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Abstract. Probabilistic timed automata are an extension of timed au-
tomata with discrete probability distributions, and can be used to model
timed randomized protocols or fault-tolerant systems. We present sym-
bolic model-checking algorithms for verifying probabilistic timed au-
tomata against properties of PTCTL (Probabilistic Timed Computation
Tree Logic). The algorithms operate on zones, which are sets of valua-
tions of the probabilistic timed automaton’s clocks, and therefore avoid
an explicit construction of the state space. Furthermore, the algorithms
are restricted to system behaviours which guarantee the divergence of
time with probability 1. We report on a prototype implementation of
the algorithms using Difference Bound Matrices, and present the results
of its application to the CSMA/CD and FireWire root contention pro-
tocol case studies.

1 Introduction

Systems exhibiting both timed and probabilistic characteristics are widespread,
in application contexts as diverse as home entertainment, medicine and business.
For example, timing constraints are often vital to the correctness of embedded
digital technology, whereas probability exhibits itself commonly in the form of
statistical estimates regarding the environment in which a system is embedded.
Similarly, protocol designers often exploit the combination of time and prob-
ability to design correct, efficient protocols, such as the IEEE 1394 FireWire
root contention protocol [13]. The diffusion of such systems has led to methods
for obtaining formal correctness guarantees, for instance, adaptations of model
checking. Symbolic model checking refers to model-checking techniques in which
implicit representations – such as BDDs – are used to represent both the tran-
sition relation of the system model and the state sets that are computed during
the execution of the model-checking algorithm.
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In this paper, we consider the modelling formalism of probabilistic timed
automata [18], an extension of timed automata [3] with discrete probability dis-
tributions. This formalism has been shown to be suitable for the description of
timed, randomized protocols, such as the backoff strategy of the IEEE 802.11
standard [20], and the link-local address selection protocol of the IPv4 standard
[17]. As a requirement specification language for probabilistic timed automata
we consider PTCTL (Probabilistic Timed Computation Tree Logic). The logic
PTCTL combines the probabilistic threshold operator of the probabilistic tem-
poral logic PCTL [11] with the timing constraints of the timed temporal logic
TCTL [1, 12], in order to express properties such as ‘with probability at least
0.99, the system elects a leader within 1 second’. Model checking of probabilis-
tic timed automata against PTCTL was shown to be decidable in [18] via an
adaptation of the classical region-graph construction [3, 1]. Unfortunately, the
region-graph construction (and digital clocks approach [17]) can result in huge
state spaces if the maximal constant used in the description of the automaton is
large. Instead, the practical success of symbolic, zone-based techniques for non-
probabilistic timed automata [4, 8] suggests that a similar symbolic approach
may also be employed for the verification of probabilistic timed automata against
PTCTL properties. We answer this hypothesis affirmatively in this paper.

The non-trivial cases of our model-checking algorithm concern PTCTL for-
mulae referring to a temporal modality and a probability threshold. In general,
PTCTL properties may have thresholds with arbitrary probability values; we re-
fer to such properties as quantitative. Properties which express statements such
as ‘ϕ is true with probability below 0.95’ impose a bound on the maximal prob-
ability of ϕ; analogously, properties such as ‘ϕ is true with probability at least
0.01’ impose a bound on the minimal probability of ϕ. In previous work, we
presented a zone-based algorithm for the verification of properties referring to
maximal probabilities [19]. The aim of this previous algorithm was to construct
a finite-state, untimed probabilistic system which has sufficient information to
compute the maximum probability using well-established model-checking meth-
ods for finite-state probabilistic systems [5]. In this paper, we extend that re-
sult by presenting algorithms for probabilistic properties referring to minimal
probability of satisfaction, hence permitting verification of arbitrary PTCTL
properties.

In order to verify properties of real-world behaviour, it is vital that model-
checking algorithms for real-time systems incorporate a notion of time diver-
gence. The issue of time divergence is of importance to our algorithms for veri-
fying properties referring to minimal probabilities. For example, to compute the
minimum probability of reaching a certain set F , for any state not in F , the
probabilistic timed automaton could exhibit behaviour in which the amount of
time elapsed converges before F is reached, or even in which no time elapses.
Clearly, such behaviours where time does not progress beyond a bound are patho-
logical, and should be disregarded during model checking. We present an algo-
rithm for computing minimum reachability probabilities which considers only
time-divergent behaviour, based on the non-probabilistic precedent of [12]. The
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algorithm is based on computing maximum probabilities for the dual formula
while restricting attention to time-divergent behaviours. Because it is possible
that a probabilistic timed automaton contains states from which it is impossible
for time to diverge with probability 1 (constituting a modelling error), based on
[12] we present an algorithm to check for and eliminate such states.

Finally, we report on a prototype implementation of the techniques of this
paper using Difference Bound Matrices (DBMs) [10]. We apply this implemen-
tation to two case studies: the first concerns the CSMA/CD (Carrier Sense,
Multiple Access with Collision Detection) communication protocol [14], whereas
the second considers the IEEE 1394 FireWire root contention protocol [13].

The paper proceeds as follows. We review a number of preliminary concepts
in Section 2, and in Section 3 we revisit the definitions of probabilistic timed au-
tomata and PTCTL. In Section 4, we introduce the model-checking algorithms
for PTCTL. Section 5 summarises our prototype implementation of these algo-
rithms. In Section 6, we present the application of the prototype implementation
to the case studies, and we conclude the paper in Section 7.

2 Preliminaries

In this section, for the sake of completeness, we recall the definitions of proba-
bilistic and timed probabilistic systems needed to give semantics to probabilistic
timed automata. Variants of these were originally introduced in [5, 24, 18].

A (discrete probability) distribution over a finite set Q is a function µ : Q→
[0, 1] such that

∑
q∈Q µ(q) = 1. For an uncountable set Q′, let Dist(Q′) be the

set of distributions over finite subsets of Q′. The point distribution µq denotes
the distribution which assigns probability 1 to q.

Definition 1. A probabilistic system, PS, is a tuple (S,Steps,L) where S is
a set of states, Steps ⊆ S × Dist(S) is a probabilistic transition relation, and
L : S → 2AP is a labelling function assigning atomic propositions to states.

A probabilistic transition s
µ−→ s′ is made from a state s by nondeterministically

selecting a distribution µ ∈ Dist(S) such that (s, µ) ∈ Steps, and then making a
probabilistic choice of target state s′ according to µ, such that µ(s′)>0.

We consider two ways in which a probabilistic system’s computation may be
represented. A path, representing a particular resolution of both nondeterminism
and probability, is a non-empty sequence of transitions: ω = s0

µ0−→ s1
µ1−→ · · · .

We denote by ω(i) the (i+1)th state of ω and last(ω) the last state of ω if it is
finite. The set of infinite (respectively, finite) paths starting in the state s are
denoted by Pathful(s) (respectively, Pathfin(s)).

In contrast to a path, an adversary represents a particular resolution of non-
determinism only. Formally, an adversary A is a function mapping every finite
path ω to a distribution µ such that (last(ω), µ) ∈ Steps. For any adversary
A and state s, we let PathAful(s) (respectively, PathAfin(s)) denote the subset of
Pathful(s) (respectively, Pathfin(s)) which corresponds to A and, using classical
techniques [15], we can define the probability measure ProbAs over PathAful(s).
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We now consider the definition of timed probabilistic systems.

Definition 2. A timed probabilistic system, TPS, is a tuple (S,Steps,L) where:
S and L are as in Definition 1 and Steps ⊆ S × R × Dist(S) is a timed prob-
abilistic transition relation, such that, if (s, t, µ) ∈ Steps and t>0, then µ is a
point distribution.

The component t of a tuple (s, t, µ) is called a duration. As for probabilistic
systems, we can introduce paths and adversaries for timed probabilistic sys-
tems, except transitions are now labelled by duration-distribution pairs and an
adversary maps each finite path to a duration-distribution pair.

We restrict attention to time-divergent adversaries; a common restriction
imposed in real-time systems so that unrealisable behaviour (corresponding to
time not advancing beyond a bound) is disregarded during analysis. For any
path ω = s0

t0,µ0−−−→ s1
t1,µ1−−−→ · · · of a timed probabilistic system, the duration up

to the n+1th state of ω, denoted Dω(n+1), equals
∑n
i=0 ti, and we say that a

path ω is divergent if for any t ∈ R, there exists j ∈ N such that Dω(j)>t.

Definition 3. An adversary A of a timed probabilistic system TPS is divergent
if and only if for each state s of TPS the probability under ProbAs of the divergent
paths of PathAful(s) is 1. Let AdvTPS be the set of divergent adversaries of TPS.

For motivation on why we consider probabilistic divergence, as opposed to the
stronger notion where an adversary is divergent if and only if all its paths are
divergent, see [18]. A restriction we impose on probabilistic timed systems is that
of non-zenoness, which stipulates that there does not exist a state from which
time cannot diverge, as we consider this situation to be a modelling error.

Definition 4. A probabilistic timed system TPS is non-zeno if it has at least
one divergent adversary.

3 Probabilistic Timed Automata

In this section we review the definition of probabilistic timed automata [18], a
modelling framework for real-time systems exhibiting both nondeterministic and
stochastic behaviour. The formalism is derived from classical timed automata
[3, 12] extended with discrete probability distributions over edges.

3.1 Clocks and Zones

Let X be a finite set of variables called clocks which take values from the time
domain R (non-negative reals). A point v ∈ RX is referred to as a clock valuation.
For any clock x ∈ X , we use v(x) to denote the value v assigns to x. For any
v ∈ RX and t ∈ R, we use v+t to denote the clock valuation defined as v(x)+t
for all x ∈ X . We use v[X:=0] to denote the clock valuation obtained from v by
resetting all of the clocks in X ⊆ X to 0.
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The set of zones of X , written Zones(X ), is defined inductively by the syntax:

ζ ::= x 6 d |c 6 x |x+ c 6 y + d | ¬ζ | ζ ∨ ζ

where x, y ∈ X and c, d ∈ N. The clock valuation v satisfies the zone ζ, written
v . ζ, if and only if ζ resolves to true after substituting each clock x ∈ X with
the corresponding clock value v(x) from v.

We only consider canonical zones [26] ensuring equality between their syn-
tactic and semantic (subsets of RX which satisfy the zone) representations. This
enables us to use the above syntax interchangeably with set-theoretic opera-
tions. We require the following classical operations on zones [12, 26]. For any
zones ζ, ζ ′ ∈ Zones(X ) and subset of clocks X ⊆ X , let:

↙ζ′ ζ
def= {v | ∃t > 0. (v + t . ζ ∧ ∀t′ 6 t. (v + t′ . ζ ∨ ζ ′))}

[X := 0]ζ def= {v | v[X := 0] . ζ} .

3.2 Syntax and Semantics of Probabilistic Timed Automata

Definition 5. A probabilistic timed automaton is a tuple (L,X , inv , prob,L)
where: L is a finite set of locations; the function inv : L → Zones(X ) is the
invariant condition; the finite set prob ⊆ L × Zones(X ) × Dist(2X×L) is the
probabilistic edge relation; and L : L → 2AP is a labelling function assigning
atomic propositions to locations.

A state of a probabilistic timed automaton PTA is a pair (l, v) ∈ L×RX such
that v . inv(l). Informally, the behaviour of a probabilistic timed automaton can
be understood as follows. In any state (l, v), there is a nondeterministic choice of
either making a discrete transition or letting time pass. A discrete transition can
be made according to any (l, g, p) ∈ prob with source location l which is enabled;
that is, zone g is satisfied by the current clock valuation v. Then the probability
of moving to the location l′ and resetting all clocks in X to 0 is given by p(X, l′).
The option of letting time pass is available only if the invariant condition inv(l)
is satisfied while time elapses.

An edge of PTA is a tuple (l, g, p,X, l′) such that (l, g, p) ∈ prob and p(X, l′) >
0. Let edges denote the set of all edges and edges(l, g, p) the edges of (l, g, p).

We now give the semantics of probabilistic timed automata defined in terms
of timed probabilistic systems.

Definition 6. Let PTA = (L,X , inv , prob,L) be a probabilistic timed automa-
ton. The semantics of PTA is defined as the timed probabilistic system TPSPTA =
(S,Steps,L′) where: S ⊆ L × RX such that (l, v) ∈ S if and only if v . inv(l);
((l, v), t, µ) ∈ Steps if and only if one of the following conditions holds:

[time transitions] t>0, µ=µ(l,v+t) and v+t′ . inv(l) for all 06t′6t
[discrete transitions] t=0 and there exists (l, g, p) ∈ prob such that v . g and

for any (l′, v′) ∈ S: µ(l′, v′) =
∑
X⊆X∧v′=v[X:=0] p(X, l

′).

Finally, L′(l, v) = L(l) for all (l, v) ∈ S.

We say that PTA is non-zeno if and only if TPSPTA is non-zeno.
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3.3 Probabilistic Timed Computation Tree Logic (PTCTL)

We now describe the probabilistic timed logic PTCTL which can be used to
specify properties of probabilistic timed automata. As in TCTL [1, 12], PTCTL
employs a set of formula clocks, Z, disjoint from the clocks X of the proba-
bilistic timed automaton. Formula clocks are assigned values by a formula clock
valuation E ∈ RZ . Timing constraints can be expressed using such clocks and
the reset quantifier z.φ. As in PCTL [11], PTCTL includes the probabilistic
quantifier P∼λ[·].

Definition 7. The syntax of PTCTL is defined as follows:

φ ::= a
∣∣ ζ ∣∣ ¬φ ∣∣ φ ∨ φ ∣∣ z.φ ∣∣ P∼λ[φ U φ]

where a ∈ AP , ζ ∈ Zones(X ∪ Z), z ∈ Z, ∼∈{6, <,>,>} and λ ∈ [0, 1].

In PTCTL we can express properties such as ‘with probability at least 0.95, the
system clock x does not exceed 3 before 8 time units elapse’, which is represented
as the formula z.P>0.95[(x63) U (z=8)].

We write v, E to denote the composite clock valuation in RX∪Z obtained from
v ∈ RX and E ∈ RZ . Given a state and formula clock valuation pair (l, v), E ,
zone ζ and duration t, by abuse of notation we let (l, v), E . ζ denote v, E . ζ,
and (l, v)+t denote (l, v+t).

Definition 8. Let TPS = (S,Steps,L′) be the timed probabilistic system asso-
ciated with the probabilistic timed automaton PTA. For any state s ∈ S, formula
clock valuation E ∈ RZ and PTCTL formula θ, the satisfaction relation s, E |= θ
is defined inductively as follows:

s, E |= a ⇔ a ∈ L′(s)
s, E |= ζ ⇔ s, E . ζ
s, E |= φ ∨ ψ ⇔ s, E |= φ or s, E |= ψ
s, E |= ¬φ ⇔ s, E 6|= φ
s, E |= z.φ ⇔ s, E [z := 0] |= φ
s, E |= P∼λ[φ U ψ] ⇔ pAs,E(φ U ψ) ∼ λ for all A ∈ AdvTPS

where pAs,E(φ U ψ) = ProbAs {ω ∈ PathAful(s) |ω, E |= φ U ψ}, and, for any path
ω ∈ Pathful(s): ω, E |= φ U ψ if and only if there exists i ∈ N and t 6
Dω(i+1)−Dω(i) such that

– ω(i)+t, E+Dω(i)+t |= ψ;
– if t′ < t, then ω(i)+t′, E+Dω(i)+t′ |= φ ∨ ψ;
– if j < i and t′ 6 Dω(j+1)−Dω(j), then ω(j)+t′, E+Dω(j)+t′ |= φ ∨ ψ.

In the following sections we will also consider the dual of the sub-formula φ U ψ,
namely the release formula ¬φ V ¬ψ. In the standard manner, we refer to φ U ψ
and φ V ψ as path formulae, and use the abbreviation true U φ = 3φ.
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algorithm PTCTLModelCheck(PTA, θ)
output: set of symbolic states [[θ]] such that

[[a]] := {(l, inv(l)) | l ∈ L and l ∈ L(a)};
[[ζ]] := {(l, inv(l) ∧ ζ) | l ∈ L};
[[¬φ]] := {(l, inv(l) ∧ ¬

∨
(l,ζ)∈[[φ]] ζ) | l ∈ L};

[[φ ∨ ψ]] := [[φ]] ∨ [[ψ]];
[[z.φ]] := {(l, [{z}:=0]ζ) | (l, ζ) ∈ [[φ]]};
[[P∼λ[φ U ψ]]] := Until([[φ]], [[ψ]],∼ λ);

Fig. 1. Symbolic PTCTL model-checking algorithm

4 Symbolic PTCTL Model Checking

In this section, we show how a probabilistic timed automaton may be model
checked against PTCTL formulae. In order to represent the state sets computed
during the model-checking process, we use the concept of symbolic state: a sym-
bolic state is a pair (l, ζ) comprising a location and a zone over X∪Z. The set
of state and formula clock valuation pairs corresponding to a symbolic state
(l, ζ) is {(l, v), E | v, E . ζ}, while the state set corresponding to a set of symbolic
states is the union of those corresponding to each individual symbolic state. In
the manner standard for model checking, we progress up the parse tree of a
PTCTL formula, recursively calling the algorithm PTCTLModelCheck, shown in
Figure 1, to compute the set of symbolic states which satisfy each subformula.
Handling atomic propositions and Boolean operations is classical, and therefore
we only consider only computing Until([[φ1]], [[φ2]],∼λ), which arises when we
check probabilistically quantified formula. Our technique relies on the compari-
son of maximum or minimum probabilities with λ, since, from the semantics of
PTCTL (Definition 8):

{s, E | s, E |= P∼λ[φ U ψ]} =
{
{s, E | pmax

s,E (φ U ψ) ∼ λ} if ∼∈ {<,6}
{s, E | pmin

s,E (φ U ψ) ∼ λ} if ∼∈ {>, >} (1)

where for any PTCTL path formula ϕ:

pmax
s,E (ϕ) def= supA∈AdvTPS

pAs,E(ϕ) and pmin
s,E (ϕ) def= infA∈AdvTPS

pAs,E(ϕ) .

We begin by introducing operations on symbolic states. In Section 4.2, we
review algorithms for calculating maximum probabilities, while in Section 4.3
we present new algorithms for calculating minimum probabilities. Proofs of the
key results, and specialised algorithms for qualitative formulae (λ ∈ {0, 1}), for
which verification can be performed through an analysis of the underlying graph,
are available in [22].

4.1 Operations on Symbolic States

In this section we extend the time predecessor and discrete predecessor functions
tpre and dpre of [12, 26] to probabilistic timed automata. For any sets of symbolic
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states U, V ⊆ L×Zones(X∪Z), clock x ∈ X ∪ Z and edge (l, g, p,X, l′):

x.U
def= {(l, [{x}:=0]ζlU) | l ∈ L}

tpreU(V)
def= {(l,↙ζl

U∧inv(l) (ζlV ∧ inv(l))) | l ∈ L}
dpre((l, g, p,X, l′), U) def= {(l, g ∧ ([X := 0]ζl

′

U ))} .

where ζlU =
∨
{ζ | (l, ζ) ∈ U}, i.e ζlU is the zone such that v, E . ζlU if and only

if (l, v), E ∈ u for some u ∈ U. Furthermore, we define the conjunction and
disjunction of sets of symbolic states as follows:

U ∧ V
def= {(l, ζlU ∧ ζlV) | l ∈ L} and U ∨ V

def= {(l, ζlU ∨ ζlV) | l ∈ L} .

Finally, let [[false]] = ∅ and [[true]] = {(l, inv(l)) | l ∈ L}, the sets of symbolic
states representing the empty and full state sets respectively.

4.2 Computing Maximum Probabilities

In this section we review the methods for calculating the set of states satisfying
a formula of the form P.λ[φ U ψ] which, from (1), reduces to the computation
of pmax

s,E (φ U ψ) for all state and formula clock valuation pairs s, E . Note that,
since we consider only non-zeno automata, when calculating these sets we can
ignore the restriction to divergent adversaries: letting time diverge can only make
reaching ψ less likely. This is similar to verifying (non-probabilistic) non-zeno
timed automata against formulae of the form φ ∃U ψ (‘there exists a divergent
path which satisfies φ U ψ’) [12].

To compute maximum probabilities, we adopt the algorithm of [19] (see Fig-
ure 2). The key observation is that to preserve the probabilistic branching one
must take the conjunctions of symbolic states generated by edges from the same
distribution. Lines 1–4 deal with the initialisation of Z, which is set equal to
the set of time predecessors of V, and the set of edges E(l,g,p) associated with
each probabilistic edge (l, g, p) ∈ prob. Lines 5–20 generate a finite-state graph,
the nodes of which are symbolic states, obtained by iterating timed and dis-
crete predecessor operations (line 8), and taking conjunctions (lines 12–17). The
edges of the graph are partitioned into the sets E(l,g,p) for (l, g, p) ∈ prob, with
the intuition that (z, (X, l′), z′) ∈ E(l,g,p) corresponds to a transition from any
state in z to some state in z′ when the outcome (X, l′) of the probabilistic edge
(l, g, p) is chosen. The graph edges are added in lines 11 and 15. The termina-
tion of lines 5–20 is guaranteed (see [19]). Line 21 describes the manner in which
the probabilistic edges of the probabilistic timed automaton are used in com-
bination with the computed edge sets to construct the probabilistic transition
relation Steps. Finally, in line 22, model checking is performed on the resulting
finite-state probabilistic system PS to obtain MaxProbReach(z, tpreU∨V(V)), the
maximum probability of reaching tpreU∨V(V) from z, for each z ∈ Z. Note that
we write z 6= ∅ if and only if z encodes at least one state and formula clock
valuation pair. The following proposition states the correctness of this algorithm.
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algorithm MaxU(U, V,& λ)
1. Z := tpreU∨V(V)
2. for (l, g, p) ∈ prob
3. E(l,g,p) := ∅
4. end for
5. repeat
6. Y := Z

7. for y ∈ Y ∧ (l, g, p) ∈ prob ∧ e = (l, g, p,X, l′) ∈ edges(l, g, p)
8. z := U ∧ dpre(e, tpreU∨V(y))
9. if (z 6= ∅) ∧ (z 6∈ tpreU∨V(V))
10. Z := Z ∪ {z}
11. E(l,g,p) := E(l,g,p) ∪ {(z, (X, l′), y)}
12. for (z̄, (X̄, l̄′), ȳ) ∈ E(l,g,p)

13. if (z ∧ z̄ 6= ∅) ∧ ((X̄, l̄′) 6= (X, l′)) ∧ (z ∧ z̄ 6∈ tpreU∨V(V))
14. Z := Z ∪ {z ∧ z̄}
15. E(l,g,p) := E(l,g,p) ∪ {(z ∧ z̄, (X, l′), ȳ), (z ∧ z̄, (X̄, l̄′), y)}
16. end if
17. end for
18. end if
19. end for
20. until Z = Y

21. construct PS = (Z,Steps) where (z, ρ) ∈ Steps if and only if
there exists (l, g, p) ∈ prob and E ⊆ E(l,g,p) such that
− ( (z′, e, z′′) ∈ E ⇒ z′=z ) ∧ ( (z, e, z′) 6= (z, e′, z′′) ∈ E ⇒ e 6=e′ )
− ρ(z′) =

∑
{| p(X, l′) | (z, (X, l′), z′) ∈ E |} ∀z′ ∈ Z

22. return
∨
{tpreU∨V(z) | z ∈ Z ∧MaxProbReach(z, tpreU∨V(V)) & λ}

Fig. 2. Algorithm MaxU(·, ·,& λ)

Proposition 1. For any probabilistic timed automaton PTA and PTCTL for-
mula P.λ[φ U ψ], if PS = (Z,Steps) is the probabilistic system generated by
MaxU([[φ]], [[ψ]],& λ), then for any s, E ∈ S × RZ : pmax

s,E (φ U ψ)>0 if and only if
s, E ∈ tpre[[φ∨ψ]](Z), and if pmax

s,E (φ U ψ)>0, then pmax
s,E (φ U ψ) equals

max
{
MaxProbReach(z, tpre[[φ∨ψ]][[ψ]])

∣∣∣ z ∈ Z and s, E ∈ tpre[[φ∨ψ]](z)
}
.

Based on the above we set Until([[φ]], [[ψ]],. λ) = [[true]] \MaxU([[φ]], [[ψ]], 6& λ).

4.3 Computing Minimum Probabilities

We now consider verifying formulae of the form P&λ[φ U ψ] which, using (1),
reduces to computing pmin

s,E (φ U ψ) for all state and formula clock valuation pairs
s, E . In contrast to the case for maximal probability, the computation of mini-
mal probabilities should be restricted to time-divergent adversaries, in the same
way as universally-quantified path formulae of non-probabilistic timed automata
should be restricted to time-divergent paths. For example, for any formula clock
z ∈ Z, under divergent adversaries the minimum probability of reaching z>1 is 1;
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algorithm MaxV>1(c, U, V)
Z:=[[true]]
repeat
Y:=Z

Z:=V ∧ z.MaxU>1(Y, (U∧Y) ∨ [[z>c]])
until Z = Y

return Z

algorithm NonZeno
Z:=[[true]]
repeat
Y:=Z

Z:=z.MaxU>1([[true]], Y∧ [[z=1]])
until Z = Y

return Z0

Fig. 3. MaxV>1(c, ·, ·) and NonZeno algorithms

however, if we remove the restriction to time divergent adversaries the minimum
probability is 0 (by letting time converge before z exceeds 1).

The techniques we introduce here are based on the result of [12] that verifying
φ ∀U ψ (‘all divergent paths satisfy φ U ψ’) reduces to computing the fixpoint:

µX.(ψ ∨ ¬z.((¬X) ∃U (¬(φ ∨X) ∨ (z>c))) (2)

for any c(> 0) ∈ N. The important point is that the universal quantification
over paths has been replaced by an existential quantification, which, together
with the constraint z>c, allows one to ignore the restriction to time divergence
in the verification procedure. Using the duality φ U ψ ≡ ¬(¬φ V ¬ψ), we have,
for any state s of TPSPTA and formula clock valuation E :

pmin
s,E (φ U ψ) = 1− pmax

s,E (¬φ V ¬ψ) ,

and hence, to verify P&λ[φ U ψ], it suffices to calculate pmax
s,E (¬φ V ¬ψ) for all

state and formula clock valuation pairs. Now, although we have reduced the
problem to calculating a maximum probability, we cannot ignore time diver-
gence when calculating such probabilities. For example, consider the formula
false V φ, meaning ‘always φ’ (2φ): the probability of this formula is 1 within
states satisfying φ by always taking time transitions with duration 0.

Proposition 2 below shows that we can reduce the computation of the max-
imum probability of satisfying a release formula to that of computing the maxi-
mum probability of an until operator within which a qualitative release formula
is nested. As issues of time divergence are irrelevant to the computation of the
maximum probabilities of until formulae, the proposition permits us to focus
our attention on incorporating time divergence within the verification of the
qualitative release formula.

Proposition 2. For any timed probabilistic system TPSPTA = (S,Steps,L′),
s ∈ S, formula clock valuation E ∈ RZ and PTCTL formulae φ, ψ:

pmax
s,E (φ V ψ) = pmax

s,E (ψ U ¬P<1[φ V ψ]) .

Since we have already introduced an algorithm for calculating the maximum
probability of satisfying until formulae, it remains to consider a method for cal-
culating the set of states satisfying ¬P<1[φ V ψ]; that is, {s, E | pmax

s,E (φ V ψ)>1}.
Based on (2) we obtain the following proposition.
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algorithm pre1(U, V)
Y := [[false]]
for (l, g, p) ∈ prob
Y0 := [[true]]
Y1 := [[false]]
for e ∈ edges(l, g, p)
Y0 := dpre(e, U) ∧ Y0

Y1 := dpre(e, V) ∨ Y1

end
Y := (Y0 ∧ Y1) ∨ Y

end
return Y

algorithm MaxU>1(U, V)
Z0 := [[true]]
repeat
Y0 := Z0
Z1 := [[false]]
repeat
Y1 := Z1
Z1 := V ∨ (U ∧ pre1(Y0, Y1))
Z1 := Z1 ∨ tpreU∨V(Y0 ∧ Y1)

until Z1 = Y1
Z0 := Z1

until Z0 = Y0
return Z0

Fig. 4. MaxU>1(·, ·) algorithm

Proposition 3. For any positive c ∈ N and PTCTL formulae φ, ψ, if z ∈ Z
does not appear in either φ or ψ, then the set {s, E | pmax

s,E (φ V ψ)>1} is given by
the fixpoint νX.(ψ ∧ z.¬P<1[X U ((X ∧ φ) ∨ z>c)]).

The algorithm MaxV>1 for calculating the set {s, E | pmax
s,E (φ V ψ)>1} follows

from Proposition 3 and is given in Figure 3. The algorithm calls MaxU>1([[φ]], [[ψ]]),
given in Figure 4, which computes the set of states {s, E | pmax

s,E (φ U ψ)>1} and
is based on a similar algorithm for finite-state probabilistic systems [9]. Putting
this together, and letting >̄ => and >̄ =>, we set

Until([[φ]], [[ψ]],& λ) = [[true]] \MaxU([[¬ψ]],MaxV>1(c, [[¬φ]], [[¬ψ]]), &̄1−λ) .

4.4 Checking Non-Zenoness

In the non-probabilistic case [12] checking non-zenoness corresponds to finding
the greatest fixpoint νX.(z.(∃3 ((z=1)∧X))). For probabilistic timed automata,
we can replace ∃ with ¬P<1[·], i.e replace ‘there exists a path that reaches (z=1)∧
X’ with ‘there exists an adversary which reaches (z=1)∧X with probability 1’.
Following this approach, the algorithm for calculating the set of non-zeno states
is given in Figure 3. Formally, we have the following proposition.

Proposition 4. A probabilistic timed automaton PTA is non-zeno if and only
if {(l, inv(l) | l ∈ L} equals the fixpoint νX.(z.¬P<1[3((z=1) ∧X)]).

Similarly to [12], the algorithm can be used to convert a ‘zeno’ probabilistic
timed automaton into a non-zeno automaton by strengthening invariants.

5 Implementation

In this section we briefly summarise our prototype implementation of the model-
checking algorithms given in Section 4. It is important to note that the aim of
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our implementation is to validate the algorithms presented for model checking
probabilistic timed automata against PTCTL, rather than to devise an efficient
implementation; the latter will be the subject of future work. Note that, to per-
form the final step of the algorithm MaxU (line 22 of Figure 2), that is compute
maximum reachability probabilities on a finite-state probabilistic system, we
export the problem to the probabilistic symbolic model checker PRISM [16, 23].

The main step in the implementation of our techniques is the representation
of (sets of) symbolic states and the operations required on them; more precisely,
since a symbolic state is a pair (l, ζ) where l ∈ L and ζ is a zone, we require a
method for representing zones and performing operations on zones.

Difference Bound Matrices (DBMs) [10] are a well known data-structure for
the representation of convex zones and are used in the model checkers Uppaal [4]
and Kronos [8]. As the operations required by our algorithm can introduce non-
convexity, we also represent non-convex zones. Following the approach presented
in [26], we represent non-convex zones by lists of DBMs, that is, we represent a
non-convex zone ζ by a list of convex zones ζ1, . . . , ζn such that ζ = ζ1∪· · ·∪ ζn.
It thus follows that a symbolic state can be represented by a location and a list
of DBMs. This representation is clearly not canonical: there are many ways of
decomposing a non-convex zone into a set of convex zones. However, [26] presents
algorithms (used by Kronos [6]) for the operations we require when zones are
represented as lists of DBMs. Based on [26], we have implemented, in Java, a
prototype DBM package and the operations on lists of DBMs required by our
model-checking algorithms. Note that the equality checking performed by the
algorithms MaxV>1, MaxU>1 and NonZeno reduces to an inclusion test based on
whether a least or greatest fixpoint is being performed.

6 Case Studies

In this section we report on the results of our prototype implementation ap-
plied to two case studies: the CSMA/CD communication protocol [14], and the
IEEE1394 FireWire root contention protocol [13]. Due to space limitations, we
include the results for the generation of the finite-state probabilistic system, and
not the verification of this system which is performed by PRISM, and is therefore
standard; further details are available from the PRISM web page [23].

We test both the maximum and minimum probability algorithms, in each
case confirming the results with those obtained using the digital clocks approach
in PRISM [17, 21] and, when possible, the forward reachability approach [18,
7]. This comparison is feasible since the models are ‘closed’ and ‘diagonal-free’
(they do not feature either strict inequalities or comparisons between clocks),
but our algorithms are applicable to general probabilistic timed automata. When
calculating minimum probabilities of deadline properties, for comparison we also
use the alternative method introduced in [21], as explained by the following
remark.

Remark 1. We observe that certain deadline properties referring to minimum
probability can be expressed in terms of properties referring to maximum prob-
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Table 1. Statistics for MaxV>1 as c varies, when verifying the CSMA/CD protocol

c P>1[3 done] z.P>λ[3(done ∧ z62000)]
time (sec) MaxV>1 iters MaxU>1 iters time (sec) MaxV>1 iters MaxU>1 iters

10 119 99 583 56.4 15 97
26 56.2 40 261 31.3 9 83
50 37.6 22 156 24.0 6 65

100 136 13 120 720 8 94
808 11,240 4 89 23,276 5 115

Table 2. Model sizes (and generation times in seconds) for CSMA/CD protocol

D z.P∼λ[3(done ∧ z6D)] P6λ[3exceeded] digital
(µs) maximum [∼ = 6] minimum [∼ = >] clocks [20]

1600 431 (83.8) 451 (58.2) 362 (18.6) 4,501,705
2000 725 (125) 691 (75.6) 562 (29.4) 6,570,692
2400 997 (153) 1,075 (151) 882 (77.2) 8,654,692
2800 1,263 (205) 1,435 (284) 1,182 (158) 10,738,692

ability. Consider a property z.P>λ[3(φ ∧ z6D)] and assume that φ is reach-
able with probability 1 for all adversaries and states. We adjust the model
so that states in which φ is true are forced to make a transition to a sink-
location; furthermore, we allow the model to make a transition to a different,
“deadline exceeded” sink-location, denoted exceeded, as soon as the value of the
clock z exceeds D [21] (provided that we are not in a state satisfying φ). Be-
cause this location is a sink, φ cannot become true after it is entered. Then,
given any adversary A, state s and formula clock valuation E , we have that
pAs,E(3(φ ∧ z6D)) = 1 − pAs,E(3 exceeded). Hence, we are able to reduce the
computation of a minimum probability to a maximum probability.

CSMA/CD protocol The CSMA/CD (Carrier Sense, Multiple Access with
Collision Detection) protocol is designed for networks with a single channel and
specifies the behaviour of stations with the aim of minimising simultaneous use
of the channel (data collision). The basic structure of the protocol is as follows:
when a station has data to send, it listens to the medium, after which, if the
medium was free (no one transmitting), the station starts to send its data. On the
other hand, if the medium was sensed busy, the station waits a random amount
of time and then repeats this process. For the case study we have supposed that
the random choice is a uniform choice between two delays. Further details are
available from the PRISM web page [23].

The first property we check is that the minimum probability that both sta-
tions correctly deliver their packets is 1; that is, we verify P>1[3 done]. The
algorithm MaxV>1 returns no symbolic states, which implies that the minimum
probability is 1. In Table 1 we give the model-checking statistics for MaxV>1

as we vary the parameter c (26 and 808 are the smallest and largest non-zero
constants appearing in the model). As in the non-probabilistic case [27], further
investigations and case studies are needed to establish if there is any way of
finding a ‘good’ choice for the parameter c in advance.
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Table 3. Statistics for MaxV>1 as c varies, when verifying I
p
1

c P>1[3 elect] z.P>λ[3(elect∧z610000)]
time (sec) MaxV>1 iters MaxU>1 iters time (sec) MaxV>1 iters MaxU>1 iters

10 21.26 372 1,492 13.3 85 373
100 2.63 39 162 3.96 18 95
360 1.22 13 67 1.84 7 55

1,670 0.646 5 30 1.76 5 46
5,000 0.479 3 24 1.07 3 34

10,000 0.571 3 31 1.19 3 41

Table 4. Model sizes and (generation times in seconds) when verifying I
p
1

D (103ns) z.P>λ[3(elect∧z6D)] P6λ[3exceeded] forwards [7] digital clocks [20]

2 15 (1.09) 25 (0.197) 53 (0.00) 68,056
4 25 (1.20) 47 (0.280) 131 (0.00) 220,565
8 81 (1.38) 126 (0.615) 372 (0.02) 530,965

10 126 (1.65) 183 (1.09) 526 (0.03) 686,165
20 528 (12.2) 643 (19.3) 1,876 (0.09) 1,462,165
40 2,168 (886) 2,395 (1,333) 7,034 (0.46) 3,014,165

The remaining properties we consider are the maximum and minimum prob-
abilities that both stations deliver their packets by time D, that is, the property
z.P∼λ[3(done∧z6D)]. Using the observation given in Remark 1 and the results
for P>1[3 done], we also compute the minimum probabilities via a translation
into a computation of maximum probabilities. In Table 2 we have presented
the model sizes (and generation times) of the finite-state probabilistic system
generated by our implementation and, for comparison, the size of the model
constructed using the digital clocks approach [17, 21] (there are no generation
times in this case as the digital semantics leads directly to a finite-state system).
The results show a significant decrease in the model size when compared to the
digital clocks approach. Comparing the results for z.P>λ[3(done ∧ z6D)] and
P6λ[3exceeded], we see that using Remark 1 can decrease both the states and
generation time. Table 1 includes the model-checking statistics for the MaxV>1

algorithm when verifying z.P∼λ[3(done ∧ z62000)].

FireWire root contention protocol We consider the abstract probabilis-
tic timed automaton model Ip1, which is a probabilistic extension of the clas-
sical timed automaton I1 of [25], as studied in [7, 21]. The timing constraints
are derived from those given in the standard when the communication delay
is 360ns. The properties we consider concern the minimum probability to elect
a leader with and without a deadline, that is, the properties P>λ[3 elect] and
z.P>λ[3(elect ∧ z6D)].

When verifying P>λ[3 elect], the algorithm MaxV>1 returns no symbolic
states, which implies that the minimum probability is 1. In Table 3 we give the
model-checking statistics for the MaxV>1 algorithm as the value of c changes
(360 and 1670 are the smallest and largest non-zero constants appearing in the
model). In Table 4 we have reported on the size and generation times in sec-
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onds when verifying z.P>λ[3(elect ∧ z6D)] for a range of deadlines. As for the
CSMA/CD case study, we can use Remark 1 and instead verify P6λ[3exceeded]
on a modified model. Additionally, in Table 4 we include the results obtained
when applying the forwards approach [18, 7] and using digital clocks [21]. Note
that the approach of [18, 7] cannot be used to calculate the minimum probability
of eventually electing a leader. The results show that the use of the algorithms
presented in this paper leads to a smaller state space than the other approaches.
The generation times for our prototype implementation are considerably greater
than those obtained with the forwards approach as these are generated with
the optimized tool Kronos. Comparing the results obtained when verifying
z.P>λ[3(elect ∧ z6D)] and P6λ[3exceeded], we see that the direct approach
leads to a smaller state space and, for large deadlines, is faster than the ap-
proach based on Remark 1.

7 Conclusions

We have presented the theoretical foundations for the symbolic model checking
of probabilistic timed automata and PTCTL and validated them through a pro-
totype implementation using DBMs. For quantitative formulae, our algorithm is
expensive, as, in the worst case, the MaxU algorithm constructs the powerset of
the region graph, which itself is exponential in the largest constant used in zones
and the number of clocks. However, for the case studies considered, we observe
much smaller state spaces than this upper bound, which confirms that the al-
gorithms are feasible in practice. Note that we do not construct a partition of
the state space (as in [2], for example), but rather a (property dependent) set of
overlapping symbolic states to avoid potentially expensive disjunction operations
on zones within MaxU.

Future work will address the efficient symbolic implementation of the pre-
sented algorithms, adaptations to probabilistic polyhedral hybrid automata and
symbolic probabilistic systems [19], and a comparison of our approach with state
partitioning techniques, for example [2], extended to the probabilistic setting.
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