
I. King et al. (Eds.): ICONIP 2006, Part III, LNCS 4234, pp. 1105 – 1112, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Neural Network Implementation in Hardware Using
FPGAs

Suhap Sahin, Yasar Becerikli*, and Suleyman Yazici

Department of Computer Eng., Kocaeli University, Izmit ,Turkey
suhapsahin@kou.edu.tr, ybecerikli@kou.edu.tr, syazici@kou.edu.tr

Abstract. The usage of the FPGA (Field Programmable Gate Array) for neural
network implementation provides flexibility in programmable systems. For the
neural network based instrument prototype in real time application,
conventional specific VLSI neural chip design suffers the limitation in time and
cost. With low precision artificial neural network design, FPGAs have higher
speed and smaller size for real time application than the VLSI design. In
addition, artificial neural network based on FPGAs has fairly achieved with
classification application. The programmability of reconfigurable FPGAs yields
the availability of fast special purpose hardware for wide applications. Its
programmability could set the conditions to explore new neural network
algorithms and problems of a scale that would not be feasible with conventional
processor. The goal of this work is to realize the hardware implementation of
neural network using FPGAs. Digital system architecture is presented using
Very High Speed Integrated Circuits Hardware Description Language (VHDL)
and is implemented in FPGA chip. The design was tested on a FPGA demo
board.

1 Introduction

Artificial Neural Networks (ANNs) can solve great variety of problems in areas of
pattern recognition, image processing and medical diagnostic. The biologically
inspired ANNs are parallel and distributed information processing systems. This
system requires the massive parallel computation. Thus, the high speed operation in
real time applications can be achieved only if the networks are implemented using
parallel hardware architecture [1].

Implementation of ANNs falls into two categories: Software implementation and
hardware implementation. ANNs are implemented in software, and are trained and
simulated on general-purpose sequential computers for emulating a wide range of
neural networks models. Software implementations offer flexibility. However
hardware implementations are essential for applicability and for taking the advantage
of ANN’s inherent parallelism [2]. Specific-purpose fixed hardware implementations
(i.e. VLSI) are dedicated to a specific ANN model. VLSI implementations of ANNs
provide high speed in real time applications and compactness. However, they lack
flexibility for structural modification and are prohibitively costly.

* Corresponding author. ybecerikli@kou.edu.tr, ybecer@ieee.org

1106 S. Sahin, Y. Becerikli, and S. Yazici

We are interested in building a different class of hardware environment, i.e. FPGA-
based reconfigurable computing environment for implementing ANNs. FPGA offer
speed comparable to dedicated and fixed hardware systems for parallel algorithm
acceleration, while as with a software implementation, retaining a high degree of
flexibility for device reconfiguration as the application demands [3]. With the
introduction of FPGAs, it is feasible to provide custom hardware for application
specific computation design. The changes in designs in FPGAs can be accomplished
within a few hours, and thus result in significant savings in cost and design cycle. A
method of implementing a fully connected feed forward network with Xilinx FPGAs
for image processing that the single processing node was partitioned into two XC3090
chips is proposed [4]. A neural associative memories implementation based RAMs
and XC3090 FPGAs is reported [2].

This paper explores that how to efficiently use 32 bit floating-point numeric
representation in FPGA based ANNs. By making use of the features of SpartanIIE
series FPGAs. A VHDL library was designed for using ANN's on FPGAs. The library
supports to the IEEE-754 standards for single-precision (32-bit) floating point
arithmetic, and it is referred to fp_lib.

2 Artificial Neural Network

The concept of ANNs is emerged from the principles of brain that are adapted to
digital computers. The first works of ANNs were the models of neurons in brain using
mathematics rule [5]. These works show that each neuron in ANNs take some
information as an input from another neuron or from an external input. This
information is propagated as an output that are computed as weighted sum of inputs
and applied as non-linear function.

Architectural ANNs parameters such as number of inputs per neuron and each
neuron’s conductivity change remarkably from application to application. Thus, for
special purpose network architectures parameters must be carefully balanced for
efficient implementation.

It is apparent that there are three kinds of parallelism to explain within ANNs when
carefully exanimate to the data flow and structure of ANNs. The first is spatial
parallelism i.e. every neuron in the same layer runs simultaneously. The second is
algorithmic parallelism that is related to the formulation of the algorithm itself. In
addition, computation on successive layers can be pipelined [3].

3 Field Programmable Gate Arrays and Very-High Hardware
Description Language

FPGAs consist of three basic blocks that are configurable logic blocks, in-out blocks
and connection blocks. Logic blocks perform logic function. Connection blocks
connect logic blocks with in-out blocks. These structures consist of routing channels
and programmable switches. Routing process is effectively connection logic blocks
exist different distance the others [6].

 Neural Network Implementation in Hardware Using FPGAs 1107

FPGAs are chosen for implementation ANNs with the following reason:

• They can be applied a wide range of logic gates starting with tens of thousands
up to few millions gates.

• They can be reconfigured to change logic function while resident in the
system.

• FPGAs have short design cycle that leads to fairly inexpensive logic design.
• FPGAs have parallelism in their nature. Thus, they have parallel computing

environment and allows logic cycle design to work parallel.
• They have powerful design, programming and syntheses tools.

The architecture of ANNs must be specified with schematic or algorithmic at first step
of FPGAs based system design. When ANNs based FPGAs system design specify the
architecture of ANNs from a symbolic level. This level allows us using VHDL which
stands for VHSIC (Very High Speed Integrated Circuit) Hardware Programming
Language [7]. VHDL allows many levels of abstractions, and permits accurate
description of electronic components ranging from simple logic gates to
microprocessors. VHDL have tools needed for description and simulation which leads
to a lower production cost.

4 Data Representation

There are two problems during the hardware implementation of ANNs. How to
balance between the need of reasonable precision (number of bit), that is important
for ANN and the cost of more logic area associated with increased precision. How to
choose a suitable number format that dynamic range is large enough to guarantee that
saturation will not occur for a general-purpose application. So before beginning
ANN’s based FPGAs system design with VHDL, number format (floating point, fixed
point etc.) and precision which used for inputs, weighs and activation function must
be considered. This important that precision of the numbers must be as high as
possible are used during training phase. Because, precision has a great impact in the
learning phase [9]. However low precision is used during the propagation phase [10].
So especially in classification’s applications the resulting errors will be small enough
to be neglected [10,5,11].

Floating point offers the greatest amount of dynamic range, making it suitable for
any application so it would be the ideal number format to use. The objective of this
paper is to determinate feasibility of 32 bit floating point arithmetic in FPGAs based
ANNs.

5 Application

In this section FPGA based ANN’s architecture, works and system results is
represented. The application is implementing fully parallel neural network in FPGA.
The network is implemented in Xilinx Spartan IIE chip consist of 200000 typical
gates, 2352 slices.

1108 S. Sahin, Y. Becerikli, and S. Yazici

5.1 Arithmetic Architecture for ANN's

The first work must be, trained ANN's is mapped on FPGA in application phase. So
ANN’s architecture was developed using VHDL with 32 bit floating point arithmetic.
Because of floating point have greatest amount of dynamic range for any applications.
Unfortunately, there is currently no clear support for floating-point arithmetic in
VHDL [4, 12]. As a result, a VHDL library was designed for using ANN's on FPGAs.
The library supports to the IEEE-754 standards for single-precision (32-bit) floating
point arithmetic, and it is referred to fp_lib. The fp_lib has tree separate library, for
floating point addition fp_add, floating point subtraction fp_sub and floating point
multiplication fp_mul.

The single precision floating point numeric representation supports to IEEE-754
standard shown in Figure 1.

Fig. 1. 32 bit Floating Point Format

The floating point number (n) is computed by:

(1)

In Figure 1, sign field is referred to 's' is bit 31 and is used to specify the sign of the
number. Exponent field is referred to 'e' is bits 30 down to 23 are the exponent field.
The bias of 127 is used. Because of 8 bit quantity is a signed number representation.
To store binary representation (b) of floating point number bits 22 down to 0 are used.
The leading one in the mantissa is implicit. So the mantissa is (1.b).

5.2 Network Architecture

By using of the FPGA features hardware implementation of fully parallel ANN's is
possible. In the fully parallel ANN's architecture number of multipliers per neuron
equals to number of connections to this neuron and number of the full adders equals
to number of connections to the previous layer mines one [9]. For example in 2-4-1
network output neuron have 4 multipliers and 3 adders. In this work a VHDL library
were designed for floating point addition fp_add and floating point multiplication
fp_mul. But most resources of FPGAs are used by multiplication and addition
algorithm. So in fully parallel ANN's must be used low number precision (for
example 8 bit). With the low number precision fully parallel network is not suitable
for any application. With the using fp_lib (32 bit floating point number precision)in
ANN's is suitable for any application. But the architecture has one multipliers and one
adders per layer and is not full parallel because of area resource of FPGAs.

In this structure there is one multiplier and one adder per layer. The inputs from
previous layer enter the layer parallel and multiplier serially with their corresponding
weights. The results of multiplication are stored in their neuron area in the addition

 Neural Network Implementation in Hardware Using FPGAs 1109

storage ROM. Multiplied value of per neuron are inputs for adder. The inputs of adder
are added serially and each addition are inputs for sigmoid lookup table. The results
of look up table are stored for next layer. This ANNs architecture is shown in Figure
2. In this design number of layer and number of neuron are changed easily during the
working phase.

Fig. 2. Block diagram of ANNs

5.3 Modeling Tree Layer (2-3-1) ANNs

ANNs consist of input layer, one hidden layer and output layer as shown in Table 1.
Sigmoid function is used as an activation function. Sigmoid function input vector
consist of 100 value from -10 to 10 by chosen 0.2 step size. Results of sigmoid
function are stored in the ROM

Weights are using this application are shown in Table 1.

Table 1. Weights Used in the Application

w111 w121 w131 w112 w122 w132
0.5 1 0.5 1 0.5 1
w211 w212 w213
0.5 1 0.5

1110 S. Sahin, Y. Becerikli, and S. Yazici

Fig. 3. A three layer MLP

5.4 Tree Layer (2-3-2) ANNs Architecture

In our design the external inputs entered the first layer serially. Input value and tree
control signal that are start signal (1 bit), finish signal (1 bit) and neuron count signal
(4 bit) must be entered. Before entered input value start signal must be set and after

WROM

MUTİPLEXER
g1

ADDER

RAM

MULT.
ROM1

in

out

cw
MULT.
ROM2

in

BİAS
+
SUM

CONTROL
UNİT

start nrn_
num.

end

OUT
BFR

reset

 out

 reset

 end

nrn_
num.

start

out9 w9

out1 w9

out2 w9

out3 w9

out4 w9

out5 w9

out6 w9

out7 w9

out8 w9

RL
CTRL

CTRL

CTRL

CTRL

CTRL

CTRL

m.out

sum

sum_
out

Activation
function

Fig. 4. Block diagram of the reconfigurable ANN

 Neural Network Implementation in Hardware Using FPGAs 1111

the entered input value finish signal must be set. If finish signal must be set system
calculate entered input value number. So, the input number depends on the ones.
Weight number is multiplied of input number in the BFR and neuron number.

Then first input, its corresponding and weights are stored in MULT_ROM1 and
they are multiplied serially. The results are stored in area of first neuron in
MULT_ROM2. The same process is repeat for other inputs. The value and bias in the
same neuron area are added serially. The results are input for sigmoid look-up table.
Look-up table outputs are stored OUT_BFR. The value that is this layer outputs must
be next layer inputs. This working is controlled by control unit. Control unit controls
time and makes several signals (for example enable signal) for other unit (see .Fig. 4)

6 Implementation Results

Digilentic demo board is used for implementation. The board has Xlinx Spartan II
2s200epq208-6 and 50 MHz clock. Spartan II chip has 2352 slices and 14 block
RAM. VHDL libraries that it is referred to fp_lib were designed for using ANN's on
FPGAs. The fp_lib has tree separate library are shown in Table 2. The comparison of
FPGA based tree layer (2-3-1) ANNs and software based tree layer (2-3-1) ANNs are
shown in Table 3 with inputs g1 = 0.5 and g2 = -0.25.

Table 2. Summary of custom arithmetic VHDL libraries

HDL
Design

Description

fp_lib IEEE 32-bit single precision floating point library
fp_mul IEEE 32-bit single precision floating point piplined parallel

multiplier
fp_add IEEE 32-bit single precision floating point piplined parallel

adder
Log_rom IEEE 32-bit single precision floating point Single Port

Block Memory

Table 3. Comparison of FPGA base ANNs and software based ANNs

 Software
based ANNs

FPGA
based ANNs

ERROR

g1=0.5
g2=-0.25

2.3274321322 2.268109 0.059323

7 Conclusions

In general, it is shown that implementation of neural networks using FPGAs. The
resultant neural networks are modular, compact, and efficient and the number of
neurons, number of hidden layers and number of inputs are easily changed.

1112 S. Sahin, Y. Becerikli, and S. Yazici

The choice of dynamic range, precision and arithmetic hardware architecture used
in neural networks application has a direct impact on the processing density achieved.
Using suitable precision arithmetic design, one can be achieve adequately high speed
and small size for real time ANNs implementations.

However this study shows that FPGAs are versatile devices for implementing
many different applications. The VHDL-FPGA combination is shown to be a very
powerful embedded system design tool, with low cost, reliability, and multi-faceted
applications. As FPGAs allow the hardware design via configuration software control,
the improvement of circuitry design is just a matter of modifying, debugging and
downloading the new configuration code in a short time.

References

[1] POLIAC M., ZANETTI J., SALERNO D. 1993. Performance Mesuraments of
Seismocardiogram Interpretation Using Neural Networks, Computer in Cardiology, IEEE
Computer Society, pp 573-576

[2] RUCKET, U., FUNKE, A. and PINTASKE, C. 1993 Acceleratorboard for Neural
Associative Memories, Neurocomputing, Vol.5, No.1, pp 39-49.

[3] ZHU, J., GUNTHER, B.K.,1999. Towards an FPGA Based Reconfigurable Computing
Environment for Neural Network Implementations, Proceedings of the Ninth
International Conference on Artificial Neural Networks (ICANN'99). In IEE Conference
Proceedings 470, pp.661-667, IEE.

[4] COX, C., BLANZ, W. 1992. GABGLION-A Fast Field Programmable Gate Array
Implementation of a Connectionist Classifier, IEEE Journal of Solid-satate Circuits,
Vol.27, No.3, pp 288-299.

[5] HAYKIN, S. 1999. Neural Networks A Comprehensive Foundation. 2nd edition,
Prentice Hall Publishing, New Jersey 07458, USA, Vol.1, pp 6-7

[6] BROWN, S.D., FRANCIS, R.J., VRANESIC Z.G. 1992. Field Programmable Gate
Arrays, Kluwer Academics Publishers

[7] ASHEDEN, P., J. September-October 2001, VHDL Standards, IEEE Design & Test of
Computers, vol. 18, n. 6, pp. 122-123.

[8] SAVRAN A., ÜNSAL S., “Hardware Implementation of a Feed forward Neural Network
Using FPGAs”, The third International Conference on Electrical and Electronics
Engineering (ELECO 2003), 3-7 December, Bursa, Turkey, 2003.

[9] STEVENSON, M., WEINTER, R. and WIDOW, B. 1990 Sensitivity of Feedforward
Neural Networks to Weigh Errors, IEEE Transactions on Neural Networks, Vol.1, No 2,
pp71-80

[10] BLAKE, J.J., MAGUIRE, L.P., MCGINNITY, T.M., ROCHE, B., MCDAID, L.J. 1998.
The Implementation of Fuzzy Systems, Neural Networks using FPGAs, Information
Sciences, Vol. 112, pp. 151-168

[11] KRIPS, M., LAMMERT T., and KUMMERT, A. 2002, FPGA Implementation of a
Neural Network for a Real-Time Hand Tracking System, Proceedings of first IEEE
Internaional Workshop on Electronic Design, Test and Applications.

[12] YU X., DENI D. 1994. Implementing Neural Networks In FPGAs, The Institution of
Electrical Engineers, IEE published, Savoy Place, London WC2R 0BL, UK.

	Introduction
	Artificial Neural Network
	Field Programmable Gate Arrays and Very-High Hardware Description Language
	Data Representation
	Application
	Arithmetic Architecture for ANN's
	Network Architecture
	Modeling Tree Layer (2-3-1) ANNs
	Tree Layer (2-3-2) ANNs Architecture

	Implementation Results
	Conclusions
	References

