
Shingled Graph Disassembly:
Finding the Undecideable Path?

Richard Wartell1, Yan Zhou2, Kevin W. Hamlen2, and Murat Kantarcioglu2

1 Mandiant
2 Computer Science Department, The University of Texas at Dallas

{rhw072000,yan.zhou2,hamlen,muratk}@utdallas.edu

Abstract. A probabilistic finite state machine approach to statically disassem-
bling x86 machine language programs is presented and evaluated. Static disassembly
is a crucial prerequisite for software reverse engineering, and has many applica-
tions in computer security and binary analysis. The general problem is provably
undecidable because of the heavy use of unaligned instruction encodings and dy-
namically computed control flows in the x86 architecture. Limited work in machine
learning and data mining has been undertaken on this subject. This paper shows
that semantic meanings of opcode sequences can be leveraged to infer similarities
between groups of opcode and operand sequences. This empowers a probabilistic
finite state machine to learn statistically significant opcode and operand sequences
in a training corpus of disassemblies. The similarities demonstrate the statistical
significance of opcodes and operands in a surrounding context, facilitating more
accurate disassembly of new binaries. Empirical results demonstrate that the
algorithm is more efficient and effective than comparable approaches used by
state-of-the-art disassembly tools.

Keywords: Binary analysis · disassembly · reverse-engineering · probabilistic
finite state machines

1 Introduction

Statistical data mining techniques have found wide application in domains where statistical
information is valuable for solving problems. Examples include computer vision, web
search, natural language processing, and more. A recent addition to this list is static
disassembly [1, 2]. Disassembly is the process of translating byte sequences to human-
readable assembly code. Such translation is often deemed a crucial first step in software
reverse engineering and analysis.

Although all binary-level debuggers perform dynamic disassembly to display assembly
code for individual runs of target programs, the much more challenging task of static
disassembly attempts to provide assembly code for all possible runs (i.e., all reachable
instructions). Static disassembly is therefore critical for analyzing code with non-trivial

? The research reported herein was supported in part by AFOSR awards FA9550-12-1-0082 &
FA9550-10-1-0088, NIH awards 1R0-1LM009989 & 1R01HG006844, NSF awards #1054629,
Career-CNS-0845803, CNS-0964350, CNS-1016343, CNS-1111529, & CNS-1228198, ARO
award W911NF-12-1-0558, and ONR award N00014-14-1-0030.

control-flows, such as branches and loops. Example applications include binary code
optimization, reverse engineering legacy code, semantics-based security analysis, malware
analysis, intrusion detection, and digital forensics. Incorrectly disassembled binaries often
lead to incorrect analyses, and therefore bugs or security vulnerabilities in mission-critical
systems.

Static disassembly of binaries that target Intel-based architectures is particularly
challenging because of the architecture’s heavy use of variable-length, unaligned instruc-
tion encodings, dynamically computed control-flows, and interleaved code and data.
Unalignment refers to the fact that Intel chipsets consider all memory addresses to be
legal instruction starting points. When some programs compute the destinations of jumps
dynamically using runtime pointer arithmetic, statically deciding which bytes are part of
reachable instructions and which are (non-executed) static data reduces from the halting
problem. As a result, the static disassembly problem for Intel architectures is provably
Turing-undecidable in general.

Production-level disassemblers and reverse engineering tools have therefore applied a
long history of evolving heuristics to generate best-guess disassemblies. Such heuristics
include fall-through disassembly, various control-flow and dataflow analyses, and compiler-
specific pattern matching. Unfortunately, even after decades of tuning, these heuristics
often fail even for non-obfuscated, non-malicious, compiler-generated software. As a result,
human analysts are often forced to laboriously guide the disassembly process by hand
using an interactive disassembler [3]. When binaries are tens or hundreds of megabytes in
size, the task quickly becomes intractable.

Wartell et al. recently proposed to apply machine learning and data mining to address
this problem [1]. Their approach uses statistical data compression techniques to reveal
the semantics of a binary in its assembly form, yielding a segmentation of code bytes
into assembly instructions and a differentiation of data bytes from code bytes. Although
the technique is effective and exhibits improved accuracy over the best commercial
disassembler currently available [4], the compression algorithm suffers high memory usage.
Thus, training on large corpora can be very slow compared to other disassemblers.

In this paper, we present an improved disassembly technique that is both more effective
and more efficient. Rather than relying on high-order context semantic information
(which leads to long training times), we leverage a finite state machine with transitional
probabilities to infer likely execution paths through a sea of bytes. Our main contributions
include a graph-based static disassembly technique; a simple, efficient, but effective
disassembler implementation; and an empirical demonstration of the effectiveness of the
approach.

Our high-level strategy involves two linear passes: a preprocessing step which recovers
a conservative superset of potential disassemblies, followed by a filtering step in which
a state machine selects the best disassembly from the possible candidates. While the
resulting disassembly is not guaranteed to be fully correct (due to the undecidability
of the general problem), it is guaranteed to avoid certain common errors that plague
mainstream disassemblers. Our empirical analysis shows our simple, linear approach is
faster and more accurate than the observably quadratic-time approaches adopted by
other disassemblers.

The rest of the paper proceeds as follows. Section 2 discusses related work in static
disassembly. Section 3 presents our graph-based static disassembly technique. Section 4
presents experimental results, and Section 5 concludes and suggests future work.

2 Related Work

Existing disassemblers mainly fall into three categories: linear sweep disassemblers,
recursive traversal disassemblers, and the hybrid approach. The GNU utility objdump [5]
is a popular example of the linear sweep approach. It starts at the beginning of the
text segment of the binary to be disassembled, decoding one instruction at a time until
everything in executable sections is decoded. This type of disassembler is prone to errors
when code and data bytes are interleaved within some segments. Such interleaving is
typical of almost all production-level Windows binaries generated by non-GNU compilers.

IDA Pro [3, 4] follows the recursive traversal approach. Unlike linear sweep disassem-
blers, it decodes instructions by traversing the static control flow of the program, thereby
skipping data bytes that may punctuate the code bytes. However, not all control flows can
be predicted statically. When the control flow is constructed incorrectly, some reachable
code bytes are missed, resulting in disassemblies that omit significant blocks of code.

The hybrid approach [6] combines linear sweep and recursive traversal to detect
and locate disassembly errors. The basic idea is to disassemble using the linear sweep
algorithm and verify the output using the recursive traversal algorithm. While this helps
to eliminate some disassembly errors, in general it remains prone to the shortcomings
of both techniques. That is, when the sweep and traversal phases disagree, there is no
clear indication of which is correct; the ambiguous bytes therefore receive an error-prone
classification.

Wartell et al. recently presented a machine learning- and data mining-based approach
to the disassembly problem [1]. Their approach avoids error-prone control-flow analysis
heuristics in favor of a three-phase approach: First, executables are segmented into
subsequences of bytes that constitute valid instruction encodings as defined by the
architecture [7]. Next, a language model is built from the training corpus with a statistical
data model used in modern data compression. The language model is used to classify the
segmented subsequence as code or data. Finally, a set of pre-defined heuristics refines
the classification results. The experimental results demonstrate substantial improvements
over IDA Pro’s traversal-based approach. However, it has the disadvantage of high
memory usage due to the large statistical compression model. This significantly slows the
disassembly process relative to simple sweep and traversal disassemblers.

Our disassembly algorithm presented in this paper instead adopts a probabilistic finite
state machine (FSM) [8, 9] approach. FSMs are widely used in areas such as compu-
tational linguistics, speech processing, and gene sequencing. Although the transitions
of probabilistic FSMs are non-deterministic, they are labeled with probabilities given
training data. For any given byte stream, there is more than one trace through the FSM.
By querying the FSM, the likelihood of each trace can be computed, revealing the most
probable path of reachable opcode and operand sequences in an executable.

3 Disassembler Design

Our machine learning approach to disassembly frames the disassembly problem as follows:

Problem Definition Given an arbitrary string of bytes, which subset of the bytes is the

most probable set of potentially reachable instruction starting points, where “probable”

is defined in terms of a given corpus of correct binary disassemblies?

Figure 1 shows the architecture of our disassembly technique. It consists of a shingled

disassembler that recovers the (overlapping) building blocks (shingles) of all possible

valid execution paths, a finite state machine trained on binary executables, and a graph

disassembler that traces and prunes the shingles to output the maximum-likelihood

classification of bytes as instruction starting points, instruction non-starting points, and

data.

(x0, . . . , xn−1)

Pr(xi → xj)

source
binary

shingled
disassembler

opcode
state machine

graph
disassembler

optimal
execution path

Fig. 1. Disassembler architecture

3.1 Shingled Disassembler

Since computed branch instructions in x86 have their targets established at runtime, every

byte within the code section can be a target and thus must be considered as executable

code. This aspect of the x86 architecture allows for instruction aliasing, the ability for

two instructions to overlap each other. Therefore, we refer to a disassembler that retains

all possible execution paths through a binary as a shingled disassembler.

Definition 1 Shingle

A shingle is a consecutive sequence of bytes that decodes to a single machine instruction.

Shingles may overlap.

The core functionality of the shingled disassembler is to eliminate bytes that are

clearly data (because all flows that contain them lead to execution of bytes that do not

encode any valid instruction), and to compose a byte sequence that retains information

for generating every possible valid shingle of the source binary. This is a major benefit

of this approach since the shingled disassembly encodes a superset of all the possible

valid disassemblies of the binary. In later sections, we discuss how we apply our graph

disassembler to prune this superset until we find the most probable byte classifications.

In order to define what consists of a valid execution path, we must first discuss a few key

concepts.

Definition 2 Fall through3

Shingle x (conditionally) falls through to shingle y, denoted x ⇁ y, if shingle y is located
adjacent to and after instruction x, and the semantics of instruction x do not (always)
modify the program counter. In this case, execution of instruction x is (sometimes)
followed by execution of instruction y at runtime.

Definition 3 Unconditional Branch
A shingle is an unconditional branch if it only falls through when its operand explicitly
targets the immediately following byte. Unconditional branch instructions for x86 include
jmp and ret instructions.

Unconditional branch instructions are important in defining valid disassemblies because
the last instruction in any disassembly must be an unconditional branch. If this is not
the case, the program could execute past the end of its virtual address space.

Definition 4 Static Successor
A control-flow edge (x, y) is static if x ⇁ y holds or if x is a conditional or unconditional
branch with fixed (i.e., non-computed) destination y. An instruction’s static successors
are defined by S(x) = {y | (x, y) is static}.

Definition 5 Postdominating Set
The (static) postdominating set P (x) of shingle x is the transitive closure of S on {x}.
If there exists a static control-flow from x to an illegal address (e.g., an address outside
the address space or whose bytes do not encode a legal instruction), then P (x) is not well
defined and we write P (x) = ⊥.

Definition 6 Valid Execution Path
All paths in P (x) are considered valid execution paths from x.

The x86 instruction set does not make use of every possible opcode sequence; therefore
certain bytes cannot be the beginning of a code instruction. For example, the 0xFF byte
is used to distinguish the beginning of one of 7 different instructions, using the byte that
follows to distinguish which instruction is intended. However, 0xFFFF is an invalid opcode
that is unused in the instruction set. This sequence of bytes is common because any
negative offset in two’s complement that branches less than 0xFFFF bytes away starts
with 0xFFFF. The shingled disassembler can immediately mark any shingle whose opcode
is not supported under the x86 instruction set as data. A shingle that is marked as data
is either used as the operand of another instruction, or it is part of a data block within
the code section. Execution of the instruction would cause the program to crash.

Lemma 1. Invalid Fall-through
〈∀x, y :: x ⇁ y ∧ y := ∅ → x := ∅〉, in which ∅ stands for data bytes.

3 At first glance, it would seem that we could strengthen our defintion of fall-throughs to any
two instructions that do not have an unconditional branch instruction between them. However,
there are cases where a compiler will place a call and jcc instruction followed by data bytes.
A common example of this is call [IAT:ExceptionHandler] since the exception handler
function will never return.

Any time that we encounter an address that is marked data, all fall-throughs to that

instruction can be marked as data as well. Direct branches also fall into this definition.

All direct call and jmp instructions imply a direct executional relationship between the

instruction and its target. Therefore, any shingle that targets a shingle previously marked

as data is also marked as data.

Definition 7 Sheering

A shingle x is sheered from the shingled disassembly when ∀y :: x ⇁ y, x and all y are

marked as data in the shingled disassembly.

Figure 2 illustrates how our shingled disassembler works. Given a binary of byte

sequence 6A 01 51 56 8B C7 E8 B6 E6 FF FF . . ., the shingled disassembler performs

a single-pass, ordered scan over the byte sequence. Data bytes and invalid shingles are

marked along the way. Figure 2(a) demonstrates the first series of valid shingles, beginning

at the first byte of the binary. Figure 2(b) starts at the second byte, which falls through

to a previously disassembled shingle. The shingle with byte C7 is then marked as data

(shaded in Figure 2(c)) since it is an invalid opcode. Figure 2(d) shows an invalid shingle

since it falls through to an invalid opcode FF FF. Our shingled disassembler marks the

two shingles B6 and FF as invalid in the sequence. Figure 2(e) shows another valid shingle

that begins at the ninth byte of the binary. After completing the scan, our shingled

disassembler has stored information necessary to produce all valid paths in P (x).

push 1

push ecx

push esi

mov eax,edi

call 41D510

. . .

X

X
X
X

X

X

6A

01

51

56

8B

C7

E8

B6

E6

FF

FF

(a)

add [ecx+56h],edx

mov eax,edi

call 41D510

. . .

X
X
X
X
X

X

X

6A

01

51

56

8B

C7

E8

B6

E6

FF

FF

(b)

invalid

X
X
X
X
X

X

X

×

6A

01

51

56

8B

C7

E8

B6

E6

FF

FF

(c)

mov dh,E6h

invalid

X
X
X
X
X

X

X

×

×

×

6A

01

51

56

8B

C7

E8

B6

E6

FF

FF

(d)

out FFh,al

. . .

X
X
X
X
X

X

X

X
X

×

×

×

6A

01

51

56

8B

C7

E8

B6

E6

FF

FF

(e)

Fig. 2. Shingled disassembly of a sample byte sequence: (a) a shingle sequence beginning at the
first byte; (b) a shingle sequence beginning at the second byte; (c) a non-shingle that starts
with an invalid opcode; (d) a shingle that falls through to an invalid opcode; and (e) a shingle
sequence beginning at the ninth byte.

The secondary function of the shingled disassembler is to collect local statistics called

code/data modifiers that are specific to the executable. These modifiers keep track of

the likelihood that a shingle is code or data in this particular executable. The following

heuristics are used to update modifiers:

1. If the shingle at address a is a long direct branch instruction with a′ as its target,
the address a′ is more likely to be a code instruction. We apply this heuristic with
short direct branches as well, but with less weight since two byte instructions are
more likely to be seen within other instruction operands.

2. If three shingles sequentially fall-through to each other and match one of the most
common instruction opcode sequences, each of these three addresses is more likely to
be code. Common sequences include function prologues, epilogues, etc.

3. If bytes at address a and a + 4 both encode addresses that reference shingles within
the code section of the binary, the likelihood that addresses a through a + 7 are data
is very high. Shingles a through a + 7 are marked as data, as well as any following
four byte sequences that match this criteria. This is most likely a series of addresses
referenced by a conditional branch elsewhere in the code section.

The pseudocode for generating a shingled disassembly for a binary is shown in Figure 3.
For simplicity, the heuristics used to update modifiers are not described in the pseudocode.
Lines 1–17 construct a static control-flow graph G in which all edges are reversed. A
distinguished node bad is introduced with outgoing edges to all shingles that do not encode
any valid instruction, or that branch to static, non-executable addresses. Lines 18–20
then mark all addresses reachable from bad as data. The rest are possible instruction
starting points.

Input: x0, . . . , xn−1 ∈ [0, 28)
Output: y0, . . . , yn−1 ∈ {data, maybe code}

1 G := ∅
2 for a := 0 to n− 1 do
3 ya := maybe code

4 i := decode(xaxa+1 · · ·)
5 if i is undefined then
6 G.insert(bad, a)
7 else
8 if i falls through then
9 if a + |i| < n then G.insert(a + |i|, a)

10 else G.insert(bad, a)
11 endif
12 if i is a static jump/branch then
13 if is exec ok(dest(i)) then G.insert(dest(i), a)
14 else G.insert(bad, a)
15 endif
16 endif
17 endfor
18 foreach a ∈ depth first search(G, bad) do
19 ya := data

20 endfor

Fig. 3. Shingled disassembly algorithm

3.2 Opcode State Machine

The state machine is constructed from a large corpus of pre-tagged binaries, disassembled
with IDA Pro v6.3. The byte sequences of the training executables are used to build an
opcode graph, consisting of opcode states and transitions from one state to another. For
each opcode state, we label its transition with the probability of seeing the next opcode in
the training instruction streams. The opcode graph is a probabilistic finite state machine
(FSM) that encodes all the correct disassemblies of the training byte sequences annotated
with transition probabilities. The accepting state of the FSM is the last unconditional
branch seen in the binary.

Figure 4 shows what this transition graph might look like if the x86 instruction set
only contained four opcodes: 0x01 through 0x04. Each directed edge in the graph between
opcode xi and xj implies that a transition between xi and xj has been observed in
the corpus, and the edge weight of xi → xj is the probability that given xi, the next
instruction is xj . It is also important to note the node db in the graph which represents
data bytes. Any transition from an instruction to data observed in the corpus will be
represented by a directed edge to the db node. The graph for the full x86 instruction set
includes more than 500 nodes, as each observed opcode must be included.

0.1

0.40.1

0.5

0.2
0.7

0.1

0.1

0.1

0.2

0.5

0.7

0.90.3

0.1

0x01

0x02

0x03

0x04

db

Fig. 4. Instruction transition graph: 4 opcodes

3.3 Maximum-Likelihood Execution Path

We name the output of the shingled disassembler a shingled binary. The shingled binary
of the source executable encodes within it up to 2n possible valid disassemblies. Our
graph disassembler is designed to scan the shingled binary and prune shingles with lower
probabilities. By using our graph disassembler, we can find the maximum-likelihood set of
byte classifications by tracing the shingled binary through the opcode finite state machine.
At every receiving state, we check which preceding path (predecessor) has the highest
transition probability. For example in Figure 2, the 5th byte (8B) is the receiving state
of two preceding addresses: byte 1 (see Figure 2(a)) and byte 2 (see Figure 2(b)). We
compute the transition probability from each of the two addresses and sheer the one with
a lower probability.

Theorem 1. The graph disassembler always returns the maximum-likelihood byte classi-
fications among the set S of all valid shingles.

Proof. Each byte in the shingled binary is a potential receiving state of multiple prede-
cessors. At each receiving state, we keep the best predecessor with the highest transition
probability. Therefore, when we reach the last receiving state—the accepting state, which
represents the last unconditional brach instruction—we find the shingle with the highest
probability as the best execution path.

The transition probability of a predecessor consists of two parts: the global transition
probability taken from the opcode state machine and the local modifiers, and local
statistics of each byte being code or data based on several heuristics. This is important
because runtime reference patterns specific to the binary being disassembled are included
in distinguishing the most probable disassembly path.

Let r be a receiving state of a transition triggered at xi in the shingled binary, let
Pr(pred(xi)) be the transition probability of the best predecessor of xi, and let cm and
dm be the code and data modifiers computed during shingled disassembly. The transition
probability to r is as follows:

Pr(r) = Pr(pred(xi)) ∗ cm/dm

if xi is a fall-through instruction, or

Pr(r) = Pr(pred(xi)) ∗ cm/dm ∗ Pr(dbi) ∗ Pr(dbr)

if xi is a branch instruction, where Pr(dbi) is the probability that xi is followed by data
and Pr(dbr) is the probability that r is proceeded by data. Every branch instruction can
possibly be followed by data. To account for this, when determining the best predecessor
for each instruction, branch instructions are treated as fall-throughs to their following
instruction and to data. Each branch instruction can be a predecessor to the following
instruction or to any instruction that is on a 4-byte boundary and is reachable via data
bytes.

Therefore, the transition probability of any valid shingle-path s resulting in a trace of
r0, . . . , ri, . . . , rk is:

Pr(s) = Pr(r0)Pr(r1) · · ·Pr(ri) · · ·Pr(rk)

and the optimal execution path s∗ is:

s∗ = arg max
s∈S

Pr(s).

3.4 Algorithm Analysis

Our disassembly algorithm is much quicker than other approaches of comparable accuracy
due to the small amount of information that needs to be analyzed. The time complexity
of each of the three steps is as follows:

– Shingled disassembly: Lines 1–17 of Figure 3 complete in O(n) time (where n is the
number of bytes in executable sections) and construct a CFG G with at most 2n
edges. The depth-first search in Lines 18–20 is linear in the size of G. We conclude
that the algorithm in Figure 3 is O(n).

– Sheering: Pruning invalid shingles also requires O(n) time.
– Graph disassembly: The graph-based disassembler performs a single-pass scan over

the shingled binary, and is therefore also O(n).

Therefore, our disassembly algorithm runs in time O(n), that is, linear in the size of the
source binary executable.

4 Evaluation

A prototype of our shingled disassembler was developed in Windows using Microsoft .NET
C#. Testing of our disassembly algorithm was performed on an Intel Xeon processor with
six 2.4GHz cores and 24GB of physical RAM. We tested 24 difficult binaries with very
positive results.

4.1 Broad Results

Table 1 shows the different programs on which we tested our disassembler, as well as
file sizes and code section sizes. It also displays the number of instructions that the
graph disassembler identified that IDA Pro didn’t identify as code. Figure 5 shows the
percentage of instructions that IDA Pro identified as code that our disassembler also
identified as code.

99.80%

99.85%

99.90%

99.95%

100%

ca
lc 7z

cm
d

sy
ne

rg
yc di
ff

gc
c

c+
+

sy
ne

rg
ys

si
ze ar

ob
jc

op
y as

ob
jd

um
p

st
ea

m gi
t

xe
te

x
gv

im
D

oo
bl

e
lu

at
ex

ce
le

st
ia

D
os

B
ox

em
ul

e
fil

ez
ill

a
Id

en
ti

ty
Fi

nd
er

Fig. 5. Percent of instructions identified by IDA Pro that were also identified by our disassembler

Our disassembler runs in linear time in the size of the input binary. Figure 6 shows how
many times longer IDA Pro took to disassemble each binary relative to our disassembler.
Our disassembler is increasingly faster than IDA Pro as the size of the input grows.

Finally, for each binary we used Ollydbg to create and save the traces of executions.
Tracing executions in this way does not reveal the ground truth of non-executed bytes
(which may be data or code), but the bytes that do execute are definitely code. We
compared these results to the static disassembly yielded by our disassembler, by IDA Pro,

Table 1. File Statistics

File Name
File Size

(KB)
Code Size

(KB)
Instr.

Missed by IDA

calc 114 75 1700
7z 163 126 680
cmd 389 129 5449
synergyc 609 218 12607
diff 1161 228 3002
gcc 1378 254 2760
c++ 1380 256 2769
synergys 738 319 8061
size 1703 581 5540
ar 1726 593 8626
objcopy 1868 701 6293
as 2188 772 7463
objdump 2247 780 7159
steam 1353 860 16928
git 1159 947 9776
xetex 14424 1277 18579
gvim 1997 1666 19145
Dooble 2579 1884 57598
luatex 3514 2118 18381
celestia 2844 2136 24950
DosBox 3727 3013 24217
emule 5758 3264 52434
filezilla 7994 7085 79367
IdentityFinder 23874 12781 180176

0x

3x

6x

9x

12x

15x

ca
lc 7z

cm
d

sy
ne

rg
yc di
ff

gc
c

c+
+

sy
ne

rg
ys

si
ze ar

ob
jc

op
y as

ob
jd

um
p

st
ea

m gi
t

xe
te

x
gv

im
D

oo
bl

e
lu

at
ex

ce
le

st
ia

D
os

B
ox

em
ul

e
fil

ez
ill

a
Id

en
ti

ty
Fi

nd
er

Fig. 6. Ratio of IDA Pro’s disassembly time to our disassembly time

and by the dynamic disassembly tool VDB/Vivisect [10]. Both our disassembler and IDA
Pro were 100% accurate against the execution paths that actually executed during the
tests, but VDB/Vivisect exhibited much lower accuracies of around 15–35%. We also used
VDB/Vivisect to dynamically trace command line tools, such as the Spec2000 benchmark
suite and Cygwin, and obtained similar code coverages. This provides significant evidence
that purely dynamic disassembly is not a viable solution to many disassembly problems
where high code coverage is essential.

5 Conclusion

We presented an extremely simple yet highly effective static disassembly technique using
probabilistic finite state machines. It finds the most probable set of byte classifications
from all possible valid disassemblies. Compared to the current state-of-the-art IDA Pro,
our disassembler runs in time linear in the size of the input binary. We achieve greater
efficiency, and experiments indicate that our resulting disassemblies are more accurate
than those yielded by IDA Pro.

We are currently working on extending our disassembler to instrument and record the
actual execution traces of executables, for better estimation of ground truth and therefore
more comprehensive evaluation of accuracy. One major challenge is to get high code
coverage—the percentage of the code sections covered during each execution—especially
for large applications. The instrumented execution traces would give us the advantage to
verify all identified code sections in a controlled and automatic fashion.

References

1. Wartell, R., Zhou, Y., Hamlen, K.W., Kantarcioglu, M., Thuraisingham, B.: Differentiating
code from data in x86 binaries. In: Proceedings of the European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD).
Volume 3. (2011) 522–536

2. Krishnamoorthy, N., Debray, S., Fligg, K.: Static detection of disassembly errors. In:
Proceedings of the 16th Working Conference on Reverse Engineering (WCRE). (2009)
259–268

3. Eagle, C.: The IDA Pro Book: The Unofficial Guide to the World’s Most Popular Disassembler.
No Starch Press, Inc., San Francisco, California (2008)

4. Hex-Rays: The IDA Pro disassembler and debugger. www.hex-rays.com/idapro
5. Project, G.: Gnu binary utilities. http://sourceware.org/binutils/docs-2.22/binutils/

index.html (2012)
6. Schwarz, B., Debray, S., Andrews, G.: Disassembly of executable code revisited. In:

Proceedings of the 9th Working Conference on Reverse Engineering (WCRE). (2002) 45–54
7. Intel: Intel R© architecture software developer’s manual. http://www.intel.com/design/

intarch/manuals/243191.htm (2011)
8. Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F., Carrasco, R.: Probabilistic finite-

state machines – part I. IEEE Transactions on Pattern Analysis and Machine Intelligence
27(7) (2005) 1013–1025

9. Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F., Carrasco, R.: Probabilistic finite-
state machines – part II. IEEE Transactions on Pattern Analysis and Machine Intelligence
27(7) (2005) 1026–1039

10. Invisigoth of KenShoto: Visipedia. http://visi.kenshoto.com

www.hex-rays.com/idapro
http://sourceware.org/binutils/docs-2.22/binutils/index.html
http://sourceware.org/binutils/docs-2.22/binutils/index.html
http://www.intel.com/design/intarch/manuals/243191.htm
http://www.intel.com/design/intarch/manuals/243191.htm
http://visi.kenshoto.com

	Introduction
	Related Work
	Disassembler Design
	Evaluation
	Conclusion
	References

