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Abstract

Previous research to secure ad hoc network protocols con-
centrates on key distribution and on securing the routing
protocol. Unfortunately, securing the routing layer is not
sufficient to secure the ad hoc network, as lower layer and
upper layer communication protocols remain vulnerable
to attack.

In this paper we illustrate that attacks against the ARP
protocol are particularly devastating, even if a secure
ad hoc network routing protocol is used. We demon-
strate several attacks that paralyze network communica-
tion, even if only a small number of attackers are present.
We present extensive simulations of a realistic attacker,
and design appraoches to defend against ARP attacks.

1. Introduction

In a wireless ad hoc network, network nodes also act
as routers, allowing communications between nodes not
within direct wireless transmission range. Such networks
are useful in construction, exploration, and military sit-
uations in which existing infrastructure is unusable, and
have recently seen increasing use as a low-cost, incremen-
tally deployable last-mile solution [19, 1, 5]. In military
networks, as well as in ad hoc networks used for last-mile
connectivity, some nodes are likely to be compromised by
malicious users.

It is imperative to secure all communication layers. For
example, if we only secure the higher layers, attacks at
the lower layers can paralyze the protocol. Similarly, if
we only secure the lower layers, attacks against the upper
layers are usually still feasible.

A number of secure routing protocols have been de-
veloped for routing in this situation [3, 9, 10, 14, 15, 16,
18, 20, 21]. These protocols, however, focus only on the

routing layer; that is, for each incoming packet, these pro-
tocols determine the next-hop destination for that packet.
A number of attacks on the physical and MAC layers have
been proposed, but the vulnerabilities of the Address Res-
olution Protocol (ARP) have not yet been explored in this
context.

In proposed ad hoc network routing protocols, the next-
hop destination of each packet is determined by the rout-
ing protocol. ARP then translates the IP address of the
next-hop to the MAC address of the next-hop using the
node’s ARP Cache. ARP is widely known to be vulner-
able to cache poisoning. This cache poisoning problem
is significantly more dangerous in wireless networks for
three reasons. First, many wired links are point-to-point,
and ARP is not used on point-to-point links. Secondly,
attackers are readily disconnected from wired networks,
but in a wireless network disconnecting a node is signifi-
cantly more difficult. Finally, when two machines estab-
lish a peering agreement, significant effort is required to
connect those machines; as a result, key distribution is a
relatively low cost, incrementally deployable solution in
wired networks.

In this paper, we explore attacks against ad hoc network
routing focusing on attacks that target the ARP protocol.
To build a secure ad hoc network, it is imperative that all
communication layers are secure—and as we demonstrate
in this paper, the ARP layer is particularly important to
secure as an attacker can completely paralyze communi-
cation in current ARP implementations.

Contributions To the best of our knowledge, this paper
is the first paper to comprehensively treat ARP attacks in
ad hoc networks. We present several new ARP attacks
and perform simulations to show that these attacks practi-
cally paralyze the network. We also present and evaluate
countermeasures against these attacks.



Outline Section 2 describes the ARP protocol in the
context of ad hoc networks. Section 3 describes our
attacks against the ARP protocol, and Section 4 presents
potential countermeasures. Finally, we present our con-
clusions in Section 7.

2. Address Resolution Protocol

In the Internet and most ad hoc networks, routing proto-
cols operate at the network layer. Network nodes are iden-
tified by their IP address at the routing layer, and this layer
is responsible for establishing routes that a packet uses to
reach its destination. Packets are then handed down to a
sub-IP layer protocol, which is responsible for determin-
ing the MAC address of the next hop towards the desti-
nation. After the next-hop IP address is translated into a
MAC address, the packet can be sent out at the link layer.
The sub-IP layer uses a resolution protocol to provide IP-
to-MAC address translations. ARP [17] is a simple proto-
col that has traditionally been used to provide IP-to-MAC
address translations in both wired and wireless domains.

ARP functions as follows. When a node A’s routing
protocol chooses a next-hop node B for a packet whose
MAC address is unknown, ARP buffers this packet and
generates an ARP REQUEST message. Traditionally,
ARP buffers exactly one packet per destination. The ARP
REQUEST contains A’s IP address, A’s MAC address and
B’s IP address. This ARP REQUEST is broadcast by
node A, and is received by all of A’s neighbors. The
node whose IP address matches the address in the ARP
REQUEST (B in this case) responds to the request by
constructing an ARP REPLY message and unicasting it
back to A. The returned ARP REPLY contains the MAC
address of B. When A receives this ARP REPLY, it makes
an entry in its ARP cache, associating B’s IP address with
the MAC address it learned from the ARP REPLY. The
node A can then send out the packet that was initially held
for B, since B’s MAC address is now available. Whenever
the routing protocol chooses B as the next-hop destination
for any other packet, ARP would use the entry in its route
cache to set the MAC destination.

To fill the ARP cache more rapidly, ARP makes use
of information from ARP REQUESTs to fill its cache.
In particular, since the ARP REQUEST includes the IP
and MAC addresses of the requesting node, any node re-

ceiving this broadcast REQUEST can make an entry in
its ARP cache, associating the requestor’s IP address with
its MAC address. Only the neighbor whose IP address
matches the one being queried by the ARP REQUEST re-
sponds with an ARP REPLY; other nodes simply discard
the ARP REQUEST after populating their ARP cache. To
ensure freshness of the ARP cache, the entries are typi-
cally purged periodically. Most ARP implementations for
wired networks have a timeout of 20 minutes, after which
aged entries are removed, and another exchange of ARP
REQUEST and REPLY packets is necessary for further
traffic to use this link.

ARP is a connectionless and stateless protocol. ARP
REPLYs that are returned are not matched with ARP RE-
QUESTs that are sent out. This makes APR vulnerable to
a number of spoofing and ARP cache poisoning attacks.
A malicious node may send out spoofed gratuitous ARP
messages, associating its MAC address with some other
node’s IP address, poisoning caches of all nodes that re-
ceive the gratuitous ARP message. A malicious node
may also target specific nodes, and poison their caches by
sending spoofed ARP REPLY messages unicast to them.
Such attacks have been studied and defended against well
in wired networks, but they pose a serious threat to wire-
less networks [4], and in particular ad hoc networks.

2.1. Dynamic Source Routing

DSR is a simple and efficient on-demand ad hoc routing
protocol. A node in DSR attempts to find a route to a des-
tination only when it has some data to send— this helps
in keeping overheads relatively low in DSR in compar-
ison with other ad hoc network routing protocols. The
protocol has been shown to respond quickly to topology
changes resulting from node mobility [6]. DSR is com-
posed of two distinct mechanisms, Route Discovery and
Route Maintenance, which are used, respectively, to set
up paths for data, and to find alternate paths in case of link
failures. Route discovery is initiated by a node that wishes
to send data to a destination but does not already have a
route to that destination. The sending node sends out a
Route Request (RREQ) message that is flooded through
the network. The RREQ message contains an (initially)
empty list of node addresses. Each intermediate hop that
receives and processes the broadcast RREQ appends its
own address to the list and rebroadcasts the RREQ. Fi-



nally, when the intended destination receives the RREQ,
it constructs a new message called a Route Reply (RREP),
which it sends back to the RREQ originator, either by re-
versing the path that the received RREQ took, or by ini-
tiating a new Route Discovery for the source. To prevent
overhead due to excessive re-broadcasting, DSR requires
each new RREQ to carry a unique identifier. Intermediate
nodes processing RREQs first check to see if they have
already processed a RREQ with the same identifier (that
is, from the same Route Discovery). Duplicate RREQs
from the same Route Discovery are dropped, and are not
rebroadcast.

Since a target may receive multiple RREQs through
different paths, it usually ends up sending a number of
RREPs back to the source. The source caches all the
RREPs that it receives. Once the original sender receives
a RREP, it can use this route to send data to the desti-
nation. Each such data packet that is sent out from the
source carries with it the address of each hop along the
path to the final destination. It is for this reason that the
protocol is called Source Routing; the source of each data
packet specifies the entire path that the data should take
through the network.

Each node forwarding a packet performs Route Main-
tenance to ensure that the packet reached the next hop. If
it cannot determine that a packet it forwarded successfully
reached the next hop, it determines that the link from it-
self to the next hop is broken. This may be caused as a
result of the communicating nodes moving beyond their
direct communication range. Upon detecting the trans-
mission failure, the node constructs a new message, called
a Route Error (RERR), which it sends back to the origi-
nator of the data, informing it about the link failure. The
source, upon receiving the RERR, removes that link from
its cache. It may then look up its cache to find a different
route to the destination, and use that route to send subse-
quent data packets. If the source node does not know of
any other route, it may initiate a new Route Discovery to
find new paths.

DSR makes use of many techniques to optimize end-to-
end throughput and latency. Caching of source routes is
employed extensively— not only do the source and desti-
nation learn the path between themselves after Route Dis-
covery, but all nodes along the path also learn about each
other’s presence. Since a node can overhear all trans-
missions within its communication range, a node, if so

Table 1: ARP Requests by Packet Type
Type of packet Number of ARP REQUESTS

RREQ 0
RREP 465
RERR 32

Total DSR 497
Data Packets 336

configured, can learn about new routes by just overhear-
ing packets received or sent by its neighboring nodes and
snooping on their source routes. Similarly, Route Error
propagation leads to purging of all cached routes which
contain the failed hop, at each node that propagates the
route error, or overhears a node transmitting a route er-
ror. Because of these optimizations, DSR is able to track
topology change information, and disseminate this infor-
mation quickly throughout the network. Several other op-
timizations are also present in DSR, the details of which
can be found in [11].

3. ARP Attacks

3.1. ARP Reply Spoofing

In an on-demand ad hoc network routing protocol, ARP
packets are generally sent in response to routing proto-
col messages; after routing protocol messages have been
exchanged, the ARP cache entries can be used for actual
data packets. For instance, in DSR, Route Replies mov-
ing towards the requesting wireless node require the use
of ARP for IP-to-MAC address translation of next hop
nodes. (Route Requests do not invoke ARP since those
are flooded through the network as broadcast packets.)
Table 1 shows results from a typical ad hoc network sim-
ulation, using DSR as the routing protocol, showing that
most ARP Requests are sent because of a Route Reply.
The parameters used for the simulation run are tabulated
in Table 2.

When a packet is handed down to the link layer for a
destination whose MAC address in unknown, ARP broad-
casts a ARP REQUEST message to query for the un-
known MAC address. The packet triggering this request
is held in a buffer (one packet per outstanding IP desti-
nation) until an ARP REPLY is heard from the destina-



Table 2: Simulation Parameters
Simulation Parameter Value

Topology 1500x300m
Number of nodes 50

Type of traffic CBR
Number of connections 20

tion. The node whose IP address matches the address in
the ARP REQUEST sends back a unicast ARP REPLY,
including its MAC address in the response. When this
response is heard at the querying node, the newly discov-
ered MAC address is included in the appropriate head-
ers in the held packet and the packet is removed from the
buffer and sent to the lower layer. The destination eventu-
ally receives the packet that was held for it.

A malicious node may misuse the ARP mechanism to
steal packets that are held for other nodes. Since ARP RE-
QUESTs are broadcast, a malicious node can hear ARP
REQUESTs sent by its neighbors. When a malicious node
M hears such a request by node A for node B’s MAC
address, it constructs a spoofed ARP REPLY, associating
its own MAC address with B’s IP address. It then uni-
casts this ARP REPLY to A, ignoring delays in the link
layer and the MAC layer. The queried node B would also
send back a unicast ARP REPLY message to A. If node A
receives M’s spoofed response before the valid ARP RE-
PLY from B, the held packet would be sent out with M’s
MAC address and the malicious node would be success-
ful in stealing the packet intended for B. The malicious
node M also successfully poisons A’s cache, though this
poisoning is short-lived. When A receives the legitimate
ARP REPLY from B, its ARP cache reverts the IP-MAC
association to correct values. The attack can be made
more powerful if the malicious node M sends a dupli-
cate spoofed ARP REPLY to A after a sufficient dura-
tion to poison the ARP cache again, with the intent of re-
ceiving all subsequent packets sent by A for B. Malicious
nodes may also collude, and only steal packets intended
for non-malicious nodes. Hence, stolen packets fall in
two distinct categories— those stolen by the first (rushed)
ARP REPLY, and those stolen by the second (poisoning)
ARP REPLY. Most of the held packets stolen are routing
layer packets, whereas packets stolen in extended steals
are generally data packets.

Malicious nodes, with this attack, can adversely affect
the route discovery phase in on-demand ad hoc routing
protocols. By stealing Route Reply packets in DSR, ma-
licious nodes disrupt path setup through non-malicious
nodes. Paths through malicious nodes are thereby fa-
vored, giving them a higher share of network traffic. If
malicious nodes drop all data packets that they receive,
this increased share of network traffic adversely impacts
end-to-end throughput. Malicious nodes also receive a
large number of data packets due to poisoned ARP caches
of their neighbors, and dropping these stolen data packets
also contributes to reduced throughput.

3.2. Promiscuous Cache Poisoning

Because of the broadcast nature of the wireless medium,
nodes in a wireless network can overhear transmissions
made by nodes within wireless communication range.
Ad hoc network routing protocols can often improve their
performance by using this information, for example by
using routing layer headers to learn new routes, updates
and topology changes. This optimization allows topol-
ogy and routing information to quickly spread through
the network, making the routing protocol more adaptive
to network changes.

However, malicious nodes can misuse the promiscuous
mode by implementing a timed ARP spoof attack. When
a malicious node M promiscuously receives a data packet
sent by a neighboring node A to another neighboring node
B, it can infer that data will flow between nodes A and B.
It attempts to disrupt communication between the nodes
by poisoning A’s ARP cache. To do so, it constructs a
spoofed ARP REPLY message, associating B’s IP address
with its own MAC address, and unicasts this ARP REPLY
to A. This reply overwrites the existing entry for B in A’s
cache. This is because ARP is a connectionless and state-
less protocol. ARP does not match outgoing ARP RE-
QUESTs with incoming ARP REPLYs, and hence asyn-
chronously sent spoofed ARP REPLYs successfully over-
write existing cached entries. All subsequent packets that
are sent by A, addressed for B, would instead be received
by the malicious node M because of the poisoned ARP
cache entry. The malicious node would continue to re-
ceive these data packets as long as it stays within A’s
transmission range. Without this attack, if B had moved
out out of A’s transmission range, A’s the next transmis-



sion to B would have caused MAC layer failures and sub-
sequent routing layer mechanisms to deal with the fail-
ures; however, because A’s ARP cache is poisoned, M
continues to receive data packets for B even though B has
moved out of A’s transmission range.

Instead of stealing packets destined for other nodes,
malicious nodes can attempt to cause those packets to be
dropped, by using an invalid MAC address in spoofed
ARP REPLY messages. As before, the malicious node
M poisons A’s cache with a spoofed entry, but instead of
associating B’s IP address with M’s MAC address, it asso-
ciates B’s IP address with an invalid MAC address. Sub-
sequent transmissions by A for B would cause MAC fail-
ures, invoking potentially expensive routing layer mech-
anisms. For instance, in DSR, Route Maintenance would
be invoked at A, which causes a Route Error to be gen-
erated and sent back to the original source of the data
packet. In addition to increasing overheads, Route Errors
purge any routes using the A→B link at any intermedi-
ate node on the reverse path from A to the source node.
This attack thus causes valid routes to be discarded, which
causes the routing protocol to either choose new routes
(possibly through malicious nodes) or perform new route
discoveries (further increasing routing overhead).

3.3. Spoofing ARP REQUESTS

Previous attacks discussed poison caches of specific
nodes, since spoofed ARP REPLYs are unicast to spe-
cific target nodes. A more serious attack can result from
the misuse of ARP REQUESTs, since ARP REQUESTs
cause an IP-to-MAC association of the broadcaster to be
entered in ARP caches of all nodes that receive the re-
quest. Malicious nodes can link ARP REQUEST spoof-
ing with the Route Discovery phase in on-demand ad hoc
routing protocols such as DSR. A node A, that broadcasts
or forwards a Route Request, elicits Route Replies from
its neighbors. The neighbors may have cached routes
to the destination, in which case they may immediately
respond to the Route Request with a Route Reply pro-
viding that cached route. If the neighbors do not have
cached routes to the destination, they would forward the
Route Request, appending their own address to a route
record kept in the Request, thus allowing the returned
reply from the destination to retrace its path to the re-
questing source. In either case, neighbors of node A,

before sending Route Replies to A, would need to query
for A’s MAC address, if they do not already have an IP-
to-MAC association for A in their ARP cache. A mali-
cious node M, also in A’s neighborhood, may attempt to
steal all the Route Replies returned to A by pro-actively
poisoning caches of A’s neighbors in response to hear-
ing a Route Request being broadcast (or forwarded) by
A. To do this, M constructs an ARP REQUEST message,
spoofing A’s IP address and broadcasts it as soon as it
hears a Route Request from A. It includes its own MAC
address in the ARP REQUEST, thereby creating an as-
sociation between A’s IP address and M’s MAC address.
In the Address Resolution Protocol, all nodes that receive
an ARP REQUEST, regardless of whether or not their IP
address matches the one being queried, make an entry in
their ARP cache reflecting the IP-to-MAC association of
the node transmitting the ARP REQUEST. Any node that
receives the spoofed ARP REQUEST from M will there-
fore make an incorrect entry in its ARP cache, which it
would use to send packets addressed to A. When perform-
ing this attack, the malicious node’s ARP REQUEST does
not actually solicit an ARP REPLY; as a result, the mali-
cious node can query for a random or invalid IP address.
As a result of the poisoning, all packets (including Route
Replies) sent by any of A’s neighbors addressed for A
would instead be received by M. The malicious node
can severely impact the Route Discovery process in this
way, by stealing and discarding Route Replies from non-
malicious nodes. The attack allows malicious nodes to
thus favor path setup through themselves or through other
malicious nodes. The malicious nodes hence gain a higher
percentage traffic share in the network. Also, since many
legitimate paths are prevented from being set up, traf-
fic would be routed through non-optimal paths, thus im-
pacting end-to-end latency; which can be critical for real
time applications. Further, if malicious nodes choose to
drop all data packets that they receive; this attack can
severely impact end-to-end throughput. Spoofing ARP
REQUESTs as described above is a more powerful attack
than spoofed ARP REPLYs for two reasons. Firstly, a
single ARP REQUEST poisons caches of all neighbors,
as compared to an ARP REPLY which is unicast to a tar-
get node. Secondly, by proactively poisoning neighbor
caches, the malicious node reduces the number of ARP
REQUESTs generated by neighbors of the victim. ARP
REQUESTs by neighbors elicits ARP REPLYs from le-



gitimate nodes, which may install correct IP-to-MAC as-
sociations, or overwrite existing spoofed associations in-
stalled by malicious nodes.

The malicious node can also launch a slightly different
attack in which it poisons neighbor caches with invalid
MAC address translations. By sending a spoofed ARP
REQUEST message associating an invalid MAC address
with the Route Request broadcaster’s (A’s) IP address,
the malicious node M causes expensive Route Mainte-
nance mechanisms to be invoked at the neighbors when-
ever the neighbors have a packet to send to A. This in-
creases packet overhead in the network greatly, causes
valid routes to be discarded and non-optimal paths to be
setup. Forwarding of data through non-optimal paths im-
pacts latency, while at the same time giving malicious
nodes a higher share of network traffic.

3.4. Limitations of ARP Attacks

ARP attacks can often be detected by victim nodes. For
example, many operating systems can detect when an-
other system on the same subnet is using the same IP
address. However, without a secure ARP protocol, the
true owner of the IP address has no way of authenticating
its ARP packets to the exclusion of the attacker’s ARP
packets. One way around this limitation is to use direc-
tional antennas aimed away from the victim; however,
this also limits the impact of the attack, and particularly
attacks that use broadcast ARP messages for cache cor-
ruption.

Another way to mitigate the effects of an ARP attack is
to operate the network interface in promiscuous mode. In
promiscuous mode, packets received by the network inter-
face are passed to the IP layer regardless of the MAC des-
tination address. This action can save some of the stolen
packets, and the victim can send a gratuitous ARP REPLY
to the node that incorrectly sent the packet to the wrong
destination. However, this is an inadequate response to
the ARP attack, for three reasons. First, the ARP REPLY
cannot be authenticated, so the attacker can send another
ARP packet to again corrupt the sender’s cache. Secondly,
broadcast packets are less reliable than unicast packets be-
cause of the lack of medium reservation, so the victim is
less likely to hear packets destined for it when the wrong
MAC destination is used. Finally, when the victim moves
outside the sender’s wireless transmission range, the mali-

cious node still sends link-layer acknowledgments, which
prevents route maintenance from detecting the link break-
age. This allows the malicious node to continue steal-
ing packets, and also prevents the victim from recovering
the packets since the victim can no longer overhear those
packets.

4. Countermeasures

Ad hoc routing protocols can be fortified against ARP re-
lated attacks in many ways. One way is to secure the
Address Resolution Protocol itself using cryptographic
mechanisms. Bruschi et al have developed a secure
address resolution protocol called S-ARP [7]. This pro-
tocol requires each node to have a public/private key pair
used to authenticate ARP messages. All ARP communi-
cation that is sent by any node is signed by the sender’s
private key and verified by the receiver. This ensures
source authentication and prevents spoofed ARP REPLYs
from polluting cached entries. This scheme, though well-
suited to infrastructure networks with centralized admin-
istration, is not ideal for use in ad hoc networks because
of its use of expensive asymmetric cryptography, and be-
cause it requires a trusted certification authority which
may not be possible in a decentralized ad hoc network.

Another way of avoiding ARP related attacks is to to-
tally prevent the use of ARP as an address translation
mechanism. In static ARP, each node in the network
adds every other node in the network to its ARP cache
with a static IP-to-MAC address association. This ensures
that ARP need not send any packets for address resolu-
tion. This scheme is frequently used to prevent spoof-
ing of critical routing infrastructure such as routers and
switches in wired networks. Any ARP traffic that is ob-
served on the LAN can be labeled as spoofed, and coun-
termeasures can be taken to detect the source of malicious
ARP traffic. These ideas, though applicable in subnets
and small LANs, can also be difficult to deploy in ad hoc
networks, because it is difficult to isolate traffic in a wire-
less network, and because of the requirement for a single
trusted entity to provide each node with these IP-to-MAC
address associations.

By integrating an address translation mechanism into
the routing protocol itself, the need for an explicit reso-
lution protocol can be nullified. Existing ad hoc routing



protocols can be extended to include automatic address
resolution in the routing layer. This integration elimi-
nates the need for ARP packets entirely, protecting rout-
ing protocols from ARP-related attacks. Secure versions
of ad hoc routing protocols, which are also vulnerable to
ARP attacks, can also integrate address resolution with
the secure routing layer to further fortify the protocol.

Not only does this integration provide increased secu-
rity in wireless ad hoc networks, but it is also beneficial in
terms of performance. ARP message exchange increases
the latency of packets triggering that exchange. By proac-
tively populating the ARP cache, some delays in packet
delivery can be avoided, and applications can benefit from
improved latencies. In addition, packet loss can some-
times be avoided; ARP holds at most one packet for each
destination while waiting for ARP REPLYs. Subsequent
packets that are handed down to ARP for the same desti-
nation overwrite the contents of the single packet buffer.
By automatically determining IP-to-MAC address trans-
lations within the routing protocol, packets need not be
buffered or dropped due to ARP. For example, in an on-
demand ad hoc routing protocols such as DSR, a route dis-
covery leads to a reverse broadcast storm of route replies
towards the source, with each hop requiring an ARP ex-
change to resolve next hop addresses. As the route replies
converge, they cause congestion around the source node,
again resulting in increased packet loss. By tightly inte-
grating address resolution with the routing protocol, these
effects can also be avoided.

4.1. Extending DSR to Support Automatic
Address Resolution

On-demand ad hoc routing protocols such as DSR can be
augmented to include automatic address resolution. Each
data packet in DSR contains the route that the packet
should take to reach the destination. This list of IP
addresses can be augmented (or replaced) by including
MAC addresses of each hop in the source route. In this
case, routing protocol packets (Route Requests, Route Er-
rors and Route Replies in DSR) are modified to include
the necessary MAC addresses. This approach avoids the
exchange of ARP messages, at the cost of additional over-
head in each packet. In addition, hop-by-hop routing pro-
tocols are unable to take advantage of such an approach.

To address these problems, we observe that MAC address
translation is only needed on a per-hop basis. If the rout-
ing protocol maintains a neighbor cache that holds IP-to-
MAC translations of all known neighbors, it can populate
this neighbor cache based on existing routing packets and
can use this cache to eliminate the need for ARP packets.

Automatically obtaining IP-to-MAC address associa-
tions by examining routing protocol packets is necessarily
protocol-dependent. In this section, we focus on protocol
messages used in DSR, though the application of these
techniques to other on-demand routing protocols is rela-
tively straightforward.

When a DSR node broadcasts (or rebroadcasts) a Route
Request packet, the last node to transmit the packet can be
determined from the source route contained in each such
Route Request. Nodes hearing this Route Request can
associate the IP address from the source route with the
source MAC address in the MAC-layer header of the Re-
quest. The Route Request is then processed as specified
by DSR. When nodes cache IP-to-MAC address associa-
tions from Route Requests, all nodes between the source
to the destination would know the previous hop’s MAC
address before route replies retrace the path towards the
source node. This avoids the need for ARP packets dur-
ing the route reply phase.

When data flows over a discovered route, the last hop
may not have a IP-to-MAC address mapping because the
target does not forward the Route Request. In addition,
because of the unreliable nature of broadcast packets in
wireless networks, the ith node in a route may not have
heard the Request forwarded by the i+1st node. To auto-
matically create these IP-to-MAC mappings, we take ad-
vantage of the information in the source route and MAC
header; in particular, DSR uses a source route to specify
the path along which the Route Reply is to be returned
to the initiator. When the i + 1st node in a discovered
path forwards the Route Reply to the ith node in that path
(since the Route Reply is generally sent by reversing the
discovered path), the ith node can retrieve the IP address
of the i + 1st node (from the source route) and the MAC
address of that node (from the MAC header). The ith node
then places this information in its neighbor table.

This shows that in DSR, after the route discovery phase,
all intermediate hops in the discovered route can have IP-
MAC mappings for each of their neighbors on the path.
These techniques can improve path setup times in DSR.



since route replies avoid performing ARP message ex-
changes at each hop.

DSR can also promiscuously learn routing information
from packets it overhears. However, whenever it learns
such a route, it will also hear a source route, and it can
therefore determine the IP address of the node that last
forwarded that data packet (from the source route) and
the MAC address of that node (from the MAC header).

DSR does not require that routes be proactively expired
from route caches; as a result, a node can use an old route.
If node A and node B used to be neighbors, drifted apart,
and then moved back within wireless transmission range
of each other, they may have purged the associated neigh-
bor cache entries when they discovered that the other node
was no longer directly reachable. In these cases, we can
build a routing layer mechanism similar to ARP to per-
form address resolution. In the next section, we discuss
why such a mechanism might be more advantageous than
using ARP directly.

4.2. Extending Secure Ad Hoc Routing Pro-
tocols with Automatic Address Resolu-
tion

The techniques presented in the previous section do not
provide much security, since an attacker can overflow the
neighbor caches of its neighbors by sending packets with
bogus IP addresses and MAC source addresses. The prob-
lem is that IP addresses are not authenticated. Even if IP
addresses were authenticated, the MAC header is not gen-
erally included in the authenticated fields, so an attacker
can simply replay legitimate packets to create bogus as-
sociations in neighbor nodes. In order to secure the IP-to-
MAC address translation, both the IP and MAC addresses
need to be authenticated; for example, in the ARP-like
protocol described in the previous section, we can add an
authenticator that covers the IP and MAC addresses that
are to be associated.

We observe that in a secure ad hoc network routing pro-
tocol, the problem of key distribution is very similar to the
problem of distributing IP-to-MAC associations in Static
ARP. In particular, we can treat a node’s MAC address as
part of its public key that is signed by a certificate author-
ity. Protocols with a built-in way to distribute public-key
certificates, such as ARAN [18], can securely distribute

IP-to-MAC associations using this mechanism. Other-
wise, protocols that use a public key, such as our Ariadne
and SEAD protocols [10, 9], would distribute the IP-to-
MAC associations together with the necessary public or
private keys before network deployment.

5. Evaluation

5.1. Methodology

To evaluate the impact of ARP spoofing, we simulated
the attacks described in Section 3. We selected the ns-
2 simulator with the Monarch extensions [6] because it
provides a realistic simulation of wireless propagation,
and because it correctly models the IEEE 802.11 MAC,
ARP, and DSR. We ran our simulations with 50 nodes in
an 1500 m × 300 m space, using a nominal radio trans-
mission range of 250 m. Each node moved according to
the random waypoint model with zero pause time; that is,
each node started in a random location, chose a random
destination and a random speed between 0 and 20 m/s, and
moved to the destination at that speed. Once it reached
that destination, it repeated the process, choosing a new
destination and new speed. Each simulation represents
900 seconds of simulated time. We chose to use constant
bit rate (CBR) traffic to best represent the ability of the
protocol to deliver a packet at any given time. Usage of a
conforming load (such as TCP) would grant even more
advantage to the attacker by shutting down the source
whenever a path is chosen through the attacker. In our
simulation, there were 20 CBR sources, each sending 4
packets per second. The packets each contained 64 bytes
of data.

We simulated a varying number of malicious DSR
nodes using several attacks. We varied the number of
attackers from 0 to 31, and we ran 10 simulations for each
data point. In the baseline attack, the malicious nodes
simply participate in DSR as normal, but drop all traffic
that they are asked to forward. In addition to the baseline
attack, we simulated the following spoofing attacks:

• Spoofing ARP REPLYs based on ARP REQUESTs
for non-malicious nodes (Section 3.1)

• Using promiscuously overheard data packets to de-
tect data flows, and spoofing ARP REQUESTs in re-
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sponse to such flows (Section 3.2)

• Spoofing ARP REQUESTs based on overheard
Route Request packets (Section 3.3)

We evaluated performance primarily along the metric
of Packet Delivery Ratio (PDR). The packet delivery ra-
tio is the fraction of packets sent by the application layer
which are received at the destination.

5.2. Results

Figure 1 shows the results from the simulation of the ARP
REPLY spoofing attack (Section 3.1). Packet Delivery
Ratio (PDR) is plotted against the total of malicious nodes
in the network. Each data point on the graph shows the
average over ten simulations, and the error bars show the
95% confidence interval of the PDR. The ARP REPLY
spoofing attack is compared against a baseline attack, in
which malicious nodes simply discard all data packets
that they receive. When the ARP REPLY spoofing attack
is performed, PDR drops almost 10% below the baseline
performance. This is due to two reasons. First, due to
ARP cache poisoning, malicious nodes steal and discard
data packets that are intended for other nodes, directly im-
pacting throughput. Secondly, malicious nodes also steal
and discard Route Replies from non-malicious nodes,
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Figure 3: reply cache poisoning

which reduces path setup through non-malicious nodes.
By favoring paths through themselves in this way, mali-
cious nodes control (and subsequently discard) a larger
percentage of data traffic. Figure 2 shows the impact of
ARP REPLY spoofing when malicious nodes do not dis-
card data packets that they receive for forwarding. Rel-
ative to a standard DSR simulation run, PDR drops sig-
nificantly as a result of ARP REPLY spoofing, and con-
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Figure 4: bogus request

sequent ARP cache poisoning. Also shown in the same
graph are curves for the baseline attack, and the ARP RE-
PLY spoofing attack, when malicious nodes discard data
packets which they are asked to forward.

The impact of promiscuous cache poisoning through
spoofed ARP REPLY messages (Section 3.1) is shown in
Figure 3. When the attacker uses its own MAC address
in the spoofed REPLYs, packet delivery performance is
severely impacted even with a very small number of ma-
licious nodes. When the attacker instead sends an in-
valid MAC address, performance is reduced relative to
the baseline attack, but is well above when the attack
uses the malicious node’s MAC address. This is because
an invalid MAC address invokes Route Maintenance in
DSR, and nodes are somewhat successful in finding alter-
nate paths to destinations, resulting in a higher PDR. This
attack though, does result in increased packet overhead in
the network since numerous Route Errors are generated.

Figure 4 shows the results from ARP REQUEST spoof-
ing attacks (Section 3.3). As before, the attack where the
malicious node uses its own MAC address is more ef-
fective than when the malicious node uses invalid MAC
addresses. When the malicious node uses its own MAC
address, the PDR drops very quickly, even for small num-
bers of malicious nodes. When there are few malicious
nodes, this attack is more successful than spoofing ARP

REPLYs, because a single malicious node transmission
affects the ARP caches in many more nodes. However,
as the number of attackers increases, spoofing ARP RE-
PLYs becomes more powerful. This is because of the
effects of local congestion caused by several malicious
nodes spoofing ARP packets: in the ARP REPLY spoof-
ing, the congestive effects equally affect legitimate and
attacking ARP packets (and the number of attacking ARP
packets far exceeds the number of legitimate ones in order
to cause congestion); in REQUEST spoofing, the spoofed
packets compete with each other and legitimate Route
Requests. As a result, when the spoofed packets col-
lide, ARP will get a chance to find an IP-to-MAC address
translation.

6. Related Work

The notion of Manycast Transactions in ad hoc
networks [8] also brings forth the idea of address reso-
lution integration with the routing protocol. The authors
also discuss some of the benefits that can be achieved
through this integration. There has also been previous
work on Topology Broadcast based on Reverse Path For-
warding (TBRPF) [13], in which the authors provide sup-
port for automatic address resolution. However, neither
of these approaches discuss the security issues inherent
in ARP, and because they do not secure the underlying
routing messages, they cannot provide secure IP-to-MAC
address translation.

The problem of secure IPv6 Neighbor Discovery is
similar to the well-known ARP weaknesses. A number
of proposals have been made for securing IPv6 Neighbor
Discovery (e.g. [2, 12]), usually based either on a PKI or
on cryptographic addresses. We differ from this work in
two ways: first, our approaches do not rely on asymmetric
cryptography and can often be implemented with no over-
head, and second, we demonstrate the damage that ARP
spoofing can cause in ad hoc networks.

7. Conclusion

To build a secure ad hoc network, it is imperative that all
communication layers are secure, as otherwise an attack



targetted against a layer that is not secure could compro-
mise the system.

Prior research on secure ad hoc network protocols has
largely ignored attacks against the ARP protocol. As we
demonstrate in this paper, the ARP layer is particularly
important to secure as an attacker can completely paralyze
communication if current ARP implmentations are used.
We perform a comprehensive study and present measures
to counteract these attacks. We find that a secure ARP
protocol can largely mitigate these attacks. However, bet-
ter security can be achieved by combining ARP function-
ality with higher layers and securing both layers simulta-
neously.
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