
Detecting Fraud in Demand Response Programs
Carlos Barreto, Student Member, IEEE, and Alvaro A. Cárdenas, Member, IEEE,

Abstract—In this paper we formulate a new way to defraud the
electricity system without the risks of being detected. Specifically,
by attacking the signals sent by the demand response provider
or electric utility the attacker can affect the behavior of a large
sector of the population, and instruct them to behave in a manner
beneficial for the attacker. Moreover, the attack scheme allows
to define a large set of users who get benefits from the attack,
making impossible the precise identification of the culprit. We
analyze ways to detect attacks (i.e., detect that an attack is
occurring, but not who is responsible for it), and propose some
ideas for how to design the market in a way that attackers will
not have an incentive to defraud the system.

Index Terms—Electricity market, direct load control, dynamic
pricing, security.

I. INTRODUCTION

Most of the literature about fraud in the electric distribution
system is centered around attacking smart meters to report less
electricity consumption, or tapping directly into distribution
lines bypassing meters (electricity theft). While these attacks
are beneficial for a fraudster in the short-term, if the attack
gets detected, the fraudster can be identified and be penalized
severely.

In contrast, Demand Response (DR) programs can give
attackers a new way to defraud the electricity system without
the risks of being detected. By attacking the DR signals sent
by the DR provider or electric utility (as shown in Fig. 1),
the attacker can affect the behavior of a large sector of the
population, and instruct them to behave in a manner beneficial
for the attacker. For example the attacker can select a subset of
consumers and instruct them to reduce electricity consumption
(i.e., a set V of victims), reducing the cost of electricity for the
population and therefore enabling another set of the population
to consume larger amounts of electricity at reduced prices (i.e.,
a set A of consumers that benefit from the attack).

Notice that if a sabotaged smart meter is detected, then the
attacker can be easily identified (the smart meter is attached
to the property of the attacker); however, as described in
the previous paragraph, defrauding the electricity system by
attacking control signals from DR programs will add a layer
of indirection that will make detection of attacks harder. In
fact, if the set A of consumers who benefit from the attack
(most of the elements of A can be honest and unaware that
the attack is happening) is large enough, a forensic analyst
trying to identify the attacker will see that a large set of users
is benefiting, and all of them can claim plausible deniability,
making impossible the precise identification of the culprit.
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Fig. 1: Adversary Model: by compromising DR signals, the
attacker can affect the behavior of a large sector of the popu-
lation, and instruct them to behave in a manner beneficial for
the attacker (e.g., force them to reduce electricity consumption
so the attacker can get electricity at reduced rates).

In this paper we formulate this novel problem, analyze ways
to detect attacks (i.e., detect that an attack is occurring, but
not who is responsible for it), and propose some ideas for how
to design the market in a way that attackers will not have an
incentive to defraud the system (at the cost of some market
efficiency when there are no attacks).

We model a general scenario in which there is a central
planner who designs some mechanism to maximize the social
welfare. This mechanism can be seen as a DR scheme that is
designed to achieve efficiency. We focus on two previously
proposed DR systems with two general information con-
straints, namely full information and asymmetric information
of users preferences. These constraints are prevailing in many
DR schemes, such as direct load control and dynamic pricing
schemes.

We assume that the central planer (defender) knows i) the
consumption of all users before an attack, and ii) the true con-
sumption of all users (i.e., in Fig. 1 the smart meters reporting
consumption back to the DR agent are not compromised).

We model an attacker whose objective is to maximize its
own utility. We neglect limitations on the attacker’s actions
(such as cost or reach of the attack) and assume that the
attacker has freedom to manipulate the demand profile of the
population. The only restriction is that the attacker cannot
falsify the consumption sent to the utility by her smart meter.
That is, the attacker cannot modify its own bill. Therefore, the
attacker might manipulate other components of the system.
To model the practical scenario, we assume that the attacker
is the only one that knows the parameters of the attack, and
therefore, an anomaly detection algorithm will need to estimate
the parameters of the attacks.



Section II introduces the notation and the model of the
electricity system. Section III introduces the attack model
and illustrates the effects of attacks on the electricity system.
Section IV discusses how a central planner can detect an
attack and identify the severity of the attack. Finally, Section V
discusses how once we detect the population that is benefiting
from the attack (even if they are not guilty of launching the
attack) and the severity of the attack, we can design penalties
that will make it unprofitable to continue attacking the system.

II. BACKGROUND

We consider an electricity system with N users. We denote
with qi the average electricity consumption of the ith user.
The demand profile of the population is represented by the
vector q = [q1, q2, . . . , qN ]> ∈ RN

≥0. The aggregated demand
is denoted using the 1-norm: ‖q‖ =

∑N
j=1 qj . Without loss

of generality, we assume that the electricity consumption of
the ith user satisfies qi ≥ Qi, where Qi > 0 represents
the minimum consumption level. A valuation function vi(qi)
models the valuation that the ith user gives to an electricity
consumption of qi units. Moreover, v̇i() denotes the marginal
valuation, defined as v̇i(q) = ∂

∂qi
vi(qi)|qi=q . Let p(·) : < → <

be the price of electricity charged to consumers.
Following the market models in [1], [2], we assume that

there is an independent system operator (ISO), which is in
charge of clearing the market. Thus, we can express the profit
function of each individual as their valuation of electricity
minus their electricity bill, i.e.,

Ui(q) = vi(qi)− qip (‖q‖) . (1)

In this case we assume that the generation cost is quadratic
(this is supported by [3]). Hence, the unitary price charged
to costumers is a linear function, defined as p(z) = βz + b,
where β > 0, b ≥ 0 are parameters of the generation system.

One of the main reasons to use markets is to coordinate
producers and consumers to achieve efficient outcomes. Par-
ticularly, the social optimal is the outcome that maximizes the
profit of all users, which can be seen as the solution to the
following optimization problem:

maximize
q

∑N

i=1
Ui(q)

subject to qi ≥ Qi, i = {1, . . . , N}.
(2)

Here we make some assumptions on the problem character-
istics in order to guarantee that the problem has a maximum
and it is unique.
Assumption 1.

i. The valuation function vti(·) is differentiable, concave,
and non-decreasing.

ii. The price p(·) is differentiable, convex, and non-
decreasing.

Assumption 2. The maximum of a concave function is inside
the feasible set, i.e., the following inequality is satisfied for
all i: ∂

∂qi
Ui([Q1, . . . , QN ]>) > 0.

Thus, the optimal outcome, denoted by µ, satisfies the
following first order conditions (FOC):

v̇i(qi)− p(||q||)− β ‖q‖
∣∣
q=µ

= 0, (3)

for every agent i ∈ {1, . . . , N}.

III. ATTACK ON THE ELECTRICITY MARKET

In this case we model an attacker whose objective is to
maximize its own utility [4]. We neglect limitations on the
attacker’s actions (such as cost or reach of the attack) and
assume that the attacker has some freedom to manipulate
the demand profile of the population. Here we consider only
two restrictions: on one hand, the attacker cannot falsify the
consumption sent to the utility by the smart meters. Therefore,
the attacker cannot modify the bill of any user (but she might
manipulate other components of the system). In second place,
the attacker has as much information as the central planner.
This means that, depending on the DR scheme, the attacker
might have access to the consumption valuation of users.

Let us represent the attacker’s objective with the following
optimization problem (which can be implemented even with
asymmetric information [4]):

maximize
q

λ
∑

h∈A
Uh(q) +

∑
h∈V

Uh(q)

subject to qi ≥ Qi, i = {1, . . . , N}.
(4)

The attack model uses two parameters, namely the severity of
the attack λ > 1 and the proportion of attackers 0 < γ < 1.
On the one hand, λ allows us to adjust the impact of the attack
on the population. For large λ, this optimization problem can
lead to the maximum benefit for the users that belong to
A, because the utility of victims becomes irrelevant [4]. In
second place, γ let us partition the population into two subsets
V = {1, . . . , b(1−γ)Nc} and A = {b(1−γ)Nc+1, . . . , N},
whose members are either victims or take advantage of an
attack, respectively. In this way, we consider multiple users
who get benefits from the attack, because of coalitions or
because attackers will share benefits with other users in an
attempt to make the attack unattributable. Note that users who
get benefits from the attack might or might not be aware of
this.

The Lagrangian associated with the problem in Eq. (4) is

L(q,ν) = λ
∑

h∈A
Uh(q) +

∑
h∈V

Uh(q)

+
∑N

i=1
νi · (qi −Qi).

Thus, the demand profile under an attack, denoted by x, must
satisfy the following optimality conditions:

λ (v̇i(xi)− p(||x||)− β ‖xA‖)− β ‖xV‖+ νi = 0, (5)

v̇j(xj)− p(||x||)− β ‖xV‖ − λβ ‖xA‖+ νj = 0, (6)

qh −Qh ≥ 0,
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Fig. 2: Aggregated demand of attackers and victims as a
function of γ. Attacker’s consumption is higher if the benefits
of the attack are shared with fewer users (e.g., γ is small).
Attacker’s benefits are accompanied by reduction in total
demand.

νh ≥ 0,

(qh −Qh)νh = 0,

for all i ∈ A, j ∈ V , and h ∈ {1, . . . , N}. Let us denote by
xA and xV the vectors with the consumption of attackers and
victims, respectively. Thus, ||xA|| =

∑
i∈A xi and ||xV || =∑

j∈V xj .

A. Illustration of Attacks

We illustrate the effect of attacks using some typical func-
tions previously used in the literature that satisfy Assumptions
1, and 2 [2], [5] (a detailed implementation of the simulations
can be found in [6]):

vti(q
t
i) = αt

i log(1 + qti), α
t
i > 0,

p(‖q‖) = β‖q‖+ b, β > 0.

Fig. 2 shows the total electricity demand of both the entire
population and attackers (||x|| and ||xA|| respectively) as a
function of the proportion of attackers γ, for different values of
λ (severity of the attack). In this case the electricity demand is
normalized with respect to the ideal demand (||µ|| and ||µA||
respectively). Note that the demand of attackers can have high
values if the severity of the attack is high and the proportion
of attackers is small. Particularly, in this example an attacker
might consume more than 12 times using the attack of highest

severity (λ = 21). On the other hand, as the severity of the
attack increases, the total demand decreases even more than
half of the ideal case. Simulations are made with N = 100,
β = b = 1, αi = 96.63, Qi = 0.07.

In summary, some consequences of the attack are: i) reduc-
tion of demand by victims; ii) increased demand by attackers;
iii) reduction in the total demand of the population. This
properties are formally proved in the following proposition:
Proposition 1. Let µ be the ideal equilibrium and x be the
equilibrium with an attack associated with the optimization
problems in Eqs. (2) and (4), respectively. If there is an attack
with λ > 1, then the consumption of attackers (or victims)
increases (or decreases) and the total demand decreases, with
respect to the ideal case. That is,

xi > µi,

xj < µj ,

‖x‖ < ‖µ‖ ,
for every attacker i ∈ A and victim j ∈ V .

Sketch proof. We can evaluate the derivative of the attacker’s
objective function (see Eq. (4)) in the ideal outcome µ to
obtain

λ (v̇i(µi)− p(||µ||)− β ‖µ‖) + (λ− 1)β ‖µV‖ ,

v̇j(µj)− p(||µ||)− β ‖µ‖+ (1− λ)β ‖µA‖ .
Note that the left hand side of the previous equations is
precisely the FOC of the original optimization problem (see
Eq. (3)). Thus, we can conclude that the derivative with respect
to qi is

(λ− 1)β ‖µV‖ > 0,

and the derivative with respect to qj is

(1− λ)β ‖µA‖ < 0.

Hence, we know that xi > µi and xj > µj .
Now we are ready to prove that if λ > 1, then the total

demand of the population is reduced. Recall that the valuation
functions are concave, and consequently, the marginal valu-
ations are convex decreasing functions. Therefore, we know
that if xi > µi, then v̇i(xi) < v̇i(µi). We can use Eq. (5) and
(3) to obtain the following equivalent expression:

p(||x||) + β||x||+ 1− λ
λ

β ‖xV‖ − νi
< p(||µ||) + β ‖µ‖ . (7)

In this case xi > Qi, and consequently, νi = 0. Since λ > 1,
from Eq. (7) it is clear that ‖x‖ < ‖µ‖.

The intuition behind this result is that an attacker can
increase her profit only if a significant reduction in the total
demand is realized. Since the cost function is convex, an
attacker can afford an increase in demand only if there is a
reduction in the total demand of the population.



Note that the previous conclusions are satisfied regardless
of the valuation function of each agent. Hence, the central
planner can use this fact to determine the proportion of the
attackers in the population γ (note that this information was
only known by the attacker). Particularly, the partition of the
population can be determined as follows:

A = {i|i ∈ {1, . . . , N}, xi > µi},
V = {j|j ∈ {1, . . . , N}, xj ≤ µj}.

Thus, the proportion of attackers is γ = |A|/N . This classifi-
cation of users is used to design the detection mechanism in
the following section.

IV. DETECTION OF AN ATTACK

An electricity utility aware of possible attacks on the system
might raise alarms when the total demand falls below some
threshold. Specifically, the threshold might be determined
based on historic consumption data. For instance, alarms might
be generated if the total demand falls more than ε = 5%
of the normal demand. In that case, an attacker aware of
the detection mechanism might choose λ and γ that satisfy
‖x‖ ≤ (1 − ε)‖µ‖. From the example presented in Section
III-A, we observe that with γ = 0.7 and λ > 1.1 the total
demand is within the desired threshold. Moreover, the attacker
increases her profit about 1.24 times.

This detection scheme has some drawbacks. Specifically,
some attacks cannot be detected, and moreover, any demand
beyond the threshold is considered an attack. However, we
might design better detection mechanisms by using the char-
acteristics of the attack developed in the last section. First,
we analyze how to detect attacks in DR schemes with full
information. Later we consider the detection problem with
asymmetric information. In these cases we assume that µ can
be extracted from normal demand data and that β and b are
known parameters.

A. DR with Full Information

From Eq. (6) we can extract the following relationship:

λ =
β||xV ||

v̇i(xi)− 2β||xA|| − β||xV || − b
, (8)

If the utility company knows the valuation function of users,
then it can use the previous equation to determine the value
of λ. Note that λ = 1 indicates normal behavior, while
λ > 1 suggests an attack. A drawback of this expression is
that of ||xV || must be different from zero. Otherwise, all the
estimations of λ might be equal to zero.

Now, let us introduce an alternative method to detect attacks,
which doesn’t require ||xV || 6= 0. Let us assume that there is
a reduction in the demand of some users, which are classified
as members of the set V . Our objective is to find out if the
reduction of demand was caused by an attacker. In this case
we denote by ζ and ξ the electricity demand associated to a
normal and a fraudster behavior, respectively. We know that a
normal and fraudster behaviors are determined by Eq. (3) and

(5), which can be rewritten in this case as:

v̇i(ζi)− 2β ‖ζA‖ − b = 2β ‖ζV‖ , (9)

v̇i(ξi)− 2β ‖ξA‖+

(
1− 1

λ

)
β ‖ξV‖ − b > 2β ‖ξV‖ .

Since we are interested in observing the reaction of a normal
user and an attacker to a given demand of victims Q, we define
‖ζV‖ = ‖ξV‖ = Q. Moreover, for large λ > 1 we have

v̇i(ζi)− 2β ‖ζA‖ = v̇i(ξi)− 2β ‖ξA‖ .
Note that v̇i(qi) − 2β ‖qA‖ is a decreasing function with
respect to q. Hence, we know that ζ < ξ, that is, the demand
of an attacker is always higher than the demand made by a
normal user.

It is interesting that Eq. (8) doesn’t use the information
from normal behavior (e.g., µ). Hence, it is possible to
distinguish attacks from failures that cause changes in demand.
For example, if replace the normal demand evaluated in ζ (see
Eq. (9)) into Eq. (8) we obtain

λ =
βQ

βQ
= 1,

which indicates a normal behavior.

B. DR with Asymmetric Information

In this case, the utility company ignores the valuation
functions of each user, e.g., the system might be decentralized.
Without full information it is hard to know if the demand
follows the pattern of an attack, because the results from
the previous section relied on the knowledge of valuation
functions.

The utility company can attempt to estimate the marginal
valuation of users to determine if a particular demand profile
matches the properties of an attack. Particularly, it is possible
to find some boundaries on the values of ||xA|| and ||xV || that
indicate the presence of an attack. However, these boundaries
rely on an upper bound on λ, which unfortunately has no
boundary. First, we show that an attacker always get more
benefit by implementing λ → ∞. Latter we introduce the
boundaries on the demand.
Proposition 2. An attacker has more profit by setting λ→∞.

Proof. The following is the optimization problem that repre-
sents the goal of the attackers:

maximize
qi,q−i

∑
i∈A

Ui(‖qA‖ , ‖qV‖)

subject to qi ≥ Qi, i = {1, . . . , N}.
One of the optimality conditions of this problem is

v̇i(xi)− β||x|| − β ‖xA‖ − b = 0.

Note that this condition is satisfied through the optimization
problem in Eq. (4) if λ → ∞. Hence, it is always better for
the attacker to choose a large λ.



This result is true regardless of the value of Qi and γ.
However, γ establishes a limit in the maximum profit that can
be achieved by the attacker. Intuitively, demand increments
are profitable as long as the total demand decreases. However,
γ set a limit in the users that can reduce demand, and
consequently, in the total demand that can be reduced. For this
reason the detection scheme at the beginning of the section can
mitigate the impact of attacks, even though it has drawbacks.

Now, let us introduce some boundaries on the demand of
victims and attackers.

Proposition 3. Ω(||xV ||, λ) and Λ(||xA||, λ) represent the
lower and upper bound of ||xA|| and ||xV ||, respectively. That
is, ||xA|| ≥ Ω(||xV ||, λ) and ||xV || ≤ Λ(||xA||, λ), where

Ω(||xV ||, λ) =
2

β(1 + λ)

(
||µ|| − ||µV ||

NV
− ||xV ||

NV − 1

NV

)
,

and

Λ(||xA||, λ) =
2λ

(1 + λ)

(
||µ|| − ||µA||

NS
− ||xA||

NS − 1

NS

)
.

Proof. First let us introduce a more general expression that
can be obtained by summing Eqs. (5) and (6) over all the
elements of each population. Thus, we get

||xA|| =
1

β(1 + λ)

 1

NV

∑
j∈V

v̇j(xj)− 2β||xV || − b

 ,

(10)
and

||xV || =
λ

β(1 + λ)

(
1

NS

∑
i∈S

v̇i(xi)− 2β||xA|| − b
)
. (11)

From the FOC of the original system (Eq. (2)) we know that

v̇i(µi) = 2β||µ||+ b, (12)

for all i ∈ N . We know that the valuation of each user
vi(·) is a concave function. Hence, we know that the marginal
valuation v̇i(·) is convex decreasing and non-negative. Thus,
from Proposition 1 follows

v̇i(xi) ≤ v̇i(µi),

v̇j(xj) ≥ v̇j(µj).

The previous equations can be used along Eq. (12) to extract
the following inequalities:

v̇i(xi) ≤ v̇i(µi) ≤ 2β(||µ|| − µi + xi) + b, (13)

v̇j(xj) ≥ v̇j(µj) ≥ 2β(||µ|| − µj + xj) + b, (14)

Eqs. (13) and (14) can be replaced in Eqs. (10) and (11),
respectively, to obtain:

||xA|| ≥
2

β(1 + λ)

(
||µ|| − ||µV ||

NV
− ||xV ||

NV − 1

NV

)
= Ω(||xV ||, λ) (15)

and

||xV || ≤
2λ

(1 + λ)

(
||µ|| − ||µA||

NS
− ||xA||

NS − 1

NS

)
= Λ(||xA||, λ), (16)

where ||µA|| and ||µV || represent the normal consumption
of attackers and victims, respectively. On the other hand,
Ω(||xV ||) and Λ(||xA||) represent the lower and upper bound
of ||xA|| and ||xV ||, respectively.

The previous inequalities can be used to determine if there
is an attack. The following theorem states that the demand in
an attack must satisfy the boundaries introduced before.
Theorem 1. The demand of an attack must satisfy

||xA|| ≥ Ω(||xV ||, λ)

and
||xV || ≤ Λ(||xA||, λ)

Proof. Note that for some λ and γ the demand profile with
an attack is unique. Furthermore, the demand of attackers
and victims is intimately related, making it possible to detect
an attack if the demand matches the relations in Eqs. (15)
and (16). An important characteristic is that the estimation of
||xA|| is found based ||xV ||, i.e., the demand of attackers is
found based on the demand of victims. Hence, the demand of
victims can be used to estimate the demand of attackers that
might be associated to it. Thus, the demand matches an attack
as long as ||xA|| > Ω(||xV ||, λ). Similarly, the converse is
also true, i.e., ||xV || < Λ(||xA||, λ).

A drawback is that we need an estimation of λ to obtain the
boundaries. Therefore, the estimation of λ must overestimate
the real parameter to guarantee that the estimation is correct.
Example 1. Figs. 3 and 4 shows an example of the estimations
obtained for an attack with λ = 1.9 and an estimation λ̃ = 2.
Note that the boundaries Ω(||xV ||, λ̃) and Λ(||xA||, λ̃) are
linear with respect to ||xV || and ||xA||, respectively. This
property can be observed in Fig. 4, which also shows a
parametric plot of ||xA|| and ||xV ||. On the other hand, a
case with no attack (λ = 1) is shown in a dotted line that
connects the extremes of the boundary curves.

V. DESIGN OF PENALTIES

In this section we analyze the design of penalties imposed
to agents once an attack is detected. The penalties are designed
to make unprofitable the attacks–and might be defined in the
contract between users and the company. In general, even
though attacks are unattributable, the utility company can
impose penalties on all users that benefit from the attack.
While this might be unfair with agents who involuntarily get
benefit from the attack, this action might prevent rational
agents from launching attacks in the first place. Below we
analyze two alternatives to design penalties for the cases with
full information and asymmetric information.
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(a) Approximation of ||xV || in function of ||xA||.
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(b) Approximation of ||xA|| in function of ||xV ||.

Fig. 3: Demand estimations with λ = 1.9 and λ̃ = 2. With an
accurate estimation of λ it is possible to bound the demand
with attacks.

A. Penalties with Full Information

Intuitively, the penalties should be equal to the losses caused
by the attack, i.e., the attackers should be responsible for the
looses caused to the population (this is similar to the Clark
pivot mechanism [7]). Looses are defined as∑

j∈V
Uj(µ)− Uj(x),

and can be computed if the DR has full information about
users’ preferences.

This scheme is particularly desirable for the utility company,
because allows it to save expenses for repairing the damage
caused to victims. Thus, the utility company (and victims)
might not have losses due to attacks. A drawback of this
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Fig. 4: Parametric plot of ||xA|| and ||xV || in function of γ
and the estimated boundaries with λ = 1.9 and λ̃ = 2. With
an accurate estimation of λ it is possible to detect attacks.

approach is that there might not be enough incentives for
investing in security, since 1) attacks can be detected; and
2) losses can be covered by users who benefit from the attack.

B. Penalties with Asymmetric Information

There are some difficulties to implement previous approach
in DR schemes with asymmetric information. Specifically, in
cases of asymmetric information it is necessary to estimate
the profit losses. However, the estimation might be lower than
its real value. To see the reason, let us calculate the profit
reduction on the jth victim as the utility change between
the optimal outcome µ and the outcome with an attack x.
The profit reduction can be approximated using the concavity
property of the profit function in Eq. (1) as follows:

Uj(µ)− Uj(x) ≤ ∇Uj(x)(µ− x)

=
∑N

h=1

∂

∂qh
Uj(q)

∣∣∣
q=x

(µh − xh),

where j represents a victim. The marginal utility with respect
to qi is equal to

∂

∂qi
Ui(q) = v̇i(qi)− p(||q||)− βqi, (17)

∂

∂qj
Ui(q) = −βqi. (18)

Recall that the marginal valuation v̇j(xj) is unknown. Note
that it is hard to find an accurate upper estimation, because
the optimality condition in Eq. (6) depends on an unknown
term νj . Hence, we are forced to underestimate the marginal
valuation, using for instance the approximation given by Eq.



(14). This leads to the following inequality:

Uj(µ)− Uj(x) ≤ ∇Uj(x)(µ− x)

≥
∑

h∈N

∂

∂qh
Ũj(q)

∣∣∣
q=x

(µh − xh), (19)

where Ũj(q) denotes the approximation using the marginal
valuation. Note that the right part of Eq. (19) is the estimation
of profit loss, but there is no guarantee that this estimation is
greater than the real value. Hence, the loss of profit perceived
by the victims cannot be used to design penalties, because it
is possible to underestimate the losses.

Another alternative is to design penalties based on the profit
earned by each attacker. In this case, the increase of utility can
be estimated using

Ui(x)− Ui(µ) ≤ ∇Ui(x)(x− µ)

=
∑

h∈N

∂

∂qh
Ui(q)

∣∣∣
q=x

(xh − µh). (20)

Using Eq. (17) and (18) we can rewrite the estimation as

∇Ui(x)(x− µ) = (v̇i(µi)− β||µ|| − b)(xi − µi)−∑
h 6=i

µh(xh − µh).

Note that we know the marginal valuation of the ith user at
the optimal outcome (see Eq. (12)). Thus, the estimation can
be expressed as:

∇Ui(x)(x− µ) = β||µ||xi − β||x||µi + µi(xi − µi). (21)

Thus, from Eq. (20) we know that Eq. (21) gives an upper
bound on the profit increase of an user i ∈ A. Hence, if an
attacker is charged according to Eq. (21), her profit is lower
than the profit with no attack, i.e.,

Ui(x)−∇Ui(x)(x− µ) ≤ Ui(µ).

This implies that an attacker might obtain lower profits by
launching an attack (only if the attack is detected). Fig. 5
shows an example of the effect of penalties on the profit of
attackers.

Note that if λ = 1 and ‖x‖ = ‖µ‖, then the penalties
are zero. However, the penalties might fail when the there is
a deviation from the expected behavior. Recall from Section
IV-A that an event might change the normal electricity demand
from ‖µ‖ to ‖ζ‖, where ‖µV‖ > ‖ζV‖ = Q. Since the
reaction to any user is to increase her demand (even if she
is honest), we have ‖µA‖ < ‖ζA‖. In this case, the users that
belong to A might be charged with penalties, even if ‖ζA‖
satisfies the normal behavior stated in Eq. (3).

Note that with asymmetric information there is no guarantee
that the penalties are enough to cover the total losses on the
system. Hence, the utility company might have incentives to
invest in security.

VI. CONCLUSIONS

We propose and analyze general mechanisms to detect and
penalize attacks on DR schemes with full information and
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Fig. 5: The design of penalties on the attacker’s profit make
it unprofitable to launch attacks, even with asymmetric infor-
mation.

asymmetric information. First, we showed how in a DR system
with full information it is straightforward to detect attacks
and to design penalties that cover losses caused to others.
Furthermore, an attacker with access to private information
of users might have more flexibility to design attacks.

Second, we find that the case of DR with asymmetric
information is more challenging, but also has some desired
properties. On the one hand, even though attacks are harder
to detect, asymmetric information limits the actions of an
attacker. However, there is no guarantee that the penalties
distributed to the population benefiting from the attack are
enough to cover the total losses on the system.

A limitation of this work is that the analysis relies on
capturing the normal behavior of consumers (i.e., how they
react to DR signals). It is interesting to investigate more
general models that include uncertainties in that information.
Another interesting direction is to identify the properties of
the system that can affect the impact of the attacks, such as
the size of the population, among others.
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