible for deallocation of the object.

uninitialized variable
A variable that is evaluated prior to storing any reasonable value there.

user space
The memory in which the process image is loaded.

user thread
A thread that is implemented by the user program and not by the operating
system.

validation
Process of establishing that software is performing as intended.

value
A binary code for the appropriate data type.

variable
As a concept, an "entity" that can attain certain values; in programming, we can
imagine that it is a "data container".

virtual memory system
A software system that provides a sophisticated mapping of logical addresses
to physical addresses in a way that allows execution of programs with address
spaces larger than the physical memory; usually relies on paging, where only
some parts (pages) of the program address space are present in the physical
memory at a time.

List of Figures

Chapter 2: From Source File to Executable File
Figure 2.1: Compilation and linking

Figure 2.2: Layout of a C/C++ source program and static objects

Figure 2.3: Object module structure

Figure 2.4: Object module (simplified) of the sample program

Figure 2.5: Creation of load module

Figure 2.6: Loading and memory mapping

Figure 2.7: From source program to its "placement" in memory during execution

Figure 2.8: Dynamic memory allocation

Chapter 3: Variables and Objects; Pointers and
Addresses

Figure 3.1: Overflow

Figure 3.2: A structure improperly placed in memory

Figure 3.3: A structure properly placed in memory with the use of padding

Figure 3.4: A pointer points to a memory location

Figure 3.5: A pointer points to a "virtual data container"

Figure 3.6: What is the value stored in the four bytes starting at address 802340?

Figure 3.7: Looking through char* "glasses" at a char virtual data container

Figure 3.8: Looking through short* "glasses" at a short virtual data container

Figure 3.9: Looking through int* "glasses" at an int virtual data container

Figure 3.10: Looking through float* "glasses" at a float virtual data container

Chapter 4: Dynamic Allocation and Deallocation of
Memory

Figure 4.1: Two-tier memory management

Figure 4.2: Fragment of a binary tree

Figure 4.3: Node c was extended but has not moved

Figure 4.4: Node c was extended and has moved

Chapter 5: Functions and Function Calls
Figure 5.1: Flow of control during function calls

Figure 5.2: A general activation frame

Chapter 6: One-Dimensional Arrays and Strings
Figure 6.1: Concept of one-dimensional array

Figure 6.2: Accessing a one-dimensional array via a pointer

Figure 6.3: Representation of the int x[6] array

Figure 6.4: The array x is accessible from the function doit()

Figure 6.5: Dynamic array (Exercise 6.8)

Chapter 7: Multi-Dimensional Arrays
Figure 7.1: Visualization of the two-dimensional array x

Figure 7.2: The row-major storing format of a two-dimensional array x

Figure 7.3: The "slice" when the first index is fixed as 1

Figure 7.4: The "slice" when the second index is fixed as 2

Figure 7.5: The "slice" when the third index is fixed as 2

Figure 7.6: Dynamically created two-dimensional array p

Chapter 8: Classes and Objects
Figure 8.1: An object and its encapsulation

Figure 8.2: Memory allocation for sample

Figure 8.3: Memory allocation for global sample and sample1

Figure 8.4: Memory allocation for local sample

Chapter 9: Linked Data Structures
Figure 9.1: A node with 'a' stored in it

Figure 9.2: A compacted node with 'a' stored in it

Figure 9.3: Compacted tree from the example

Figure 9.4: Compacted tree from the example— after relativization

Chapter 10: Memory Leaks and Their Debugging
Figure 10.1: Modifying a C program in order to trace memory leaks

Figure 10.2: Modifying a C program that has an external object code in order to trace
memory leaks

Chapter 11: Programs in Execution: Processes and
Threads

Figure 11.1: Command-line argument structure for prog Arg1 Ar2

Figure 11.2: Command-line argument structure for prog A B3 C45

Figure 11.3: A single thread of execution

Figure 11.4: Two different threads of execution

Appendix One: Hanoi Towers Puzzle
Figure A.1: Hanoi towers puzzle

	Memory as a Programming Concept in C and C++
	Back Cover
	About
	Chapter 1: Introduction
	Chapter 2: From Source File to Executable File
	Review
	Exercises
	References

	Chapter 3: Variables and Objects; Pointers and Addresses
	Review
	Exercises
	References

	Chapter 4: Dynamic Allocation and Deallocation of Memory
	Review
	Exercises
	References

	Chapter 5: Functions and Function Calls
	Review
	Exercises
	References

	Chapter 6: One-Dimensional Arrays and Strings
	Review
	Exercises
	References

	Chapter 7: Multi-Dimensional Arrays
	Review
	Exercises
	References

	Chapter 8: Classes and Objects
	Review
	Exercises
	References

	Chapter 9: Linked Data Structures
	Review
	Exercises
	References

	Chapter 10: Memory Leaks and Their Debugging
	Tracing Memory Leaks in C
	Tracing Memory Leaks in C++
	Counting Objects in C++
	Smart Pointers and the Undetermined Ownership Problem
	Review
	Exercises
	References

	Chapter 11: Programs in Execution: Processes and Threads
	Review
	Exercises
	References

	Appendix One: Hanoi Towers Puzzle
	Appendix Two: Tracing Objects in C++
	Appendix Three: Tracing Objects and Memory in C++
	Appendix Four: Thread-Safe and Process-Safe Reporting and Logging Functions
	Glossary
	A-B
	C
	D
	E-F
	G-I
	J-M
	N-P
	R-S
	T-V

	List of Figures

