
Computer Science Tripos
Syllabus and Booklist 2011–12

Contents

Introduction to Part IA 4
Entry to the Computer Science Tripos . 4
Computer Science Tripos Part IA . 4
Natural Sciences Part IA students . 4
Politics, Psychology and Sociology Part I students 4
The curriculum . 5

Michaelmas Term 2011: Part IA lectures 6
Paper 1: Computer Fundamentals . 6
Paper 1: Foundations of Computer Science . 7
Paper 1: Discrete Mathematics I . 9
Paper 2: Digital Electronics . 10
Paper 2: Operating Systems . 12

Lent Term 2012: Part IA lectures 14
Paper 1: Programming in Java . 14
Paper 1: Object-Oriented Programming . 15
Paper 1: Floating-Point Computation . 17
Paper 1: Algorithms I . 18
Paper 2: Probability . 20
Paper 2: Discrete Mathematics II . 21
Paper 2: Software Design . 23

Easter Term 2012: Part IA lectures 25
Paper 2: Regular Languages and Finite Automata 25
Further Java Briefing . 26

Preparing to Study Computer Science 27

Introduction to Part IB 28

2

Michaelmas Term 2011: Part IB lectures 29
Algorithms II . 29
Computer Design . 30
Concurrent and Distributed Systems . 32
Further Java . 36
Group Project . 37
Logic and Proof . 38
Mathematical Methods for Computer Science . 40
Programming in C and C++ . 42
Prolog . 43
Semantics of Programming Languages . 44
Software Engineering . 46
Unix Tools . 47

Lent Term 2012: Part IB lectures 50
Compiler Construction . 50
Complexity Theory . 51
Computation Theory . 53
Computer Graphics and Image Processing . 54
Computer Networking . 56
Databases . 58

Easter Term 2012: Part IB lectures 61
Artificial Intelligence I . 61
Concepts in Programming Languages . 63
Economics and Law . 65
Security I . 66

Introduction to Part II 69

Michaelmas Term 2011: Part II lectures 70
Bioinformatics . 70
Computer Systems Modelling . 71
Digital Signal Processing . 72
Hoare Logic . 75
Information Theory and Coding . 76
Optimising Compilers . 78
Principles of Communications . 80
Quantum Computing . 81
Types . 83

Lent Term 2012: Part II lectures 85
Artificial Intelligence II . 85
Business Studies . 87
Comparative Architectures . 88
Computer Vision . 90
Denotational Semantics . 92

3

Information Retrieval . 94
Natural Language Processing . 95
Security II . 96
Temporal Logic and Model Checking . 99
Topical Issues . 100

Easter Term 2012: Part II lectures 102
Advanced Graphics . 102
Business Studies Seminars . 103
E-Commerce . 104
Mobile and Sensor Systems . 106
System-on-Chip Design . 107

4 University of Cambridge

Introduction to Part IA

Entry to the Computer Science Tripos

The only essential GCE A level for admission to Cambridge to read for the Computer
Science Tripos is Mathematics. Also desirable are Further Mathematics and a physical
science (Physics, Chemistry or Geology) at A level, or at AS level if not taken at A level.
Some colleges may ask candidates to take the Advanced Extension Award or STEP
papers in Mathematics.

Computer Science Tripos Part IA

Part IA students accepted to read Computer Science with Mathematics will attend,
besides the courses listed in this document, lectures for Papers 1 and 2 of Part IA of the
Mathematical Tripos.

All other Part IA students are required to attend, besides the lectures listed in this
document, the Mathematics course offered for Part IA of the Natural Sciences Tripos,
together with either Paper 3 of Part IA of the Politics, Psychology and Sociology (PPS)
Tripos or one other Natural Science subject selected from the following list: Chemistry,
Evolution and Behaviour, Earth Sciences, Physics, and Physiology of Organisms.

Physics is recommended for those with an A-level in the subject; potential applicants may
note that there is no A-level prerequisite for Evolution and Behaviour, Earth Sciences or
Physiology of Organisms, although an AS-level science would be desirable. Laboratory
work forms an integral part of the Natural Sciences Part IA course, and students reading
the Computer Science Tripos will be required to undertake practical work on the same
basis as for the Natural Sciences Tripos. There is no A-level requirement for those taking
Paper 3 of the PPS Tripos.

Natural Sciences Part IA students

There is a Computer Science option in the first year of the Natural Sciences Tripos,
counting as one quarter of the year’s work. Students taking this option attend all the
lectures and practicals listed in this document, with the exception of those indicated as
being Paper 2 courses.

Politics, Psychology and Sociology Part I students

There is an “Introduction to Computer Science” option in Part I of the Politics, Psychology
and Sociology Tripos. Students taking this option attend all the lectures and practicals
listed in this document, with the exception of those indicated as being Paper 2 courses.

Computer Science Tripos Part IA 5

The curriculum

This document lists the courses offered by the Computer Laboratory for Papers 1 and 2 of
Part IA of the Computer Science Tripos. Separate booklets give details of the syllabus for
the second- and third-year courses in Computer Science.

The syllabus information given here is for guidance only and should not be considered
definitive. Current timetables can be found at
http://www.cl.cam.ac.uk/teaching/lectlist/

For most of the courses listed below, a list of recommended books is given. These are
roughly in order of usefulness, and lecturers have indicated by means of an asterisk those
books which are most recommended for purchase by College libraries.

The Computer Laboratory Library aims to keep at least one copy of each of the course
texts in “The Booklocker” (see http://www.cl.cam.ac.uk/library/).

For further copies of this booklet and for answers to general enquiries about Computer
Science courses, please get in touch with:

Teaching Administrator
University of Cambridge
Computer Laboratory
William Gates Building
J J Thomson Avenue
Cambridge
CB3 0FD

telephone: 01223 334656
fax: 01223 334678
e-mail: undergraduate.admissions@cl.cam.ac.uk

http://www.cl.cam.ac.uk/teaching/lectlist/
http://www.cl.cam.ac.uk/library/
mailto:undergraduate.admissions@cl.cam.ac.uk

6 University of Cambridge

Michaelmas Term 2011: Part IA lectures

Paper 1: Computer Fundamentals

Lecturer: Dr R.K. Harle

No. of lectures: 4

This course is a prerequisite for Operating Systems.

Aims

The overall aim of this course is to provide a general understanding of how a computer
works. This includes aspects of the underlying hardware (CPU, memory, devices), as well
as how to program a computer at a low level using assembly language.

Lectures

• Computer components . Brief history. Main components: CPU, memory,
peripherals (displays, graphics cards, hard drives, flash drives, simple input devices),
motherboard, buses.

• Data representation and operations . Simple model of memory. Bits and bytes.
Binary, hex, octal, decimal numbers. Character and numeric arrays. Data as
instructions: von-Neumann architecture, fetch-execute cycle, program counter (PC).

• Low- and high-level computing . Pointers. The stack and heap. Box and Pointer
Diagrams. Levels of abstraction: machine code, assembly, high-level languages.
Compilers and interpreters. Read-eval-print loop model.

• Platforms and multitasking . The need for operating systems. Multicore systems,
time-slicing. Virtual machines. The Java bytecode/VM approach to portability. ML as
a high-level language emphasising mathematical expressivity over input-output.

Objectives

At the end of the course students should be able to

• describe the fetch–execute cycle of a simple computer with reference to the control
and execution units;

• understand the different types of information which may be stored within a computer
memory;

• understand a simple assembly language program.

Computer Science Tripos Part IA 7

Recommended reading

Patterson, D. & Hennessy, J. (2009). Computer organisation and design. Morgan
Kaufmann (4th ed.).
Tanenbaum, A.S. (1990). Structured computer organisation. Prentice Hall (3rd ed).

Paper 1: Foundations of Computer Science

Lecturer: Professor L.C. Paulson

No. of lectures and practicals: 15 + 6

This course is a prerequisite for Programming in Java and Prolog (Part IB).

Aims

The main aim of this course is to present the basic principles of programming. As the
introductory course of the Computer Science Tripos, it caters to students from all
backgrounds. To those who have had no programming experience, it will be
comprehensible; to those experienced in languages such as C, it will attempt to correct
any bad habits that they have learnt.

A further aim is to introduce the principles of data structures and algorithms. The course
will emphasise the algorithmic side of programming, focusing on problem-solving rather
than on hardware-level bits and bytes. Accordingly it will present basic algorithms for
sorting, searching, etc., and discuss their efficiency using O-notation. Worked examples
(such as polynomial arithmetic) will demonstrate how algorithmic ideas can be used to
build efficient applications.

The course will use a functional language (ML). ML is particularly appropriate for
inexperienced programmers, since a faulty program cannot crash. The course will present
the elements of functional programming, such as curried and higher-order functions. But it
will also discuss traditional (procedural) programming, such as assignments, arrays,
pointers and mutable data structures.

Lectures

• Introduction. Levels of abstraction. Floating-point numbers, and why von Neumann
was wrong. Why ML? Integer arithmetic. Giving names to values. Declaring
functions. Static binding, or declaration versus assignment.

• Recursive functions. Examples: Exponentiation and summing integers.
Overloading. Decisions and booleans. Iteration versus recursion.

• O Notation. Examples of growth rates. Dominance. O, Omega and Theta. The
costs of some sample functions. Solving recurrence equations.

8 University of Cambridge

• Lists. Basic list operations. Append. Naı̈ve versus efficient functions for length and
reverse. Strings.

• More on lists. The utilities take and drop. Pattern-matching: zip, unzip. A word on
polymorphism. The “making change” example.

• Sorting. A random number generator. Insertion sort, mergesort, quicksort. Their
efficiency.

• Datatypes and trees. Pattern-matching and case expressions. Exceptions. Binary
tree traversal (conversion to lists): preorder, inorder, postorder.

• Dictionaries and functional arrays. Functional arrays. Dictionaries: association
lists (slow) versus binary search trees. Problems with unbalanced trees.

• Queues and search strategies. Depth-first search and its limitations. Breadth-first
search (BFS). Implementing BFS using lists. An efficient representation of queues.
Importance of efficient data representation.

• Functions as values. Nameless functions. Currying.

• List functionals. The “apply to all” functional, map. Examples: matrix transpose and
product. The “fold” functionals. Predicate functionals “filter” and “exists”.

• Polynomial arithmetic. Addition, multiplication of polynomials using ideas from
sorting, etc.

• Sequences, or lazy lists. Non-strict functions such as IF. Call-by-need versus
call-by-name. Lazy lists. Their implementation in ML. Applications, for example
Newton-Raphson square roots.

• Elements of procedural programming. Address versus contents. Assignment
versus binding. Own variables. Arrays, mutable or not.

• Linked data structures. Linked lists. Surgical concatenation, reverse, etc.

Objectives

At the end of the course, students should

• be able to write simple ML programs;

• understand the importance of abstraction in computing;

• be able to estimate the efficiency of simple algorithms, using the notions of
average-case, worse-case and amortised costs;

• know the comparative advantages of insertion sort, quick sort and merge sort;

• understand binary search and binary search trees;

• know how to use currying and higher-order functions.

Computer Science Tripos Part IA 9

Recommended reading

* Paulson, L.C. (1996). ML for the working programmer. Cambridge University Press
(2nd ed.).
Okasaki, C. (1998). Purely functional data structures. Cambridge University Press.

Gentler alternative to the main text:
Hansen, M. & Rischel, H. (1999). Introduction to programming using SML.
Addison-Wesley.

For reference only:
Gansner, E.R. & Reppy, J.H. (2004). The Standard ML Basis Library. Cambridge
University Press. ISBN: 0521794781

Paper 1: Discrete Mathematics I

Lecturer: Dr S. Staton

No. of lectures: 9 (Continued into Lent Term)

This course is a prerequisite for all theory courses as well as Probability, Discrete
Mathematics II, Algorithms I, Security (Parts IB and II), Artificial Intelligence (Parts IB
and II), Information Theory and Coding (Part II).

Aims

This course will develop the intuition for discrete mathematics reasoning involving numbers
and sets.

Lectures

• Logic. Propositional and predicate logic formulas and their relationship to informal
reasoning, truth tables, validity. [3 lectures]

• Proof. Proving propositional and predicate formulas in a structured way. Introduction
and elimination rules. [2 lectures]

• Sets. Basic set theory. Relations, graphs, and orders. [2 lectures]

• Induction. Proof by induction, including proofs about total functional programs over
natural numbers and lists. [2 lectures]

Objectives

On completing the course, students should be able to

10 University of Cambridge

• write a clear statement of a problem as a theorem in mathematical notation;

• prove and disprove assertions using a variety of techniques.

Recommended reading

* Velleman, D.J. (1994). How to prove it (a structured approach). Cambridge University
Press.
* Rosen, K.H. (1999). Discrete mathematics and its applications. McGraw-Hill (6th ed.).
Biggs, N.L. (1989). Discrete mathematics. Oxford University Press.
Bornat, R. (2005). Proof and disproof in formal logic. Oxford University Press.
Devlin, K. (2003). Sets, functions, and logic: an introduction to abstract mathematics.
Chapman and Hall/CRC Mathematics (3rd ed.).
Mattson, H.F. Jr (1993). Discrete mathematics. Wiley.
Nissanke, N. (1999). Introductory logic and sets for computer scientists. Addison-Wesley.
Pólya, G. (1980). How to solve it. Penguin.

Paper 2: Digital Electronics

This course is not taken by NST or PPST students.

Lecturer: Dr I.J. Wassell

No. of lectures and practical classes: 11 + 7

This course is a prerequisite for Operating Systems and Computer Design (Part IB).

Aims

The aims of this course are to present the principles of combinational and sequential
digital logic design and optimisation at a gate level. The use of transistors for building
gates is also introduced.

Lectures

• Introduction. Semiconductors to computers. Logic variables. Examples of simple
logic. Logic gates. Boolean algebra. De Morgan’s theorem.

• Logic minimisation. Truth tables and normal forms. Karnaugh maps.

• Binary adders. Half adder, full adder, ripple carry adder, fast carry generation.

• Combinational logic design: further considerations. Multilevel logic. Gate
propagation delay. An introduction to timing diagrams. Hazards and hazard
elimination. Other ways to implement combinational logic.

Computer Science Tripos Part IA 11

• Introduction to practical classes. Prototyping box. Breadboard and Dual in line
(DIL) packages. Wiring. Use of oscilloscope.

• Sequential logic. Memory elements. RS latch. Transparent D latch. Master–slave
D flip-flop. T and JK flip-flops. Setup and hold times.

• Sequential logic. Counters: Ripple and synchronous. Shift registers.

• Synchronous State Machines. Moore and Mealy finite state machines (FSMs).
Reset and self starting. State transition diagrams.

• Further state machines. State assignment: sequential, sliding, shift register, one
hot. Implementation of FSMs.

• Circuits. Solving non-linear circuits. Potential divider. N-channel MOSFET. N-MOS
inverter. N-MOS logic. CMOS logic. Logic families. Noise margin. [2 lectures]

Objectives

At the end of the course students should

• understand the relationships between combination logic and boolean algebra, and
between sequential logic and finite state machines;

• be able to design and minimise combinational logic;

• appreciate tradeoffs in complexity and speed of combinational designs;

• understand how state can be stored in a digital logic circuit;

• know how to design a simple finite state machine from a specification and be able to
implement this in gates and edge triggered flip-flops;

• understand how to use MOS transistors.

Recommended reading

* Harris, D.M. & Harris, S.L. (2007). Digital design and computer architecture. Morgan
Kaufmann.
Katz, R.H. (2004). Contemporary logic design. Benjamin/Cummings. The 1994 edition is
more than sufficient.
Hayes, J.P. (1993). Introduction to digital logic design. Addison-Wesley.

Books for reference:

Horowitz, P. & Hill, W. (1989). The art of electronics. Cambridge University Press (2nd ed.)
(more analog).
Weste, N.H.E. & Harris, D. (2005). CMOS VLSI Design – a circuits and systems
perspective. Addison-Wesley (3rd ed.).

12 University of Cambridge

Mead, C. & Conway, L. (1980). Introduction to VLSI systems. Addison-Wesley.
Crowe, J. & Hayes-Gill, B. (1998). Introduction to digital electronics.
Butterworth-Heinemann.
Gibson, J.R. (1992). Electronic logic circuits. Butterworth-Heinemann.

Paper 2: Operating Systems

This course is not taken by NST or PPST students.

Lecturer: Professor I.M. Leslie

No. of lectures: 13

Prerequisite courses: Computer Fundamentals, Digital Electronics

This course is a prerequisite for Concurrent & Distributed Systems (Part IB), Security
(Parts IB and II) and Mobile and Sensor Systems (Part II).

Aims

The overall aim of this course is to provide a general understanding of the structure and
key functions of the operating system. Case studies will be used to illustrate and reinforce
fundamental concepts.

Lectures

• Introduction to operating systems. Abstract view of an operating system. OS
evolution: multi-programming, time-sharing. Dual-mode operation. Protecting I/O,
memory, CPU. Kernels and micro-kernels. [1 lecture]

• Processes and scheduling. Job/process concepts. Scheduling basics: CPU-I/O
interleaving, (non-)preemption, context switching. Scheduling algorithms: FCFS,
SJF, SRTF, priority scheduling, round robin. Combined schemes. [2 lectures]

• Memory management. Processes in memory. Logical addresses. Partitions: static
versus dynamic, free space management, external fragmentation. Segmented
memory. Paged memory: concepts, internal fragmentation, page tables. Demand
paging/segmentation. Replacement strategies: OPT, FIFO, LRU (and
approximations), NRU, LFU/MFU, MRU. Working set schemes. [3 lectures]

• I/O subsystem. General structure. Polled mode versus interrupt-driven I/O.
Application I/O interface: block and character devices, buffering, blocking versus
non-blocking I/O. Other issues: caching, scheduling, spooling, performance.
[1 lecture]

• File management. File concept. Directory and storage services. File names and
meta-data. Directory name-space: hierarchies, DAGs, hard and soft links. File
operations. Access control. Existence and concurrency control. [1 lecture]

Computer Science Tripos Part IA 13

• Protection. Requirements. Subjects and objects. Design principles. Authentication
schemes. Access matrix: ACLs and capabilities. Combined scheme. Covert
channels. [1 lecture]

• Unix case study. History. General structure. Unix file system: file abstraction,
directories, mount points, implementation details. Processes: memory image, life
cycle, start of day. The shell: basic operation, commands, standard I/O, redirection,
pipes, signals. Character and block I/O. Process scheduling. [2 lectures]

• Windows NT case study. History. Design principles. Overall architecture. HAL.
Kernel: objects, processes, threads, scheduling. Executive: object manager and
object namespace, process manager, VM manager, I/O manager. File-System.
Security System. [2 lectures]

Objectives

At the end of the course students should be able to

• describe the general structure and purpose of an operating system;

• explain the concepts of process, address space, and file;

• compare and contrast various CPU scheduling algorithms;

• understand the differences between segmented and paged memories, and be able
to describe the advantages and disadvantages of each;

• compare and contrast polled, interrupt-driven and DMA-based access to I/O devices.

Recommended reading

* Bacon, J. & Harris, T. (2003). Operating systems. Addison-Wesley (3rd ed.).
Silberschatz, A., Peterson, J.L. & Galvin, P.C. (2008). Operating systems concepts. Wiley
(8th ed.).
Leffler, S. (1989). The design and implementation of the 4.3BSD Unix operating system.
Addison-Wesley.
Solomon, D. & Russinovich, M. (2000). Inside Windows 2000. Microsoft Press (3rd ed.).

14 University of Cambridge

Lent Term 2012: Part IA lectures

Paper 1: Programming in Java

Lecturers: Dr A.R. Beresford and Dr A.C. Rice

No. of practical classes: 8 x 2-hour sessions

Prerequisite course: Foundations of Computer Science

Companion courses: Object-Oriented Programming, Floating-Point Computation

This course is a prerequisite for Algorithms I and II, for Further Java and for Concurrent
and Distributed Systems, as well as for the Group Project.

Aims

The goal of this course is to provide students with the ability to write programs in Java and
apply concepts described in the Object-Oriented Programming course. The course is
designed to accommodate students with diverse programming backgrounds; consequently
Java is taught from first principles in a practical class setting where students can work at
their own pace from a course handbook. Each practical class will culminate in an
assessed exercise.

Practical classes

• Methods, operators and types. This class will concentrate on the fundamentals of
imperative programming. Students will learn about Java primitive types, variable
declaration, operators and method calls.

• Control structures. Students will explore the control structures found in Java.

• Arrays, references and classes. This week the students will explore arrays and
references in Java and learn how to define and instantiate their own class.

• Input/Output and Exceptions. This class will examine streams and Exceptions.
Students will read and write data to and from the filesystem and network and learn to
handle errors using Java Exceptions.

• Inheritance and interfaces. This class will explore object-oriented programming as
expressed in Java. Students will learn how to extend classes, as well as specify and
provide implementations for Java interfaces.

• Abstraction and graphical interfaces. Students will examine code-reuse through
inheritance and the use of inner classes for encapsulation. Students will begin to
construct a graphical interface using Swing.

• Swing and event handling. Students will complete their graphical interface by
writing event handlers to control the execution of a graphical application.

Computer Science Tripos Part IA 15

Objectives

At the end of the course students should

• be familiar with the main features of the Java language;

• be able to write a Java program to solve a well specified problem;

• understand a Java program written by someone else;

• be able to debug and test Java programs;

• be familiar with major parts of Java 6 SE libraries;

• understand how to read Javadoc library documentation and reuse library code.

Recommended reading

* Eckel, B. (2006). Thinking in Java. Prentice Hall (4th ed.).

Paper 1: Object-Oriented Programming

Lecturer: Dr R.K. Harle

No. of lectures + examples classes: 9 + 2

Companion course: Programming in Java

Aims

This course runs in parallel with the Programming in Java practical course. It is intended to
provide both an introduction to Java that complements the practical workbooks and to
highlight the abstract notion of object-oriented programming. Examples and discussions
will use Java primarily, but other languages may be used to illustrate specific points where
appropriate.

Syllabus

• Hardware Refresher. Fetch-execute cycle. Registers. System Architectures.
Imperative languages as closer to the hardware. The JVM idea. [1/2 lecture]

• Programmer’s Model of Memory. Primitive Types. Pointers. References.
Pass-by-value and pass-by-reference. Reference Types. [1/2 lecture]

16 University of Cambridge

• OOP Concepts. Objects vs classes. Identifying objects. Distinguishing state and
behaviour. UML class diagrams. Modularity. Encapsulation. Inheritance. Casting.
Polymorphism. Abstract Classes. Multiple inheritance. Java interfaces.
Representing class-level data. Exceptions in brief. [3 lecture]

• Lifecycle of an Object. Constructors. Destructors. Garbage Collection. [1/2 lecture]

• Copying Objects. Copy constructors. Cloning in Java. Cloneable as a marker
interface in Java. [1/2 lecture]

• Comparing Objects. Comparing primitive types. Comparing reference types.
Comparable and Comparator in Java. [1 lecture]

• Templates and Generics. Java Collections framework as motivation. Examples of
generic programming. [1 lecture]

• Design patterns and design examples. Introduction to design patterns. Applying
design patterns to example problems. Design patterns in the Java class library.
Examples of building a Java program from problem statement to testing. [2 lectures]

• Common Java errors. The need for care with syntax. Numerical overflow and other
common problems. [if time allows]

Objectives

At the end of the course students should

• understand the principles of OOP;

• be able to demonstrate good object-oriented programming skills in Java;

• understand the capabilities and limitations of Java;

• be able to describe, recognise, apply and implement selected design patterns in
Java;

• be familiar with common errors in Java and its associated libraries.

Recommended reading

No single text book covers all of the topics in this course. For those new to OOP, the best
introductions are usually found in the introductory programming texts for OOP languages
(such as Java, python or C++). Look for those that are for people new to programming
rather than those that are designed for programmers transitioning between languages (the
Deitel book is highlighted for this reason). The web is also a very useful resource — look
for Java tutorials.

* Deitel, H.M. & Deitel, P.J. (2009). Java: How to Program. Prentice Hall (8th ed.).

Computer Science Tripos Part IA 17

Flanagan, D. (2005). Java in a nutshell : a desktop quick reference. O’Reilly (5th ed.).
Flanagan, D. (2004). Java examples in a nutshell : a tutorial companion to Java in a
nutshell. O’Reilly (3rd ed.).
Gamma, E., Helm, R., Johnson, R. & Vlissides, A. (1995). Design patterns: elements of
reusable object-oriented software. Addison-Wesley.
Bloch, J. & Gafter, N. (2005). Java puzzlers. Addison-Wesley.

Paper 1: Floating-Point Computation

Lecturer: Dr D.J. Greaves

No. of lectures: 6

This course is useful for the Part II courses Advanced Graphics and Digital Signal
Processing.

Aims

This course has two aims: firstly to provide an introduction to (IEEE) floating-point data
representation and arithmetic; and secondly to show, how naı̈ve implementations of
obvious mathematics can go badly wrong. An overall implicit aim is to encourage caution
when using any floating-point value produced by a computer program.

Lectures

• Integer and floating-point representation and arithmetic. Signed and unsigned
integers and fixed-point; arithmetic, saturating arithmetic. IEEE 754/854 floating
point (32 and 64 bit); zeros, infinities, NaN. Brief mention of IEEE 754r. What
numbers are exactly representable in bases 2 and 10. Accuracy in terms of
significant figures. Floating point arithmetic is non-associative, and mathematical
equivalences fail. Nonsensical results, e.g. sin(1e40), counting in floating point.

• IEEE Floating-point arithmetic. Floating point arithmetic, and the IEEE
requirements. Why the IEEE standard has endured. Overflow, underflow,
progressive loss of significance. Rounding modes. Difficulty in obtaining
IEEE-quality in libraries. The java.lang.Math trigonometric library promises.

• How floating-point computations diverge from real-number calculations.
Absolute Error, Relative Error, Machine epsilon, Unit in Last Place (ulp). Finite
computation: solving a quadratic. Summing a finite series. Rounding (round-off) and
truncation (discretisation) error. Numerical differentiation; determining a good step
size.

• Iteration and when to stop. Unbounded computation may produce unbounded
errors. Solving equations by iteration and comparison to terminate it. Newton’s

18 University of Cambridge

method. Idea of order of convergence. Why summing a Taylor series is problematic
(loss of all precision, range reduction, non-examinable hint at economisation).

• Ill-conditioned or chaotic problems. Effect of changes of a few ulp in the inputs.
Conditioning number when amenable to mathematical analysis; Monte-Carlo
exploration when not.

• Other approaches and their problems Adaptive methods. Arbitrary precision
floating point, adaptive floating point, interval arithmetic. Discussion on the problems
of exact real arithmetic. Remark on the x86 implementations of IEEE arithmetic, and
compiler “optimisations”.

Objectives

At the end of the course students should

• be able to convert simple decimal numbers to and from IEEE floating-point format,
and to perform IEEE arithmetic on them;

• be able to identify problems with floating-point implementations of simple
mathematical problems;

• know when a problem is likely to yield incorrect solutions no matter how it is
processed numerically;

• know to use a professionally-written package whenever possible (and still to treat
claims of accuracy with suspicion).

Recommended reading

Overton, M.L. (2001). Numerical computing with IEEE floating point arithmetic. SIAM.

Further reading – goes far beyond the course

Goldberg, D. (1991). What every computer scientist should know about floating-point
arithmetic. ACM Computing Surveys, vol. 23, pp. 5–48.

Paper 1: Algorithms I

Lecturer: Dr F.M. Stajano

No. of lectures: 15 (Continued into Easter Term)

Prerequisite course: Discrete Mathematics I

This course is a prerequisite for Algorithms II, Artificial Intelligence and Prolog.

Computer Science Tripos Part IA 19

Aims

The aim of this course is to provide an introduction to computer algorithms and data
structures, with an emphasis on foundational material.

Lectures

• Sorting. Review of complexity, O-notation, insertion sort, merge sort and quicksort.
Understanding the memory behaviour of these algorithms with statically allocated
arrays. Heapsort. Other sorting methods including sorting in linear time. Median and
order statistics. [Ref: Cormen et al. Ch 1, 2, 3, 4, 6, 7, 8, 9] [about 4.5 lectures]

• Strategies for algorithm design. Dynamic programming, divide and conquer,
greedy algorithms and other useful paradigms. [Ref: Ch 4, 15, 16] [about 3.5
lectures]

• String matching. Naive strategy. Rabin-Karp. Finite automata. [Ref: Ch 32] [about
1 lecture]

• Data structures. Abstract data types. Pointers, stacks, queues, lists, trees. Binary
search trees. Red-black trees. B-trees. Hash tables. Priority queues and heaps.
[Ref: Ch 6, 10, 11, 12, 13, 18] [about 6 lectures]

Objectives

At the end of the course students should

• have a good understanding of how several fundamental algorithms work, particularly
those concerned with sorting and searching;

• have a good understanding of the fundamental data structures used in computer
science;

• be able to analyse the space and time efficiency of most algorithms;

• be able to design new algorithms or modify existing ones for new applications and
reason about the efficiency of the result.

Recommended reading

* Cormen, T.H., Leiserson, C.D., Rivest, R.L. & Stein, C. (2009). Introduction to
Algorithms. MIT Press (3rd ed.). ISBN 978-0262533058
Sedgewick, R. & Wayne, K. (2011). Algorithms. Addison-Wesley (4th ed.). ISBN
978-0321573513.
Kleinberg, J. & Tardos, É. (2006). Algorithm design. Addison-Wesley. ISBN
9780321372918.

20 University of Cambridge

Knuth, D.E. (2011). The art of computer programming. Addison-Wesley (3rd ed.). ISBN
978-0321751041.

Students are expected to buy, make extensive use of, and keep as reference for their
future career, one of the above textbooks: those not doing so will be severely
disadvantaged. The recommended choice is Cormen et al. which, in spite of its superb
quality, covers the whole syllabus and is one of the cheapest (about 35 GBP new for over
1300 pages). The other textbooks may not cover the whole syllabus but are all excellent
resources; their relative merits are discussed in the course handout.

Paper 2: Probability

This course is not taken by NST or PPST students.

Lecturer: Dr R.J. Gibbens

No. of lectures: 8

Prerequisite course: Discrete Mathematics I

This course is a prerequisite for the Part IB course Mathematical Methods for Computer
Science, and the following Part II courses: Artificial Intelligence II, Computer Systems
Modelling, Information Theory and Coding, Computer Vision, Digital Signal Processing,
Natural Language Processing and Information Retrieval.

Aims

The main aim of this course is to provide a foundation in Probability with emphasis on
areas that are particularly applicable to Computer Science.

Lectures

• Review of elementary probability theory. Random variables. Discrete and
continuous distributions. Means and variances, moments, independence, conditional
probabilities. Bayes’s theorem. [2 lectures]

• Probability generating functions. Definitions and properties. Use in calculating
moments of random variables and for finding the distribution of sums of independent
random variables. [2 lectures]

• Multivariate distributions and independence. Random vectors and
independence. Joint and marginal density functions. Variance, covariance and
correlation. Conditional density functions. [2 lectures]

• Elementary stochastic processes. Random walks. Recurrence and transience.
The Gambler’s Ruin problem. Solution using difference equations. [2 lectures]

Computer Science Tripos Part IA 21

Objectives

At the end of the course students should

• have a thorough understanding of concepts in probability theory and a practical
knowledge of associated calculations;

• be aware of applications of probability across the field of computer science.

Recommended reading

* Grimmett, G. & Welsh, D. (1986). Probability: an introduction. Oxford University Press.

Paper 2: Discrete Mathematics II

This course is not taken by NST or PPST students.

Lecturer: Professor G. Winskel

No. of lectures: 12

Prerequisite course: Discrete Mathematics I

This course is a prerequisite for all theory courses as well as Security (Part IB and Part II),
Artificial Intelligence (Part IB and Part II), Information Theory and Coding (Part II).

Aims

This course will develop the theory of sets and their uses in Computer Science.

Lectures

• Sets and logic. The basic set operations (union, intersection and complement) on
subsets of a fixed set. The Boolean laws. Propositional logic and its models. Validity,
entailment, and equivalence of propositions revisited. Structural induction illustrated
on propositions. [2 lectures]

• Relations and functions. Product of sets. Relations, functions and partial
functions. Composition and identity relations. Injective, surjective and bijective
functions. Direct and inverse image of a set under a relation. Equivalence relations
and partitions; modular arithmetic as an example. Directed graphs and partial
orders. Size of sets (cardinality), especially countability. Cantor’s diagonal argument
to show the reals are uncountable. [3 lectures]

22 University of Cambridge

• Constructions on sets. Russell’s paradox. Basic sets, comprehension, indexed
sets, unions, intersections, products, disjoint unions, powersets. Characteristic
functions. Sets of functions. Lambda notation for functions. Cantor’s diagonal
argument to show power set strictly increases size. [2 lectures]

• Introduction to inductive definitions. Using rules to define sets; examples.
Reasoning principles: rule induction and its instances; induction on derivations
briefly. Simple applications, including transitive closure of a relation. [3 lectures]

• Well-founded induction. Well-founded relations and well-founded induction. Other
induction principles as instances of well-founded induction. Product and
lexicographic product of well-founded relations. Examples and applications,
including to Euclid’s algorithm for HCF/GCD. Informal understanding of definition by
well-founded recursion. [2 lectures]

Objectives

On completing this part of the course, students should be able to

• understand and use the language of set theory; prove and disprove assertions using
a variety of techniques;

• understand Boolean operations as operations on sets and formulate statements
using Boolean logic;

• apply the principle of well-founded induction;

• define sets inductively using rules, and prove properties about them.

Recommended reading

Comprehensive notes will be provided.

Devlin, K. (2003). Sets, functions, and logic: an introduction to abstract mathematics.
Chapman and Hall/CRC Mathematics (3rd ed.).
Biggs, N.L. (1989). Discrete mathematics. Oxford University Press.
Mattson, H.F. Jr (1993). Discrete mathematics. Wiley.
Nissanke, N. (1999). Introductory logic and sets for computer scientists. Addison-Wesley.
Pólya, G. (1980). How to solve it. Penguin.

Computer Science Tripos Part IA 23

Paper 2: Software Design

This course is not taken by NST or PPST students.

Lecturer: Dr C. Mascolo

No. of lectures: 7 (Continued into Easter Term)

Companion courses: Object-Oriented Programming, Programming in Java

This course is a prerequisite for the Group Project (Part IB).

Aims

The aim of this course is to present a range of effective methods for the design and
implementation of software, especially where that software must meet professional quality
standards. This will include a brief introduction to current commercial methods, but the
main motivation is to understand the reasons why such methods have developed, how
they differ from the concerns of academic computer science, and what are the technical
foundations of good software engineering.

Lectures

• Introduction. Dealing with uncertainty in design, and the need for a
knowledge-based modeling process. Overview of the design process, with reference
to the terminology of the UML Rational Unified Process (Inception phase,
Elaboration phase, Construction phase, Transition phase).

• Inception phase. Structured description of system usage and function,
requirements capture techniques, identification of scenarios and UML use case
diagrams. Description of scenario elements in terms of CRC models – classes,
responsibilities and collaborators.

• Elaboration phase. Systematic definition of classes, data and system structure.
Abstraction, modularisation and UML class diagrams. Combining top-down
refinement with bottom-up construction.

• Construction phase (1). Object interaction, behaviour and state. Different varieties
of UML interaction diagram. Recognising coupling between modules and
responsibility-driven design. Structuring source code as a design model.
Recognition of variable roles.

• Construction phase (2). Data lifecycles and constraints, expressed using UML
statecharts and Z notation. Defensive programming methods including recognition of
pre- and post-conditions, invariants, composition and assertions. Library
components and documentation.

• Transition phase. Rapid and agile prototyping strategies and iteration. Quality,
testing and evaluation strategies, optimisation and debugging techniques.

24 University of Cambridge

Objectives

At the end of the course, students should be able to undertake system design in a
methodical manner, starting from a statement of system requirements, developing a
modular design model, refining it into an implementation that clearly identifies and
minimises risk, coding in a manner that can be integrated with the work of a team, and
using appropriate methods to identify and prevent faults.

Recommended reading

McConnell, S. (2004). Code complete: a practical handbook of software construction.
Microsoft Press (2nd ed.).
Fowler, M. (2003). UML distilled. Addison-Wesley (3rd ed.).

Revision and reinforcement of object-oriented concepts for those needing this:

Barnes, D.J. & Kölling, M. (2006). Objects first with Java: a practical introduction using
BlueJ. Pearson Education (3rd ed.).

Further reading

Broy, M. & Denert, E. (ed.) (2002). Software pioneers: contributions to software
engineering. Springer-Verlag.
Collins, H. & Pinch, T. (1998). The Golem at large: what you should know about
technology. Cambridge University Press.
Petroski, H. (1985). To engineer is human: the role of failure in successful design.
Macmillan.
Vincenti, W.G. (1990). What engineers know and how they know it: analytical studies from
aeronautical history. Johns Hopkins University Press.
Simon, H.A. (1996). The sciences of the artificial. MIT Press.
Schon, D.A. (1990). Educating the reflective practitioner. Jossey-Bass.
Pressman, R.S. (2010). Software engineering. McGraw-Hill (7th international ed.). ISBN
9780073375977

Computer Science Tripos Part IA 25

Easter Term 2012: Part IA lectures

Paper 2: Regular Languages and Finite Automata

This course is not taken by NST or PPST students.

Lecturer: Professor A.M. Pitts

No. of lectures: 8

This course is useful for Compiler Construction (Part IB) and Natural Language
Processing (Part II).

Aims

The aim of this short course will be to introduce the mathematical formalisms of finite state
machines, regular expressions and context-free grammars, and to explain their
applications to computer languages.

Lectures

• Regular expressions. Specifying sets of strings by pattern-matching. [1 lecture]

• Finite state machines. Deterministic and non-deterministic finite automata and the
languages they accept. [1 lecture]

• Regular languages. The language determined by a regular expression is regular
and every regular language is determined by some regular expression. [2 lectures]

• The Pumping Lemma. Proof and applications. [1 lecture]

• Context-Free grammars. Context-free grammars. Backus-Naur form (BNF).
Chomsky and Greibach normal forms. Regular grammars. The class of regular
languages coincides with the class of languages generated by a regular grammar. [1
lecture]

• Pushdown automata. Pushdown automata and the languages they accept. A
language is context-free if and only if it is accepted by some pushdown automaton.
Forward look to Computation Theory. [2 lectures]

Objectives

At the end of the course students should

• be able to explain how to convert between the three ways of representing regular
sets of strings introduced in the course; and be able to carry out such conversions by
hand for simple cases;

26 University of Cambridge

• be able to use the Pumping Lemma to prove that a given set of strings is not a
regular language;

• be able to design a pushdown automaton to accept strings for a given context-free
grammar.

Recommended reading

Hopcroft, J.E., Motwani, R. & Ullman, J.D. (2001). Introduction to automata theory,
languages, and computation. Addison-Wesley (2nd ed.).
* Kozen, D.C. (1997). Automata and computability. Springer-Verlag.

Further Java Briefing

Lecturer: Dr A.R. Beresford

No. of lectures: 1

Prerequisite course: Programming in Java

This course is a prerequisite for Further Java.

Aims

To reinforce concepts introduced in Programming in Java, provide further practical
experience with algorithms and data structures, and prepare students for the Part IB
Further Java course.

Lecture

The lecture describes the requirements for the first assessed exercise of the Part IB
Further Java course.

Objectives

On completing the exercise students should

• be prepared for the Part IB Further Java course;

• have developed their practical Java programming skills further.

Computer Science Tripos Part IA 27

Preparing to Study Computer Science

For general advice about preparing for the Computer Science course at Cambridge,
please see http://www.cl.cam.ac.uk/admissions/undergraduate/preparation/

http://www.cl.cam.ac.uk/admissions/undergraduate/preparation/

28 University of Cambridge

Introduction to Part IB

This document lists the courses offered by the Computer Laboratory for Part IB of the
Computer Science Tripos. Separate booklets give details of the syllabus for other Parts of
the Computer Science Tripos.

The syllabus information given here is for guidance only and should not be considered
definitive. Current timetables can be found at
http://www.cl.cam.ac.uk/teaching/lectlist/

For most of the courses listed below, a list of recommended books is given. These are
roughly in order of usefulness, and lecturers have indicated by means of an asterisk those
books which are most recommended for purchase by College libraries.

The Computer Laboratory Library aims to keep at least one copy of each of the course
texts in “The Booklocker” (see http://www.cl.cam.ac.uk/library/).

For copies of the other syllabus booklets and for answers to general enquiries about
Computer Science courses, please get in touch with:

Teaching Administrator
University of Cambridge
Computer Laboratory
William Gates Building
J J Thomson Avenue
Cambridge
CB3 0FD

telephone: 01223 334656
fax: 01223 334678
e-mail: undergraduate.admissions@cl.cam.ac.uk

http://www.cl.cam.ac.uk/teaching/lectlist/
http://www.cl.cam.ac.uk/library/
mailto:undergraduate.admissions@cl.cam.ac.uk

Computer Science Tripos Part IB 29

Michaelmas Term 2011: Part IB lectures

Algorithms II

Lecturer: Dr F.M. Stajano

No. of lectures: 12

Prerequisite courses: Algorithms I

This course is a prerequisite for Computer Graphics and Image Processing, Complexity
Theory, Artificial Intelligence I and II.

Aims

The aim of this course is to give further insights into the design and analysis of non-trivial
algorithms through the discussion of several complex algorithms in the fields of graphs and
computer graphics, which are increasingly critical for a wide range of applications.

Lectures

• Advanced data structures. Fibonacci heaps. Disjoint sets. Van Emde Boas trees.
[Ref: Cormen et al. Ch 19, 20, 21] [4 lectures]

• Graph algorithms. Graph representations. Breadth-first and depth-first search.
Topological sort. Minimum spanning tree. Kruskal and Prim algorithms. Shortest
paths. Bellman-Ford and Dijkstra algorithms. Maximum flow. Ford-Fulkerson
method. Matchings in bipartite graphs. [Ref: Ch 22, 23, 24, 25, 26] [6 lectures]

• Multithreaded algorithms. Matrix multiplication. Mergesort. [Ref: Ch 27] [1 lecture]

• Geometric algorithms. Intersection of segments. Convex hull: Graham’s scan,
Jarvis’s march. [Ref: Ch 33] [1 lecture]

Objectives

At the end of the course students should

• have a good understanding of how several elaborate algorithms work;

• have a good understanding of how a smart choice of data structures may be used to
increase the efficiency of particular algorithms;

• be able to analyse the space and time efficiency of complex algorithms;

• be able to design new algorithms or modify existing ones for new applications and
reason about the efficiency of the result.

30 University of Cambridge

Recommended reading

* Cormen, T.H., Leiserson, C.D., Rivest, R.L. & Stein, C. (2009). Introduction to
Algorithms. MIT Press (3rd ed.). ISBN 0-262-53196-8
Sedgewick, R. (2004). Algorithms in Java vol. 2 (note that C and C++ editions are also
available and are equally good for this course). Addison-Wesley. ISBN 0-201-36121-3.
New edition forthcoming in 2008.
Kleinberg, J. & Tardos, É. (2006). Algorithm design. Addison-Wesley. ISBN
0-321-29535-8.

Students are expected to buy, make extensive use of, and keep as reference for their
future career, one of the above textbooks: those not doing so will be severely
disadvantaged. The recommended choice is Cormen et al. which, in spite of its superb
quality, is the cheapest (about 35 GBP new for over 1300 pages). The pointers in the
syllabus are to chapters in the second edition of that book. The other textbooks are all
excellent alternatives and their relative merits are discussed in the course handout.

Computer Design

Lecturer: Dr S.W. Moore

No. of lectures: 22 (including 4 via a web-based tutor)

Prerequisite course: Digital Electronics

This course is a prerequisite for the Part II courses Comparative Architectures and
System-on-Chip Design.

Aims

The aims of this course are to introduce a hardware description language (SystemVerilog)
and computer architecture concepts in order to design computer systems. This is an
amalgam of the former ECAD and Computer Design courses.

There are 18 lectures which cover design with hardware description languages, computer
architecture and then computer implementation. A web based tutor (equivalent of 4
lectures) is used to teach much of the SystemVerilog hardware description language.

Lectures

• Introduction and motivation. Current technology, technology trends, ECAD trends,
challenges.

• Logic modelling, simulation and synthesis. Logic value and delay modelling.
Discrete event and device simulation. Automatic logic minimization.

Computer Science Tripos Part IB 31

• SystemVerilog FPGA design. Practicalities of mapping SystemVerilog descriptions
of hardware (including a processor) onto an FPGA board. Tips and pitfalls when
generating larger modular designs.

• Chip, board and system testing. Production testing, fault models, testability, fault
coverage, scan path testing, simulation models.

• Historical perspective on computer architecture.

• Early instruction set architecture. EDSAC versus Manchester Mark I.

• Build your first computer. Implement a Manchester Baby machine in Java and
SystemVerilog.

• RISC machines. Introduction to RISC processor design.

• Building a simple RISC machine.

• CISC machines and the Intel x86 instruction set.

• Java Virtual Machine.

• Memory hierarchy. Caching, etc.

• Hardware support for operating systems. Memory protection, exceptions,
interrupts, etc.

• Pipelining and data paths.

• Internal and external communication.

• Introduction to many-core processors.

• Data-flow machines. Future directions.

On-Line Learning Component: Cambridge SystemVerilog Tutor

• The interactive web-based tutor teaches the synthesizable subset of SystemVerilog
which is required to complete the laboratory sessions.

Objectives

At the end of the course students should

• be able to read assembler given a guide to the instruction set and be able to write
short pieces of assembler if given an instruction set or asked to invent an instruction
set;

• understand the differences between RISC and CISC assembler;

32 University of Cambridge

• understand what facilities a processor provides to support operating systems, from
memory management to software interrupts;

• understand memory hierarchy including different cache structures;

• appreciate the use of pipelining in processor design;

• understand the communications structures, from buses close to the processor, to
peripheral interfaces;

• have an appreciation of control structures used in processor design;

• have an appreciation of how to implement a processor in SystemVerilog.

Recommended reading

* Harris, D.M. & Harris, S.L. (2007). Digital design and computer architecture: from gates
to processors. Morgan Kaufmann.

Recommended further reading:

Hennessy, J. & Patterson, D. (2006). Computer architecture: a quantitative approach.
Elsevier (4th ed.). ISBN 978-0-12-370490-0. (Older versions of the book are also still
generally relevant.)
Patterson, D.A. & Hennessy, J.L. (2004). Computer organization and design. Morgan
Kaufmann (3rd ed., as an alternative to the above). (2nd ed., 1998, is also good.)
Pointers to sources of more specialist information are included in the lecture notes and on
the associated course web page.

Concurrent and Distributed Systems

Lecturer: Dr S.M. Hand

No. of lectures: 16 (Continued in Lent Term)

Prerequisite courses: Operating Systems, Programming in Java

This course is a pre-requisite for Mobile and Sensor Systems (Part II).

Aims of the Michaelmas Term part of the course

The aim of the course is to introduce concurrency control and distribution concepts and
their implications for system design and implementation.

Computer Science Tripos Part IB 33

Michaelmas Term Lectures (Concurrency)

• Introduction; thread models. Overview of properties of distributed and concurrent
systems. Software system structure. Occurrence of concurrency in systems. Recap
of scheduling and preemption. Thread models.

• Classical concurrency control. Shared data and critical regions. Mutual exclusion
and condition synchronisation. Semaphores. Implementation of concurrency control.

• Classical problems using semaphores. Bounded cyclic buffer (producer(s) and
consumer(s)), multiple readers and writers. Problems arising in semaphore
programming.

• Concurrency support in programming languages. Shared data: monitors,
pthreads, Java. No shared data: occam, Ada active objects, Erlang, Kilim, tuple
spaces. Lock-free programming.

• Concurrent composite operations. Composite operations in main memory and
persistent memory. Dynamic resources allocation and deadlock. Dining
philosophers program. Deadlock detection and avoidance.

• Transactions. ACID properties. Concurrency control and crash recovery. Definition
of conflicting operations. Serialisation. Cascading aborts.

• Database concurrency control. Pessimistic concurrency control: two-phase
locking, timestamp ordering. Optimistic concurrency control.

• Database recovery and summary of “Concurrency”. Write ahead log, undo/redo.
Points to take forward.

Objectives

At the end of the course students should

• understand the need for concurrency control in operating systems and applications,
both mutual exclusion and condition synchronisation;

• understand how multi-threading can be supported and the implications of different
approaches;

• be familiar with the support offered by various programming languages for
concurrency control and be able to judge the scope, performance implications and
possible applications of the various approaches;

• be aware that dynamic resource allocation can lead to deadlock

• understand the concept of transaction; the properties of transactions, how
concurrency control can be assured and how transactions can be distributed;

34 University of Cambridge

• understand the fundamental properties of distributed systems and their implications
for system design;

• understand the effects of large scale on the provision of fundamental services and
the tradeoffs arising from scale;

• be familiar with a range of distributed algorithms.

Recommended reading

* Bacon, J. & Harris, T. (2003). Operating systems: distributed and concurrent software
design. Addison-Wesley.
Bacon, J. (1997). Concurrent Systems. Addison-Wesley.
Tanenbaum, A.S. & van Steen, M. (2002). Distributed systems. Prentice Hall.
Coulouris, G.F., Dollimore, J.B. & Kindberg, T. (2005, 2001). Distributed systems, concepts
and design. Addison-Wesley (4th, 3rd eds.).

Aims of the Lent Term part of the course

The aims of this course are to study the fundamental characteristics of distributed
systems, including their models and architectures; the implications for software design;
some of the techniques that have been used to build them; and the resulting details of
good distributed algorithms and applications.

Lent Term Lectures (Distributed Systems)

• Introduction, Evolution, Architecture. Fundamental properties. Evolution from
LANs. Introduction to the need for naming, authentication, policy specification and
enforcement. Examples of multi-domain systems. Why things can get difficult
quickly. Enough Erlang to understand subsequent examples.

• Time and event ordering. Time, clocks and event ordering. Earth time, computer
clocks, clock drift, clock synchronisation. Order imposed by inter-process
communication. Timestamps point/interval. Event composition; uncertainty of
ordering, failure and delay.
Process groups: open/closed, structured/unstructured. Message delivery ordering:
arrival order; causal order (vector clocks); total order. Physical causality from
real-world examples.

• Consistency and commitment. Strong and weak consistency. Replica
management. Quorum assembly. Distributed transactions. Distributed concurrency
control: two-phase locking, timestamp ordering. Atomic commitment; two-phase
commit protocol. Distributed optimistic concurrency control and commitment.
Some algorithm outlines: Election of a leader. Distributed mutual exclusion.

Computer Science Tripos Part IB 35

• Middleware. Synchronous: RPC, object-orientated. Asynchronous: message
orientated, publish/subscribe, peer-to-peer. Event-based systems. Examples of
some simple distributed programs in Java and Erlang.

• Naming and name services. Unique identifiers, pure and impure names. Name
spaces, naming domains, name resolution. Large scale name services: DNS,
X.500/LDAP, GNS. Use of replication. Consistency-availability tradeoffs. Design
assumptions and future issues.

• Access control for multi-domain distributed systems. Requirements from
healthcare, police, emergency services, globally distributed companies. ACLs,
capabilities, Role-Based Access Control (RBAC). Context aware access control.
Examples: OASIS, CBCL OASIS, Microsoft Healthvault, . . . Authentication and
authorisation: Raven, Shibboleth, OpenID.

• Distributed storage services. Summary and roundup. Network-based storage
services. Naming and access control. Peer-to-peer protocols. Content distribution.
Summary and roundup. Open problems for future years: transactional main
memory; multicore concurrency control; untrusted components. Byzantine failure.

Objectives

At the end of the course students should

• understand the need for concurrency control in operating systems and applications,
both mutual exclusion and condition synchronisation;

• understand how multi-threading can be supported and the implications of different
approaches;

• be familiar with the support offered by various programming languages for
concurrency control and be able to judge the scope, performance implications and
possible applications of the various approaches;

• be aware that dynamic resource allocation can lead to deadlock;

• understand the concept of transaction; the properties of transactions, how
concurrency control can be assured and how transactions can be distributed;

• understand the fundamental properties of distributed systems and their implications
for system design;

• understand the effects of large scale on the provision of fundamental services and
the tradeoffs arising from scale;

• be familiar with a range of distributed algorithms.

36 University of Cambridge

Recommended reading

* Bacon, J. & Harris, T. (2003). Operating systems: distributed and concurrent software
design. Addison-Wesley.
Bacon, J. (1997). Concurrent Systems. Addison-Wesley.
Tanenbaum, A.S. & van Steen, M. (2002). Distributed systems. Prentice Hall.
Coulouris, G.F., Dollimore, J.B. & Kindberg, T. (2005, 2001). Distributed systems, concepts
and design. Addison-Wesley (4th, 3rd eds.).

Further Java

Lecturers: Dr A.R. Beresford and Dr A.C. Rice

No. of practical classes: 5 x 2-hour sessions

Prerequisite course: Programming in Java, Further Java Briefing

Companion courses: Concurrent and Distributed Systems

This course is a prerequisite for the Group Project.

Aims

The goal of this course is to provide students with the ability to understand the advanced
programming features available in the Java programming language, completing the
coverage of the language started in the Programming in Java course. The course is
designed to accommodate students with diverse programming backgrounds; consequently
Java is taught from first principles in a practical class setting where students can work at
their own pace from a course handbook. Each practical class will culminate in an
assessed exercise.

Practical classes

• Communication and client applications. This class will introduce the Eclipse
development environment. Students will write a simple client to send and receive
data to a server via TCP.

• Serialisation, reflection and class loaders. This class will introduce object
serialisation. Students will use a class loader and reflection to inspect an object
which is only available at run-time.

• Concurrency and synchronisation. This class introduces the concurrency and
synchronisation primitives found in Java. Students will implement a thread-safe
first-in-first-out queue and learn about Java generics.

• Server applications . Students implement a server in Java which is capable of
communicating concurrently with mulitple clients.

Computer Science Tripos Part IB 37

• Databases . This week students will use Java annotations and a relational database
to build a persistent store.

Objectives

At the end of the course students should

• understand different mechanisms for communication between distributed
applications and be able to evaluate their trade-offs;

• be able to use Java generics and annotations to improve software usability,
readability and safety;

• understand and be able to exploit the Java class-loading mechansim;

• understand and be able to use concurrency control correctly;

• understand the concept of transactions and their application in a range of systems.

Recommended reading

* Lea, D. (1999). Concurrent programming in Java. Addison-Wesley (2nd ed.).
Bracha, G., Gosling, J., Joy, B. & Steele, G. (2000). The Java language specification.
Addison-Wesley (2nd ed.).
http://java.sun.com/docs/books/jls/

Bacon, J. & Harris, T. (2003). Operating systems or Bacon, J. (1997) Concurrent systems
(2nd ed.). Addison-Wesley.

Group Project

Lecturer: Professor I.M. Leslie

No. of lectures: 3

Prerequisite courses: Software Design, Software Engineering, Further Java

Aims

The aim of this course is to give students a realistic introduction to software development
as practised in industry. This means working to rigid deadlines, with a team of colleagues
not of one’s own choosing, having to satisfy an external client that a design brief has been
properly interpreted and implemented, all within the constraints of limited effort and
technical resources.

http://java.sun.com/docs/books/jls/

38 University of Cambridge

Lectures

• Initial project briefing. Software engineering: design, quality and management,
application of course material. Introduction to possible design briefs. Formation of
groups, selection of tools, review meetings.

• Administrative arrangements. Announcement of group members. Deliverables:
functional specification and module design, module implementation and testing,
system integration, testing and documentation. Timetable. Advice on specific tools.
First project meeting.

• Presentation techniques. Public speaking techniques and the effective use of
audio-visual aids. Planning a talk; designing a presentation; common mistakes to
avoid.

Objectives

At the end of the course students should

• have a good understanding of how software is developed;

• have consolidated the theoretical understanding of software development acquired
in the Software Design course;

• appreciate the importance of planning and controlling a project, and of
documentation and presentation;

• have gained confidence in their ability to develop significant software projects and
Part IB students should be prepared for the personal project they will undertake in
Part II.

Logic and Proof

Lecturer: Professor L.C. Paulson

No. of lectures: 12

This course is a prerequisite for the Part II courses Artificial Intelligence II, Hoare Logic,
Temporal Logic and Natural Language Processing.

Aims

This course will teach logic, especially the predicate calculus. It will present the basic
principles and definitions, then describe a variety of different formalisms and algorithms
that can be used to solve problems in logic. Putting logic into the context of Computer

Computer Science Tripos Part IB 39

Science, the course will show how the programming language Prolog arises from the
automatic proof method known as resolution. It will introduce topics that are important in
mechanical verification, such as binary decision diagrams (BDDs), SAT solvers and modal
logic.

Lectures

• Introduction to logic. Schematic statements. Interpretations and validity. Logical
consequence. Inference.

• Propositional logic. Basic syntax and semantics. Equivalences. Normal forms.
Tautology checking using CNF.

• The sequent calculus. A simple (Hilbert-style) proof system. Natural deduction
systems. Sequent calculus rules. Sample proofs.

• First order logic. Basic syntax. Quantifiers. Semantics (truth definition).

• Formal reasoning in FOL. Free versus bound variables. Substitution. Equivalences
for quantifiers. Sequent calculus rules. Examples.

• Clausal proof methods. Clause form. A SAT-solving procedure. The resolution
rule. Examples. Refinements.

• Skolem functions and Herbrand’s theorem. Prenex normal form. Skolemisation.
Herbrand models and their properties.

• Unification. Composition of substitutions. Most general unifiers. A unification
algorithm. Applications and variations.

• Prolog. Binary resolution. Factorisation. Example of Prolog execution. Proof by
model elimination.

• Binary decision diagrams. General concepts. Fast canonical form algorithm.
Optimisations. Applications.

• Modal logics. Possible worlds semantics. Truth and validity. A Hilbert-style proof
system. Sequent calculus rules.

• Tableaux methods. Simplifying the sequent calculus. Examples. Adding unification.
Skolemisation. The world’s smallest theorem prover?

Objectives

At the end of the course students should

• be able to manipulate logical formulas accurately;

• be able to perform proofs using the presented formal calculi;

40 University of Cambridge

• be able to construct a small BDD;

• understand the relationships among the various calculi, e.g. SAT solving, resolution
and Prolog;

• be able to apply the unification algorithm and to describe its uses.

Recommended reading

* Huth, M. & Ryan, M. (2004). Logic in computer science: modelling and reasoning about
systems. Cambridge University Press (2nd ed.).
Ben-Ari, M. (2001). Mathematical logic for computer science. Springer (2nd ed.).

Mathematical Methods for Computer Science

Lecturers: Professor J.G. Daugman and Dr R.J. Gibbens

No. of lectures: 12

Prerequisite course: Probability

This course is a prerequisite for Computer Graphics and Image Processing (Part IB) and
the following Part II courses: Artificial Intelligence II, Bioinformatics, Computer Systems
Modelling, Computer Vision, Digital Signal Processing, Information Theory and Coding,
Quantum Computing.

Aims

The aims of this course are to introduce and develop mathematical methods that are key
to many applications in Computer Science. The course proceeds on two fronts: (A) Fourier
methods and their generalizations that lie at the heart of digital signal processing, analysis,
coding, and communication theory; and (B) probability modelling techniques that allow
stochastic systems and algorithms to be described and better understood. The style of the
course is necessarily concise but will attempt to mix a blend of theory with examples that
glimpse ahead at applications developed in Part II courses.

Lectures

• Part A: Fourier and related methods (Professor J. Daugman)

– Fourier representations. Inner product spaces and orthonormal systems.
Periodic functions and Fourier series. Results and applications. The Fourier
transform and its properties. [3 lectures]

– Discrete Fourier methods. The Discrete Fourier transform, efficient
algorithms implementing it, and applications. [2 lectures]

Computer Science Tripos Part IB 41

– Wavelets. Introduction to wavelets, with applications in signal processing,
coding, communications, and computing. [1 lecture]

• Part B: Probability methods (Dr R.J. Gibbens)

– Inequalities and limit theorems. Bounds on tail probabilities, moment
generating functions, notions of convergence, weak and strong laws of large
numbers, the central limit theorem, statistical applications, Monte Carlo
simulation. [3 lectures]

– Markov chains. Discrete-time Markov chains, Chapman–Kolmogorov
equations, classifications of states, limiting and stationary behaviour,
time-reversible Markov chains. Examples and applications. [3 lectures]

Objectives

At the end of the course students should

• understand the fundamental properties of inner product spaces and orthonormal
systems;

• grasp key properties and uses of Fourier series and transforms, and wavelets;

• understand discrete transform techniques, algorithms, and applications;

• understand basic probabilistic inequalities and limit results and be able to apply them
to commonly arising models;

• be familiar with the fundamental properties and uses of discrete-time Markov chains.

Reference books

* Pinkus, A. & Zafrany, S. (1997). Fourier series and integral transforms. Cambridge
University Press.
* Ross, S.M. (2002). Probability models for computer science. Harcourt/Academic Press.
Mitzenmacher, M. & Upfal, E. (2005). Probability and computing: randomized algorithms
and probabilistic analysis. Cambridge University Press.
Oppenheim, A.V. & Willsky, A.S. (1997). Signals and systems. Prentice Hall.

42 University of Cambridge

Programming in C and C++

Lecturer: Dr S.C. Clark

No. of lectures: 8

Prerequisite courses: None, though Operating Systems would be helpful.

Aims

The aims of this course are to provide a solid introduction to programming in C and C++
and to provide an overview of the principles and constraints that affect the way in which
the C and C++ programming languages have been designed and are used.

Lectures

• Introduction to the C language. Background and goals of C. Types and variables.
Expressions and statements. Functions. Multiple compilation units. [1 lecture]

• Further C concepts. Preprocessor. Pointers and pointer arithmetic. Data
structures. Dynamic memory management. Examples. [2 lectures]

• Introduction to C++. Goals of C++. Differences between C and C++. References
versus pointers. Overloading functions. [1 lecture]

• Objects in C++. Classes and structs. Operator overloading. Virtual functions.
Multiple inheritance. Virtual base classes. Examples. [2 lectures]

• Further C++ concepts. Exceptions. Templates and meta-programming. Java
Native Interface (JNI). Examples. [2 lectures]

Objectives

At the end of the course students should

• be able to read and write C and C++ programs;

• understand the interaction between C and C++ programs and the host operating
system;

• be familiar with the structure of C and C++ program execution in machine memory;

• understand the object-oriented paradigm presented by C++;

• be able to make effective use of templates and meta-programming techniques as
used in the STL;

• understand the potential dangers of writing programs in C and C++.

Computer Science Tripos Part IB 43

Recommended reading

* Eckel, B. (2000). Thinking in C++, Vol. 1: Introduction to Standard C++. Prentice Hall
(2nd ed.). Also available at
http://www.mindview.net/Books/TICPP/ThinkingInCPP2e.html

Kernighan, B.W. & Ritchie, D.M. (1988). The C programming language. Prentice Hall (2nd
ed.).
Stroustrup, B. (2008). Programming — principles and practice using C++.
Addison-Wesley.
Stroustrup, B. (1994). The design and evolution of C++. Addison-Wesley.
Lippman, S.B. (1996). Inside the C++ object model. Addison-Wesley.

Prolog

Lecturer: Dr D. Evans

No. of lectures: 6

Prerequisite courses: Foundations of Computer Science, Algorithms I and Logic & Proof

Aims

The aim of this course is to introduce programming in the Prolog language. Prolog
encourages a different programming style to Java or ML and particular focus is placed on
programming to solve real problems that are suited to this style. Practical experimentation
with the language is strongly encouraged.

Lectures

• Introduction to Prolog. The structure of a Prolog program and how to use the
Prolog interpreter. Unification revisited. Some simple programs.

• Arithmetic and lists. Prolog’s support for evaluating arithmetic expressions and
lists. The space complexity of program evaluation discussed with reference to
last-call optimisation.

• Backtracking, cut, and negation. The cut operator for controlling backtracking.
Negation as failure and its uses.

• Search and cut. Prolog’s search method for solving problems. Graph searching
exploiting Prolog’s built-in search mechanisms.

• Difference structures. Difference lists: introduction and application to example
programs.

http://www.mindview.net/Books/TICPP/ThinkingInCPP2e.html

44 University of Cambridge

• Building on Prolog. How particular limitations of Prolog programs can be
addressed by techniques such as Constraint Logic Programming (CLP) and tabled
resolution.

Objectives

At the end of the course students should

• be able to write programs in Prolog using techniques such as accumulators and
difference structures;

• know how to model the backtracking behaviour of program execution;

• appreciate the unique perspective Prolog gives to problem solving and algorithm
design;

• understand how larger programs can be created using the basic programming
techniques used in this course.

Recommended reading

* Bratko, I. (2001). PROLOG programming for artificial intelligence. Addison-Wesley (3rd
or 4th ed.).
Sterling, L. & Shapiro, E. (1994). The art of Prolog. MIT Press (2nd ed.).

Further reading:

O’Keefe, R. (1990). The craft of Prolog. MIT Press. [This book is beyond the scope of this
course, but it is very instructive. If you understand its contents, you’re more than prepared
for the examination.]

Semantics of Programming Languages

Lecturer: Dr S. Staton

No. of lectures: 12

This course is a prerequisite for the Part II courses Topics in Concurrency, and Types.

Aims

The aim of this course is to introduce the structural, operational approach to programming
language semantics. It will show how to specify the meaning of typical programming
language constructs, in the context of language design, and how to reason formally about
semantic properties of programs.

Computer Science Tripos Part IB 45

Lectures

• Introduction. Transition systems. The idea of structural operational semantics.
Transition semantics of a simple imperative language. Language design options. [2
lectures]

• Types. Introduction to formal type systems. Typing for the simple imperative
language. Statements of desirable properties. [2 lectures]

• Induction. Review of mathematical induction. Abstract syntax trees and structural
induction. Rule-based inductive definitions and proofs. Proofs of type safety
properties. [2 lectures]

• Functions. Call-by-name and call-by-value function application, semantics and
typing. Local recursive definitions. [2 lectures]

• Data. Semantics and typing for products, sums, records, references. [1 lecture]

• Subtyping. Record subtyping and simple object encoding. [1 lecture]

• Semantic equivalence. Semantic equivalence of phrases in a simple imperative
language, including the congruence property. Examples of equivalence and
non-equivalence. [1 lecture]

• Concurrency. Shared variable interleaving. Semantics for simple mutexes; a
serializability property. [1 lecture]

Objectives

At the end of the course students should

• be familiar with rule-based presentations of the operational semantics and type
systems for some simple imperative, functional and interactive program constructs;

• be able to prove properties of an operational semantics using various forms of
induction (mathematical, structural, and rule-based);

• be familiar with some operationally-based notions of semantic equivalence of
program phrases and their basic properties.

Recommended reading

* Pierce, B.C. (2002). Types and programming languages. MIT Press.
Hennessy, M. (1990). The semantics of programming languages. Wiley. Out of print, but
available on the web at
http://www.scss.tcd.ie/Matthew.Hennessy/slexternal/reading.php

Winskel, G. (1993). The formal semantics of programming languages. MIT Press.

http://www.scss.tcd.ie/Matthew.Hennessy/slexternal/reading.php

46 University of Cambridge

Software Engineering

Lecturer: Dr R.N. Clayton

No. of lectures: 6

This course is a prerequisite for the Group Project.

Aims

This course aims to introduce students to software engineering, and in particular to the
problems of building large systems, safety-critical systems and real-time systems. Case
histories of software failure are used to illustrate what can go wrong, and current software
engineering practice is studied as a guide to how failures can be avoided.

Lectures

• The software crisis. Examples of large-scale project failure, such as the London
Ambulance Service system and the NHS National Programme for IT. Intrinsic
difficulties with software.

• The software life cycle. Getting the requirements right; requirements analysis
methods; modular design; the role of prototyping; the waterfall, spiral and
evolutionary models.

• Critical systems. Examples of catastrophic failure; particular problems with
real-time systems; usability and human error; verification and validation.

• Quality assurance. The contribution of reviews and testing; reliability growth
models; software maintenance and configuration management; life-cycle costs.

• Tools. The effect of high-level languages; object-oriented systems and object reuse;
an overview of formal methods with some application examples; project planning
tools; automated testing tools.

• Guest lecture. A guest lecture from an industry speaker about the realities of
managing software development in a commercial environment.

Objectives

At the end of the course students should know how writing programs with tough assurance
targets, in large teams, or both, differs from the programming exercises they have engaged
in so far. They should appreciate the waterfall, spiral and evolutionary models of software
development and be able to explain which kinds of software project might profitably use
them. They should appreciate the value of other tools and the difference between
incidental and intrinsic complexity. They should understand the software development life
cycle and its basic economics. They should be prepared for the organizational aspects of
their Part IB group project.

Computer Science Tripos Part IB 47

Recommended reading

* Pressman, R.S. (2010). Software engineering. McGraw-Hill (7th international ed.). ISBN
9780073375977
Leveson, N. (1994). Safeware. Addison-Wesley.
Maguire, S. (1993). Writing solid code. Microsoft Press.

Further reading:

Brooks, F.P. (1975). The mythical man month. Addison-Wesley.
Reason, J. (2008). The human contribution. Ashgate Publishing.
Leveson, N. (2008). System safety engineering: back to the future, available at
http://sunnyday.mit.edu/book2.pdf

Neumann, P. (1994). Computer-related risks. ACM Press.
Report of the inquiry into the London Ambulance Service (SW Thames RHA, 40
Eastbourne Terrace, London W2 3QR, February 1993).
http://www.cs.ucl.ac.uk/staff/A.Finkelstein/las.html

Anderson, R. (2008). Security engineering (Chapters 25 and 26). Wiley. Alternatively see
2001 edition, Chapters 22 and 23, available at
http://www.cl.cam.ac.uk/users/rja14/book.html

Unix Tools

Lecturer: Dr M.G. Kuhn

No. of lectures: 10

Operating Systems provides a useful foundation for this course.

Aims

This non-examinable course provides students with basic Unix/Linux experience some
important practical skills in using the Unix shell as an efficient working environment. It also
introduces some popular software-engineering tools for working in teams, as well as
formatting and data-analysis tools for preparing dissertations and scientific publications.
These skills are essential not only for future practical CST projects, but for participating
effectively in most real-world software projects.

Lectures

• Unix concepts. Brief review of Unix history and design philosophy, documentation,
terminals, inter-process communication mechanisms and conventions, shell,
command-line arguments, environment variables, file descriptors.

• Shell basics. Program invocation, redirecting standard I/O, pipes, file-system
navigation, argument expansion, quoting, job control, signals, process groups,

http://sunnyday.mit.edu/book2.pdf
http://www.cs.ucl.ac.uk/staff/A.Finkelstein/las.html
http://www.cl.cam.ac.uk/users/rja14/book.html

48 University of Cambridge

variables, locale.

• Shell script programming and configuration. Efficient command entry with
history and alias functions. Scripts, plain-text file formats, control structures,
functions. Customizing user environments. Basics of X Window System
configuration. Some notes on PWF Linux.

• Common tools. Overview of common text, shell, and network utilities and their most
frequently used options, including sed, grep, chmod, find, ssh, rsync, packaging and
compression tools.

• Revision control systems. diff, patch, RCS, Subversion, git.

• Software development tools. C compiler, linker and debugger, makefiles.

• Perl. Introduction to a powerful scripting and text manipulation language. [2 lectures]

• LATEX. Typesetting basics, introduction to the most popular tool for scientific
document formatting.

• Number crunching and data visualization. Use of MATLAB on PWF machines.

Objectives

At the end of the course students should

• be confident in performing routine user tasks on a POSIX system, understand
command-line user-interface conventions and know how to find more detailed
documentation;

• appreciate how a range of simple tools can be combined with little effort in pipes and
scripts to perform a large variety of tasks;

• be familiar with the most common tools, file formats and configuration practices;

• be able to understand, write, and maintain shell scripts and makefiles;

• appreciate how using revision control systems and fully automated build processes
help to maintain reproducibility and audit trails during software development;

• know enough about basic development tools to be able to install and modify C
source code;

• have gained experience in using Perl, LATEX and MATLAB.

Computer Science Tripos Part IB 49

Recommended reading

* Lamport, L. (1994). LATEX – a documentation preparation system user’s guide and
reference manual. Addison-Wesley (2nd ed.).
Robbins, A. (2005). Unix in a nutshell. O’Reilly (4th ed.).
Schwartz, R.L., Foy, B.D. & Phoenix, T. (2011). Learning Perl. O’Reilly (6th ed.).

50 University of Cambridge

Lent Term 2012: Part IB lectures

Compiler Construction

Lecturer: Dr D.J. Greaves

No. of lectures: 16

Prerequisite: (the last lecture of) Regular Languages and Finite Automata (Part IA)

This course is a prerequisite for Optimising Compilers (Part II).

Aims

This course aims to cover the main technologies associated with implementing
programming languages, viz. lexical analysis, syntax analysis, type checking, run-time
data organisation and code-generation.

Lectures

• Survey of execution mechanisms. The spectrum of interpreters and compilers;
compile-time and run-time. Structure of a simple compiler. Java virtual machine
(JVM), JIT. Simple run-time structures (stacks). Structure of interpreters for result of
each stage of compilation (tokens, tree, bytecode). [3 lectures]

• Lexical analysis and syntax analysis. Recall regular expressions and finite state
machine acceptors. Lexical analysis: hand-written and machine-generated. Recall
context-free grammars. Ambiguity, left- and right-associativity and operator
precedence. Parsing algorithms: recursive descent and machine-generated.
Abstract syntax tree; expressions, declarations and commands. [2 lectures]

• Simple type-checking. Type of an expression determined by type of
subexpressions; inserting coercions. [1 lecture]

• Translation phase. Translation of expressions, commands and declarations.
[1 lecture]

• Code generation. Typical machine codes. Code generation from intermediate code.
Simple peephole optimisation. [1 lecture]

• Object modules, linkers and run-time system. Resolving external references.
Static and dynamic linking. Malloc and system calls. [1 lecture]

• Non-local variable references. Lambda-calculus as prototype, Landin’s principle of
correspondence. Problems with rec and class variables. Environments, function
values are closures. Static and dynamic binding (scoping). [1 lecture]

Computer Science Tripos Part IB 51

• Machine implementation of a selection of interesting things. Free variable
treatment, static and dynamic chains, ML free variables. Compilation as
source-to-source simplification, e.g. closure conversion. Argument passing
mechanisms. Objects and inheritance; implementation of methods. Labels, goto
and exceptions. Dynamic and static typing, polymorphism. Storage allocation,
garbage collection. [3 lectures]

• Parser Generators. A user-level view of Lex and Yacc. [1 lecture]

• Parsing theory and practice. Phrase Structured Grammars. Chomsky
classification. LL(k) and LR(k) parsing. How tools like Yacc generate parsers, and
their error messages. [2 lectures]

Objectives

At the end of the course students should understand the overall structure of a compiler,
and will know significant details of a number of important techniques commonly used.
They will be aware of the way in which language features raise challenges for compiler
builders.

Recommended reading

* Appel, A. (1997). Modern compiler implementation in Java/C/ML (3 editions). Cambridge
University Press.
Aho, A.V., Sethi, R. & Ullman, J.D. (2007). Compilers: principles, techniques and tools.
Addison-Wesley (2nd ed.).
Bennett, J.P. (1990). Introduction to compiling techniques: a first course using ANSI C,
LEX and YACC. McGraw-Hill.
Bornat, R. (1979). Understanding and writing compilers. Macmillan.
Fischer, C.N. & LeBlanc, J. Jr (1988). Crafting a compiler. Benjamin/Cummings.
Watson, D. (1989). High-level languages and their compilers. Addison-Wesley.

Complexity Theory

Lecturer: Professor A. Dawar

No. of lectures: 12

Prerequisite courses: Algorithms, Computation Theory

Aims

The aim of the course is to introduce the theory of computational complexity. The course
will explain measures of the complexity of problems and of algorithms, based on time and

52 University of Cambridge

space used on abstract models. Important complexity classes will be defined, and the
notion of completeness established through a thorough study of NP-completeness.
Applications to cryptography will be considered.

Lectures

• Algorithms and problems. Complexity of algorithms and of problems. Lower and
upper bounds. Examples: sorting and travelling salesman.

• Time and space. Models of computation and measures of complexity. Time and
space complexity on a Turing machine. Decidability and complexity.

• Time complexity. Time complexity classes. Polynomial time problems and
algorithms. P and NP.

• Non-determinism. Non-deterministic machines. The class NP redefined.
Non-deterministic algorithms for reachability and satisfiability.

• NP-completeness. Reductions and completeness. NP-completeness of
satisfiability.

• More NP-complete problems. Graph-theoretic problems. Hamiltonian cycle and
clique.

• More NP-complete problems. Sets, numbers and scheduling. Matching, set
covering and bin packing.

• coNP. Validity of boolean formulae and its completeness. NP∩coNP. Primality and
factorisation.

• Cryptographic complexity. One-way functions. The class UP.

• Space complexity. Deterministic and non-deterministic space complexity classes.
The reachability method. Savitch’s theorem.

• Hierarchy. The time and space hierarchy theorems and complete problems.

• Descriptive complexity. Logics capturing complexity classes. Fagin’s theorem.

Objectives

At the end of the course students should

• be able to analyse practical problems and classify them according to their
complexity;

• be familiar with the phenomenon of NP-completeness, and be able to identify
problems that are NP-complete;

Computer Science Tripos Part IB 53

• be aware of a variety of complexity classes and their interrelationships;

• understand the role of complexity analysis in cryptography.

Recommended reading

* Papadimitriou, Ch.H. (1994). Computational complexity. Addison-Wesley.
Goldreich, O. (2008). Computational complexity: a conceptual perspective. Cambridge
University Press. Sipser, M. (1997). Introduction to the theory of computation. PWS.

Computation Theory

Lecturer: Professor A.M. Pitts

No. of lectures: 12

Prerequisite course: Discrete Mathematics

This course is a prerequisite for Complexity Theory (Part IB), Quantum Computing (Part II).

Aims

The aim of this course is to introduce several apparently different formalisations of the
informal notion of algorithm; to show that they are equivalent; and to use them to
demonstrate that there are uncomputable functions and algorithmically undecidable
problems.

Lectures

• Introduction: algorithmically undecidable problems. Decision problems. The
informal notion of algorithm, or effective procedure. Examples of algorithmically
undecidable problems. [1 lecture]

• Register machines. Definition and examples; graphical notation. Register machine
computable functions. Doing arithmetic with register machines. [1 lecture]

• Universal register machine. Natural number encoding of pairs and lists. Coding
register machine programs as numbers. Specification and implementation of a
universal register machine. [2 lectures]

• Undecidability of the halting problem. Statement and proof. Example of an
uncomputable partial function. Decidable sets of numbers; examples of undecidable
sets of numbers. [1 lecture]

• Turing machines. Informal description. Definition and examples. Turing computable
functions. Equivalence of register machine computability and Turing computability.
The Church-Turing Thesis. [2 lectures]

54 University of Cambridge

• Primitive and partial recursive functions. Definition and examples. Existence of a
recursive, but not primitive recursive function. A partial function is partial recursive if
and only if it is computable. [2 lectures]

• lambda-Calculus. Alpha and beta conversion. Normalization. Encoding data.
Writing recursive functions in the lambda-calculus. The relationship between
computable functions and lambda-definable functions. [3 lectures]

Objectives

At the end of the course students should

• be familiar with the register machine, Turing machine and lambda-calculus models of
computability;

• understand the notion of coding programs as data, and of a universal machine;

• be able to use diagonalisation to prove the undecidability of the Halting Problem;

• understand the mathematical notion of partial recursive function and its relationship
to computability.

Recommended reading

* Hopcroft, J.E., Motwani, R. & Ullman, J.D. (2001). Introduction to automata theory,
languages, and computation. Addison-Wesley (2nd ed.).
* Hindley, J.R. & Seldin, J.P. (2008). Lambda-calculus and combinators, an introduction.
Cambridge University Press (2nd ed.).
Cutland, N.J. (1980). Computability: an introduction to recursive function theory.
Cambridge University Press.
Davis, M.D., Sigal, R. & Weyuker, E.J. (1994). Computability, complexity and languages.
Academic Press (2nd ed.).
Sudkamp, T.A. (2005). Languages and machines. Addison-Wesley (3rd ed.).

Computer Graphics and Image Processing

Lecturer: Professor P. Robinson

No. of lectures: 16

Prerequisite courses: Algorithms, Mathematical Methods for Computer Science (for one
lecture of Image Processing part of the course)

This course is a prerequisite for Advanced Graphics (Part II).

Computer Science Tripos Part IB 55

Aims

To introduce the necessary background, the basic algorithms, and the applications of
computer graphics and image processing. A large proportion of the course considers the
design and optimisation of algorithms, so can be considered a practical application of the
lessons learnt in the Algorithms course.

Lectures

• Background. What is an image? What are computer graphics, image processing,
and computer vision? How do they relate to one another? Image capture. Image
display. Human vision. Resolution and quantisation. Colour and colour spaces.
Storage of images in memory, and double buffering. Display devices: the inner
workings of CRTs, LCDs, and printers. [3 lectures]

• 2D Computer graphics. Drawing a straight line. Drawing circles and ellipses. Cubic
curves: specification and drawing. Clipping lines. Filling polygons. Clipping
polygons. 2D transformations, vectors and matrices, homogeneous co-ordinates.
Uses of 2D graphics: HCI, typesetting, graphic design. [5 lectures]

• 3D Computer graphics. Projection: orthographic and perspective. 3D transforms
and matrices. 3D clipping. 3D curves. 3D scan conversion. z-buffer. A-buffer. Ray
tracing. Lighting: theory, flat shading, Gouraud, Phong. Texture mapping. [5 lectures]

• Image processing. Operations on images: filtering, point processing, compositing.
Halftoning and dithering, error diffusion. Encoding and compression: difference
encoding, predictive, run length, transform encoding (including JPEG). [3 lectures]

Objectives

At the end of the course students should be able to

• explain the basic function of the human eye and how this impinges on resolution,
quantisation, and colour representation for digital images; describe a number of
colour spaces and their relative merits; explain the workings of cathode ray tubes,
liquid crystal displays, and laser printers;

• describe and explain the following algorithms: Bresenham’s line drawing, mid-point
line drawing, mid-point circle drawing, Bezier cubic drawing, Douglas and Pucker’s
line chain simplification, Cohen–Sutherland line clipping, scanline polygon fill,
Sutherland–Hodgman polygon clipping, depth sort, binary space partition tree,
z-buffer, A-buffer, ray tracing, error diffusion;

• use matrices and homogeneous coordinates to represent and perform 2D and 3D
transformations; understand and use 3D to 2D projection, the viewing volume, and
3D clipping;

56 University of Cambridge

• understand Bezier curves and patches; understand sampling and super-sampling
issues; understand lighting techniques and how they are applied to both polygon
scan conversion and ray tracing; understand texture mapping;

• explain how to use filters, point processing, and arithmetic operations in image
processing and describe a number of examples of the use of each; explain how
halftoning, ordered dither, and error diffusion work; understand and be able to
explain image compression and the workings of a number of compression
techniques.

Recommended reading

* Foley, J.D., van Dam, A., Feiner, S.K. & Hughes, J.F. (1990). Computer graphics:
principles and practice. Addison-Wesley (2nd ed.).
Gonzalez, R.C. & Woods, R.E. (2008). Digital image processing. Addison-Wesley (3rd
ed). [The second edition (1992) and the first edition (Gonzalez & Wintz, 1977) are as
useful for this course.]
* Slater, M., Steed, A. & Chrysanthou, Y. (2002). Computer graphics and virtual
environments: from realism to real-time. Addison-Wesley.

Computer Networking

Lecturer: Dr A.W. Moore

No. of lectures: 24

This course is a prerequisite for the Part II courses Principles of Communication and
Security II.

Aims

The aim of this course is to introduce key concepts and principles of computer networks.
The course will use a top-down approach to study of the Internet and its protocol stack.
Instances of architecture, protocol, application-examples will include email, web and
media-streaming. We will cover communications services (e.g., TCP/IP) required to
support such network applications. The implementation and deployment of
communications services in practical networks: including wired and wireless LAN
environments, will be followed by a discussion of issues of network-security and
network-management, Throughout the course, the Internet’s architecture and protocols
will be used as the primary examples to illustrate the fundamental principles of computer
networking.

Computer Science Tripos Part IB 57

Lectures

• Introduction. Overview of networking using the Internet as an example. LANs and
WANs. OSI reference model, Internet TCP/IP Protocol Stack. Client/server
paradigm, circuit-switching, packet-switching, Internet structure, networking delays
and packet loss. [3 lectures]

• Application layer. Service requirements, WWW, HTTP, electronic mail, Domain
Name System, P2P, socket programming API. [3 lectures]

• Transport layer. Service models, multiplexing/demultiplexing, connection-less
transport (UDP), principles of reliable data transfer, connection-oriented transport
(TCP), TCP congestion control, TCP variants. [3 lectures]

• Network layer addressing. Network layer services, IP, IP addressing, IPv4, DHCP,
NAT, ICMP, IPv6. [3 lectures]

• Network layer routing. Routing and forwarding, routing algorithms, routing in the
Internet, RIP, OSPF, BGP, multicast. [3 lectures]

• Link layer and local area networks. Link layer services, error detection and
correction, Multiple Access Protocols, link layer addressing, Ethernet, hubs and
switches, Point-to-Point Protocol. [3 lectures]

• Wireless and mobile networks. Wireless links and network characteristics, Wi-Fi:
IEEE 802.11 wireless LANs, mobility management and mobile IP. [2 lectures]

• Multimedia networking. Networked multimedia applications, best-effort service and
multimedia delivery requirements, multimedia protocols (RTSP, RTP, RTCP, SIP),
content distribution networks. [3 lectures]

• Network security and network management. Cryptography, integrity, securing
email, securing TCP (SSL), firewalls and IDS, network management components,
Internet management framework, presentation services. [1 lecture]

Objectives

At the end of the course students should

• be able to analyse a communication system by separating out the different functions
provided by the network;

• understand that there are fundamental limits to any communications system;

• understand the general principles behind multiplexing, addressing, routing, reliable
transmission and other stateful protocols as well as specific examples of each;

• understand what FEC is and how CRCs work;

58 University of Cambridge

• be able to compare communications systems in how they solve similar problems;

• have an informed view of both the internal workings of the Internet and of a number
of common Internet applications and protocols.

Recommended reading

* Kurose, J.F. & Ross, K.W. (2009). Computer networking: a top-down approach.
Addison-Wesley (5th ed.).
Peterson, L.L. & Davie, B.S. (2011). Computer networks: a systems approach. Morgan
Kaufmann (5th ed.). ISBN 9780123850591
Comer, D. & Stevens, D. (2005). Internetworking with TCP-IP, vol. 1 and 2. Prentice Hall
(5th ed.).
Stevens, W.R., Fenner, B. & Rudoff, A.M. (2003). UNIX network programming, Vol.I: The
sockets networking API. Prentice Hall (3rd ed.).

Databases

Lecturer: Dr J.K.M. Moody

No. of lectures: 12

Prerequisite courses: None

Aims

The overall aim of the course is to cover the fundamentals of database management
systems (DBMSs), paying particular attention to relational database systems. The course
covers modelling techniques, transferring designs to actual database implementations,
SQL, models of query languages, transactions as well as more recent developments,
including data warehouses and On-line Analytical Processing (OLAP), and use of XML as
a data exchange language. The lectures will make use of the open source DBMS, MySQL.

Lectures

• Introduction. What is a database system? Database systems are more than just a
collection of data. Three level architecture. OnLine Transaction Processing (OLTP)
versus OnLine Analytic Processing (OLAP).

• The relational data model. Relations are sets of records. Representing entities and
relationships as relations. Queries as derived relations. Relations are the basis of
SQL (but note the use of multi-sets).

• Entity-Relationship (E/R) modelling. A bit of set theory. Entities have attributes.
Relations have arity. Database design and data modelling.

Computer Science Tripos Part IB 59

• Relational algebra and relational calculus. Relational algebra as an abstract
query language. Core operations – selection, projection, product, renaming, and
joins. Relational calculus as an abstract query language that uses notation from set
theory. Equivalence with relational algebra.

• SQL and integrity constraints. An overview of the core of SQL. SQL has
constructs taken from both the relational algebra and the relational calculus. Integrity
constraints as special queries, often required to yield a null result.

• Case Study – Cancer registry for the NHS – challenges. ECRIC is a cancer
registry, recording details about all tumours in people in the East of England. This
data is particularly sensitive, and its use is strictly controlled. The lecture focusses
on the challenges of scaling up the registration system to cover all cancer patients in
England, while still maintaining the long term accuracy and continuity of the data set.

• Schema refinement I. The evils of redundancy. The benefits of redundancy.
Functional dependencies (FDs) as a formal means of investigating redundancy.
Relational decomposition. Armstrong’s axioms and Heath’s Rule.

• Schema refinement II and Normal Forms. Schema normalisation. First and
Second normal form. Third normal form and Boyce–Codd normal form. Multi-valued
dependencies (MVDs) and lossless-join decomposition. Fourth normal form.

• Schema refinement III and advanced design. General Decomposition Method
(GDM). Decomposition examples. GDM always preserves lossless-join
decomposition. GDM may not preserve functional dependencies. Weak entity sets.
Ternary or multiple binary relationships?

• On-line Analytical Processing (OLAP). When to forget about data normalisation.
Beware of buzz-words and the Data Warehouse Death March. More on OLTP versus
OLAP. What is a data cube? Data modelling for data warehouses: star schema.

• Case Study – Cancer registry for the NHS – experiences. The extension of
ECRIC to cover all of England requires the integration of data from seven other
regions, each of which has developed its own database schema. Jem Rashbass has
a long track record in NHS IT, and is now CEO of ECRIC, making him the DB
customer. He will explain what’s needed and why – some of the existing challenges
and future opportunities. The session will close with an open forum in which the DBA
of the now national level Cancer Registry DBMS will join Jem.

• XML as a data exchange format. What is XML? XML can be used to share data
between proprietary relational databases. XML-based databases?

Objectives

At the end of the course students should

• be able to design entity-relationship diagrams to represent simple database
application scenarios;

60 University of Cambridge

• know how to convert entity-relationship diagrams to relational database schemas in
the standard Normal Forms;

• be able to program simple database applications in SQL;

• understand the basic theory of the relational model and both its strengths and
weaknesses;

• be familiar with various recent trends in the database area.

Recommended reading

* Silberschatz, A., Korth, H.F. & Sudarshan, S. (2002). Database system concepts.
McGraw-Hill (4th ed.).
Ullman, J. & Widom, J. (1997). A first course in database systems. Prentice Hall.
Date, C.J. (2004). An introduction to database systems. Addison-Wesley (8th ed.).
Miszczyk, J. and others (1998). Mastering data warehousing functions. (IBM Redbook
DB2/400) Chapters 1 & 2 only.
http://www.wminformatica.com/PDFs/DB2400-Mastering Data Warehousing.pdf

Garcia-Molina, H. Data warehousing and OLAP. Stanford University.
http://www.cs.uh.edu/∼ceick/6340/dw-olap.ppt

http://www.wminformatica.com/PDFs/DB2400-Mastering Data Warehousing.pdf
http://www.cs.uh.edu/~ceick/6340/dw-olap.ppt

Computer Science Tripos Part IB 61

Easter Term 2012: Part IB lectures

Artificial Intelligence I

Lecturer: Dr S.B. Holden

No. of lectures: 12

Prerequisite courses: Algorithms I. In addition the course requires some mathematics, in
particular some use of vectors and some calculus. Part IA Natural Sciences Mathematics
or equivalent, and Discrete Mathematics I + II, are likely to be helpful although not
essential. Similarly, elements of Algorithms II, Mathematical Methods for Computer
Science, Probability, Logic and Proof, Prolog and Complexity Theory are likely to be useful.

This course is a prerequisite for the Part II courses Artificial Intelligence II and Natural
Language Processing.

Aims

The aim of this course is to provide an introduction to some fundamental issues and
algorithms in artificial intelligence (AI). The course approaches AI from an algorithmic,
computer science-centric perspective; relatively little reference is made to the
complementary perspectives developed within psychology, neuroscience or elsewhere.
The course aims to provide some fundamental tools and algorithms required to produce AI
systems able to exhibit limited human-like abilities, particularly in the form of problem
solving by search, representing and reasoning with knowledge, planning, and learning.
Historically this corresponds roughly to the era prior to when probability became the
standard method for dealing with the crucial concept of uncertainty. More recent material
on uncertain reasoning is covered in Artificial Intelligence II.

Lectures

• Introduction. Alternate ways of thinking about AI. Agents as a unifying view of AI
systems. The basic structure of an agent. Interaction of an agent with the
environment. Assessment of agents. What does this course cover, and what is left
out? [1 lecture]

• Search I. How can search serve as a fundamental paradigm for intelligent
problem-solving? Simple, uninformed search algorithms. Tree search and graph
search. More sophisticated heuristic search algorithms. The A* algorithm and its
properties. Improving memory efficiency: the A* and recursive best first search
algorithms. Local search and gradient descent. [2 lectures]

• Search II. Search in an adversarial environment. Computer game playing. The
minimax algorithm and its shortcomings. Improving minimax using alpha-beta
pruning. [1 lecture]

62 University of Cambridge

• Constraint satisfaction problems (CSPs). Standardising search problems to a
common format. The backtracking algorithm for CSPs. Heuristics for improving the
search for a solution. Forward checking, constraint propagation and arc consistency.
Backtracking, backjumping using Gaschnig’s algorithm, graph-based backjumping.
[2 lectures]

• Knowledge representation and reasoning I. How can we represent and deal with
commonsense knowledge and other forms of knowledge? Semantic networks,
frames and rules. How can we use inference in conjunction with a knowledge
representation scheme to perform reasoning about the world and thereby to solve
problems? Inheritance, forward and backward chaining. [1 lectures]

• Knowledge representation and reasoning II. Knowledge representation and
reasoning using first order logic. The frame, qualification and ramification problems.
The situation calculus. [2 lectures]

• Planning. Methods for planning in advance how to solve a problem. The STRIPS
language. Achieving preconditions, backtracking and fixing threats by promotion or
demotion: the partial-order planning algorithm. [1 lecture]

• Learning. A brief introduction to supervised learning from examples. Learning as
fitting a curve to data. The perceptron. Learning by gradient descent. Multilayer
perceptrons and the backpropagation algorithm. [2 lectures]

Objectives

At the end of the course students should:

• appreciate the distinction between the popular view of the field and the actual
research results;

• appreciate the fact that the computational complexity of most AI problems requires
us regularly to deal with approximate techniques;

• appreciate different perspectives on what the problems of artificial intelligence are
and how different approaches are justified;

• be able to design basic problem solving methods based on AI-based search,
knowledge representation, reasoning, planning, and learning algorithms.

Recommended reading

The recommended text is:

* Russell, S. & Norvig, P. (2010). Artificial intelligence: a modern approach. Prentice Hall
(3rd ed.).
There are many good books available on artificial intelligence; one alternative is:

Computer Science Tripos Part IB 63

Poole, D. L. & Mackworth, A. K. (2010). Artificial intelligence: foundations of computational
agents. Cambridge University Press.

For some of the material you might find it useful to consult more specialised texts, in
particular:

Dechter, R. (2003). Constraint processing. Morgan Kaufmann.
Cawsey, A. (1998). The essence of artificial intelligence. Prentice Hall.
Ghallab, M., Nau, D. & Traverso, P. (2004). Automated planning: theory and practice.
Morgan Kaufmann.
Bishop, C.M. (2006). Pattern recognition and machine learning. Springer.

Concepts in Programming Languages

Lecturer: Professor A. Mycroft

No. of lectures: 8

Prerequisite courses: None.

Aims

The general aim of this course is to provide an overview of the basic concepts that appear
in modern programming languages, the principles that underlie the design of programming
languages, and their interaction.

Lectures

• Introduction, motivation, and overview. What is a programming language?
Application domains in language design. Program execution models. Theoretical
foundations. Language standardization. History.

• The first procedural language: FORTRAN (1954–58). Execution model. Data
types. Control structures. Storage. Subroutines and functions. Parameter passing.

• The first declarative language: LISP (1958–62). Expressions, statements, and
declarations. S-expressions and lists. Recursion. Static and dynamic scope.
Abstract machine. Garbage collection. Programs as data. Parameter passing. Strict
and lazy evaluation.

• Block-structured procedural languages: Algol (1958–68) and Pascal (1970).
Block structure. Parameters and parameter passing. Stack and heap storage. Data
types. Arrays and pointers.

• Object-oriented languages — Concepts and origins: Simula (1964–67) and
Smalltalk (1971–80). Dynamic lookup. Abstraction. Subtyping. Inheritance. Object
models.

64 University of Cambridge

• Types. Types in programming languages. Type systems. Type safety. Type checking
and type inference. Polymorphism. Overloading. Type equivalence.

• Data abstraction and modularity: SML Modules (1984–97). Information hiding.
Modularity. Signatures, structures, and functors. Sharing.

• The state of the art: Scala (2004–06). Procedural and declarative aspects. Blocks
and functions. Classes and objects. Generic types and methods. Variance
annotations. Mixin-class composition.

Objectives

At the end of the course students should

• be familiar with several language paradigms and how they relate to different
application domains;

• understand the design space of programming languages, including concepts and
constructs from past languages as well as those that may be used in the future;

• develop a critical understanding of the programming languages that we use by being
able to identify and compare the same concept as it appears in different languages.

Recommended reading

Books:

* Mitchell, J.C. (2003). Concepts in programming languages. Cambridge University Press.
* Scott, M.L. (2009). Programming language pragmatics. Morgan Kaufmann. Odersky, M.
(2008). Scala by example. Programming Methods Laboratory, EPFL.
Pratt, T.W. & Zelkowitz, M.V. (2001). Programming languages: design and implementation.
Prentice Hall.

Papers:

Kay, A.C. (1993). The early history of Smalltalk. ACM SIGPLAN Notices, Vol. 28, No. 3.
Kernighan, B. (1981). Why Pascal is not my favorite programming language. AT&T Bell
Laboratories. Computing Science Technical Report No. 100.
Koenig, A. (1994). An anecdote about ML type inference. USENIX Symposium on Very
High Level Languages.
Landin, P.J. (1966). The next 700 programming languages. Communications of the ACM,
Vol. 9, Issue 3.
Odersky, M. et al. (2006). An overview of the Scala programming language. Technical
Report LAMP-REPORT-2006-001, Second Edition.
McCarthy, J. (1960). Recursive functions of symbolic expressions and their computation
by machine. Communications of the ACM, 3(4):184–195.
Stroustrup, B. (1991). What is Object-Oriented Programming? (1991 revised version).
Proceedings 1st European Software Festival.

Computer Science Tripos Part IB 65

Economics and Law

Lecturers: Professor R.J. Anderson and Mr N.D.F. Bohm

No. of lectures: 8

This course is a prerequisite for the Part II courses Security II, Business Studies and
E-Commerce.

Aims

This course aims to give students an introduction to some basic concepts in economics
and law.

Lectures

• Game theory. The choice between cooperation and conflict. Prisoners’ Dilemma;
Nash equilibrium; hawk–dove; iterated games; evolution of strategies; application to
biology and computer science.

• Classical economics. Brief history of economics. Definitions: preference, utility,
choice and budget. Pareto efficiency; the discriminating monopolist. Welfare and the
Arrow theorem.

• Classical economics continued. Supply and demand; elasticity; utility; the
marginalist revolution; competitive equilibrium. Trade; monopoly rents; public goods;
oligopoly. The business cycle.

• Market failure. Asymmetric information: the market for lemons; adverse selection;
moral hazard; signalling; and brands. Transaction costs and the theory of the firm.
Behavioural economics: bounded rationality, heuristics and biases.

• Auctions. English auctions; Dutch auctions; all-pay auctions; Vickrey auctions. The
winner’s curse. The revenue equivalence theorem. Mechanism design and the
combinatorial auction. Problems with real auctions. Applicability of auction
mechanisms in computer science.

• Principles of law. Contract and tort; copyright and patent; binding actions; liabilities
and remedies; competition law; choice of law and jurisdiction.

• Law and the Internet. EU directives including distance selling, electronic
commerce, data protection, electronic signatures and copyright; their UK
implementation. UK laws that specifically affect the Internet, including RIP.

• Network economics. Real and virtual networks, supply-side versus demand-side
scale economies, Metcalfe’s law, the dominant firm model, price discrimination.
Regulatory and other public policy issues of information goods and services markets.

66 University of Cambridge

Objectives

At the end of the course students should have a basic appreciation of economic and legal
terminology and arguments. They should understand some of the applications of
economic models to systems engineering and their interest to theoretical computer
science. They should also understand the main constraints that markets and legislation
place on firms dealing in information goods and services.

Recommended reading

* Shapiro, C. & Varian, H. (1998). Information rules. Harvard Business School Press.
Varian, H. (1999). Intermediate microeconomics – a modern approach. Norton.

Further reading:

Smith, A. (1776). An inquiry into the nature and causes of the wealth of nations, available
at http://www.econlib.org/LIBRARY/Smith/smWN.html

Poundstone, W. (1992). Prisoner’s dilemma. Anchor Books.
Levitt, S.D. & Dubner, S.J. (2005). Freakonomics. Morrow.
Seabright, P. (2005). The company of strangers. Princeton.
Anderson, R. (2008). Security engineering (Chapter 7). Wiley.
Galbraith, J.K. (1991). A history of economics. Penguin.
Lessig L. (2005). Code and other laws of cyberspace v2, available at
http://www.lessig.org/

Security I

Lecturer: Dr M.G. Kuhn

No. of lectures: 12

Prerequisite courses: Discrete Mathematics II, Operating Systems

This course is a prerequisite for Security II.

Aims

This course covers essential concepts of computer security and cryptography.

Lectures

• Cryptography. Introduction, terminology, finite rings and fields, modular arithmetic,
GF(2n), pseudo-random functions and permutations.

• Classic ciphers. Vigenére, perfect secrecy, Vernam, computational security,
Kerckhoffs’ principle, random bit sources.

http://www.econlib.org/LIBRARY/Smith/smWN.html
http://www.lessig.org/

Computer Science Tripos Part IB 67

• Stream ciphers. Attacking linear-congruential RNGs and LFSRs, Trivium, RC4.

• Block ciphers. SP networks, Feistel/Luby–Rackoff structure, DES, AES, modes of
operation, message authentication codes.

• Secure hash functions. One-way functions, collision resistance, Merkle–Damgård
construction, padding, birthday problem, MD5, SHA, HMAC, stream authentication,
Merkle tree, Lamport one-time signatures.

• Asymmetric cryptography. Key-management problem, signatures, certificates,
PKI, discrete-logarithm problem, Diffie–Hellman key exchange, ElGamal encryption
and signature, hybrid cryptography.

• Entity authentication. Passwords, trusted path, phishing, CAPTCHA.
Authentication protocols: one-way and challenge–response protocols,
Needham–Schroeder, protocol failure examples, hardware tokens.

• Access control. Discretionary access control matrix, DAC in POSIX and Windows,
elevated rights and setuid bits, capabilities, mandatory access control, covert
channels, Clark–Wilson integrity.

• Operating system security. Trusted computing base, domain separation, reference
mediation, residual information protection.

• Software security. Malicious software, viruses. Common implementation
vulnerabilities: buffer overflows, integer overflows, meta characters, syntax
incompatibilities, race conditions, unchecked values, side channels.

• Network security. Vulnerabilities of TCP/IP, DNS. HTTP authentication, cookies,
cross-site scripting, browser sandboxes. Firewalls, VPNs.

• Security policies and management. Application-specific security requirements,
targets and policies, security management, BS 7799.

Objectives

By the end of the course students should

• be familiar with core security terms and concepts;

• have a basic understanding of some commonly used attack techniques and
protection mechanisms;

• have gained basic insight into aspects of modern cryptography and its applications;

• appreciate the range of meanings that “security” has across different applications.

68 University of Cambridge

Recommended reading

* Paar, Ch. & Pelzl, J. (2010). Understanding cryptography. Springer.
Gollmann, D. (2010). Computer security. Wiley (3rd ed.).

Computer Science Tripos Part II 69

Introduction to Part II

This document lists the courses offered by the Computer Laboratory for Part II of the
Computer Science Tripos. Separate booklets give details of the syllabus for other Parts of
the Computer Science Tripos.

The syllabus information given here is for guidance only and should not be considered
definitive. Current timetables can be found at
http://www.cl.cam.ac.uk/teaching/lectlist/

For most of the courses listed below, a list of recommended books is given. These are
roughly in order of usefulness, and lecturers have indicated by means of an asterisk those
books which are most recommended for purchase by College libraries.

The Computer Laboratory Library aims to keep at least one copy of each of the course
texts in “The Booklocker” (see http://www.cl.cam.ac.uk/library/).

For copies of the other syllabus booklets and for answers to general enquiries about
Computer Science courses, please get in touch with:

Teaching Administrator
University of Cambridge
Computer Laboratory
William Gates Building
J J Thomson Avenue
Cambridge
CB3 0FD

telephone: 01223 334656
fax: 01223 334678
e-mail: undergraduate.admissions@cl.cam.ac.uk

http://www.cl.cam.ac.uk/teaching/lectlist/
http://www.cl.cam.ac.uk/library/
mailto:undergraduate.admissions@cl.cam.ac.uk

70 University of Cambridge

Michaelmas Term 2011: Part II lectures

Bioinformatics

Lecturer: Dr P. Liò

No. of lectures: 12

Aims

This course focuses on algorithms used in Bioinformatics and System Biology. Most of the
algorithms are general and can be applied in other fields on multidimensional and noisy
data. All the necessary biological terms and concepts useful for the course and the
examination will be given in the lectures.

Lectures

• Introduction to biological data and problems. Ssequences and microarray data.

• Dynamic programming. Longest common subsequence, DNA, RNA, protein
structure alignment, linear space alignment.

• Sequence database search. Blast, Patternhunter I and II.

• Phylogeny – parsimony-based. Fitch, Wagner, Sankoff parsimony.

• Phylogeny – distance-based. UPGMA, Neighbour Joining.

• Clustering. K-means, Markov Clustering algorithm.

• Hidden Markov Models applications in Bioinformatics. Viterbi,
Forward-Backward, Baum-Welch.

• Searching Motifs. Gibbs sampling.

• Biological networks I: reverse engineering. Wagner, Aracne.

• Biological networks II: dynamics. Gillespie.

Objectives

At the end of this course students should

• understand Bioinformatics terminology;

• have mastered the most important algorithms in the field;

Computer Science Tripos Part II 71

• be able to work with with bioinformaticians and biologists;

• be able to find data and literature in repositories.

Recommended reading

* Jones, N.C. & Pevzner, P.A. (2004). An introduction to bioinformatics algorithms. MIT
Press.
Felsenstein, J. (2003). Inferring phylogenies. Sinauer Associates.

Computer Systems Modelling

Lecturer: Dr R.J. Gibbens

No. of lectures: 12

Prerequisite courses: Probability, Mathematical Methods for Computer Science

Aims

The aims of this course are to introduce the concepts and principles of analytic modelling
and simulation, with particular emphasis on understanding the behaviour of computer and
communications systems.

Lectures

• Introduction to modelling. Overview of analytic techniques and simulation. Little’s
law.

• Introduction to discrete event simulation. Applicability to computer system
modelling and other problems. Advantages and limitations of simulation approaches.

• Random number generation methods and simulation techniques. Review of
statistical distributions. Statistical measures for simulations, confidence intervals and
stopping criteria. Variance reduction techniques. [2 lectures]

• Simple queueing theory. Stochastic processes: introduction and examples. The
Poisson process. Advantages and limitations of analytic approaches. [2 lectures]

• Birth–death processes, flow balance equations. Birth–death processes and their
relation to queueing systems. The M/M/1 queue in detail: existence and when
possible solution for equilibrium distribution, mean occupancy and mean residence
time. [2 lectures]

72 University of Cambridge

• Queue classifications, variants on the M/M/1 queue and applications to
queueing networks. Extensions to variants of the M/M/1 queue. Queueing
networks. [2 lectures]

• The M/G/1 queue and its application. The Pollaczek–Khintchine formula and
related performance measures. [2 lectures]

Objectives

At the end of the course students should

• be able to build simple Markov models and understand the critical modelling
assumptions;

• be able to solve simple birth–death processes;

• understand that in general as the utilization of a system increases towards unity then
the response time will tend to increase — often dramatically so;

• understand the tradeoffs between different types of modelling techniques;

• be aware of the issues in building a simulation of a computer system and analysing
the results obtained.

Reference books

* Ross, S.M. (2002). Probability models for computer science. Academic Press.
Mitzenmacher, M. & Upfal, E. (2005). Probability and computing: randomized algorithms
and probabilistic analysis. Cambridge University Press.
Jain, A.R. (1991). The art of computer systems performance analysis. Wiley.
Kleinrock, L. (1975). Queueing systems, vol. 1. Theory. Wiley.

Digital Signal Processing

Lecturer: Dr M.G. Kuhn

No. of lectures: 12

Prerequisite courses: Probability, Mathematical Methods for Computer Science
The last lecture of Unix Tools (MATLAB introduction) is a prerequisite for the practical
exercises. Some of the material covered in Floating-Point Computation will also help in this
course.

Computer Science Tripos Part II 73

Aims

This course teaches the basic signal-processing principles necessary to understand many
modern high-tech systems, with digital-communications examples. Students will gain
practical experience from numerical experiments in MATLAB-based programming
assignments.

Lectures

• Signals and systems. Discrete sequences and systems, their types and properties.
Linear time-invariant systems, convolution.

• Phasors. Eigen functions of linear time-invariant systems. Review of complex
arithmetic. Some examples from electronics, optics and acoustics.

• Fourier transform. Phasors as orthogonal base functions. Forms of the Fourier
transform. Convolution theorem, Dirac’s delta function, impulse combs in the time
and frequency domain.

• Discrete sequences and spectra. Periodic sampling of continuous signals, periodic
signals, aliasing, sampling and reconstruction of low-pass and band-pass signals,
spectral inversion.

• Discrete Fourier transform. Continuous versus discrete Fourier transform,
symmetry, linearity, review of the FFT, real-valued FFT.

• Spectral estimation. Leakage and scalloping phenomena, windowing, zero
padding.

• Finite and infinite impulse-response filters. Properties of filters, implementation
forms, window-based FIR design, use of frequency-inversion to obtain high-pass
filters, use of modulation to obtain band-pass filters, FFT-based convolution,
polynomial representation, z-transform, zeros and poles, use of analog IIR design
techniques (Butterworth, Chebyshev I/II, elliptic filters).

• Digital modulation. IQ representation of band-pass signals, in particular AM, FM,
MSK, QAM, and OFDM signals. Clock recovery, symbol detection, matched filter,
software-defined radio.

• Random sequences and noise. Random variables, stationary processes,
autocorrelation, crosscorrelation, deterministic crosscorrelation sequences, filtered
random sequences, white noise, exponential averaging.

• Correlation coding. Random vectors, dependence versus correlation, covariance,
decorrelation, matrix diagonalization, eigen decomposition, Karhunen–Loève
transform, principal component analysis. Relation to orthogonal transform coding
using fixed basis vectors, such as DCT.

74 University of Cambridge

• Lossy versus lossless compression. What information is discarded by human
senses and can be eliminated by encoders? Perceptual scales, masking, spatial
resolution, colour coordinates, some demonstration experiments.

• Quantization, image coding standards. A/mu-law coding, delta coding, JPEG.

Objectives

By the end of the course students should be able to

• apply basic properties of time-invariant linear systems;

• understand sampling, aliasing, convolution, filtering, the pitfalls of spectral
estimation;

• explain the above in time and frequency domain representations;

• use filter-design software;

• visualize and discuss digital filters in the z-domain;

• use the FFT for convolution, deconvolution, filtering;

• implement, apply and evaluate simple DSP applications in MATLAB;

• apply transforms that reduce correlation between several signal sources;

• understand the basic principles of several widely-used modulation and image coding
techniques.

Recommended reading

* Lyons, R.G. (2010). Understanding digital signal processing. Prentice Hall (3rd ed.).
Oppenheim, A.V. & Schafer, R.W. (2007). Discrete-time digital signal processing.
Prentice Hall (3rd ed.).
Stein, J. (2000). Digital signal processing – a computer science perspective. Wiley.
Salomon, D. (2002). A guide to data compression methods. Springer.

Computer Science Tripos Part II 75

Hoare Logic

Lecturer: Professor M.J.C. Gordon

No. of lectures: 12

Prerequisite courses: Logic and Proof

Aims

The aim of the course is to introduce Hoare logic as a basis for the formal specification
and verification of imperative programs. A simple language will be used to illustrate core
ideas. Both theoretical foundations and the design of mechanized program verifiers will be
covered. Some current research activities and challenges will be outlined.

Lectures

• Formal specification of imperative programs. Formal versus informal methods.
Specification using preconditions and postconditions.

• Axioms and rules of inference. Hoare logic for a simple language with
assignments, sequences, conditionals and while-loops.

• Loops and invariants. Various examples illustrating loop invariants and how they
can be found.

• Partial and total correctness. Hoare logic for proving termination. Variants.

• Additional constructs. Arrays and FOR-commands.

• Semantics. Mathematical interpretation of Hoare logic. Deep and shallow semantic
embedding.

• Metatheory. Soundness, completeness and decidability.

• Mechanising program verification. Assertions, annotation and verification
conditions. Property checking versus proof of correctness. Interactive versus
automatic methods.

• Predicate transformers. Weakest preconditions and strongest postconditions; their
relationship to Hoare logic and its mechanisation.

• Program refinement. Transforming specifications to programs using refinement
rules. Discussion of correct-by-construction methods versus post-hoc verification.

• Current reseach. Recent developments in Hoare logic such as separation logic.

• Review and conclusions. Review of course material covered. Worked examples.
Miscellaneous advice on answering examination questions.

76 University of Cambridge

Objectives

At the end of the course students should

• be able to prove simple programs correct by hand and implement a simple program
verifier;

• be familiar with the theory and use of Hoare logic and its mechanisation;

• understand some of the core concepts underlying modern formal program
verification.

Recommended reading

Huth, M. & Ryan M. (2004). Logic in computer science: modelling and reasoning about
systems. Cambridge University Press (2nd ed.).

Information Theory and Coding

Lecturer: Professor J.G. Daugman

No. of lectures + examples classes: 11 + 1

Prerequisite courses: Probability, Discrete Mathematics, Mathematical Methods for
Computer Science

Aims

The aims of this course are to introduce the principles and applications of information
theory. The course will study how information is measured in terms of probability and
entropy, and the relationships among conditional and joint entropies; how these are used
to calculate the capacity of a communication channel, with and without noise; coding
schemes, including error correcting codes; how discrete channels and measures of
information generalize to their continuous forms; the Fourier perspective; and extensions
to wavelets, complexity, compression, and efficient coding of audio-visual information.

Lectures

• Foundations: probability, uncertainty, information. How concepts of
randomness, redundancy, compressibility, noise, bandwidth, and uncertainty are
related to information. Ensembles, random variables, marginal and conditional
probabilities. How the metrics of information are grounded in the rules of probability.

Computer Science Tripos Part II 77

• Entropies defined, and why they are measures of information. Marginal entropy,
joint entropy, conditional entropy, and the Chain Rule for entropy. Mutual information
between ensembles of random variables. Why entropy is the fundamental measure
of information content.

• Source coding theorem; prefix, variable-, and fixed-length codes. Symbol
codes. The binary symmetric channel. Capacity of a noiseless discrete channel.
Error correcting codes.

• Channel types, properties, noise, and channel capacity. Perfect communication
through a noisy channel. Capacity of a discrete channel as the maximum of its
mutual information over all possible input distributions.

• Continuous information; density; noisy channel coding theorem. Extensions of
the discrete entropies and measures to the continuous case. Signal-to-noise ratio;
power spectral density. Gaussian channels. Relative significance of bandwidth and
noise limitations. The Shannon rate limit and efficiency for noisy continuous
channels.

• Fourier series, convergence, orthogonal representation. Generalized signal
expansions in vector spaces. Independence. Representation of continuous or
discrete data by complex exponentials. The Fourier basis. Fourier series for periodic
functions. Examples.

• Useful Fourier theorems; transform pairs. Sampling; aliasing. The Fourier
transform for non-periodic functions. Properties of the transform, and examples.
Nyquist’s Sampling Theorem derived, and the cause (and removal) of aliasing.

• Discrete Fourier transform. Fast Fourier Transform algorithms. Efficient
algorithms for computing Fourier transforms of discrete data. Computational
complexity. Filters, correlation, modulation, demodulation, coherence.

• The quantized degrees-of-freedom in a continuous signal. Why a continuous
signal of finite bandwidth and duration has a fixed number of degrees-of-freedom.
Diverse illustrations of the principle that information, even in such a signal, comes in
quantized, countable, packets.

• Gabor-Heisenberg-Weyl uncertainty relation. Optimal “Logons”. Unification of
the time-domain and the frequency-domain as endpoints of a continuous
deformation. The Uncertainty Principle and its optimal solution by Gabor’s expansion
basis of “logons”. Multi-resolution wavelet codes. Extension to images, for analysis
and compression.

• Kolmogorov complexity. Minimal description length. Definition of the algorithmic
complexity of a data sequence, and its relation to the entropy of the distribution from
which the data was drawn. Fractals. Minimal description length, and why this
measure of complexity is not computable.

78 University of Cambridge

Objectives

At the end of the course students should be able to

• calculate the information content of a random variable from its probability distribution;

• relate the joint, conditional, and marginal entropies of variables in terms of their
coupled probabilities;

• define channel capacities and properties using Shannon’s Theorems;

• construct efficient codes for data on imperfect communication channels;

• generalize the discrete concepts to continuous signals on continuous channels;

• understand Fourier Transforms and the main ideas of efficient algorithms for them;

• describe the information resolution, compression, and efficient coding properties of
wavelets.

Recommended reading

* Cover, T.M. & Thomas, J.A. (1991). Elements of information theory. New York: Wiley.

Optimising Compilers

Lecturer: Professor A. Mycroft

No. of lectures: 16

Prerequisite course: Compiler Construction

Aims

The aims of this course are to introduce the principles of program optimisation and related
issues in decompilation. The course will cover optimisations of programs at the abstract
syntax, flowgraph and target-code level. It will also examine how related techniques can
be used in the process of decompilation.

Lectures

• Introduction and motivation. Outline of an optimising compiler. Optimisation
partitioned: analysis shows a property holds which enables a transformation. The
flow graph; representation of programming concepts including argument and result
passing. The phase-order problem.

Computer Science Tripos Part II 79

• Kinds of optimisation. Local optimisation: peephole optimisation, instruction
scheduling. Global optimisation: common sub-expressions, code motion.
Interprocedural optimisation. The call graph.

• Classical dataflow analysis. Graph algorithms, live and avail sets. Register
allocation by register colouring. Common sub-expression elimination. Spilling to
memory; treatment of CSE-introduced temporaries. Data flow anomalies. Static
Single Assignment (SSA) form.

• Higher-level optimisations. Abstract interpretation, Strictness analysis.
Constraint-based analysis, Control flow analysis for lambda-calculus. Rule-based
inference of program properties, Types and effect systems. Points-to and alias
analysis.

• Target-dependent optimisations. Instruction selection. Instruction scheduling and
its phase-order problem.

• Decompilation. Legal/ethical issues. Some basic ideas, control flow and type
reconstruction.

Objectives

At the end of the course students should

• be able to explain program analyses as dataflow equations on a flowgraph;

• know various techniques for high-level optimisation of programs at the abstract
syntax level;

• understand how code may be re-scheduled to improve execution speed;

• know the basic ideas of decompilation.

Recommended reading

* Nielson, F., Nielson, H.R. & Hankin, C.L. (1999). Principles of program analysis.
Springer. Good on part A and part B.
Appel, A. (1997). Modern compiler implementation in Java/C/ML (3 editions).
Muchnick, S. (1997). Advanced compiler design and implementation. Morgan Kaufmann.
Wilhelm, R. (1995). Compiler design. Addison-Wesley.
Aho, A.V., Sethi, R. & Ullman, J.D. (2007). Compilers: principles, techniques and tools.
Addison-Wesley (2nd ed.).

80 University of Cambridge

Principles of Communications

Lecturer: Professor J.A. Crowcroft

No. of lectures: 24

Prerequisite course: Computer Networking

This course is a prerequisite for Security II and Mobile & Sensor Systems.

This course may be useful for the Part III course on Network Architectures.

Useful related courses: Computer Systems Modelling, Information Theory, Digital Signal
Processing

Aims

This course aims to provide a detailed understanding of the underlying principles for how
communications systems operate. Practical examples (from wired and wireless
communications, the Internet, and other communications systems) are used to illustrate
the principles

Lectures

• Introduction. Course overview. Abstraction, layering. The structure of real
networks, links, end systems and switching systems. [1 lecture]

• Modular functionality for communications. Some systems design paradigms,
often orthogonal to layers. [1 lecture]

• Information, Noise, Interference, Capacity We briefly review relevant information
theory and how the limit for the capacity of a channel can be calculated. [1 lecture]

• Topology and Routing. How many ways can we work out how to get from A to B?
We review relevant graph theory, including recent advances in understanding the
topology of the Internet and similar networks. [4 lectures]

• Error control. What do we do when things go wrong? Information can be coded and
transmitted in a number of ways to survive interference. Retransmit, or pre-transmit?
[2 lecture]

• Flow control. Control theory is a branch of engineering familiar to people building
dynamic machines. It can be applied to network traffic. Stemming the flood, at
source, sink, or in between? [3 lectures]

• Shared media networks. Ethernet and Radio networks: some special problems for
media access and so forth. We revisit the problem of capacity of a channel in the
context of a radio network. [2 lectures]

• Switched networks. What does a switch do and how? [2 lectures]

Computer Science Tripos Part II 81

• Integrated Service Packet Networks for IP. Traffic may be adaptive to feedback
control, or it may be a given. Characteristics may be quite complex in terms of time
series. This has an impact on the design choices for scheduling and queue
management algorithms for packet forwarding, including APIs to Quality of Service
and routing with QoS. [2 lectures]

• The big picture for managing traffic. Economics and policy are relevant to
networks in many ways. Optimisation and game theory are both relevant topics
discussed here. [2 lectures]

Objectives

At the end of the course students should be able to explain the underlying design and
behaviour of networks, including capacity, topology, control and use.

Recommended reading

* Keshav, S. (2011). Mathematical Foundations of Computer Networking. to appear,
Addison Wesley - available in draft from
http://blizzard.cs.uwaterloo.ca/keshav/wiki/index.php/Book.
Background reading:
Keshav, S. (1997). An engineering approach to computer networking. Addison-Wesley
(1st ed.). ISBN 0201634422
Stevens, W.R. (1994). TCP/IP illustrated, vol. 1: the protocols. Addison-Wesley (1st ed.).
ISBN 0201633469

Quantum Computing

Lecturer: Professor A. Dawar

No. of lectures: 8

Prerequisite courses: Mathematical Methods for Computer Science, Computation Theory

Aims

The aims of the course are to introduce students to the basics of the quantum model of
computation. The model will be used to study algorithms for searching and factorisation.
Issues in the complexity of computation will also be explored.

Lectures

• Bits and qubits. Introduction to quantum states with motivating examples.
Comparison with classical discrete state systems.

http://blizzard.cs.uwaterloo.ca/keshav/wiki/index.php/Book

82 University of Cambridge

• Linear algebra. Review of linear algebra. Vector spaces, linear operators, Dirac
notation.

• Quantum mechanics. Postulates of quantum mechanics. Evolution and
measurement. Entanglement.

• Quantum computation. Models of quantum computation. Quantum circuits, finite
state systems, machines and algorithms.

• Some applications. Applications of quantum infomation. Bell States, quantum key
exchange, quantum teleportation.

• Quantum search. Grover’s search algorithm. Analysis and lower bounds.

• Factorisation. Shor’s algorithm for factorising numbers and analysis. Quantum
Fourier transform.

• Quantum complexity. Quantum complexity classes and their relationship to
classical complexity. Comparison with probabilistic computation.

Objectives

At the end of the course students should

• understand the quantum model of computation and how it relates to quantum
mechanics;

• be familiar with some basic quantum algorithms and their analysis;

• see how the quantum model relates to classical models of computation.

Recommended reading

* Nielsen, M.A. & Chuang, I.L. (2010). Quantum computation and quantum information.
Cambridge University Press (2nd ed.).
Mermin, N.D. (2007). Quantum computer science. Cambridge University Press.

Computer Science Tripos Part II 83

Types

Lecturer: Professor A.M. Pitts

No. of lectures: 8

Prerequisite course: Semantics of Programming Languages

Aims

The aim of this course is to show by example how type systems for programming
languages can be defined and their properties developed, using techniques that were
introduced in the Part IB course on Semantics of Programming Languages.

Lectures

• Introduction. The role of type systems in programming languages. Formalizing type
systems. [1 lecture]

• ML polymorphism. ML-style polymorphism. Principal type schemes and type
inference. [2 lectures]

• Polymorphic reference types. The pitfalls of combining ML polymorphism with
reference types. [1 lecture]

• Polymorphic lambda calculus. Syntax and reduction semantics. Examples of
datatypes definable in the polymorphic lambda calculus. Applications. [2 lectures]

• Further topics. The Curry–Howard correspondence as a source of type systems.
Dependent types. [2 lectures]

Objectives

At the end of the course students should

• appreciate how type systems can be used to constrain or describe the dynamic
behaviour of programs;

• be able to use a rule-based specification of a type system to infer typings and to
establish type soundness results;

• appreciate the expressive power of the polymorphic lambda calculus.

84 University of Cambridge

Recommended reading

* Pierce, B.C. (2002). Types and programming languages. MIT Press.
Cardelli, L. (1997). Type systems. In CRC handbook of computer science and
engineering. CRC Press.
Cardelli, L. (1987). Basic polymorphic typechecking. Science of computer programming,
vol. 8, pp. 147–172.
Girard, J-Y. (tr. Taylor, P. & Lafont, Y.) (1989). Proofs and types. Cambridge University
Press.

Computer Science Tripos Part II 85

Lent Term 2012: Part II lectures

Artificial Intelligence II

Lecturer: Dr S.B. Holden

No. of lectures: 16

Prerequisite courses: Artificial Intelligence I, Logic and Proof, Algorithms I + II,
Mathematical Methods for Computer Science, Discrete Mathematics I + II,
Probability/Probability from the NST Mathematics course.

Aims

The aim of this course is to build on Artificial Intelligence I, first by introducing more
elaborate methods for planning within the symbolic tradition, but then by moving beyond
the purely symbolic view of AI and presenting methods developed for dealing with the
critical concept of uncertainty. The central tool used to achieve the latter is probability
theory. The course continues to exploit the primarily algorithmic and computer
science-centric perspective that informed Artificial Intelligence I.

The course aims to provide further tools and algorithms required to produce AI systems
able to exhibit limited human-like abilities, with an emphasis on the need to obtain better
planning algorithms, and systems able to deal with the uncertainty inherent in the
environments that most real agents might be expected to perform within.

Lectures

• Further planning. Incorporating heuristics into partial-order planning. Planning
graphs. The GRAPHPLAN algorithm. Planning using propositional logic. Planning
as a constraint satisfaction problem. [3 lectures]

• Uncertainty and Bayesian networks. Review of probability as applied to AI.
Representing uncertain knowledge using Bayesian networks. Inference in Bayesian
networks using both exact and approximate techniques. Other ways of dealing with
uncertainty. [2 lectures]

• Utility and decision-making. The concept of utility. Utility and preferences.
Deciding how to act by maximising expected utility. Decision networks. The value of
information, and reasoning about when to gather more. [1 lectures]

• Uncertain reasoning over time. Markov processes, transition and sensor models.
Inference in temporal models: filtering, prediction, smoothing and finding the most
likely explanation. The Viterbi algorithm. Hidden Markov models. [2 lectures]

• Reinforcement learning. Learning from rewards and punishments. Markov decision
processes. The problems of temporal credit assignment and exploration versus
exploitation. Q-learning and its convergence. How to choose actions. [2 lecture]

86 University of Cambridge

• Further supervised learning I. Bayes theorem as applied to supervised learning.
The maximum likelihood and maximum a posteriori hypotheses. What does this
teach us about the backpropagation algorithm? [1 lecture]

• How to classify optimally. Bayesian decision theory and Bayes optimal
classification. What does this tell us about how best to do supervised machine
learning? [1 lecture]

• Further supervised learning II. Applying the Bayes optimal classification approach
to neural networks. Markov chain Monte Carlo methods, the evidence and how to
choose hyperparameters. [4 lectures]

Objectives

At the end of this course students should:

• have gained a deeper appreciation of the way in which computer science has been
applied to the problem of AI, and in particular for more recent techniques concerning
knowledge representation, planning, inference, uncertainty and learning;

• know how to model situations using a variety of knowledge representation
techniques;

• be able to design problem solving methods based on knowledge representation,
inference, planning, and learning techniques;

• know how probability theory can be applied in practice as a means of handling
uncertainty in AI systems.

Recommended reading

The recommended text is:

* Russell, S. & Norvig, P. (2010). Artificial intelligence: a modern approach. Prentice Hall
(3rd ed.).
For some material you may find more specialised texts useful, in particular:

Bishop, C.M. (2006). Pattern recognition and machine learning. Springer.
Ghallab, M., Nau, D. & Traverso, P. (2004). Automated planning: theory and practice.
Morgan Kaufmann.
Sutton, R.S. & Barto, A.G. (1998). Reinforcement learning: an introduction. MIT Press.

Computer Science Tripos Part II 87

Business Studies

Lecturer: Mr J.A. Lang

No. of lectures and examples classes: 8 + 2

Or “How to Start and Run a Computer Company”

Prerequisite course: Economics and Law

This course is a prerequisite for E-Commerce.

Aims

The aims of this course are to introduce students to all the things that go to making a
successful project or product other than just the programming. The course will survey
some of the issues that students are likely to encounter in the world of commerce and that
need to be considered when setting up a new computer company.

See also Business Seminars in the Easter Term.

Lectures

• So you’ve got an idea? Introduction. Why are you doing it and what is it? Types of
company. Market analysis. The business plan.

• Money and tools for its management. Introduction to accounting: profit and loss,
cash flow, balance sheet, budgets. Sources of finance. Stocks and shares. Options
and futures.

• Setting up: legal aspects. Company formation. Brief introduction to business law;
duties of directors. Shares, stock options, profit share schemes and the like.
Intellectual Property Rights, patents, trademarks and copyright. Company culture
and management theory.

• People. Motivating factors. Groups and teams. Ego. Hiring and firing: employment
law. Interviews. Meeting techniques.

• Project planning and management. Role of a manager. PERT and GANTT charts,
and critical path analysis. Estimation techniques. Monitoring.

• Quality, maintenance and documentation. Development cycle. Productization.
Plan for quality. Plan for maintenance. Plan for documentation.

• Marketing and selling. Sales and marketing are different. Marketing; channels;
marketing communications. Stages in selling. Control and commissions.

• Growth and exit routes. New markets: horizontal and vertical expansion. Problems
of growth; second system effects. Management structures. Communication. Exit
routes: acquisition, floatation, MBO or liquidation. Futures: some emerging ideas for
new computer businesses. Summary. Conclusion: now you do it!

88 University of Cambridge

Objectives

At the end of the course students should

• be able to write and analyse a business plan;

• know how to construct PERT and GANTT diagrams and perform critical path
analysis;

• appreciate the differences between profitability and cash flow, and have some notion
of budget estimation;

• have an outline view of company formation, share structure, capital raising, growth
and exit routes;

• have been introduced to concepts of team formation and management;

• know about quality documentation and productization processes;

• understand the rudiments of marketing and the sales process.

Recommended reading

Lang, J. (2001). The high-tech entrepreneur’s handbook: how to start and run a high-tech
company. FT.COM/Prentice Hall.

Students will be expected to able to use Microsoft Excel and Microsoft Project.

For additional reading on a lecture-by-lecture basis, please see the course website.

Students are strongly recommended to enter the CU Entrepreneurs Business Ideas
Competition http://www.cue.org.uk/

Comparative Architectures

Lecturer: Dr R.D. Mullins

No. of lectures: 16

Prerequisite course: Computer Design

Aims

This course examines the techniques and underlying principles that are used to design
high-performance computers and processors. Particular emphasis is placed on
understanding the trade-offs involved when making design decisions at the architectural
level. A range of processor architectures are explored and contrasted. In each case we
examine their merits and limitations and how ultimately the ability to scale performance is
restricted.

http://www.cue.org.uk/

Computer Science Tripos Part II 89

Lectures

• Introduction . The impact of technology scaling and market trends.

• Fundamentals of Computer Design . Amdahl’s law, energy/performance trade-offs,
ISA design.

• Advanced pipelining . Pipeline hazards; exceptions; optimal pipeline depth; branch
prediction; the branch target buffer [2 lectures]

• Superscalar techniques . Instruction-Level Parallelism (ILP); superscalar processor
architecture [2 lectures]

• Software approaches to exploiting ILP . VLIW architectures; local and global
instruction scheduling techniques; predicated instructions and support for
speculative compiler optimisations.

• Multithreaded processors . Coarse-grained, fine-grained, simultaneous
multithreading

• The memory hierarchy . Caches; programming for caches; prefetching [2 lectures]

• Vector processors . Vector machines; short vector/SIMD instruction set extensions;
stream processing

• Chip multiprocessors . The communication model; memory consistency models;
false sharing; multiprocessor memory hierarchies; cache coherence protocols;
synchronization

• On-chip interconnection networks . Bus-based interconnects; on-chip packet
switched networks

• Special-purpose architectures . Converging approaches to computer design

Objectives

At the end of the course students should

• understand what determines processor design goals;

• appreciate what constrains the design process and how architectural trade-offs are
made within these constraints;

• be able to describe the architecture and operation of pipelined and superscalar
processors, including techniques such as branch prediction, register renaming and
out-of-order execution;

• have an understanding of vector, multithreaded and multi-core processor
architectures;

• for the architectures discussed, understand what ultimately limits their performance
and application domain.

90 University of Cambridge

Recommended reading

* Hennessy, J. & Patterson, D. (2006). Computer architecture: a quantitative approach.
Elsevier (4th ed.) ISBN 978-0-12-370490-0. (3rd edition is also good)

Computer Vision

Lecturer: Professor J.G. Daugman

No. of lectures + examples classes: 15 + 1

Prerequisite courses: Probability, Mathematical Methods for Computer Science

Aims

The aims of this course are to introduce the principles, models and applications of
computer vision, as well as some mechanisms used in biological visual systems that may
inspire design of artificial ones. The course will cover: image formation, structure, and
coding; edge and feature detection; neural operators for image analysis; texture, colour,
stereo, and motion; wavelet methods for visual coding and analysis; interpretation of
surfaces, solids, and shapes; classifiers and pattern recognition; visual inference and
learning. Several of these issues will be illustrated in the topic of face recognition.

Lectures

• Goals of computer vision; why they are so difficult. How images are formed, and
the ill-posed problem of making 3D inferences from them about objects and their
properties.

• Image sensing, pixel arrays, CCD cameras. Image coding and information
measures. Elementary operations on image arrays.

• Biological visual mechanisms, from retina to cortex. Photoreceptor sampling;
receptive field profiles; stochastic impulse codes; channels and pathways. Neural
image encoding operators.

• Mathematical operators for extracting image structure. Finite differences and
directional derivatives. Filters; convolution; correlation. 2D Fourier domain theorems.

• Edge detection operators; the information revealed by edges. The Laplacian
operator and its zero-crossings. Logan’s theorem.

• Multi-resolution representations. Gaussian pyramids and SIFT (scale-invariant
feature transform). Active contours; energy-minimising snakes. 2D wavelets as
visual primitives.

Computer Science Tripos Part II 91

• Higher visual operations in brain cortical areas. Multiple parallel mappings;
streaming and divisions of labour; reciprocal feedback across the visual system.

• Texture, colour, stereo, and motion descriptors. Disambiguation and the
achievement of invariances when inferring object properties from images.

• Lambertian and specular surfaces; reflectance maps. Geometric analysis of
image formation from surfaces. Discounting the illuminant when inferring 3D
structure from image properties.

• Shape representation. Inferring 3D shape from shading; surface geometry.
Boundary descriptors; codons. Object-centred coordinates and the
“2.5-Dimensional” sketch.

• Perceptual psychology and visual cognition. Vision as model-building and
graphics in the brain. Learning to see.

• Lessons from visual illusions and from neurological trauma. Visual agnosias
and illusions, and what they may imply about how vision works.

• Bayesian inference in vision; knowledge-driven interpretations. Classifiers and
pattern recognition. Probabilistic methods in vision.

• Vision as a set of inverse problems. Mathematical methods for solving them:
energy minimization, relaxation, regularization. Active models.

• Applications of machine learning in computer vision. Discriminative and
generative methods. Content based image retrieval.

• Approaches to face detection, face recognition, and facial interpretation.
Appearance versus model-based methods (2D and 3D approaches). Cascaded
detectors.

Objectives

At the end of the course students should

• understand visual processing from both “bottom-up” (data oriented) and “top-down”
(goals oriented) perspectives;

• be able to decompose visual tasks into sequences of image analysis operations,
representations, specific algorithms, and inference principles;

• understand the roles of image transformations and their invariances in pattern
recognition and classification;

• be able to analyse the robustness, brittleness, generalizability, and performance of
different approaches in computer vision;

92 University of Cambridge

• be able to describe key aspects of how biological visual systems work; and be able
to think of ways in which biological visual strategies might be implemented in
machine vision, despite the enormous differences in hardware;

• understand the roles of machine learning in computer vision today, including
probabilistic inference, discriminative and generative methods;

• understand in depth at least one major practical application problem, such as face
recognition, detection, and interpretation.

Recommended reading

* Shapiro, L. & Stockman, G. (2001). Computer vision. Prentice Hall.

Denotational Semantics

Lecturer: Professor A.M. Pitts

No. of lectures + exercise classes: 10 + 2

Aims

The aims of this course are to introduce domain theory and denotational semantics, and to
show how they provide a mathematical basis for reasoning about the behaviour of
programming languages.

Lectures

• Introduction. The denotational approach to the semantics of programming
languages. Recursively defined objects as limits of successive approximations.

• Least fixed points. Complete partial orders (cpos) and least elements. Continuous
functions and least fixed points.

• Constructions on domains. Flat domains. Product domains. Function domains.

• Scott induction. Chain-closed and admissible subsets of cpos and domains. Scott’s
fixed-point induction principle.

• PCF. The Scott-Plotkin language PCF. Evaluation. Contextual equivalence.

• Denotational semantics of PCF. Denotation of types and terms. Compositionality.
Soundness with respect to evaluation. [2 lectures].

Computer Science Tripos Part II 93

• Relating denotational and operational semantics. Formal approximation relation
and its fundamental property. Computational adequacy of the PCF denotational
semantics with respect to evaluation. Extensionality properties of contextual
equivalence. [2 lectures].

• Full abstraction. Failure of full abstraction for the domain model. PCF with
parallel or.

Objectives

At the end of the course students should

• be familiar with basic domain theory: cpos, continuous functions, admissible
subsets, least fixed points, basic constructions on domains;

• be able to give denotational semantics to simple programming languages with
simple types;

• be able to apply denotational semantics; in particular, to understand the use of least
fixed points to model recursive programs and be able to reason about least fixed
points and simple recursive programs using fixed point induction;

• understand the issues concerning the relation between denotational and operational
semantics, adequacy and full abstraction, especially with respect to the
language PCF.

Recommended reading

Winskel, G. (1993). The formal semantics of programming languages: an introduction.
MIT Press.
Gunter, C. (1992). Semantics of programming languages: structures and techniques. MIT
Press.
Tennent, R. (1991). Semantics of programming languages. Prentice Hall.

94 University of Cambridge

Information Retrieval

Lecturer: Dr S.H. Teufel

No. of lectures: 8

Prerequisite courses: a basic encounter with Probability is assumed

Aims

The course is aimed to characterise information retrieval in terms of the data, problems
and concepts involved. The main formal retrieval models and evaluation methods are
described. Web search is also covered. The course then turns to problems and standard
solutions in two related areas, clustering and text classification.

Lectures

• Introduction. Key problems and concepts. Information need. Indexing model.
Examples.

• Retrieval models I. Boolean model. Stemming and other Term Manipulations.

• Retrieval models II. Vector Space Model and Term Weighting.

• Clustering. Proximity metrics, hierarchical vs. partitional clustering. Clustering
algorithms. Evaluation metrics.

• Retrieval models III. Advanced Models: Dimensional Reduction. Language Models.
Relevance Feedback. Query Expansion.

• Search engines and linkage algorithms. PageRank; Kleinberg’s Hubs and
Authorities.

• Evaluation Strategies. Test Collections. Precision, Recall, and more complex
evaluation metrics.

• Question Answering. Task Definition and Evaluation. Three Algorithms for
Question Answering.

Objectives

At the end of this course, students should be able to

• define the tasks of information retrieval, web search, clustering and text classification
and differences between them;

• understand the main concepts, challenges and strategies used in IR, in particular the
retrieval models currently used.

Computer Science Tripos Part II 95

• develop strategies suited for specific retrieval, clustering and classification situations,
and recognise the limits of these strategies;

• understand (the reasons for) the evaluation strategies developed for these three
areas.

Recommended reading

* Manning, C.D., Raghavan, P. & Schütze, H. (2008). Introduction to information retrieval.
Cambridge University Press. Available at
http://www-csli.stanford.edu/~hinrich/information-retrieval-book.html.

Natural Language Processing

Lecturer: S.H. Teufel

No. of lectures: 8

Prerequisite courses: Regular Languages and Finite Automata, Probability, Logic and
Proof, and Artificial Intelligence

Aims

This course aims to introduce the fundamental techniques of natural language processing
and to develop an understanding of the limits of those techniques. It aims to introduce
some current research issues, and to evaluate some current and potential applications.

Lectures

• Introduction. Brief history of NLP research, current applications, generic NLP
system architecture.

• Finite-state techniques. Inflectional and derivational morphology, finite-state
automata in NLP, finite-state transducers.

• Prediction and part-of-speech tagging. Corpora, simple N-grams, word prediction,
stochastic tagging, evaluating system performance.

• Parsing and generation. Generative grammar, context-free grammars, parsing and
generation with context-free grammars, weights and probabilities.

• Parsing with constraint-based grammars. Constraint-based grammar, unification.

• Compositional and lexical semantics. Simple compositional semantics in
constraint-based grammar. Semantic relations, WordNet, word senses, word sense
disambiguation.

http://www-csli.stanford.edu/~{}hinrich/information-retrieval-book.html

96 University of Cambridge

• Discourse and dialogue. Anaphora resolution, discourse relations.

• Applications. Combination of components into applications.

Objectives

At the end of the course students should

• be able to discuss the current and likely future performance of several NLP
applications;

• be able to describe briefly a fundamental technique for processing language for
several subtasks, such as morphological processing, parsing, word sense
disambiguation etc.;

• understand how these techniques draw on and relate to other areas of computer
science.

Recommended reading

* Jurafsky, D. & Martin, J. (2008). Speech and language processing. Prentice Hall.

For background reading, one of:
Pinker, S. (1994). The language instinct. Penguin.
Matthews, P. (2003). Linguistics: a very short introduction. OUP.

Although the NLP lectures don’t assume any exposure to linguistics, the course will be
easier to follow if students have some understanding of basic linguistic concepts.

For reference purposes:
The Internet Grammar of English,
http://www.ucl.ac.uk/internet-grammar/home.htm

Security II

Lecturers: Dr F.M. Stajano and Dr S.J. Murdoch

No. of lectures: 16

Prerequisite courses: Security I, Discrete Mathematics, Economics and Law, Operating
Systems, Computer Networking, Principles of Communications

This course is a prerequisite for E-Commerce.

Aims

This course aims to give students a thorough understanding of computer security
technology. This includes high-level issues such as security policy (modelling what ought

http://www.ucl.ac.uk/internet-grammar/home.htm

Computer Science Tripos Part II 97

to be protected) and engineering (how we can obtain assurance that the protection
provided is adequate). It also involves the protection mechanisms supported by modern
processors and operating systems; cryptography and its underlying mathematics;
electrical engineering issues such as emission security and tamper resistance; and a wide
variety of attacks ranging from network exploits through malicious code to protocol failure.

Lectures

• What is security? Introduction and definitions: different meanings of principal,
system, policy, trust. Diversity of applications. Relationship with distributed system
issues such as fault-tolerance and naming.

• Multilevel security. The Bell–LaPadula policy model; similar formulations such as
the lattice model, non-interference and non-deducibility. Composability. Real MLS
systems and their problems: covert channels, the cascade problem,
polyinstantiation, dynamic and non-monotonic labelling. Flexibility, usability and
compatibility.

• Multilateral security policy models. Compartmented systems, Chinese Wall, the
BMA policy. Inference security: query controls, trackers, cell suppression,
randomization, stateful controls, and active attacks.

• Banking and bookkeeping systems. Double-entry bookkeeping, the Clark-Wilson
policy model. Separation of duties, and its implementation problems. Payment
systems and how they fail: SWIFT, ATMs.

• Monitoring systems. Alarms. Sensor defeats; feature interactions; attacks on
communications; attacks on trust. Examples: antivirus software, tachographs,
prepayment electricity meters. Seals; electronic postal indicia.

• Telecommunications security. Attacks on metering, signalling, switching and
configuration. Attacks on end systems. Feature interactions. Mobile phone issues:
protection issues in GSM, GPRS, 3g. Surveillance technology and practice. Models
of attacks on communications systems.

• Anonymity and peer-to-peer systems. Dining cryptographers; mix-nets. Models of
opponents. Surveillance versus service denial. Peer-to-peer systems; resilience and
censorship resistance.

• Hardware engineering issues. Tamper resistance: smartcards, cryptoprocessors.
Mechanical and optical probing, fault induction, power analysis, emission security,
timing attacks.

• Software engineering issues. Classes of software vulnerabilities: stack overflows,
buffer overflows, namespace and protocol issues, concurrency vulnerabilties.
History, examples, exploits, and prevention.

98 University of Cambridge

• Stream ciphers. Historical systems: Caesar, Vigenère, Playfair. Revision of
information theory: unicity distance, the one-time-pad, attacks in depth. Shift register
based systems: the multiplexer generator, RC4, A5. Attacks on these systems:
divide and conquer, fast correlation.

• Block ciphers. Design of block ciphers: SP-networks and Feistel ciphers.
Differential and linear cryptanalysis. AES; Serpent; DES. Revision of the random
oracle model: modes of operation. Splicing and collision attacks. Message
authentication codes and hash functions.

• Symmetric cryptographic protocols. Needham–Schroder, Otway–Rees,
Kerberos, the wide-mouthed frog. The BAN logic. Applying BAN to verify a payment
protocol. API security.

• Asymmetric cryptosystems. Revision of public-key mathematics: RSA, ElGamal,
Diffie–Hellman. Elliptic curve systems, factoring algorithms. Advanced primitives:
identity-based schemes; threshold schemes; zero knowledge; blind signatures.

• Asymmetric cryptographic protocols. Needham–Schroder, Denning–Sacco,
TMN. Applications including SSL/TLS, SSH and PGP. The BAN logic applied to
public key systems.

• Rights management and competition. Copyright management systems;
accessory control systems; the Trusted Computing architecture. Tensions between
security and competition.

• Security engineering. Why is security management hard? Security economics: the
effects of market races, externalities, coordination problems, correlated risks, the
patching cycle, and supply chain effects. Problems with certification including the
Common Criteria. Behavioural and organisational effects. Interaction with the
regulatory environment.

Objectives

At the end of the course students should be able to tackle an information protection
problem by drawing up a threat model, formulating a security policy, and designing specific
protection mechanisms to implement the policy.

Recommended reading

* Anderson, R. (2008). Security engineering. Wiley (2nd ed.). First edition (2001) available
at http://www.cl.cam.ac.uk/users/rja14/book.html

Stinson, D.R. (2002). Cryptography: theory and practice. Chapman & Hall (2nd ed.).
Schneier, B. (1995). Applied cryptography: protocols, algorithms, and source code in C.
Wiley (2nd ed.).

Further reading:

http://www.cl.cam.ac.uk/users/rja14/book.html

Computer Science Tripos Part II 99

Kahn, D. (1966). The codebreakers: the story of secret writing. Weidenfeld and Nicolson.
Cheswick, W.R., Bellovin, S.M. & Rubin, A.D. (2003). Firewalls and Internet security:
repelling the wily hacker. Addison-Wesley (2nd ed.)
Howard, M. & leBlanc, D. (2003). Writing secure code. Microsoft Press (2nd ed.)
Gollmann, D. (2010). Computer security. Wiley (3rd ed.). Koblitz, N. (1994). A course in
number theory and cryptography. Springer-Verlag (2nd ed.).
Neumann, P. (1994). Computer related risks. Addison-Wesley.
Biham, E. & Shamir, A. (1993). Differential cryptanalysis of the data encryption standard.
Springer-Verlag.
Leveson, N.G. (1995). Safeware: system safety and computers. Addison-Wesley.
Konheim, A.G. (2007). Computer security and cryptography. Wiley.
de Leeuw, K. & Bergstra, J. (2007). The history of information security. Elsevier.

Temporal Logic and Model Checking

Lecturer: Professor M.J.C. Gordon

No. of lectures: 8

Prerequisite course: Logic and Proof

Aims

The aim of the course is to introduce the use of temporal logic for specifying properties of
hardware and software and model checking as a method for checking that properties hold
or finding counter-examples.

Lectures

• State transition systems. Representation of state spaces. Reachable states.

• Checking reachability properties Fixed-point calculations. Symbolic methods
using binary decision diagrams. Finding counter-examples.

• Examples. Various uses of reachability calculations.

• Temporal properties. Linear and branching time. Intervals. Path quantifiers.

• Temporal logic. Brief history (Prior to Pnueli). CTL and LTL. Standarised logics:
PSL.

• Model checking. Simple algorithms for verifying that temporal properties hold.
Reachability analysis as a special case.

• Applications. Software and hardware examples.

• Advanced methods. Brief introduction to recent development, e.g.
Counter-example guided abstraction refinement (CEGAR).

100 University of Cambridge

Objectives

At the end of the course students should

• be able to write properties in a variety of temporal logic;

• be familiar with the core ideas of model checking;

• understand what commercial model checking tools can be used for.

Recommended reading

Huth, M. & Ryan M. (2004). Logic in Computer Science: Modelling and Reasoning about
Systems. Cambridge University Press (2nd ed.).

Topical Issues

Lecturers: Dr R.K. Harle and others

No. of lectures: 19 (Continued into Easter Term)

Aims

The aim of this course is to broaden the experience of students by asking expert guest
lecturers to discuss real-world issues which are of current interest to the computer
community. The course title has changed from “Additional Topics” to “Topical Issues” in
2010–11 for clarity only: the substance of the course remains the same.

Lectures

This course provides an introduction to wide range of topical Computer Science subjects
and provides coverage of topics not lectured in Part II due to sabbatical leave. In 2011–12
Topical issues will include:

• 3 lectures on Human–Computer Interaction

• 4 lectures on the handling of large datasets

• 12 lectures on topics that will be based on the 2010–11 course but are subject to
change in order to remain topical

http://www.cl.cam.ac.uk/teaching/1011/TopIssues/

Computer Science Tripos Part II 101

Objectives

At the end of the course students should

• realise that the range of issues affecting the computer community is very broad;

• be able to take part in discussions on several subjects at the frontier of modern
computer engineering.

102 University of Cambridge

Easter Term 2012: Part II lectures

Advanced Graphics

Lecturers: Professor N.A. Dodgson and Dr P.A. Benton

No. of lectures: 12

Prerequisite course: Computer Graphics and Image Processing

Aims

This course provides students with a solid grounding in the main three-dimensional
modelling mechanisms. It also provides an introduction to graphics cards, shaders,
OpenGL, and radiosity.

Lectures

• Revision and commercial context. Revision of the ray tracing and polygon scan
conversion methods of making images from 3D models. The standard graphics
pipeline and graphics cards. Current uses of computer graphics in animation, visual
effects, Computer-Aided Design and marketing. [NAD, 1 lecture]

• Splines for modelling arbitrary 3D geometry. (splines are the standard 3D
modelling mechanism for Computer-Aided Design). Features required of surface
models in a Computer-Aided Design package. Bezier curves and surfaces.
B-splines, from uniform, non-rational B-splines through to non-uniform, rational
B-splines (NURBS). [NAD, 3 lectures]

• Subdivision surfaces. (an alternative mechanism for representing arbitrary 3D
geometry, now widely used in the animation industry). Introduction to subdivision.
Pros and cons when compared to NURBS. [NAD, 2 lectures]

• Geometric methods for ray tracing. The fundamentals of raycasting and
constructive solid geometry (CSG). [PAB, 1 lecture]

• Illumination: Ray tracing effects and global lighting. Visual effects, radiosity and
photon mapping. [PAB, 1 lecture]

• Computational geometry. The mathematics of discrete geometry: what can you
know, and how well can you know it? [PAB, 1 lecture]

• Implicit surfaces, voxels and particle systems. A sampler of special effects
techniques. [PAB, 1 lecture]

• OpenGL and shaders. Tools and technologies available today; previews of what’s
coming tomorrow. [PAB, 2 lectures]

Computer Science Tripos Part II 103

Objectives

On completing the course, students should be able to

• compare and contrast ray tracing with polygon scan conversion;

• define NURBS basis functions, and explain how NURBS curves and surfaces are
used in 2D and 3D modelling;

• describe the underlying theory of subdivision and define the Catmull-Clark and
Doo-Sabin subdivision methods;

• understand the core technologies of ray tracing, constructive solid geometry,
computational geometry, implicit surfaces, voxel rendering and particle systems;

• understand several global illumination technologies such as radiosity and photon
mapping, and be able to discuss each in detail;

• be able to describe current graphics technology and discuss future possibilities.

Recommended reading

Students should expect to refer to one or more of these books, but should not find it
necessary to purchase any of them.

* Slater, M., Steed, A. & Chrysanthou, Y. (2002). Computer graphics and virtual
environments: from realism to real-time. Addison-Wesley.
Watt, A. (1999). 3D Computer graphics. Addison-Wesley (3rd ed).
de Berg, M., Cheong, O., van Kreveld, M. & Overmars, M. (2008). Computational
geometry: algorithms and applications. Springer (3rd ed.).
Rogers, D.F. & Adams, J.A. (1990). Mathematical elements for computer graphics.
McGraw-Hill (2nd ed.).
Warren, J. & Weimer, H. (2002). Subdivision methods for geometric design. Morgan
Kaufmann.

Business Studies Seminars

Lecturer: Mr J.A. Lang and others

No. of seminars: 8

Aims

This course is a series of seminars by former members and friends of the Laboratory
about their real-world experiences of starting and running high technology companies. It is
a follow on to the Business Studies course in the Michaelmas Term. It provides practical

104 University of Cambridge

examples and case studies, and the opportunity to network with and learn from actual
entrepreneurs.

Lectures

Eight lectures by eight different entrepreneurs.

Objectives

At the end of the course students should have a better knowledge of the pleasures and
pitfalls of starting a high tech company.

Recommended reading

Lang, J. (2001). The high-tech entrepreneur’s handbook: how to start and run a high-tech
company. FT.COM/Prentice Hall.

See also the additional reading list on the Business Studies web page.

E-Commerce

Lecturers: Mr J.A. Lang and others

No. of lectures and examples classes: 8 + 1

Prerequisite courses: Business Studies, Security, Economics and Law

Aims

This course aims to give students an outline of the issues involved in setting up an
e-commerce site.

Lectures

• The history of electronic commerce. Mail order; EDI; web-based businesses,
credit card processing, PKI, identity and other hot topics.

• Network economics. Real and virtual networks, supply-side versus demand-side
scale economies, Metcalfe’s law, the dominant firm model, the differentiated pricing
model Data Protection Act, Distance Selling regulations, business models.

• Web site design. Stock and price control; domain names, common mistakes,
dynamic pages, transition diagrams, content management systems, multiple targets.

Computer Science Tripos Part II 105

• Web site implementation. Merchant systems, system design and sizing, enterprise
integration, payment mechanisms, CRM and help desks. Personalisation and
internationalisation.

• The law and electronic commerce. Contract and tort; copyright; binding actions;
liabilities and remedies. Legislation: RIP; Data Protection; EU Directives on Distance
Selling and Electronic Signatures.

• Putting it into practice. Search engine interaction, driving and analysing traffic;
dynamic pricing models. Integration with traditional media. Logs and audit, data
mining modelling the user. collaborative filtering and affinity marketing brand value,
building communities, typical behaviour.

• Finance. How business plans are put together. Funding Internet ventures; the
recent hysteria; maximising shareholder value. Future trends.

• UK and International Internet Regulation. Data Protection Act and US Privacy
laws; HIPAA, Sarbanes-Oxley, Security Breach Disclosure, RIP Act 2000, Electronic
Communications Act 2000, Patriot Act, Privacy Directives, data retention; specific
issues: deep linking, Inlining, brand misuse, phishing.

Objectives

At the end of the course students should know how to apply their computer science skills
to the conduct of e-commerce with some understanding of the legal, security, commercial,
economic, marketing and infrastructure issues involved.

Recommended reading

Shapiro, C. & Varian, H. (1998). Information rules. Harvard Business School Press.

Additional reading:

Standage, T. (1999). The Victorian Internet. Phoenix Press. Klemperer, P. (2004).
Auctions: theory and practice. Princeton Paperback ISBN 0-691-11925-2.

106 University of Cambridge

Mobile and Sensor Systems

Lecturer: Dr C. Mascolo

No. of lectures: 8

Prerequisite courses: Operating Systems, Principles of Communications, Concurrent and
Distributed Systems

Aims

This course will cover topics in the area of mobile systems and communications as well as
sensor systems and networking and the mixture of the two. It aims to help students
develop and understand the additional complexity introduced by mobility and by energy
constraints of modern systems.

Lectures

• Wireless propagation and MAC Layer. Differences in transmission in wired and
wireless medium. Introduction to MAC layer protocols of wireless and mobile
systems.

• Mobile phones architectures and communication. Introduction to existing mobile
phones and operating systems for mobiles.

• Mobile Infrastructure communication and opportunistic networking protocol.
Description of common communication architectures and protocols for mobile
phones and introduction to models of opportunistic networking.

• Introduction to sensor systems architecture. sensor systems challenges and
applications.

• Sensor systems MAC layer protocols. Introduction to concepts related to duty
cycling and energy preservation protocols.

• Sensor systems routing protocols. Communication protocols, data aggregation
and dissemination in sensor networks.

• Sensor systems programming and reprogramming. Motivation of sensor
reprogramming and approaches to sensor network management and update.

• Mobile sensing and participatory sensing. Mobile sensor networks and use of
mobile phones as sensors.

Objectives

On completing the course, students should be able to

Computer Science Tripos Part II 107

• describe similarities and differences between standard distributed systems and
mobile and sensor systems;

• explain the fundamental tradeoffs related to energy limitations and communication
needs in these systems;

• argue for and against different mobile and sensor systems architectures and
protocols.

Recommended reading

* Schiller, J. (2003). Mobile communications. Pearson (2nd ed.).
* Karl, H. & Willig, A. (2005). Protocols and architectures for wireless sensor networks.
Wiley.
Agrawal, D. & Zheng, Q. (2006). Introduction to wireless and mobile systems. Thomson.

System-on-Chip Design

Lecturer: Dr D.J. Greaves

No. of lectures: 12

Prerequisite courses: Computer Design, C and C++, Computer Systems Modelling

Aims

A current-day system on a chip (SoC) consists of several different processor subsystems
together with memories and I/O interfaces. This course covers SoC design and modelling
techniques with emphasis on architectural exploration, assertion-driven design and the
concurrent development of hardware and embedded software. This is the “front end” of the
design automation tool chain. (Back end material, such as design of individual gates,
layout, routing and fabrication of silicon chips is not covered.)

A percentage of each lecture is used to develop a running example. Over the course of the
lectures, the example evolves into a System On Chip demonstrator with CPU and bus
models, device models and device drivers. All code and tools are available online so the
examples can be reproduced and exercises undertaken. The main languages used are
Verilog and C++ using the SystemC library.

Lectures

• Verilog RTL design with examples. Event-driven simulation with and without delta
cycles, basic gate synthesis algorithm and design examples. Structural hazards,
pipelining, memories and multipliers. [2 lectures]

108 University of Cambridge

• SystemC overview. The major components of the SystemC C++ class library for
hardware modelling are covered with code fragments and demonstrations.
Queuing/contention delay modelling. [2 lectures]

• Basic bus structures. Bus structure. I/O device structure. Interrupts, DMA and
device drivers. Examples. Basic bus bridging.

• ESL + transactional modelling. Electronic systems level (ESL) design.
Architectural exploration. Firmware modelling methods. Blocking and non-blocking
transaction styles. Approximate and loose timing styles. Examples. [2 lectures]

• ABD: assertions and monitors. Types of assertion (imperative, safety, liveness,
data conservation). Assertion-based design (ABD). PSL/SVA assertions. Temporal
logic compilation of fragments to monitoring FSM. [2 lectures]

• Further bus structures. Busses used in today’s SoCs (OPB/BVCI, AHB and AXI).
Glue logic synthesis. Transactor synthesis. Pipeline Tolerance. Network on chip.

• Engineering aspects: FPGA and ASIC design flow. Cell libraries. Market
breakdown: CPU/Commodity/ASIC/FPGA. Further tools used for design of FPGA
and ASIC (timing and power modelling, place and route, memory generators, power
gating, clock tree, self-test and scan insertion). Dynamic frequency and voltage
scaling.

• Future approaches Only presented if time permits. Non-examinable. Recent
developments: BlueSpec, IP-XACT, Kiwi, Custom processor synthesis.

In addition to these topics, the running example will demonstrate a few practical aspects of
device bus interface design, on chip communication and device control software. Students
are encouraged to try out and expand the examples in their own time.

Objectives

At the end of the course students should

• be familiar with how a complex gadget containing multiple processors, such as an
iPod or Satnav, is designed and developed;

• understand the hardware and software structures used to implement and model
inter-component communication in such devices;

• have basic exposure to SystemC programming and PSL assertions.

Computer Science Tripos Part II 109

Recommended reading

* OSCI. SystemC tutorials and whitepapers. Download from OSCI
http://www.systemc.org or copy from course web site.
Ghenassia, F. (2010). Transaction-level modeling with SystemC: TLM concepts and
applications for embedded systems. Springer.
Eisner, C. & Fisman, D. (2006). A practical introduction to PSL. Springer (Series on
Integrated Circuits and Systems).
Foster, H.D. & Krolnik, A.C. (2008). Creating assertion-based IP. Springer (Series on
Integrated Circuits and Systems).
Grotker, T., Liao, S., Martin, G. & Swan, S. (2002). System design with SystemC. Springer.
Wolf, W. (2009). Modern VLSI design (System-on-chip design). Pearson Education (4th
ed.).

http://www.systemc.org

	Introduction to Part IA
	Entry to the Computer Science Tripos
	Computer Science Tripos Part IA
	Natural Sciences Part IA students
	Politics, Psychology and Sociology Part I students
	The curriculum

	Michaelmas Term 2011: Part IA lectures
	Paper 1: Computer Fundamentals
	Paper 1: Foundations of Computer Science
	Paper 1: Discrete Mathematics I
	Paper 2: Digital Electronics
	Paper 2: Operating Systems

	Lent Term 2012: Part IA lectures
	Paper 1: Programming in Java
	Paper 1: Object-Oriented Programming
	Paper 1: Floating-Point Computation
	Paper 1: Algorithms I
	Paper 2: Probability
	Paper 2: Discrete Mathematics II
	Paper 2: Software Design

	Easter Term 2012: Part IA lectures
	Paper 2: Regular Languages and Finite Automata
	Further Java Briefing

	Preparing to Study Computer Science
	Introduction to Part IB
	Michaelmas Term 2011: Part IB lectures
	Algorithms II
	Computer Design
	Concurrent and Distributed Systems
	Further Java
	Group Project
	Logic and Proof
	Mathematical Methods for Computer Science
	Programming in C and C++
	Prolog
	Semantics of Programming Languages
	Software Engineering
	Unix Tools

	Lent Term 2012: Part IB lectures
	Compiler Construction
	Complexity Theory
	Computation Theory
	Computer Graphics and Image Processing
	Computer Networking
	Databases

	Easter Term 2012: Part IB lectures
	Artificial Intelligence I
	Concepts in Programming Languages
	Economics and Law
	Security I

	Introduction to Part II
	Michaelmas Term 2011: Part II lectures
	Bioinformatics
	Computer Systems Modelling
	Digital Signal Processing
	Hoare Logic
	Information Theory and Coding
	Optimising Compilers
	Principles of Communications
	Quantum Computing
	Types

	Lent Term 2012: Part II lectures
	Artificial Intelligence II
	Business Studies
	Comparative Architectures
	Computer Vision
	Denotational Semantics
	Information Retrieval
	Natural Language Processing
	Security II
	Temporal Logic and Model Checking
	Topical Issues

	Easter Term 2012: Part II lectures
	Advanced Graphics
	Business Studies Seminars
	E-Commerce
	Mobile and Sensor Systems
	System-on-Chip Design

