Science \& Education

Fixed Points Results for Graphic Contraction on Closed Ball

Aftab Hussain ${ }^{1,2, *}$
${ }^{1}$ Department of Mathematics, International Islamic University, H-10, Islamabad - 44000, Pakistan
${ }^{2}$ Department of Mathematical Sciences, Lahore Leads University, Lahore - 54000, Pakistan
*Corresponding author: aftabshh@gmail.com

Abstract

In this paper, we introduce a new class of ciric fixed point theorem of (α, ψ) -contractive mappings on a closed ball in complete metric space. As an application, we have derived some new fixed point theorems for ciric ψ-graphic contractions defined on a metric space endowed with a graph in metric space. Our results provide extension as well as substantial generalizations and improvements of several well known results in the existing comparable literature.

Keywords: fixed point, α-admissible, (α, ψ) - contraction, closed ball
Cite This Article: Aftab Hussain, "Fixed Points Results for Graphic Contraction on Closed Ball." Turkish Journal of Analysis and Number Theory, vol. 4, no. 4 (2016): 93-97. doi: 10.12691/tjant-4-4-2.

1. Introduction

In 2012, Samet et al. [18], introduced a concept of $\alpha-\psi$ - contractive type mappings and established various fixed point theorems for mappings in complete metric spaces. Afterwards Karapinar and Samet [6], refined the notions and obtain various fixed point results. Hussain et al. [9], enlarged the concept of α-admissible mappings and obtained useful fixed point theorems. Subsequently, Abdeljawad [4] introduced pairs of α - admissible mappings satisfying new sufficient contractive conditions different from [9] and [18], and proved fixed point and common fixed point theorems. Lately, Salimi et al. [17], modified the concept of $\alpha-\psi$ - contractive mappings and established fixed point results. Mohammadi et al. [7] introduced a new notion of $\alpha-\psi$-contractive mappings and show that this is a real generalization for some old results. Arshad et al. [2] established fixed point results of a pair of contractive dominated mappings on a closed ball in an ordered complete dislocated metric space. Hussain et al. [8], introduced the concept of an α-admissible map with respect to η and modify the $\alpha-\psi$-contractive condition for a pair of mappings and established common fixed point results for two, three, and four mappings in a closed ball in complete dislocated metric spaces. Over the years, fixed point theory has been generlized in multi-directions by several mathematicians(see [1-18]).

Let Ψ be a family of nondecreasing functions $\psi:[0,+\infty) \rightarrow[0,+\infty)$ such that $\sum_{n=1}^{+\infty} \psi^{n}(t)<+\infty$, for each $t>0$.
Lemma 1. ([17]). If $\psi \in \Psi$, then $\psi(t)<t$ for all $t>0$.
Definition 2. ([18]). Let (X, d) be a metric space. A mapping $T: X \rightarrow X$ is an (α, ψ) - contractive mapping
if there exist two functions $\alpha: X \times X \rightarrow[0,+\infty)$ and $\psi \in \Psi$ such that

$$
\alpha(x, y) d(T x, T y) \leq \psi(d(x, y))
$$

for all $x, y \in X$.
Definition 3. ([18]). Let $T: X \rightarrow X$ and $\alpha: X \times X \rightarrow[0,+\infty)$. We say that T is α-admissible if $x, y \in X, \alpha(x, y) \geq 1$ implies that $\alpha(T x, T y) \geq 1$.
Example 4. Let $X=(0, \infty)$ and T an identity mapping on X. Define $\alpha: X \times X \rightarrow[0, \infty)$ by

$$
\alpha(x, y)=\left\{\begin{array}{rc}
e^{\frac{y}{x}} & \text { if } x \geq y, x \neq 0 \\
0 & \text { if } \quad x<y
\end{array}\right.
$$

Then T is α-admissible.
Definition 5. ([17]). Let $T: X \rightarrow X$ and $\alpha, \eta: X \times X \rightarrow[0,+\infty)$ two functions. We say that T is α-admissible mapping with respect to η if $x, y \in X$, $\alpha(x, y) \geq \eta(x, y)$ implies that $\alpha(T x, T y) \geq \eta(T x, T y)$.

If $\eta(x, y)=1$, then above definition reduces to definition 3. If $\alpha(x, y)=1$, then T is called an η subadmissible mapping.
Definition 6. ([7]). Let $T: X \rightarrow X$ and $\alpha_{0}: X \times X \rightarrow[0,+\infty)$ by

$$
\alpha_{0}(x, y)=\left\{\begin{array}{cc}
1 & \alpha(x, y) \geq \eta(x, y) \\
0 & \text { otherwise }
\end{array}\right\}
$$

We say that T is α_{0}-admissible. If $\alpha_{0}(x, y) \geq 1$, then $\alpha(x, y) \geq \eta(x, y)$ and so $\alpha(T x, T y) \geq \eta(T x, T y)$. This implies $\alpha_{0}(T x, T y)=1$. Also $\alpha_{0}\left(x_{0}, T x_{0}\right)=1$.

2. Main Results

We prove ciric fixed point results for $(\alpha, \psi)-$ contraction mappings on a closed ball in complete metric space.
Theorem 7. Let (X, d) be a complete metric space and T is α-admissible mapping with respect to η. For $r>0, x_{0} \in \overline{B\left(x_{0}, r\right)}$ and $\psi \in \Psi$, assume that,

$$
\begin{align*}
& x, y \in \overline{B\left(x_{0}, r\right)}, \alpha(x, y) \geq \eta(x, y) \\
& \Rightarrow d(T x, T y) \leq \psi(M(x, y)) \tag{1}
\end{align*}
$$

where

$$
M(x, y)=\max \left\{\begin{array}{l}
d(x, y), d(x, T x), d(y, T y), \\
\frac{d(x, T y)+d(y, T x)}{2}
\end{array}\right\}
$$

and

$$
\begin{equation*}
\sum_{i=0}^{j} \psi^{i}\left(d\left(x_{0}, T x_{0}\right)\right) \leq r, \text { for all } j \in N \tag{2}
\end{equation*}
$$

Suppose that the following assertions hold:

- $\quad \alpha\left(x_{0}, T x_{0}\right) \geq \eta\left(x_{0}, T x_{0}\right) ;$
- for any sequence $\left\{x_{n}\right\}$ in $\overline{B\left(x_{0}, r\right)}$ such that $\alpha\left(x_{n}, x_{n+1}\right) \geq \eta\left(x_{n}, x_{n+1}\right)$ for all $n \in N \cup\{0\}$ and $x_{n} \rightarrow u \in \overline{B\left(x_{0}, r\right)} \quad$ as $n \rightarrow+\infty \quad$ then $\alpha\left(x_{n}, u\right) \geq \eta\left(x_{n}, u\right)$ for all $n \in N \cup\{0\}$.
Then, there exists a point x^{*} in $\overline{B\left(x_{0}, r\right)}$ such that $T x^{*}=x^{*}$.
Proof. Let x_{1} in X be such that $x_{1}=T x_{0}, x_{2}=T x_{1}$. Continuing this process, we construct a sequence x_{n} of points in X such that, $x_{n}=T x_{n}$. By assumption $\alpha\left(x_{0}, x_{1}\right) \geq \eta\left(x_{0}, x_{1}\right)$ and T is α-admissible mapping with respect to η. we have, $\alpha\left(T x_{0}, T x_{1}\right) \geq \eta\left(T x_{0}, T x_{1}\right)$ from which we deduce that $\alpha\left(x_{1}, x_{2}\right) \geq \eta\left(x_{1}, x_{2}\right)$ which also implies that $\alpha\left(T x_{1}, T x_{2}\right) \geq \eta\left(T x_{1}, T x_{2}\right)$. Continuing in this way we obtain $\alpha\left(x_{n}, x_{n+1}\right) \geq \eta\left(x_{n}, x_{n+1}\right)$ for all $n \in N \cup\{0\}$. First, we show that $x_{n} \in \overline{B\left(x_{0}, r\right)}$ for all $n \in N$. Using inequality (2), we have,

$$
\left.d\left(x_{0}, T x_{0}\right)\right) \leq r
$$

It follows that,

$$
x_{1} \in \overline{B\left(x_{0}, r\right)}
$$

Let $\quad x_{2}, \cdots, x_{j} \in \overline{B\left(x_{0}, r\right)}$ for some $j \in N$. Using inequality (1), we obtain,

$$
\begin{aligned}
d\left(x_{i}, x_{i+1}\right) & =d\left(T x_{i-1}, T x_{i}\right) \\
& \leq \psi\left(M\left(x_{i-1}, x_{i}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
M\left(x_{i-1}, x_{i}\right) & =\max \left\{\begin{array}{l}
d\left(x_{i-1}, x_{i}\right), d\left(x_{i}, x_{i+1}\right), \\
\frac{d\left(x_{i-1}, x_{i+1}\right)}{2}
\end{array}\right\} \\
& \leq \max \left\{\begin{array}{l}
d\left(x_{i-1}, x_{i}\right), d\left(x_{i}, x_{i+1}\right) \\
\frac{d\left(x_{i-1}, x_{i}\right)+d\left(x_{i}, x_{i+1}\right)}{2}
\end{array}\right\} .
\end{aligned}
$$

So

$$
\begin{equation*}
M\left(x_{i-1}, x_{i}\right) \leq \max \left\{d\left(x_{i-1}, x_{i}\right), d\left(x_{i}, x_{i+1}\right)\right\} \tag{3}
\end{equation*}
$$

the case $M\left(x_{i-1}, x_{i}\right)=d\left(x_{i}, x_{i+1}\right)$ is impossible

$$
d\left(x_{i}, x_{i+1}\right) \leq \psi\left(d\left(x_{i}, x_{i+1}\right)\right)<d\left(x_{i}, x_{i+1}\right) .
$$

Which is a contradiction. Otherwise, in other case $M\left(x_{i-1}, x_{i}\right)=d\left(x_{i-1}, x_{i}\right)$

$$
\begin{aligned}
d\left(x_{i}, x_{i+1}\right) & \leq \psi\left(d\left(x_{i-1}, x_{i}\right)\right) \leq \psi^{2}\left(d\left(x_{i-2}, x_{i-1}\right)\right) \\
& \leq \cdots \leq \psi^{i}\left(d\left(x_{0}, x_{1}\right)\right)
\end{aligned}
$$

Thus we have,

$$
\begin{equation*}
d\left(x_{i}, x_{i+1}\right) \leq \psi^{i}\left(d\left(x_{0}, x_{1}\right)\right) \tag{4}
\end{equation*}
$$

Now,

$$
\begin{aligned}
d\left(x_{0}, x_{j+1}\right) \leq & d\left(x_{0}, x_{1}\right)+d\left(x_{1}, x_{2}\right) \\
& +d\left(x_{2}, x_{3}\right)+\ldots+d\left(x_{j}, x_{j+1}\right) \\
\leq & \sum_{i=0}^{j} \psi^{i}\left(d\left(x_{0}, x_{1}\right)\right) \\
\leq & r .
\end{aligned}
$$

Thus $x_{j+1} \in \overline{B\left(x_{0}, r\right)}$. Hence $x_{n} \in \overline{B\left(x_{0}, r\right)}$ for all $n \in N$. Now inequality (3.4) can be written as

$$
\begin{equation*}
d_{l}\left(x_{n}, x_{n+1}\right) \leq \psi^{n}\left(d\left(x_{0}, x_{1}\right)\right), \text { for all } n \in N . \tag{5}
\end{equation*}
$$

Fix $\varepsilon>0$ and let $N \in N$ such that ${ }_{n \geq N} \psi^{n}\left(d_{l}\left(x_{0}, x_{1}\right)\right)<\varepsilon$. Let $m, n \in N$ with $m>n>N$. Then, by the triangle inequality, we have

$$
\begin{aligned}
d\left(x_{n}, x_{m}\right) & \leq \sum_{k=n}^{m-1} d\left(x_{k}, x_{k+1}\right) \leq \sum_{k=n}^{m-1} \psi^{k}\left(d_{l}\left(x_{0}, x_{1}\right)\right) \\
& \leq \sum_{n \geq N} \psi^{k}\left(d_{l}\left(x_{0}, x_{1}\right)\right)<\varepsilon .
\end{aligned}
$$

Hence $\left\{x_{n}\right\}$ is a Cauchy sequence in $\left(\overline{B\left(x_{0}, r\right)}, d\right)$. As every closed ball in a complete metric space is complete, so there exists $x^{*} \in \overline{B\left(x_{0}, r\right)}$ such that $x_{n} \rightarrow x^{*}$. Also

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n}, x^{*}\right)=0 \tag{6}
\end{equation*}
$$

So by given assumption from (ii), we have $\alpha\left(x_{n}, x^{*}\right) \geq \eta\left(x_{n}, x^{*}\right)$, for all $n \in N \cup\{0\}$. Now from (1), we obtain

$$
\begin{equation*}
d\left(x_{n+1}, T x^{*}\right) \leq \psi\left(M\left(x_{n}, x^{*}\right)\right) . \tag{7}
\end{equation*}
$$

where

$$
M\left(x_{n}, x^{*}\right)=\max \left\{\begin{array}{l}
d\left(x_{n}, x^{*}\right), d\left(x_{n}, x_{n+1}\right), d\left(x^{*}, T x^{*}\right), \\
\frac{d\left(x_{n}, T x^{*}\right)+d\left(x^{*}, x_{n+1}\right)}{2}
\end{array}\right\} .
$$

If $d\left(x^{*}, T x^{*}\right) \neq 0$, then $M\left(x_{n}, x^{*}\right)>0$ for every n. Thus

$$
\begin{equation*}
d\left(x_{n+1}, T x^{*}\right) \leq \psi\left(M\left(x_{n}, x^{*}\right)\right)<M\left(x_{n}, x^{*}\right) . \tag{8}
\end{equation*}
$$

which on taking limit as $n \rightarrow \infty$ gives

$$
\begin{aligned}
& d\left(x^{*}, T x^{*}\right)=\lim _{n \rightarrow \infty} d\left(x_{n+1}, T x^{*}\right) \\
& \leq \lim _{n \rightarrow \infty} M\left(x_{n}, x^{*}\right)=d\left(x^{*}, T x^{*}\right) .
\end{aligned}
$$

Hence $d\left(x^{*}, T x^{*}\right)=0$. The result follows.
Example 8. Let $X=[0, \infty]$ with metric on X defined by $d(x, y)=|x-y|$. Let $T: X \rightarrow X$ be defined by,

$$
T x=\left\{\begin{array}{c}
x 4 \text { if } x \in[0,1] \\
x-\frac{1}{4} \text { if } x \in(1, \infty)
\end{array}\right.
$$

Consider $x_{0}=1, r=2, \psi(t)=\frac{t}{3}$ and

$$
\alpha(x, y)=\left\{\begin{array}{l}
1 \text { if } x, y \in[0,1] \\
0 \quad \text { otherwise }
\end{array}\right.
$$

Now $\overline{B\left(x_{0}, r\right)}=[0,1]$. then

$$
\begin{gathered}
d\left(x_{0}, T x_{0}\right)=d(1, T 1)=d\left(1, \frac{1}{4}\right)=\left|1-\frac{1}{4}\right|=\frac{3}{4} \\
\sum_{i=0}^{n} \psi^{n}\left(d\left(x_{0}, T x_{0}\right)\right)=\frac{3}{4} \sum_{i=0}^{n} \frac{1}{3^{n}}<\frac{3}{2}\left(\frac{3}{4}\right)=\frac{9}{8}<2
\end{gathered}
$$

Also if $x, y \in(1, \infty)$, then

$$
\begin{aligned}
|3 x-3 y| & >|x-y| \\
|x-y| & >\frac{|x-y|}{3} \\
\left|x-\frac{1}{4}-\left(y-\frac{1}{4}\right)\right| & >\psi(|x-y|) \\
d(T x, T y) & >\psi(d(x, y)) \\
d(T x, T y) & >\psi(M(x, y))
\end{aligned}
$$

Then the contractive condition does not hold on X. Also if, $x, y \in \overline{B\left(x_{0}, r\right)}$, then

$$
\begin{aligned}
\left|\frac{3 x}{4}-\frac{3 y}{4}\right| & \leq|x-y| \\
\left|\frac{x}{4}-\frac{y}{4}\right| & \leq \frac{|x-y|}{3} \\
\frac{1}{4}|x-y| & \leq \psi(|x-y|) \\
d(T x, T y) & \leq \psi(d(x, y)) \leq \psi(M(x, y)) .
\end{aligned}
$$

If $\eta(x, y)=1$ in the Theorem 7, we have the following corollary.
Corollary 9. Let (X, d) be a complete metric space and T is α-admissible mapping. For $r>0, x_{0} \in \overline{B\left(x_{0}, r\right)}$ and $\psi \in \Psi$, assume that,

$$
\begin{align*}
& x, y \in \overline{B\left(x_{0}, r\right)}, \alpha(x, y) \geq 1 \\
& \Rightarrow d(T x, T y) \leq \psi(M(x, y)) \tag{9}
\end{align*}
$$

where

$$
M(x, y)=\max \left\{\begin{array}{l}
d(x, y), d(x, T x), d(y, T y), \\
\frac{d(x, T y)+d(y, T x)}{2}
\end{array}\right\}
$$

and

$$
\begin{equation*}
\sum_{i=0}^{j} \psi^{i}\left(d\left(x_{0}, T x_{0}\right)\right) \leq r, \text { for all } j \in N \tag{10}
\end{equation*}
$$

Suppose that the following assertions hold:

- $\quad \alpha\left(x_{0}, T x_{0}\right) \geq 1$;
- for any sequence $\left\{x_{n}\right\}$ in $\overline{B\left(x_{0}, r\right)}$ such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1 \quad$ for \quad all $n \in N \cup\{0\} \quad$ and $x_{n} \rightarrow u \in \overline{B\left(x_{0}, r\right)}$ as $n \rightarrow+\infty$ then $\alpha\left(x_{n}, u\right) \geq 1$ for all $n \in N \cup\{0\}$.
Then, there exists a point x^{*} in $\overline{B\left(x_{0}, r\right)}$ such that $T x^{*}=x^{*}$.

If $\alpha(x, y)=1$ in the Theorem 7, we have the following corollary.
Corollary 10. Let (X, d) be a complete metric space and T is η-subadmissible mapping. For $r>0, x_{0} \in \overline{B\left(x_{0}, r\right)}$ and $\psi \in \Psi$, assume that,

$$
\begin{align*}
& x, y \in \overline{B\left(x_{0}, r\right)}, \eta(x, y) \leq 1 \tag{11}\\
& \Rightarrow d(T x, T y) \leq \psi(M(x, y))
\end{align*}
$$

where

$$
M(x, y)=\max \left\{\begin{array}{l}
d(x, y), d(x, T x), d(y, T y), \\
\frac{d(x, T y)+d(y, T x)}{2}
\end{array}\right\}
$$

and

$$
\begin{equation*}
\sum_{i=0}^{j} \psi^{i}\left(d\left(x_{0}, T x_{0}\right)\right) \leq r, \text { for all } j \in N \tag{12}
\end{equation*}
$$

If following assertions hold:

- $\quad \eta\left(x_{0}, T x_{0}\right) \leq 1$;
- for any sequence $\left\{x_{n}\right\}$ in $\overline{B\left(x_{0}, r\right)}$ such that $\eta\left(x_{n}, x_{n+1}\right) \leq 1 \quad$ for \quad all $\quad n \in N \cup\{0\} \quad$ and $x_{n} \rightarrow u \in \overline{B\left(x_{0}, r\right)}$ as $n \rightarrow+\infty$ then $\eta\left(x_{n}, u\right) \leq 1$ for all $n \in N \cup\{0\}$.
Then, there exists a point x^{*} in $\overline{B\left(x_{0}, r\right)}$ such that $T x^{*}=x^{*}$ 。

Corollary 11. Let (X, d) be a complete metric space and T is α-admissible mapping with respect to η. For $r>0, x_{0} \in \overline{B\left(x_{0}, r\right)}$ and $\psi \in \Psi$, assume that,

$$
\begin{align*}
& x, y \in \overline{B\left(x_{0}, r\right)}, \alpha(x, y) \geq \eta(x, y) \tag{13}\\
& \Rightarrow d(T x, T y) \leq \psi(N(x, y))
\end{align*}
$$

where

$$
N(x, y)=\max \left\{\begin{array}{l}
d(x, y), \frac{d(x, T x)+d(y, T y)}{2} \\
\frac{d(x, T y)+d(y, T x)}{2}
\end{array}\right\}
$$

and

$$
\begin{equation*}
\sum_{i=0}^{j} \psi^{i}\left(d\left(x_{0}, T x_{0}\right)\right) \leq r, \text { for all } j \in N . \tag{14}
\end{equation*}
$$

Suppose that the following assertions hold:

- $\alpha\left(x_{0}, T x_{0}\right) \geq \eta\left(x_{0}, T x_{0}\right) ;$
- for any sequence $\left\{x_{n}\right\}$ in $\overline{B\left(x_{0}, r\right)}$ such that $\alpha\left(x_{n}, x_{n+1}\right) \geq \eta\left(x_{n}, x_{n+1}\right)$ for all $n \in N \cup\{0\}$ and $x_{n} \rightarrow u \in \overline{B\left(x_{0}, r\right)} \quad$ as $n \rightarrow+\infty \quad$ then $\alpha\left(x_{n}, u\right) \geq \eta\left(x_{n}, u\right)$ for all $n \in N \cup\{0\}$.
Then, there exists a point x^{*} in $\overline{B\left(x_{0}, r\right)}$ such that $T x^{*}=x^{*}$.

If $\eta(x, y)=1$ in the corollary 11 , we have the following corollary.
Corollary 12. Let (X, d) be a complete metric space and
T is α-admissible mapping. For $r>0, x_{0} \in \overline{B\left(x_{0}, r\right)}$ and $\psi \in \Psi$, assume that,

$$
\begin{align*}
& x, y \in \overline{B\left(x_{0}, r\right)}, \alpha(x, y) \geq 1 \tag{15}\\
& \Rightarrow d(T x, T y) \leq \psi(N(x, y))
\end{align*}
$$

where

$$
N(x, y)=\max \left\{\begin{array}{l}
d(x, y), \frac{d(x, T x)+d(y, T y)}{2} \\
\frac{d(x, T y)+d(y, T x)}{2}
\end{array}\right\}
$$

and

$$
\begin{equation*}
\sum_{i=0}^{j} \psi^{i}\left(d\left(x_{0}, T x_{0}\right)\right) \leq r, \text { for all } j \in N . \tag{16}
\end{equation*}
$$

Suppose that the following assertions hold:

- $\quad \alpha\left(x_{0}, T x_{0}\right) \geq 1$;
- for any sequence $\left\{x_{n}\right\}$ in $\overline{B\left(x_{0}, r\right)}$ such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1 \quad$ for all $n \in N \cup\{0\} \quad$ and $x_{n} \rightarrow u \in \overline{B\left(x_{0}, r\right)}$ as $n \rightarrow+\infty$ then $\alpha\left(x_{n}, u\right) \geq 1$ for all $n \in N \cup\{0\}$.
Then, there exists a point x^{*} in $\overline{B\left(x_{0}, r\right)}$ such that $T x^{*}=x^{*}$.

If $N(x, y)=\frac{d(x, T x)+d(y, T y)}{2}$ in the corollary 11, we have the following corollary.
Corollary 13. Let (X, d) be a complete metric space and T is α-admissible mapping. For $r>0, x_{0} \in \overline{B\left(x_{0}, r\right)}$ and $\psi \in \Psi$, assume that,

$$
\begin{align*}
& x, y \in \overline{B\left(x_{0}, r\right)}, \alpha(x, y) \geq 1 \tag{17}\\
& \Rightarrow d(T x, T y) \leq \psi(N(x, y))
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{i=0}^{j} \psi^{i}\left(d\left(x_{0}, T x_{0}\right)\right) \leq r, \text { for all } j \in N . \tag{18}
\end{equation*}
$$

Suppose that the following assertions hold:

- $\quad \alpha\left(x_{0}, T x_{0}\right) \geq 1$;
- for any sequence $\left\{x_{n}\right\}$ in $\overline{B\left(x_{0}, r\right)}$ such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1 \quad$ for all $n \in N \cup\{0\} \quad$ and $x_{n} \rightarrow u \in \overline{B\left(x_{0}, r\right)}$ as $n \rightarrow+\infty$ then $\alpha\left(x_{n}, u\right) \geq 1$ for all $n \in N \cup\{0\}$.
Then, there exists a point x^{*} in $\overline{B\left(x_{0}, r\right)}$ such that $T x^{*}=x^{*}$.
If $N(x, y)=\frac{d(x, T y)+d(y, T x)}{2}$ in the corollary 11, we have the following corollary.
Corollary 14. Let (X, d) be a complete metric space and T is α-admissible mapping. For $r>0, x_{0} \in \overline{B\left(x_{0}, r\right)}$ and $\psi \in \Psi$, assume that,

$$
\begin{align*}
& x, y \in \overline{B\left(x_{0}, r\right)}, \alpha(x, y) \geq 1 \tag{19}\\
& \Rightarrow d(T x, T y) \leq \psi(N(x, y))
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{i=0}^{j} \psi^{i}\left(d\left(x_{0}, T x_{0}\right)\right) \leq r, \text { for all } j \in N \tag{20}
\end{equation*}
$$

Suppose that the following assertions hold:

- $\quad \alpha\left(x_{0}, T x_{0}\right) \geq 1$;
- for any sequence $\left\{x_{n}\right\}$ in $\overline{B\left(x_{0}, r\right)}$ such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1 \quad$ for all $n \in N \cup\{0\} \quad$ and $x_{n} \rightarrow u \in \overline{B\left(x_{0}, r\right)}$ as $n \rightarrow+\infty$ then $\alpha\left(x_{n}, u\right) \geq 1$ for all $n \in N \cup\{0\}$.
Then, there exists a point x^{*} in $\overline{B\left(x_{0}, r\right)}$ such that $T x^{*}=x^{*}$.
If $N(x, y)=d(x, y)$, we obtain the following corollary.
Corollary 15. Let (X, d) be a complete metric space and T is α-admissible mapping with respect to η. For $r>0, x_{0} \in \overline{B\left(x_{0}, r\right)}$ and $\psi \in \Psi$, assume that,

$$
\begin{align*}
& x, y \in \overline{B\left(x_{0}, r\right)}, \alpha(x, y) \geq \eta(x, y) \tag{21}\\
& \Rightarrow d(T x, T y) \leq \psi(d(x, y))
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{i=0}^{j} \psi^{i}\left(d\left(x_{0}, T x_{0}\right)\right) \leq r, \text { for all } j \in N \tag{22}
\end{equation*}
$$

Suppose that the following assertions hold:

- $\alpha\left(x_{0}, T x_{0}\right) \geq \eta\left(x_{0}, T x_{0}\right) ;$
- for any sequence $\left\{x_{n}\right\}$ in $\overline{B\left(x_{0}, r\right)}$ such that $\alpha\left(x_{n}, x_{n+1}\right) \geq \eta\left(x_{n}, x_{n+1}\right)$ for all $n \in N \cup\{0\}$ and $x_{n} \rightarrow u \in \overline{B\left(x_{0}, r\right)} \quad$ as $\quad n \rightarrow+\infty \quad$ then $\alpha\left(x_{n}, u\right) \geq \eta\left(x_{n}, u\right)$ for all $n \in N \cup\{0\}$.
Then, there exists a point x^{*} in $\overline{B\left(x_{0}, r\right)}$ such that $T x^{*}=x^{*}$.

If $\eta(x, y)=1, N(x, y)=d(x, y)$ in the corollary 11, we have the following corollary.
Corollary 16. Let (X, d) be a complete metric space and T is α-admissible mapping. For $r>0, x_{0} \in \overline{B\left(x_{0}, r\right)}$ and $\psi \in \Psi$, assume that,

$$
\begin{align*}
& x, y \in \overline{B\left(x_{0}, r\right)}, \alpha(x, y) \geq 1 \tag{23}\\
& \Rightarrow d(T x, T y) \leq \psi(d(x, y))
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{i=0}^{j} \psi^{i}\left(d\left(x_{0}, T x_{0}\right)\right) \leq r, \text { for all } j \in N . \tag{24}
\end{equation*}
$$

Suppose that the following assertions hold:

- $\quad \alpha\left(x_{0}, T x_{0}\right) \geq 1$;
- for any sequence $\left\{x_{n}\right\}$ in $\overline{B\left(x_{0}, r\right)}$ such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1 \quad$ for \quad all $n \in N \cup\{0\} \quad$ and $x_{n} \rightarrow u \in \overline{B\left(x_{0}, r\right)}$ as $n \rightarrow+\infty$ then $\alpha\left(x_{n}, u\right) \geq 1$ for all $n \in N \cup\{0\}$.
Then, there exists a point x^{*} in $\overline{B\left(x_{0}, r\right)}$ such that $T x^{*}=x^{*}$.

3. Fixed Point Results for Graphic Contractions

Consistent with Jachymski [13], let (X, d) be a metric space and Δ denotes the diagonal of the Cartesian product $X \times X$. Consider a directed graph G such that the set $V(G)$ of its vertices coincides with X, and the set $E(G)$ of its edges contains all loops, i.e., $E(G) \supseteq \Delta$. We assume G has no parallel edges, so we can identify G with the pair $(V(G), E(G))$. Moreover, we may treat G as a weighted graph (see [13]) by assigning to each edge the distance between its vertices. If x and y are vertices in a graph G, then a path in G from x to y of length m ($m \in N$) is a sequence $\left\{x_{i}\right\}_{i=0}^{m}$ of $m+1$ vertices such that $x_{0}=x, x_{m}=y$ and $\left(x_{n-1}, x_{n}\right) \in E(G)$ for $i=1, \ldots, m$. A graph G is connected if there is a path between any two vertices. G is weakly connected if \tilde{G} is connected(see for details [1,5,12,13]).

Definition 17. ([13]). We say that a mapping $T: X \rightarrow X$ is a Banach G-contraction or simply G-contraction if T preserves edges of G, i.e.,

$$
\forall x, y \in X,(x, y) \in E(G) \Rightarrow(T x, T y) \in E(G)
$$

and T decreases weights of edges of G in the following way:

$$
\begin{aligned}
& \exists k \in(0,1), \forall x, y \in X,(x, y) \in E(G) \\
& \Rightarrow d(T x, T y) \leq k d(x, y) .
\end{aligned}
$$

Now we extend concept of G-contraction as follows.
Definition 18. Let (X, d) be a metric space endowed with a graph G and $T: X \rightarrow X$ be self-mappings. Assume that for $r>0, x_{0} \in \overline{B\left(x_{0}, r\right)}$ and $\psi \in \Psi$, following conditions hold,

$$
\forall x, y \in \overline{B\left(x_{0}, r\right)},(x, y) \in E(G) \Rightarrow(T x, T y) \in E(G)
$$

$\forall x, y \in \overline{B\left(x_{0}, r\right)},(x, y) \in E(G) \Rightarrow d(T x, T y) \leq \psi(M(x, y)$.
where

$$
M(x, y)=\max \left\{\begin{array}{l}
d(x, y), d(x, T x), d(y, T y), \\
\frac{d(x, T y)+d(y, T x)}{2}
\end{array}\right\}
$$

Then the mappings T is called ciric ψ-graphic contractive mappings. If $\psi(t)=k t$ for some $k \in[0,1)$, then we say T is G-contractive mappings.
Definition 19. Let (X, d) be a metric space endowed with a graph G and $T: X \rightarrow X$ be self-mappings. Assume that for $r>0, x_{0} \in \overline{B\left(x_{0}, r\right)}$ and $\psi \in \Psi$, following conditions hold,

$$
\forall x, y \in \overline{B\left(x_{0}, r\right)},(x, y) \in E(G) \Rightarrow(T x, T y) \in E(G)
$$

$\forall x, y \in \overline{B\left(x_{0}, r\right)},(x, y) \in E(G) \Rightarrow d(T x, T y) \leq \psi(N(x, y)$.
where

$$
N(x, y)=\max \left\{\begin{array}{l}
d(x, y), \frac{d(x, T x)+d(y, T y)}{2}, \\
\frac{d(x, T y)+d(y, T x)}{2}
\end{array}\right\}
$$

Then the mappings T is called ciric ψ-graphic contractive mappings. If $\psi(t)=k t$ for some $k \in[0,1)$, then we say T is G-contractive mappings.
Theorem 20. Let (X, d) be a complete metric space endowed with a graph G and $T: X \rightarrow X$ be ciric ψ graphic contractive mappings and $x_{0} \in \overline{B\left(x_{0}, r\right)}$. Suppose that the following assertions hold:

- $\quad\left(x_{0}, T x_{0}\right) \in E(G)$ and $\sum_{i=0}^{j} \psi^{i}\left(d\left(x_{0}, T x_{0}\right)\right) \leq r$ for all $j \in N$;
- if $\left\{x_{n}\right\}$ is a sequence in $\overline{B\left(x_{0}, r\right)}$ such that $\left(x_{n}, x_{n+1}\right) \in E(G)$ for all $n \in N$ and $x_{n} \rightarrow x$ as $n \rightarrow+\infty$, then $\left(x_{n}, x\right) \in E(G)$ for all $n \in N$.
Then T has a fixed point.

Proof. Define, $\alpha: X^{2} \rightarrow(-\infty,+\infty)$ by

$$
\alpha(x, y)=\left\{\begin{array}{lc}
1, & \text { if }(x, y) \in E(G) \\
0, & \text { otherwise }
\end{array}\right.
$$

First we prove that the mapping T is α-admissible. Let $x, y \in \overline{B\left(x_{0}, r\right)}$ with $\alpha(x, y) \geq 1$, then $(x, y) \in E(G)$. As T is ciric ψ-graphic contractive mappings, we have, $(T x, T y) \in E(G)$. That is, $\alpha(T x, T y) \geq 1$. Thus T is $\alpha-$ admissible mapping. From (i) there exists x_{0} such that $\left(x_{0}, T x_{0}\right) \in E(G)$. That is, $\alpha\left(x_{0}, T x_{0}\right) \geq 1$. If $x, y \in \overline{B\left(x_{0}, r\right)}$ with $\alpha(x, y) \geq 1$, then $(x, y) \in E(G)$. Now, since T, is ciric ψ-graphic contractive mapping, so $d(T x, T y) \leq \psi(M(x, y))$. That is,

$$
\alpha(x, y) \geq 1 \Rightarrow d(T x, T y) \leq \psi(M(x, y))
$$

Let $\left\{x_{n}\right\} \subset \overline{B\left(x_{0}, r\right)}$ with $x_{n} \rightarrow x \quad$ as $n \rightarrow \infty \quad$ and $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n \in N$. Then, $\left(x_{n}, x_{n+1}\right) \in E(G)$ for all $n \in N$ and $x_{n} \rightarrow x$ as $n \rightarrow+\infty$. So by (ii) we have, $\left(x_{n}, x\right) \in E(G)$ for all $n \in N$. That is, $\alpha\left(x_{n}, x\right) \geq 1$. Hence, all conditions of Corollary 9 are satisfied and T has a fixed point.
Corollary 21. Let (X, d) be a complete metric space endowed with a graph G and and $T: X \rightarrow X$ be a mapping. Suppose that the following assertions hold:

- $\quad T$ is Banach G-contraction on $\overline{B\left(x_{0}, r\right)}$;
- $\quad\left(x_{0}, T x_{0}\right) \in E(G)$ and $\left.d\left(x_{0}, T x_{0}\right)\right) \leq(1-k) r$;
- if $\left\{x_{n}\right\}$ is a sequence in $\overline{B\left(x_{0}, r\right)}$ such that $\left(x_{n}, x_{n+1}\right) \in E(G)$ for all $n \in N$ and $x_{n} \rightarrow x$ as $n \rightarrow+\infty$, then $\left(x_{n}, x\right) \in E(G)$ for all $n \in N$.
Then T has a fixed point.
Corollary 22. Let (X, d) be a complete metric space endowed with a graph G and and $T: X \rightarrow X$ be a mapping. Suppose that the following assertions hold:
- $\quad T$ is Banach G-contraction on X and there is $x_{0} \in X$ such that $\left(x_{0}, T x_{0}\right) \in E(G)$;
- if $\left\{x_{n}\right\}$ is a sequence in X such that $\left(x_{n}, x_{n+1}\right) \in E(G)$ for all $n \in N$ and $x_{n} \rightarrow x$ as $n \rightarrow+\infty$, then $\left(x_{n}, x\right) \in E(G)$ for all $n \in N$.
Then T has a fixed point.

Conflict of Interests

The authors declare that they have no competing interests.

References

[1] M. Abbas and T. Nazir, Common fixed point of a power graphic contraction pair in partial metric spaces endowed with a graph, Fixed Point Theory and Applications 2013, 2013:20.
[2] M. Arshad, A. Shoaib, I. Beg, Fixed point of a pair of contractive dominated mappings on a closed ball in an ordered complete dislocated metric space, Fixed Point Theory and Appl. (2013), 2013:115, 15 pp.
[3] M. Arshad, Fahimuddin, A. Shoaib and A. Hussain, Fixed point results for $\alpha-\psi$-locally graphic contraction in dislocated qusai metric spaces, Mathematical Sciences, In press.
[4] T. Abdeljawad, Meir-Keeler α-contractive fixed and common fixed point theorems, Fixed Point Theory and Appl. 2013.
[5] F. Bojor, Fixed point theorems for Reich type contraction on metric spaces with a graph, Nonlinear Anal., 75 (2012) 3895-3901.
[6] E. Karapinar and B. Samet, Generalized $(\alpha-\psi)$ contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal., (2012) Article id: 793486.
[7] B. Mohammadi and Sh. Rezapour, On Modified $\alpha-\varphi$-Contractions, J. Adv. Math. Stud. 6 (2) (2013), 162-166.
[8] N. Hussain, M. Arshad, A. Shoaib and Fahimuddin, Common fixed point results for $\alpha-\psi$-contractions on a metric space endowed with graph, J. Inequal. Appl., 2014, 2014:136.
[9] N. Hussain, E. Karapınar, P. Salimi and F. Akbar, α-admissible mappings and related fixed point theorems, J. Inequal. Appl. 114 2013 1-11.
[10] N. Hussain, P Salimi and A. Latif, Fixed point results for single and set-valued $\alpha-\eta-\psi$-contractive mappings, Fixed Point Theory and Applications, 2013, 2013:212.
[11] N. Hussain, E. Karapinar, P. Salimi, P. Vetro, Fixed point results for $\quad G^{m}$-Meir-Keeler contractive and G-($\left.\alpha, \psi\right)$-Meir-Keeler contractive mappings, Fixed Point Theory and Applications 2013, 2013:34.
[12] N. Hussain, S. Al-Mezel and P. Salimi, Fixed points for $\alpha-\psi-$ graphic contractions with application to integral equations, Abstr. Appl. Anal., Article 575869, 2013.
[13] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 1 (136) (2008) 1359-1373.
[14] M. A. Kutbi, M. Arshad and A. Hussain, On Modified $\alpha-\eta$-Contractive mappings, Abstr. Appl. Anal., (2014) Article ID 657858, 7 pages.
[15] B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226 (1977), 257-290.
[16] B. E. Rhoades, Two fixed-point theorems for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., 63 (2003) 4007-4013.
[17] P. Salimi, A. Latif and N. Hussain, Modified $\alpha-\psi$-Contractive mappings with applications, Fixed Point Theory Appl., (2013) 2013:151.
[18] B. Samet, C. Vetro and P. Vetro, Fixed point theorems for $\alpha-\psi$-contractive type mappings, Nonlinear Anal. 75 (2012) 2154-2165.

