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Summary

Protein-Protein Interaction (PPI) networks have been widely used for the task of predicting
proteins involved in cancer. Previous research has shown that functional information about
the protein for which a prediction is made, proximity to specific other proteins in the PPI
network, as well as local network structure are informative features in this respect. In this
work, we introduce two new types of input features, reflecting additional information: (1)
Functional Context: the functions of proteins interacting with the target protein (rather than
the protein itself); and (2) Structural Context: the relative position of the target protein
with respect to specific other proteins selected according to a novel ANOVA (analysis
of variance) based measure. We also introduce a selection strategy to pinpoint the most
informative features. Results show that the proposed feature types and feature selection
strategy yield informative features. A standard machine learning method (Naive Bayes)
that uses the features proposed here outperforms the current state-of-the-art methods by
more than 5% with respect to F-measure. In addition, manual inspection confirms the
biological relevance of the top-ranked features.

1 Introduction

In recent years, much effort has been invested in the construction of protein-protein interaction
(PPI) networks [1]. Much can be learned from the analysis of such networks with respect to
the metabolic and signalling processes present in an organism, and the knowledge gained can
also be prospectively employed e.g. to the task of protein function prediction [2, 3, 4, 5, 6, 7,
8, 9], identification of functional modules [10], interaction prediction [11, 12], identification of
disease candidate genes [13, 14, 15, 16] and drug targets [17, 18], according to an analysis of
the resulting network [19].

Wu et al. [20] present an excellent overview of multiple methods for detecting proteins involved
in cancer or disease. Among the different methods discussed in [20], “guilt-by-proximity”
methods are well known. Methods classified in this category are based on the assumption that
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genes that directly interact, or, more generally, lie close to each other in the network, are more
likely to be involved in the same diseases (as argued by, e.g., Gandhi et al. [21]). The methods
vary based on how they define proximity: Some methods consider only direct neighbors to be
in the proximity (e.g., [16, 22]), some quantify proximity of two proteins using the length of
the shortest-path between them, some compute a “Global Distance Measure” that also takes
into account how many paths there are between the two proteins, and how long these are; an
example is the approach by Chen et al. [23], who use a PageRank based model for this.

While the basic guilt-by-proximity methods require that certain nodes in the network are al-
ready known to be involved in the disease under study, Wu et al. also discuss methods that
rely on proximity to nodes known to be involved in other, similar diseases. Wu et al. define de
novo methods as methods that can predict nodes to be involved in a particular disease even if
no other nodes in the network are known to be involved in it.

The methods discussed by Wu et al. mostly rely on notions of proximity (to genes known to
be disease-related) from the area of graph analysis. An entirely different type of approaches
are those that rely on feature-based descriptions. There, each individual protein is described by
means of a fixed set of features. Next, using machine learning methods, a model is learned that
links some of these features to disease-relatedness. In the context of predicting involvement
in cancer, examples of feature-based methods include Milenkovic et al.[24], Furney et al. [25]
and Li et al. [26]. Milenkovic et al. [24] characterize a protein using a “signature vector”
that describes the local network structure around the node in terms of so-called graphlets, small
fixed graph structures in which the node occurs. By applying a series of clustering methods,
they show that protein that are involved in cancer have similar “topological signatures”, which
distinguish them from other proteins, and these nodes need not be close to each other in the
network. Furney et al. [25] use the Gene Ontology annotations of a protein as features, as well
as a number of other properties; they use a chi-square-based selection criterion to select the
likely most relevant features, then apply Naive Bayes. Li et al. [26] compare three classifiers:
SVM, Naive Bayes and logistic regression and they find that the SVM classifier on average
performed slightly better than the Naive Bayes and logistic regression methods, and that among
SVMs using different types of features individually, including GO annotations as features gives
the best performance, while sequence and conservation features have relatively weak predictive
power.

When learning from PPI networks, feature-based approaches have a number of advantages
over proximity-based approaches. First, defining the problem in a machine learning setting
gives access to a wide range of machine learning techniques, making this type of approaches
very flexible. Second, data integration is more easily achieved: one can easily define additional
features for proteins, possibly using background information (i.e., information external to the
PPI network) for this. Third, these method are inductive: they do not yield predictions, but a
model for making predictions. This is interesting in terms of Wu et al.’s definition of de novo
methods. Information about disease genes is needed when constructing the model, but not
when applying it, so the model can be applied to other PPI networks, or in other areas of the
same PPI network. Finally, inductive methods can yield interpretable models, which may by
themselves yield new insights.

A difficulty with feature-based methods, however, is that the quality of the learned model de-
pends on the features used. When the input data is a PPI network, the main challenge is to
find features with good predictive power that can be computed from this network. The ap-
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proaches mentioned above all do this in some way. In this work, we propose two new types
of input features, reflecting additional information that can be extracted from a PPI network:
(1) Functional Context: the functions of proteins interacting with the target protein (rather than
the protein itself); (2) Structural Context: the relative position of the target protein with respect
to specific other proteins selected according to a novel ANOVA (analysis of variance) based
measure. We show that these features have good predictive power. It is not our goal to com-
pare different machine learning algorithms; we restrict ourselves to the Naive Bayes classifier.
The performance of the method might be optimized by using another learning method, but we
expect the difference to be small (see also Li et al. [26]). Our main claim lies in the usefulness
of the new features.

2 Methods

2.1 Formal Definition

We consider a PPI network as an undirected annotated graph (P,E, λ) where P is a set of pro-
teins, E ⊆ P ×P is a set of interactions between these proteins, and λ is a so-called annotation
function; for each p, λ(p) denotes the additional information we have about p (for instance, its
GO annotations). In this work, we assume that λ(p) simply lists all the GO functions that are
associated with p; we call it the function set (or function vector) of p, and denote it FS(p).
If F = {f1, f2, . . . , fn} is the set of all the functions in the network, then FS(p) is an |F |-
dimensional binary vector; the i’th component of FS(p), denoted FSi(p), is 1 if function fi is
associated with p, and 0 otherwise. We will also write fi ∈ FS(p) to denote FSi(p) = 1.

2.2 Protein Description Based on Functional Context

Given a protein p, we define the interactor set of p, denoted IS(p), as the set of proteins it
interacts with, i.e., IS(p) = {q|(p, q) ∈ E}. Besides the function vector of p itself, we also
define the “interacting function counts” vector IFC(p), which indicates for each function how
many interacting proteins are annotated with that function:

IFC(p) =
∑

q∈IS(p)

FS(q) (1)

Note that, while methods for predicting involvement in cancer have considered GO annotations
of proteins as predictive features (e.g., [25, 26]), no methods up till now have considered GO
annotations of the neighbors of those proteins at the same time. That is, for predicting involve-
ment in cancer of a protein p, the FS(p) vector has been considered as a predictive feature, but
the vector IFC(p) has not. One may wonder what the advantage is of using GO annotations of
related proteins, rather than the protein itself. One argument is that GO annotations are often
incomplete, and by collecting GO information from the neighbors of a protein p, we may get
more information about p itself. This argument is backed up by the fact that GO annotations
of proteins can often be predicted well from the GO annotations of their neighbors; see, e.g.,
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[4, 27]. However, as we will show, this is not the only effect; there is also a direct relationship
between a protein’s involvement in cancer and the GO annotations of the proteins it interacts
with.

We will refer to the information in FS(p) and IFC(p) as the functional context of p. We
experimentally compare two different versions of this functional context: using FS(p) only
as input vector (i.e., ignoring the information in the neighborhood of p), and using the sum
of FS(p) and IFC(p) as input vector (thus taking into account functional information about
the neighborhood of p, including p itself). We call these two approaches FS and FS + IFC,
respectively.

As defined above, the FS(p) and IFC(p) vectors have high dimensionality; the number of
components equals the number of functions in the Gene Ontology. A natural way to reduce
this dimensionality is using a feature selection method to filter out the least interesting features
(functions, in this case). An often used measure for determining the relevance of a binary
feature F for a class variable C is the χ2 score, defined as follows:

χ2 =
(ad− bc)2 ∗ (a+ b+ c+ d)

(a+ b)(c+ d)(b+ d)(a+ c)
(2)

where a, b, c and d are defined by the contingency table in Table 1.

Table 1: The contingency table of a binary feature F w.r.t. a binary class variable C.
F = 0 F = 1 total

C=0 a b a+b
C=1 c d c+d

a+c b+d a+b+c+d

a, b, c, and d count the number of times F and C have the corresponding value. The χ2 value
of F w.r.t. C is derived from this.

In our case, the class variable C indicates whether a protein p is involved in cancer or not, and
the binary feature F indicates whether a particular component of FS(p) or FS(p) + IFC(p)
is zero (F = 0) or not (F = 1).

Apart from allowing us to reduce the dimensionality of the vectors describing a protein p, the
χ2 measure also ranks functions from highly relevant (for predicting involvement in cancer) to
less relevant.

2.3 Protein Description Based on Structural Context

Besides the functional context of a protein, defined before, we will also consider its so-called
structural context. This structural context relates to the relative position of p in the network.

Several methods discussed in Wu et al. [20] describe each protein p based on the shortest-path
distance of p to some previously known cancer/disease proteins. We refer to this category of
methods as “distanceToCancer” methods (DisToCancer).

Alternatively, we can describe a protein’s position relative to other proteins than only cancer-
related ones. Rahmani et al. [3] proposed a relevance measure for proteins that is inspired by
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statistical ANOVA (analysis of variance), and showed that shortest-path distance to a relatively
small number of proteins (selected according to the ANOVA-based measure) is informative for
the task of function prediction in the PPI networks. Since the ANOVA method works well
for function prediction, it is natural to check whether it also gives good results for the task
of predicting cancer-related proteins, and this is one of the purposes of the current study. We
therefore propose the use of similar features for predicting proteins involved in cancer.

The ANOVA-inspired selection measure (briefly, ANOVA) is defined as follows. Let P+ be
the set of proteins labeled as being involved in cancer, and P− the set of proteins not labeled
as such. For each protein q, we introduce a feature dq; dq(p) denotes the shortest-path distance
between p and q (viewed here as a feature of p). We consider for each q the mean and variance
of dq(p), taken over all cancer-related and non-cancer-related p:

m+
q =

∑
p∈P+ dq(p)

|P+|
(3)

m−q =

∑
p∈P− dq(p)

|P−|
(4)

var+q =

∑
p∈P+(dq(p)−m+

q )
2

|P+| − 1
(5)

var−q =

∑
p∈P−(dq(p)−m−q )2

|P−| − 1
(6)

Seeing P+ and P− as two groups of proteins, the following formula compares the variance
between groups to the variance within groups (as it is used for relative ranking only, constant
factors are dropped):

Aq =
(m+

q −m−q )2

var+q + var−q
(7)

A high Aq means that dq varies little within groups and/or much between groups, which indi-
cates that dq has high predictive power for the group. Features dq can be ranked according to
Aq, and the top-k features selected as actual features to be included in the description of all
proteins. We will call the category of methods that use these features DisToAnova methods, or
DisToAnova(k) when referring to a particular setting for the parameter k.

Finally, we can combine the information in the DisToCancer and DisToAnova descriptors;
we do this by first filtering the proteins, retaining only those known to be involved in cancer,
and ranking these according to the Anova criterion. This combined version is referred to as
DisToCancerAnova.

2.4 Protein Description Based on Functional and Structural Context

This refers to protein descriptions that include both information from functional and structural
context. The input consists of the FS + IFC vector concatenated with any one of the three
structural description vectors DisToCancer, DisToAnova and DisToCancerAnova discussed in
section 2.3. This will result in three integrated methods (FS + IFC)-DisToCancer, (FS +
IFC)-DisToAnova, and (FS + IFC)-DisToCancerAnova. If the dimension size of the new
integrated description vector is n+m, then the first n dimensions describe the protein p based
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on functional information about the neighborhood of p, including p itself. The remaining m
dimensions describe p based on its shortest-path distance to some selected proteins according
to different structural categories “DisToCancer”, “DisToAnova” and “DisToCancerAnova”.

2.5 The Naive Bayes Classifier

Given a particular set of features, any machine learning method can be used to learn a predictive
model. In this paper, we use the Naive Bayes method. We use the standard version; we here
describe it for completeness.

The naive Bayes classifier predicts the class that has the highest estimated conditional proba-
bility given the feature values. It estimates the conditional probability distribution of the target
class C, given the values of features Fi, by applying Bayes’ theorem and assuming conditional
independence among the features. That is, P (C|F1, . . . , Fn) is rewritten as follows:

p(C|F1, . . . , Fn) =
p(C)p(F1, . . . , Fn|C)

p(F1, . . . , Fn)
(8)

and next, p(F1, . . . , Fn|C) is approximated by
∏n

i=1 p(Fi|C). This approximation becomes an
equality when the features are conditionally independent of each other given the class, that is,

∀i, j : p(Fi|C,Fj) = p(Fi|C) (9)

While this strong independence assumption does not always hold in practice, Naive Bayes turns
out to work well in practice, for the purpose of classification, even when it is violated.

The p(Fi|C) factors are easily estimated from relative frequencies in the dataset, and the de-
nominator p(F1, . . . , Fn) is dropped in practice because it is constant in C and hence does not
affect which value of C maximizes the conditional probability.

Apart from classification, Naive Bayes can also rank classes from more likely to less likely by
ordering them according to their estimated conditional probability.

2.6 Predicting Cancer-related Proteins

In our experiments, we will evaluate the quality of the proposed features and feature selec-
tion techniques by applying the Naive Bayes classifier to various combinations of features and
feature selection methods. More concretely, for each run:

1. We choose a description method (FS, FS+IFC, DisToCancer, DisToAnova, DisToCancer-
Anova, (FS+IFC)-DisToCancer, (FS+IFC)-DisToAnova and (FS+IFC)-DisToCancerAnova).

2. We choose a feature selection method (chi-square or random for FS, FS+ IFC; Anova
or random for DisToAnova, DisToCancer, DisToCancerAnova) and a number of features
to use. “Random” means that features are selected randomly instead of using the pro-
posed feature selection method; it serves as a reference point to evaluate the quality of
the feature selection method.

3. We generate a dataset based on the choices in steps 1 and 2.
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4. We evaluate the predictive performance of naive Bayes using this dataset (based on, e.g.,
cross-validated F-measure, see later).

2.7 Capacity Identification of New Cancer-Related Proteins

Beside the numerical evaluation mentioned above, we also want to evaluate to what extent the
proposed methods predict biologically meaningful results. We now describe an approach to
find literature evidence for genes predicted to be involved in cancer even when they were not
annotated as such in the training data. It consists of the following steps:

1. We build a new training set containing all the proteins annotated as being involved in
cancer (positive set) in addition to 500 randomly selected proteins (negative set). Even
though we are not sure that all of these random proteins are negative, it is very likely that
the majority of them are negative. The remaining positive cases constitute noise in the
training set.

2. We build a test set containing all the remaining proteins in the network.

3. We select m functional features based on the FS + IFC method.

4. We select n structural features based on the ANOVA method.

5. We describe train set and test set based on the m+ n selected features.

6. We apply the naive Bayes classifier for ranking the proteins in the test set.

7. We use CiteXplore[28] to search for the highest-ranked candidate proteins in the litera-
ture.

3 Results

3.1 Dataset

We evaluate our methods on the dataset used by Milenkovic et al. [24]. This dataset is the
union of three human PPI datasets: HPRD [29], BIOGRID [30] and the dataset used by Radi-
vojac et al. [31]. When we say “union”, we mean that the new network contains all the nodes
and edges (proteins and interactions) found in either of these networks. The aim of merging
these three datasets was to obtain as complete a human PPI network as possible, i.e., a network
that covers with its edges as many proteins in the human proteome as possible. We denote as
“known cancer genes” the set of genes implicated in cancer that is available from the following
databases: Cancer Gene Database [32], Cancer Genome Project-the Cancer Gene Census [33],
GeneCards [34] Kyoto Encyclopedia of Genes and Genomes [35] and Online Mendelian Inheri-
tance in Man [36]. Some statistical information is shown in Table 2. We have chosen to evaluate
our methods on this dataset to make a precise quantitative comparison to their graphlet-based
method possible.
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Table 2: Statistical information of union of three human PPI datasets: HPRD [29], BIOGRID [30]
and Radivojac et al. [31].

Number of Proteins 10,282
Average Degree 9.201
Min Degree 1
Max Degree 272
Number of Cancer Genes 939

While the dataset employed here is of high quality, as it is based on large and widely employed
datasets, it should be kept in mind that it is not trivial (or in the narrow sense probably even
impossible) to define it in a flawless fashion. One of the limitations lies in the role of ’genes
involved in cancer’ - cancers are different, so while a gene may play a role in one cancer, it
might play no role at all in another one. Also, there are spatial and temporal conditions involved
in the annotation we do not include here. On the other hand, a limitation lies in the construction
of the interactome we define in our dataset. Again, temporal conditions are excluded, and likely
many interactions have not been identified in experiment yet; hence our dataset likely contains
a substantial number of missing annotations (while likely also false positive interactions are
included due to experimental noise and errors). Nonetheless, the dataset employed here is as
good as we can do currently both in size and quality; and, in particular, it has been employed
in related studies before, which enables us to perform benchmark experiments in a comparative
manner by utilizing it.

This dataset determines uniquely the network structure, and therefore the values of all features,
used in our experiments. The actual datasets we use differ only with respect to what features
are included.

3.2 Biological Interpretation of the Most Relevant Functions

The number of different functions occurring in our human dataset is 9833; this is also the di-
mensionality of FS and IFC if no dimensionality reduction is used. As mentioned before, we
can use a χ2-based feature selection method to reduce this number; at the same time, this tech-
nique ranks functions according to how relevant they are for prediction of cancer involvement.

3.2.1 Most Relevant Functions in FS

Tables 3, 4 and 5 show the 20 highest ranked functions. As the Gene Ontology actually uses
three domains (biological function, molecular function, cellular component), we have separated
the functions according to their domain.

Searching the most relevant functions in the cancer literature proved the usefulness of chi-
square for detecting these functions. For example, based on cancer literature, function “GO:
0008284” is involved in various cancers: “Breast Cancer”, “Prostate Cancer” and “Lung Can-
cer”. Besides using the statistic to select a limited number of features, we can also use it to
inspect the top-ranked functions, which can be used both as a soundness check (are the func-
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Table 3: Most discriminative functions from Biological Process based on FS method.
Index Function Short Info chi-square p-value

1 GO:0008284 Positive regulation of cell proliferation 163.02 <0.0001
2 GO:0008543 Fibroblast growth factor receptor

signaling pathway 105.80 <0.0001
3 GO:0045944 Positive regulation of transcription

from RNA polymerase
II promote 99.65 <0.0001

4 GO:0008285 Negative regulation of cell proliferation 71.40 <0.0001
5 GO:0006355 Regulation of transcription,

DNA-dependent 69.84 <0.0001
6 GO:0014070 Response to organic cyclic compound 69.76 <0.0001
7 GO:0042493 Response to drug 69.18 <0.0001
8 GO:0043434 Response to peptide hormone stimulus 67.09 <0.0001
9 GO:0001658 Branching involved in ureteric

bud morphogenesis 64.91 <0.0001
10 GO:0045941 Positive regulation of transcription 64.89 <0.0001
11 GO:0007050 Cell cycle arrest 62.73 <0.0001
12 GO:0001656 Metanephros development 62.07 <0.0001
13 GO:0032355 Response to estradiol stimulus 59.99 <0.0001

Table 4: Most discriminative functions from Molecular Function based on FS method.
Index Function Short Info chi-square p-value

1 GO:0016563 Transcription activator activity 88.85 <0.0001
2 GO:0004713 Protein tyrosine kinase activity 84.60 <0.0001
3 GO:0003700 Sequence-specific DNA binding

transcription factor activity 83.11 <0.0001
4 GO:0005515 Protein binding 82.88 <0.0001
5 GO:0004716 Receptor signaling protein tyrosine

kinase activity 68.76 <0.0001
6 GO:0043565 Sequence-specific DNA binding 67.69 <0.0001

Table 5: Most discriminative function from Cellular Component based on FS method.
Index Function Short Info chi-square p-value

1 GO:0005634 A membrane-bounded organelle of
eukaryotic cells in which
chromosomesare housed and replicated. 99.76 <0.0001

tions that we expect to be relevant indeed highly ranked?) and as a method for discovering
potentially new information (when there are unexpected functions among the top-ranked ones).

Many of the biological functions contained in Table 3 are obviously related to cancer, such as
GO:0008284, the Positive regulation of cell proliferation, which is a synonym for uncontrolled
cell growth, as are positions 3, 5 and 10 in the list (GO:0045944 Positive regulation of transcrip-
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tion from RNA polymerase, GO:0006355 Regulation of transcription, DNA-dependent and
GO:0045941 Positive regulation of transcription). Similarly, position 4 (GO:0008285 Negative
regulation of cell proliferation) has an obvious connection to cancer; where positive stimula-
tion of cell growth can stimulate tumor growth, an inhibition of the negative regulatory elements
will have the very same effect. Fibroblasts are involved in wound healing, a process not taking
place properly in cancerous settings [37]. We can also find biological processes linked to small
molecules in the list, at positions 6 and 7, namely GO:0014070 Response to organic cyclic
substance and GO:0042493 Response to drug. It is known that many carcinogenic substances
such as benzo[a]pyren, or even smaller molecules such as benzene, are linked to cancer risk.
Unfortunately, one of the limitations of the GO terms is their low selectivity; hence the term
’response to drug’ remains rather vague. Positions 9 and 12, GO:0001658 Branching involved
in ureteric bud morphogenesis and GO:0001656 Metanephros development, are both linked to
growth factors, and hence in turn to the development of cancers.

Molecular functions returned as significantly enriched among cancer genes, listed in Table 4,
frequently refer to transcription factor (position 1) and kinase activity (positions 2 and 5). On
the other hand, the cellular component category was less revealing, only listing one significantly
enriched category related to cancer genes - the nucleus (where increased transcription takes
place, leading to uncontrolled cell growth). Unfortunately, the GO term employed is too general
to draw more detailed conclusions from this analysis.

3.2.2 Most Relevant Functions in FS + IFC

18 out of 20 functions with the highest χ2, calculated based on the FS + IFC method, be-
long to the Biological Process ontology and are listed in Table 6. As is apparent from Table 6
(when compared to Table 3, which results from the use of the FS method), very different dis-
criminative GO terms from the Biological Process ontology are retrieved. Many biological
processes retrieved by this method seem to be more specific, such as GO:0043491 at posi-
tion 1, naming the protein kinase B signaling cascade as involved in cancerogenesis (which is
known from literature [38]). It is interesting that now also secondary processes known to be
relevant for cancerogenesis and, in particular, cancer growth and the formation of metastases,
are captured (which was not the case by purely applying the FS method), such as at position 6
(GO:0001525) for the formation of blood vessels essential for the rapid growth of canceroge-
nous tissue, and at position 12 (GO:0030335) with respect to cell migration, important for the
formation of metastases. Also novel in the list are biological processes related to insulin and the
insulin-like growth factor receptor (IGFR), at positions 2 (GO:0048009) and 5 (GO:0032869).
This is supported by literature, as insulin has been linked to pancreatic cancer development [39],
while the literature regarding insulin-like growth factor receptor is still inconclusive [40, 41].
Still, due to their apparent role in cell proliferation, it is certainly a possibilty that IGFRs play
a role in the development of at least some cancer subtypes.

As shown in Table 6, chi-square values when calculated based on FS + IFC are greater than
the chi-square values when we use the FS method for the calculation, illustrating how our
additional annotations add information to the feature selection step; P-values of all the highly
ranked functions are < 0.0001 which is very significant.

Overall, from the discussion above, it becomes apparent that the FS + IFC method, as pro-
posed in this work, is able to retrieve significantly different biological processes, compared to
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using the FS method; thus it adds to the information that can be gained from the same set
of data. Hence, we suggest it to be a worthwhile method to be employed in the analysis of
signaling networks, as shown in this particular case study.

Table 6: Most discriminative functions from Biological Process based on FS + IFC method.
Index Function Short Info chi-square p-value

1 GO:0043491 Protein kinase B signaling cascade 280.70 <0.0001
2 GO:0048009 Insulin-like growth factor receptor

signaling pathway 231.72 <0.0001
3 GO:0008284 Positive regulation of cell proliferation 223.62 <0.0001
4 GO:0034097 Response to cytokine stimulus 223.05 <0.0001
5 GO:0032869 Cellular response to insulin stimulus 218.56 <0.0001
6 GO:0001525 Angiogenesis 213.14 <0.0001
7 GO:0043066 Negative regulation of apoptosis 211.77 <0.0001
8 GO:0001701 In utero embryonic development 208.366 <0.0001
9 GO:0009887 Organ morphogenesis 207.71 <0.0001

10 GO:0042493 Response to drug 205.81 <0.0001
11 GO:0030097 Hemopoiesis 202.45 <0.0001
12 GO:0030335 Positive regulation of cell migration 202.38 <0.0001
13 GO:0051091 Positive regulation of sequence-specific

DNA binding transcription factor activity 194.37 <0.0001
14 GO:0046326 Positive regulation of glucose import 194.13 <0.0001
15 GO:0043627 Response to estrogen stimulus 192.34 <0.0001
16 GO:0044419 Interspecies interaction between organisms 191.29 <0.0001
17 GO:0014070 Response to organic cyclic compound 189.94 <0.0001
18 GO:0045944 Positive regulation of transcription from

RNA polymerase II promoter 189.32 <0.0001

3.3 Biological Interpretation of the Most Discriminative Proteins

Our dataset contains 10,282 proteins. The DisToAnova method uses the ANOVA measure to
select the most relevant among these. More detailed information could be obtained from an
ANOVA analysis of the most relevant proteins among the full set of 10,282 proteins. Table 7
shows the 10 proteins with the highest ANOVA measure.

Zinc finger protein (ZNF467) is known to be upregulated in a variety of breast cancers; however
usually its close link with BRCA1 has been seen as the reason for its causal relation with
cancers [42]. STATIP1 is involved in histone H3 and H4 acetylation and its interactions with
STAT3 and JAK1/2 - which are all involved in cell growth and differentiation processes - have
been documented in literature [43]. JUNB has been documented as a proto-oncogene and IL22
(along with its subunit IL22RA2) is involved in Stat3 phosphorylation [44]. FGFR4 (fibroblast
growth factor receptor 4) is associated with cancer nearly by definition (and in alignment with
fibroblasts being identified earlier in the context of biological functions). The chemokine ligand
1 receptor, CCL1, has been implicated in cancer before and also it has been suggested as a
therapeutic target in this context [45]. Platelet derived growth factor C (PDGFC) is part of
the PDGFR-alpha signalling pathway and the influence of PDGFR expression on metastatic
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behaviour has been well documented [46]. STAT1 is involved in cell growth processes [47],
hence its appearance in this list is reasonable. C20ORF185 is an interesting case in that it
is annotated as possibly being involved in recognizing/binding specific classes of odorants or
serving as a defence mechanism by removing pathogenic microorganisms from the mucosa
[48]. On the other hand, its recommended name is the “Long palate, lung and nasal epithelium
carcinoma-associated protein 3 precursor”, rendering its inclusion in the list of proteins most
involved in cancer reasonable.

Table 7: Most discriminative proteins based on ANOVA measure.
Index Protein Name Official Full Name

1 ZNF467 Zinc finger protein 467
2 STATIP1 Elongator complex protein 2
3 JUNB Transcription factor jun-B
4 IL22RA2 Interleukin-22 receptor subunit alpha-2
5 FGFR4 Fibroblast growth factor receptor 4
6 CCL1 Cyclin associated with protein kinase Kin28p
7 PDGFC Platelet-derived growth factor C
8 IL22 Interleukin 22
9 STAT1 Signal transducer and activator of transcription 1-alpha/beta

10 C20ORF185 Long palate, lung and nasal epithelium carcinoma-associated protein 3

3.4 Comparing Different Contextual Methods

We divided the dataset into a training set containing 90%, and a test set containing the remaining
10%, of the proteins for the selection of contextual method and tuning. For the final evaluation
we use 10-fold cross-validation. Features were selected according to the above-mentioned χ2

and ANOVA methods; in both cases only the training set was used to rank features according
to relevance. We have varied the number of features (functions for functional context methods,
proteins for structural context methods) from low to high, in order to investigate the effect of
this parameter on predictive performance.

With each method, we predict the cancer-relatedness of the nodes in the test set using our
various methods, and evaluate the predictions according to Recall, Precision and F-measure:

Precision =
tp

tp+ fp
(10)

Recall =
tp

tp+ fn
(11)

F −measure =
2 ∗ Precision ∗Recall
Precision+Recall

(12)

where proteins involved in cancer are considered as the positive class, and tp, fp and fn denote
the number of true positives, false positives, and false negatives, respectively.

Figure 1 shows the evaluation metrics for two functional context methods FS and FS + IFC
in different function counts: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200,
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300, 400, 500 with respect to F-measure, Precision and Recall. Independent from the function
count, the FS+IFC method always outperforms the FS method with respect to F-measure and
this proves our assumption about the usefulness of considering the whole functional context of
proteins (not just the functions of the protein itself but also those of its neighbors) for predicting
the proteins involved in cancer. The best obtained F-measure with FS is 29% while the best
obtained F-measure for FS + IFC is 37% in one case and 35% in three cases.

These results show that considering the functional annotation of the neighbors allows for more
accurate prediction of which genes are involved in cancer. Since it was already known that
the functional annotation of a protein’s neighbors can be used to predict the protein’s own
functions [4, 27], and that the protein’s own functions are relevant for its involvement in cancer
[25, 26], one might wonder to what extent our results are simply a consequence of these two
facts. We can test this by enriching proteins in the PPI network with predicted GO annotations
(predicted from the GO annotations of their neighbors), and next applying the FS method.
We tested this by using a Majority Rule method [4] for enriching the GO annotations of the
proteins, in two different ways. In the first approach, we perform function prediction for each
protein p which |FS(p)| = 0 (reasoning that if a protein is not annotated with any functions,
it is likely that its functions are simply not known), while in the second, less conservative,
approach, we extend the function set of each protein p with |FS(p)| < 10 to a total of ten
functions. In the notation employed here, the || operator returns the size of the function set of
protein p, with 10 being the average function count of proteins in our dataset before applying
the Majority Rule method. We call the enriching approaches “Unclassified” and “Extended”,
respectively. Figure 2 compares the FS and FS + IFC methods with their “Unclassified”
and “Extended” versions, and we can see that there is no major difference between the original
methods employed, compared to their respective functionally enriched versions. This confirms
that the functions of neighboring proteins directly influence disease-relatedness; the influence
cannot be explained by the relationship between the functions of neighboring proteins on the
one hand, and between a protein’s own functions and involvement in disease on the other hand.

Figure 3 compares three structural context methods disToCancer, disToAnova and disToCancer-
Anova in different protein counts: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90,
100, 200, 300, 400, 500 with respect to F-measure, Precision and Recall. (As disToCancer has
no natural criterion for selecting a subset of cancer-related proteins, proteins were selected ran-
domly in this case, to arrive at comparable counts.) It turns out that, in order to get reasonable
F-measure results, selecting less than 30 proteins is enough in the structural context methods.
With respect to F-measure, methods using ANOVA for selecting the important proteins almost
always outperform the method that selects previously known cancer-related proteins.

In Figure 4, we show the result of integrating the functional context method FS+IFC with any
one of the three structural context methods, disToAnova, disToCancer and disToCancerAnova.
We vary the number of analyzed functions from 5 to 30, and the number of analyzed proteins
from 1 to 40. The integration of FS + IFC with disToAnova slightly outperforms the other
two integrated methods. Although it may seem that applying the ANOVA method results in
only small numerical improvements, Figure 4 shows that its integration with the functional
annotation of the proteins consistently results in improved results with respect to F-measure
values. Compared to functional and structural context methods, the integrated method gives
rise to more cases (17 out of 52 in (FS + IFC)-DisToCancerAnova, as opposed to 0 out of 52
in FS + IFC) with F-measure over 35% (and up to 39% in one case).
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Figure 1: Comparing different Functional Context methods. The FS + IFC method always
outperforms the FS method with respect to F-measure.

3.5 Comparing with Previous Methods

Milenkovic et al. [24] have evaluated their method using a leave-one-out cross-validation and
report an F-measure of 24%. They compare this result to that of Aragues et al. [22], who
use information from heterogeneous data sources: (i) Protein Protein Interaction networks, (ii)
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Figure 2: Comparing different Functional Context methods with their enriched functional ver-
sions. There is no major difference between the original methods employed, compared to their
respective functionally enriched versions.

differential expression data, (iii) structural and functional properties of cancer genes; Aragues
et al. report an F-measure of 18.15% for their method. Further, we will compare our results to
the method of Furney et al. [25]. As Furney et al. reported results on another dataset, to obtain
more comparable results we have implemented their method by selecting 100 functions based
on the chi-square value, describing each protein based on those selected functions, and using
the Weka machine learning system to apply Naive-Bayes for predicting the proteins involved
in cancer. Thus, all the methods are compared on exactly the same dataset.

Our method uses as parameters the number of functions and proteins to be selected by the
feature selection method. To optimize these parameters, we divided the human dataset into
three parts: 80% for training the model with a particular parameter setting; 10% for tuning
the different parameters (that is, models trained with particular parameter values are tested
on this 10% and the parameter settings that perform optimally here will be used for the final
evaluation), and 10% for evaluating the model; note that this last 10% was not involved in the
training in any way. Table 8 shows the optimal parameter settings for each method.

Figure 5 compares all the proposed methods with each other using 10-fold cross-validation.
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Figure 3: Comparing different Structural Context methods. With respect to F-measure, methods
using ANOVA for selecting the important proteins almost always outperform the method which
selects the previously known cancer-related proteins.

The method (FS+IFC)-DisToCancerAnova which considers network contextual information
outperforms all other proposed methods.

Figure 6 compares our best proposed method with previous methods using 10-fold cross-
validation. The method (FS+IFC)-DisToCancerAnova which considers network contextual
information outperforms the previous methods (Furney et al. [25], Aragues et al. [22] and
Milenkovic et al. [24]), by 5%, 13% and 8%, respectively, with respect to F-measure.
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Table 8: Tuning result of each method.
Method Name Best Feature Count F-measure in Test Set
FS 90 Functions 28
FS + IFC 100 Functions 34
disToAnova 10 Proteins 28
disToCancer 10 Proteins 29
disToCancerAnova 10 Proteins 30
(FS + IFC)-DisToCancer 10 Functions and 4 Proteins 35
(FS + IFC)-DisToAnova 10 Functions and 5 Proteins 37
(FS + IFC)-DisToCancerAnova 10 Functions and 9 Proteins 37

3.6 Random Feature Selection

In this section, we compare the proposed feature selection methods with random selection of
proteins or functions. We select 100 functional and 10 structural features. We repeat the steps
discussed in section 2.6, 1000 times. Figure 7 compares our proposed methods with their
corresponding Random versions. It turns out that the feature selection algorithms outperform
random selection in all cases, with F-measure improvements from 9% (for disToCancer, which
also selects randomly but only among proteins known to be cancer-related) up to 26% (for FS).
P-values of all the results are < 10−6 which is very significant.

There is a remarkable difference between the FS and FS+IFC based methods with respect to
the effect of feature selection: the improvement over random feature selection is much greater
for FS+IFC than for FS. The reason for this is that the FS vectors contain mostly zeros (a single
protein has only few functions), and random selection is therefore likely to end up with all-zero
descriptions for many proteins. The FS+IFC vector, however, is much sparse, because it takes
more proteins into account; here, random feature selection results in less informative features,
but not in a complete loss of information.

3.7 Capacity Identification of New Cancer-Related Proteins

Table 9 lists the highest-ranked newly identified cancer-related proteins according to the steps
discussed in section 2.7. (“Newly identified” here means that the proteins were not indicated as
cancer-related in the dataset, yet predicted as such by our method.) We described proteins in the
test set based on 100 functional features (m = 100) and 10 structural features (n = 10). Given
that, since the compilation of our dataset, novel literature linking genes to diseases (such as, in
this case, cancer) have been identified, we attempted to find literature evidence for our novel
gene-cancer links. As evident from Table 9, we found such evidence in a surprising number of
at least 18 of the 20 highest-ranking genes that were not annotated in this way in the training
dataset.

As can be seen, the majority of genes is now associated with breast cancer (14 out of 20), which
is likely due to the fact that genotyping is currently routinely performed in this cancer type due
to the different personalized treatment options available. The three genes with the least current
literature information linking them to cancer are CORO2A (coronin, actin binding protein,
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Figure 4: Comparing different integrated methods. Comparing to functional and structural
context methods, the integrated method gives rise to more cases (17 out of 52 in (FS + IFC)-
DisToCancerAnova, as opposed to 0 out of 52 in FS + IFC) with F-measure over 35% (and up to
39% in one case).

2A), DAZ1 (deleted in azoospermia 1) and CRSP7 (cofactor required for Sp1 transcriptional
activation, subunit 7, 70kDa; now MED26, mediator complex subunit 26). However, CORO2A
is involved in cell cycle progression which makes its link to cancer at least plausible. DAZ1 is
involved in spermatogenesis, and it is hypothesized to bind to the 3’UTR of mRNAs to regulate
their translation. While involvement of this gene in adult cancers is probably not the case, a
link to regulation and cell cycle progression is also given here. Likewise, CRSP7/MED26 is a
cofactor required for transcriptional activation of RNA polymerase-II dependent genes - hence,
while unspecific, the link of the highest ranked genes with respect to their involvement in cancer
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Figure 5: Comparison of all the proposed methods with each other. The method (FS+IFC)-
DisToCancerAnova which considers network contextual information outperforms all other pro-
posed methods.

Figure 6: Comparing with previous methods. The method (FS+IFC)-DisToCancerAnova which
considers network contextual information outperforms the previous methods (Furney et al. [25],
Aragues et al. [22] and Milenkovic et al. [24]), by 5%, 13% and 8%, respectively, with respect to
F-measure.

gives a consistent link to transcriptional and, more general, cell cycle regulation events.

Overall, we were able to find literature evidence for most genes predicted to be involved in
cancer, but not annotated in this manner in our training dataset. This underlines the quickly-
evolving knowledge in the molecular biology field, but it also gives us more confidence that
we are prospectively able to identify cancer-related genes with the approach described in the
current work.
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Figure 7: Comparing different proposed methods with their corresponding Random versions. The
feature selection algorithm does not matter very much for the disToCancer method, with 9%
improvement in F-measure over the Random version, but it matters a lot for the FS method, with
26% improvement in F-measure comparing to the Random version.

Table 9: Capacity Identification of New Cancer-Related Proteins.
Index Protein Cancer Types Identified in CiteXplore References

1 ITGAV Breast Cancer [49, 50]
2 CTNND2 Cervical, Prostate, Urinary Bladder [51, 52, 53]
3 CORO2A — —
4 SMAD1 Breast, Colon, Lung, Prostate, Rectal, Renal cell [54, 55, 56]
5 RPS6KB1 Breast, Colon or Rectal ovarian [57, 58, 59]
6 VIL2 Breast and Prostate [60, 61]
7 FST Breast, Gastric, Lung, Prostate, Stomach, Thyroid [62, 63, 64]
8 HSP90AA1 Gastric, Lung [65, 66]
9 PPP2CA Breast, Colon, Lung, Prostate [67, 68, 69]
10 SUMO1 Breast, Lung, Prostate [70, 71, 72]
11 SKP1A Esophageal [73]
12 EIF4EBP1 Breast, Colon, Head, Neck, Ovarian, Prostate [74, 75, 76]
13 DAZ1 — —
14 CRSP7 — —
15 TGFB3 Breast,Colon, Prostate, Pancreatic [77, 78, 79]
16 FHL2 Breast, Colon, Gastrointestinal, Liver, Prostate [80, 81, 82]
17 TLN1 Breast, Prostate [83, 84, 85]
18 GFI1B Breast, Gastric, leukemia, Ovarian [86, 87, 88]
19 IGFBP7 Breast, Cervical, Colorectal, leukemia, Liver,

Lung, Neck, Thyroid carcinogenesis [89, 90, 91]
20 COL4A2 Breast, Gastric, Lung, Pancreatic [92, 93, 94]
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4 Discussion

Previous work on predicting cancer-related proteins based on PPI networks has mostly focused
on the functional information about the protein for which a prediction is made, or proximity
of known cancer-related genes in the PPI network. Several methods have been described that
take into account more general features related to the graph structure, with good results. In
this article, we introduced two new types of features, reflecting additional information: (1) the
functions of proteins interacting with the target protein; (2) the relative position of the target
protein with respect to specific other proteins, as measured by shortest-path distance.

We observed that the functions of proteins interacting with the target protein are informative:
they offer additional information over the functions of the target protein itself. We showed that
for the task of predicting cancer-related proteins, a relatively small number of GO functions
suffices to obtain maximal predictive accuracy. We also observed that shortest-path distances
to Anova selected proteins in the network are more relevant for predicting cancer-related pro-
teins comparing to shortest-path distances to other cancer-related proteins. We found that a
small number of such fixed proteins (10, in our experiments) is sufficient to obtain good pre-
dictive power. Applying a simple and efficient machine learning method (naive Bayes) to the
combination of these new types of informative features, we predicted cancer-related proteins
with higher accuracy than any previous PPI-based methods on the same dataset. What is par-
ticularly remarkable of the current work is that not only our classification results improve upon
previous methods, but that also our ‘false’ positive predictions could in many cases be verified
to be linked to cancer in more recent literature. Namely, we analyzed a list of 20 newly found
cancer-related proteins that were identified by our method, and we found that virtually all of
them (at least 18 out of 20) could be linked to cancer in scientific publications.

To sum up briefly, we have shown that our proposed features are informative for predicting
cancer-related proteins, as they increase the accuracy of predictive models and have a biological
interpretation.
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[89] Y. Chen, T. Cui, T. Knösel, L. Yang, K. Zöller and I. Petersen. Igfbp7 is a p53 target gene
inactivated in human lung cancer by dna hypermethylation. Lung Cancer, 73(1):38–44,
2011.

[90] S. Heesch, I. Bartram, M. Neumann et al. Expression of igfbp7 in acute leukemia is
regulated by dna methylation. Cancer Sci, 102(1):253–259, 2011.

[91] R. B. Georges, H. Adwan, H. Hamdi, T. Hielscher, U. Linnemann and M. R. Berger. The
insulin-like growth factor binding proteins 3 and 7 are associated with colorectal cancer
and liver metastasis. Cancer Biol Ther, 12(1):69–79, 2011.

[92] C. Seidl, M. Port, C. Apostolidis, F. Bruchertseifer, M. Schwaiger, R. Senekowitsch-
Schmidtke and M. Abend. Differential gene expression triggered by highly cytotoxic
alpha-emitter-immunoconjugates in gastric cancer cells. Invest New Drugs, 28(1):49–60,
2010.

[93] G. Bianchini, Y. Qi, R. H. Alvarez et al. Molecular anatomy of breast cancer stroma and
its prognostic value in estrogen receptor-positive and -negative cancers. J Clin Oncol,
28(28):4316–4323, 2010.

[94] X.-P. He, C.-Q. Su, X.-H. Wang et al. E1b-55kd-deleted oncolytic adenovirus armed with
canstatin gene yields an enhanced anti-tumor efficacy on pancreatic cancer. Cancer Lett,
285(1):89–98, 2009.

doi:10.2390/biecoll-jib-2012-210 28

C
op

yr
ig

ht
20

12
T

he
A

ut
ho

r(
s)

.P
ub

lis
he

d
by

Jo
ur

na
lo

fI
nt

eg
ra

tiv
e

B
io

in
fo

rm
at

ic
s.

T
hi

s
ar

tic
le

is
lic

en
se

d
un

de
ra

C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s
3.

0
U

np
or

te
d

L
ic

en
se

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/)

.

http://journal.imbio.de/

	Introduction
	Methods
	Formal Definition
	Protein Description Based on Functional Context
	Protein Description Based on Structural Context
	Protein Description Based on Functional and Structural Context
	The Naive Bayes Classifier
	Predicting Cancer-related Proteins
	Capacity Identification of New Cancer-Related Proteins

	Results
	Dataset
	 Biological Interpretation of the Most Relevant Functions
	Most Relevant Functions in FS
	Most Relevant Functions in FS+IFC

	Biological Interpretation of the Most Discriminative Proteins
	Comparing Different Contextual Methods
	Comparing with Previous Methods
	Random Feature Selection
	Capacity Identification of New Cancer-Related Proteins

	Discussion
	References

