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Multigrid Anisotropic Diffusion
Scott T. Acton,Member, IEEE

Abstract—A multigrid anisotropic diffusion algorithm for im-
age processing is presented. The multigrid implementation pro-
vides an efficient hierarchical relaxation method that facilitates
the application of anisotropic diffusion to time-critical processes.
Through a multigrid V-cycle, the anisotropic diffusion equations
are successively transferred to coarser grids and used in a coarse-
to-fine error correction scheme. When a coarse grid with a trivial
solution is reached, the coarse grid estimates of the residual
error can be propagated to the original grid and used to refine
the solution. The main benefits of the multigrid approach are
rapid intraregion smoothing and reduction of artifacts due to the
elimination of low-frequency error. In the paper, the theory of
multigrid anisotropic diffusion is developed. Then, the intergrid
transfer functions, relaxation techniques, diffusion coefficients,
and boundary conditions are discussed. The analysis includes
the examination of the storage requirements, the computational
cost, and the solution quality. Finally, experimental results are
reported that demonstrate the effectiveness of the multigrid
approach.

Index Terms—Anisotropic diffusion, image enhancement, PDE
methods.

I. INTRODUCTION

A NISOTROPIC diffusion has been widely applied as a
mechanism for intraregion smoothing of images. The re-

sults of anisotropic diffusion can be used to obtain an enhanced
image [14] or as a precursor to higher-level processing such
as shape description [15], edge detection [4], image segmen-
tation [3], and object identification and tracking [8]. Although
attractive in terms of edge localization and the ability to control
scale, anisotropic diffusion may lead to the creation of false
edges and false regions, among other ill effects. As with any
diffusion technique, processing high-resolution imagery via
anisotropic diffusion usually requires a significant number of
iterations, precluding real-time processing. Depending upon
the realization of the diffusion process, high-frequency error,
or noise, can be rapidly eliminated. Even when a well-posed
formation of anisotropic diffusion is given, limited relaxation
can lead to undesirable artifacts due to low-frequency error.
The multigrid approach alleviates the computational cost of
the diffusion process and reduces the processing artifacts that
can be associated with a reasonable number of iterations.

Continuous-domain diffusion problems described by partial
differential equations can be cast in the discrete form (on a
finite grid of points). Traditionally, direct methods, such as
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Gaussian elimination, are applied to achieve a precise solution
in a defined number of steps. For some problems, such as
the image enhancement and image segmentation tasks defined
by anisotropic diffusion, a direct closed-form solution may
be difficult to formulate or may be nonexistent. Alternatively,
relaxation methods, such as Jacobi and Gauss–Seidel iteration,
can be used to obtain approximate solutions. The relaxation
schemes iteratively eliminate noise through smoothing, while
retaining important region boundaries. Although effective in
reducing the high-frequency error, the fine grid relaxation
schemes produce low-frequency error in the solution, which
may manifest itself as false edges, blotches, or blocky artifacts
in the processed image. Given a well-posed formulation such
as in [21], these artifacts may be eliminated with a large
number of updates (possibly hundreds of iterations), but this
may be prohibitive in time-critical applications.

Within the mathematical community, there has been wide-
spread recent interest in multigrid methods [6], [7], [11], [12].
Multigrid techniques have already been used to expedite relax-
ation problems in image processing [15], [16]. The multigrid
methods can be used to provide numerical solutions to the
anisotropic diffusion problem. With the multigrid approach,
high- and low-frequency error are eliminated rapidly through
the use of a multiresolution representation. The original input
image provides the initial estimate that can be processed using
the standard anisotropic diffusion equations. At the original
resolution, only high-frequency error is eliminated quickly,
due to the local smoothing of anisotropic diffusion. The error
at the finest grid may be estimated at a coarse resolution. Then,
the error estimate can then be used to correct the solution.
Error correction at coarser resolutions enables the elimination
of low-frequency error, since the low frequency error becomes
oscillatory at a coarse sampling. Also, relaxation on a coarser
grid is less expensive, because there are fewer unknowns,
and convergence is improved. The process of computing
the residual error on a coarser sampling grid is repeated
recursively until a trivial solution can be computed at a very
coarse resolution. Then, the error estimates computed at each
subsampled grid can be used to correct the results at the next
lower (finer) resolution grid, until the original image resolution
is reached. This is the essence of the multigrid approach
presented here.

In the spirit of multigrid, image pyramids have been used in
conjunction with diffusion to improve computational efficiency
and solution quality [1]–[3]. The study of multigrid anisotropic
diffusion is motivated by the need to add a degree of formal-
ism and analysis to the hierarchical diffusion approach. The
pyramid-based algorithms have shown promise in solutions to
image enhancement, edge detection, and image segmentation.
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However, the pyramidal approach lacks the rigor the multigrid
approach. The two paradigms also have slightly different
motivations. Where the pyramid method attempts to use coarse
representations to guide enhancement and segmentation at
the higher resolution pyramid levels, the multigrid technique
reduces the residual error in relaxation at finer representations
by coarse grid correction. Thus, the pyramidal algorithms have
a spatially intuitive coarse-to-fine strategy, and the multigrid
algorithm has an interpretation from the realm of numerical
analysis.

The paper first provides the necessary background on
anisotropic diffusion. Then, the multigrid approach is
discussed, and the multigrid solution for anisotropic diffusion
is outlined. The implementation and performance of multigrid
anisotropic diffusion are analyzed. Finally, results that
demonstrate the efficacy of the multigrid method are presented.

II. A NISOTROPIC DIFFUSION

The adaptive smoothing of anisotropic diffusion may be
implemented by a system of partial differential equations. On
a continuous domain, the diffusion equation for imageis
given by

(1)

where is the gradient operator, div is the divergence
operator, and describes the diffusion coefficients [14]. The
system of equations has initial condition which is the
initial (possibly corrupted) image. If the elements ofremain
constant for all image locations, then isotropic diffusion is
enacted. If is allowed to vary according to the magnitude of
the local image gradient, anisotropic diffusion is performed.

Adopting the discrete anisotropic diffusion update in [14],
diffusion may be implemented by

(2)

Here, represents the coordinates of the-dimensional dis-
crete domain, is the number of directions in which diffusion
is computed, is the intensity at location is the
directional derivative in direction at location and time (in
iterations) is given by

In one dimension (with directions of diffusion), the
discrete anisotropic diffusion equation may be given as

(3)

and, in two dimensions, the corresponding equation [14] is

(4)

is typically used for two-dimensional (2-D) diffusion,
although more elaborate definitions of connectivity are possi-
ble. The terms in (3) with subscripts and correspond to
the two directions of diffusion in the 2-D case. Likewise, the

subscripts in (4) correspond to the four directions of diffusion
(north, south, east, and west) w.r.t. the location Each
diffusion coefficient and gradient term are computed in the
same manner. For example, in the “northern” direction, the
gradient can be defined as a simple difference

and is typically a function of

The multigrid anisotropic diffusion method is not limited
to any single realization of the diffusion coefficient. For
completeness, the performance of the fixed-resolution and
multigrid methods are evaluated using three different solutions
for the diffusion coefficient (presented in Section IV), which
essentially represent three different classes of anisotropic diffu-
sion techniques. For a comparison of several implementations
of the diffusion coefficient, see [20].

III. M ULTIGRID ANISOTROPICDIFFUSION

A. The Multigrid Approach

The marriage between multigrid methods and problems
defined by partial differential equations has been profitable.
The multigrid approach has been extended from simple finite
difference problems to include finite element/volume prob-
lem, nonlinear problems, and time-dependent problems. Here,
we apply the multigrid technique to a nonlinear problem:
anisotropic diffusion of digital images.

Let

(5)

describe a system of nonlinear equations, where is a
nonlinear function on the image and and have
dimensions Since the precise solution of (5) is assumed
to be unknown, an approximate solution imagewill be
computed.

For approximate solutions to the anisotropic diffusion prob-
lem, (2) can be used in a relaxation process as follows:

(6)

which defines Jacobi (simultaneous displacement) iteration,
where is the time in terms of the number of complete sweeps.
In a Gauss–Seidel framework, we have

(7)

since the intensities of the new approximation are used im-
mediately in Gauss–Seidel iteration. Equations (6) and (7) can
be interpreted as relaxation methods for a system of equations
defined by

(8)

For the approximation of has scalar elements given
by

(9)
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(a) (b)

(c)

Fig. 1. (a) Original sigmoidal ramp edge. (b) After anisotropic diffusion with DC 1(k = 10). (c) After multigrid anisotropic diffusion with DC 1(k = 10).

The algebraic error of the approximationis defined as

(10)

Since is unknown, is also unknown and inaccessible
during the process of computing a suitableTraditionally,
in this case, the residual has been used to measure the
goodness of the approximation may be computed during
relaxation and is

(11)

For a problem with a unique solution, if and only
if Note that Youet al. have presented well-posed
formulations of anisotropic diffusion with unique solutions in
[21]. Even in the cases where is not well-posed,
the norm of provides a good measure of how well an image

satisfies the system of nonlinear equations in (5).

In using the residual to correct the estimate oftwo cases
must be examined, the case of linear and the case of
nonlinear Given a linear function (11) can be
arranged to form

(12)

Subtracting (12) from (5), the relationship

(13)

is attained, which is the residual equation. A solution to (13)
could be used to correct error in the approximation

After computing an approximate solution the residual can
be computed using (11). Then, a solution to residual equation
can be generated. The resulting estimate ofcan be used to
correct since

(14)
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(a) (b)

Fig. 2. (a) Norm of residual versus time using anisotropic diffusion [corresponding to result in Fig. 1(b)]. (b) Norm of residual versus time using
multigrid anisotropic diffusion [corresponding to result in Fig. 1(c)]. Time is expressed in work units—the amount of computation required to perform
one iteration of anisotropic diffusion.

Thus far, the discussion has not included multiple resolu-
tions. Intergrid transfer functions can be used to move vectors
(2-D matrices in the image processing case) between grids
of different resolutions. Interpolation operators move a vector
from a coarse grid to the next finer grid. The restriction
operators move vectors from fine grids to coarse grids. Let

denote interpolation and denote restriction, for the
case where a fine grid has twice as many samples in each
linear dimension as the next coarser grid. Also, letdenote
the multigrid level, where level is the original image at
full resolution and level is the grid with one point.
For example, is the interpolation of the error at level
and has same number of grid points as The selection of
the appropriate intergrid transfer functions will be discussed
in Section IV.

It was stated earlier that multigrid methods are effective
in reducing low-frequency error that may cause significant
image artifacts. If a smoothly varying error is subsampled,
the error appears more oscillatory. So, the subsampled error
can be smoothed using the original system of equations (which
essentially eliminates oscillatory behavior). Then, the smooth
modes in the error can be eliminated and the original estimates
corrected.

B. Coarse Grid Correction (Linear Case)

For the linear case, combining (11) and (13) at leveland
transferring to the coarser grid at level we have

(15)

Note that for the anisotropic diffusion problem
formulated by (8) and (9). Using (15) with initial estimate

the error can be estimated. In fact, relaxing on
the original equation (5) with arbitrary initial solution is the
equivalent to relaxing on the residual equation (13) with initial
estimate [7]. A simple two-level multigrid method
involves relaxation on (8) with initial estimate transfer
of the residual to the coarse level, relaxation on the residual
equation (13) at the coarse level with initial estimate

and finally correction on the fine level via interpolation of

the error. Given the error estimate computed by relaxing (13),
the correction scheme for the estimate at levelis expressed

(16)

C. Coarse Grid Correction (Nonlinear Case)

Because the anisotropic diffusion problem involves a non-
linear function (13) does not hold, and additional steps
must be taken to estimate the error and perform correction.
Of course, the nonlinear function may be assumed to
be locally linear, and the additional steps could be ignored.
Or, a global linearization step may be used in combination
with a Newton method to solve for the error iteratively [6].
Here, thefull approximation scheme(FAS) is employed for
the anisotropic diffusion problem [11]. FAS minimizes the
computational effort by avoiding a global linearization step.
Given (8), (10), and (11), we have

(17)

for the anisotropic diffusion problem. If (17) is transferred
from level to a coarser grid at level we have

(18)

Let

(19)

and

(20)

Now, we can relax on

(21)

with initial estimate Note that (21) has the
same form as (5), so the same relaxation methods can be
utilized. Using the estimate of computed via relaxation
on (21), the error is computed by

(22)

and (16) may be used for correction as with the linear case.
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D. Multigrid V-Cycle

To this point, only two-level correction methods have been
introduced. One may notice that computation of the error at
a coarse level has the same form as the original problem. So,
it is logical to repeat this correction process and compute the
error at the next coarse level to correct the error estimate itself.
This process can be continued recursively until a level with
an exact solution is reached. Finally, the error corrections can
be propagated back to the original resolution. This is called
the multigrid V-cycle, as the algorithm starts with an initial
estimate, telescopes down to the coarsest grid, and then returns
in order to the finest grid [7]. The so-calledfull multigrid V-
cyclestarts with the exact solution at the coarsest grid and then
performs a succession of nested V-cycles to obtain a solution
at the finest grid. Full multigrid is valuable when no informed
initial estimate is available. Because the anisotropic diffusion
problem here relies on an initial estimate (the initial image),
the full multigrid V-cycle is not appropriate, and the V-cycle
method is utilized.

The multigrid anisotropic diffusion algorithm commences
with relaxation on the initial image and proceeds with error
correction until the level with just one pixel is reached (one
grid point). At this level, the error is set to zero, since the
diffusion equations are satisfied for any solution. Alternatively,
error correction can be halted at the level below the apex (with
four pixels in the 2-D case), without any undesirable effects.
The algorithm then returns to the finest level.

The V-cycle multigrid anisotropic diffusion technique is
implemented as follows.

• At Level 0: Relax on (8) times with the initial estimate
where is the original (possibly corrupted)

image.
• At Level 1 to Level (in Ascending Order):

Relax on (15) (linear case) or (21) (nonlinear case)
times with the initial error estimate

• At Level : Set error to
• At Level to Level 0 (in Descending Order):

Correct estimates using (16), then relaxtimes at each
level.

IV. A NALYSIS AND DISCUSSION

Section III presented the multigrid anisotropic diffusion
algorithm for adaptive image smoothing. In this section, the
algorithm and its implementation are analyzed. First, intergrid
transfer functions and relaxation techniques for multigrid
anisotropic diffusion are suggested. Then, three variations of
the diffusion coefficient are introduced, and guidelines on
boundary conditions are given. Finally, the storage require-
ments, computational cost, and the solution quality of the
multigrid method are discussed.

A. Intergrid Transfers

There are several options for the intergrid transfer functions
[11], [12]. The main division in the fine-to-coarse transfers
is between injection and full-weighting. An injection operator
should be familiar to those acquainted with image processing,

since it is simply a sampling scheme. Full-weighting methods,
on the other hand, use a linear combination of the finer samples
to produce a coarse grid point value. Because injection is
superior in preserving step edges, the injection operator has
been employed in this multigrid method. For the 2-D solution

at level injection is given by

(23)

where and are row and column, respectively.
With coarse-to-fine transfers, traditional interpolation tech-

niques can be implemented, or a simple “sample and hold”
prolongation strategy can be used. It must be noted that inter-
polation introduces additional smoothing, which may violate
the intent of anisotropic diffusion. Therefore, the prolongation
approach is applied, although no perceivable difference in
solution quality has been observed between the two operators.
Prolongation is achieved via

(24)

where is an integer-range truncation function.

B. Relaxation

The choice of the relaxation method for the discrete
anisotropic diffusion problem is important in both the
traditional and multigrid solutions. The Jacobi (6) and
Gauss–Seidel (7) iterates have been introduced. Because
the solutions at each grid point (at each pixel site) are
replaced simultaneously with the Jacobi approach, oscillatory
behavior can occur and convergence rates can be reduced. The
Gauss–Seidel approach can be utilized, but, unlike the Jacobi
iterates, the Gauss-Seidel iterates are affected by the order of
replacement. For the anisotropic diffusion problem, streaking
artifacts have been observed when sequential updating is used.
This can be alleviated by utilizing ared-blackupdate scheme
on each row, and azebrascheme on the columns [7]. Simply
stated, the grid sites at even columns and even rows are
computed, then those with odd rows and odd columns, then
odd rows and even columns, and finally even rows with odd
columns. This Gauss–Seidel update scheme is used for all
results produced in Section V.

It must also be observed that a Gauss–Seidel–Newton
method can be used for nonlinear problems [11]. In this case,
(7) is replaced by a single Newton iteration, as follows:

(25)

where is computed using (9).

C. Diffusion Coefficients

To achieve relaxation, a diffusion coefficient must be cho-
sen. As mentioned earlier, three classes of diffusion coeffi-
cients are used here. The three (discrete domain) diffusion
coefficients are summarized as follows.
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Diffusion Coefficient 1:Perona and Malik [14] suggested

(26)

as a diffusion coefficient (DC) , where is the DC for
location in diffusion direction is the gradient
(typically a simple difference) associated with locationand
direction A method for selecting is discussed in [1].
The advantages of DC 1 include the ability to sharpen edges
(backward diffusion), inexpensive implementation, and rapid
smoothing. The disadvantages include the inability to reject
outliers (especially in the presence of impulse noise) and the
creation of “staircase” artifacts, as documented in [19] and
[22]. You et al.have also shown that DC 1 leads to an ill-posed
problem, where a small perturbation in the data may cause a
significant change in the final result [21]. Furthermore, DC 1
does not lead to a unique optimal solution [21].

Diffusion Coefficient 2:Catteet al. [9] and Alvarezet al.
[5] proposed a modification to DC 1 that utilizes a Gaussian-
convolved version of the image to compute the diffusion
coefficient. The idea is implemented here using the same form
as DC 1 and is

(27)

where

(28)

is a Gaussian kernel with standard deviationThe
main advantage of DC 2 is improved performance in removing
outliers, while maintaining the smoothing rate of DC 1. The
use of the smoothed image in the computation of the diffusion
coefficients can produce well-posed diffusion that converges
to a unique result, under certain conditions [9]. However, it
is noted in [21] that algorithms that utilize coefficients such
as DC 2 actually contain an isotropic diffusion process, which
adds to the computational burden and is against the spirit of
anisotropic diffusion.

A morphological variant of DC 2 can be formed by replac-
ing (28) with

(29)

where is a structuring element of size is
the morphological opening of by and is the
morphological closing of by Early results show that (29)
allows effective elimination of impulse noise with improved
edge preservation.

Diffusion Coefficient 3:Posing anisotropic diffusion as an
optimization problem, Youet al. [21] introduced the following
diffusion coefficient:

(30)

where and is a threshold on the gradient
magnitude, similar to in DC 1. DC 3 can avoid the

“staircase” effects with sufficient iteration. Also, with a large
number of iterations, impulse noise can be eliminated with DC
3. The main drawback is computational expense. Smoothing
progresses slowly with DC 3, as demonstrated in the results.

D. Boundary Conditions

Another choice in relaxation with a system of partial dif-
ferential equations concerns the boundary conditions. It is
not logical in the anisotropic diffusion problem to set the
border pixels as boundary conditions. The other choices in-
clude zero-padding, assuming a periodic image (wraparound),
and assuming values beyond the border are equivalent to
the border values. As zero-padding and wraparound lead to
undesirable false discontinuities, the third approach is utilized.
Computation of (7) is achieved at the borders by allowing
values beyond the border to be equal to the border value that
is being relaxed.

E. Storage Requirements

In time-critical applications, the system architecture may
also be limited and storage requirements must be considered.
At first glance, the storage requirements for the multigrid
implementation may appear to be immense, but this is not the
case. For the multigrid V-cycle, the solution and the right hand
side variables must be stored at each level above the original
grid. On the original grid, only the solution is stored,
since the right hand side is zero for anisotropic diffusion. So,
the number of scalar variables that are stored for the 2-D
anisotropic diffusion problem is

(31)

and

(32)

which is less than twice the number of pixels in the original
image.

F. Computational Expense

The fundamental difference between the efficiency of multi-
grid anisotropic diffusion and the efficiency of fine grid
anisotropic diffusion is that multigrid gives a convergence rate
that is independent of the size of the image [17]. For fine grid
relaxation schemes (e.g., Jacobi or Gauss–Seidel), the rate of
convergence deteriorates as the number of pixels increases.
Low-frequency error will be reduced at a rate of
with the basic iterative schemes [17], whereas multigrid pro-
vides an overall convergence rate of (independent of signal
size) [12], where is the convergence rate for a damped Jacobi
method and is the number of relaxation steps per
multigrid level (typically Hence, for the anisotropic
diffusion of digital images, the multigrid approach is strongly
motivated.

Although convergence is determined by the specific relax-
ation method and DC used, some guidelines for the number
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of operations required can be given. In general, convergence
can be described as

(33)

To reduce the algebraic error from the error in an ar-
bitrary guess, to V-cycles are required
[7]. Because a single V-cycle has a cost of updates,

updates are required for convergence.
The comparison between the convergence behavior of fine

grid anisotropic diffusion and multigrid anisotropic diffusion is
difficult, because some diffusion implementations will diverge
[21], [22]. Given a diffusion coefficient and parameters that
lead to convergence, Chen [10] provided a “rule of thumb” for
diffusion convergence of 8/ iterations/pixel, where ranged
from 0.01 to 0.05. In other words, hundreds of iterations are
required to achieve equilibrium. Using Chen’s empirical re-
sults, updates are needed for anisotropic diffusion
on a fine grid, as opposed to the updates
for multigrid convergence. The difference gives the multigrid
approach at least one order of magnitude improvement in
computational cost for typical images. A more formal con-
vergence result was given by Nordstrom [13]. For a restricted
(convergent) version of anisotropic diffusion, it was shown
that the updates convergeexponentially[13, Lemma 8.3]. The
empirical results of [13] showed that although the exponential
rate is conservative, more than 100 sweeps were required on
a fine grid. For convergence to the level of truncation (to an
error of on a 256 256 image, our experiments
showed that the multigrid algorithm improved upon the fine
grid computational expense by an order of magnitude.

The contrast between the efficiency of fine grid anisotropic
diffusion and multigrid anisotropic diffusion can be illustrated
by a brief mathematical analysis of two simple signals. Con-
sider two 1-D signals—an impulse of height and a double
impulse (of width 2) and height Both the single impulse
and the double impulse are embedded in a 1-D signal
of length and are located at So, the impulse
has and the double impulse has

and otherwise. The rate at which
the fine grid anisotropic diffusion process removes these two
features is markedly different. Let the condition for feature
removal be a reduction in feature height to less than(so that

which is to say that all signal differences are
reduced such that given that
For the single impulse, the value of at location
(given by (9) with is

(34)

using DC 2 with (29) and a structuring elementof width
At each side of the impulse, we have

(35)

The diffusion of this signal proceeds as an isotropic diffusion
since due to the open-close operation of
(29). Thus, reduction of the impulse signal is equivalent to
the successive convolution with the kernel [1/2 0 1/2]. The
maximum value in the resultant sequence at iteration(for

even integer is given by

(36)

So, the condition for convergence becomes

(37)

Both multigrid anisotropic diffusion and fine grid anisotropic
diffusion reduce this pulse (high-frequency error) in a rapid
manner by simple relaxation at the highest resolution. For
example, consider an impulse of initial height
with and (37) suggests that only fine
grid iterations are needed to reduce the impulse to a height
below unity

Examining the results for a feature with the same height,
but with greater width (the double impulse), the results are
quite different. Let represent the convergence rate (the
rate of reduction) of the maximum value in at iteration
Note that the open-close operation of (29) leaves the gradients
unchanged in this case (as does DC 1). So, after the first
relaxation step, the double impulse is reduced by a factor of

(38)

Subsequent iteration yields

(39)

where is the position of the maximum value in at
iteration A necessary, but not sufficient, condition on the
number of iterations needed to reduce the signal such that

is

(40)

With the double impulse of initial height
over 524 iterations are required with the fine grid

implementation!
For simplicity, consider a two-grid multigrid implemen-

tation based on (15). The multigrid anisotropic diffusion
technique immediately reduces the difficult double impulse
problem to the single impulse problem by a grid transfer. On
the first iteration, we have

and
When transferred to the coarse grid, the double

impulse is eliminated in the same manner as the single
impulse. The sequence converges according to (37), and for
the example with height only
24 multigrid iterations are needed, as opposed to over 524 fine
grid iterations. This exemplifies the strength of the multigrid
technique and the inability of the fine grid method to eliminate
lower frequency error.

For the experimental results, the comparison of compu-
tational expense between the fine grid approach and the
multigrid method is best evaluated by work units. A work unit
is essentially the amount of computation required for a single
relaxation sweep at the original image resolution. One iteration
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(a) (b)

(c) (d)

Fig. 3. (a) Original “eye” image; (b) corrupted image (Laplacian noise, SNR= 9 dB) used as input for results in (c) and (d); (c) after two iterations of
anisotropic diffusion with DC 2(k = 25); (d) After one iteration of multigrid anisotropic diffusion with DC 2(k = 25):

of anisotropic diffusion on the (fine grid) image requires one
work unit. For the multigrid V-cycle, the number of work
units w required is

work units (41)

since each level is visited times. For a V-cycle with one
sweep per level

work units (42)

Hence, one V-cycle requires less than 8/3 the computation
required for one sweep of the standard anisotropic diffusion
technique. For the comparisons in Section V, computational
expense (time) is measured in work units.

Selection of can be fixed [7] (usually at ) or
accommodative [7], [11]. In the accommodative scheme, resid-

uals are computed after each relaxation sweep and used in
conjunction with the following stopping rule:

(43)

which measures the effectiveness of the relaxation step. For
2-D problems, is suggested in [7].

G. Solution Quality

As with most image processing applications, solution quality
can be evaluated qualitatively and quantitatively. For qualita-
tive comparisons between the standard anisotropic diffusion
implementation and the multigrid method, both high- and
low-frequency error can be observed. High-frequency error
includes the lack of impulse rejection or edge preservation.
Low-frequency error is manifested as blotches, false regions,
and wavy backgrounds.
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(a) (b)

(c) (d)

Fig. 4. (a) Original cameraman image; (b) corrupted image (Laplacian noise, SNR= 13 dB) used as input for results in (c)–(f) and Fig. 5(a) and (b); (c)
after eight iterations of anisotropic diffusion with DC 1 (k = 25); (d) after eight iterations of anisotropic diffusion with DC 2(k = 25):

To compare the traditional fine grid relaxation approach
with the multigrid method in a quantitative manner, the most
appropriate measure is the norm of the residual. The norm
of the residual evaluates to degree to which the anisotropic
diffusion equations (8)–(9) are satisfied. In Section V, the
norm, is applied to measure as follows:

(44)

V. RESULTS AND CONCLUSIONS

In this section, results are given that demonstrate the perfor-
mance of the multigrid anisotropic diffusion method on digital

imagery. The main benefits of using the multigrid approach are
the reduction of the computational expense of diffusion and
the rapid elimination of low-frequency error. Both of these
contributions can be observed by diffusing a synthetically
created 2-D ramp edge. A ramp edge can be modeled in 1-D
by the sigmoid defined by

(45)

where is the magnitude of the edge,dictates the edge rate
of change, is the edge displacement, and is the baseline
value of the edge. The inflection point (the center) of the
edge is at Fig. 1(a) shows a 64 64 image



ACTON: MULTIGRID ANISOTROPIC DIFFUSION 289

(e) (f)

Fig. 4. (Continued.) (e) After eight iterations of anisotropic diffusion with DC 3(T = 25; " = 1; p = 0:5); (f) after three iterations of multigrid
anisotropic diffusion with DC 2(k = 25):

in which the rows are identical 1-D signals governed by (45),
with and

The image shown in Fig. 1(b) is the result of fine grid
anisotropic diffusion using DC 1 with The image in
Fig. 1(c) is the result of multigrid anisotropic diffusion using
DC 1 with Note that a false region was created
by fine grid anisotropic diffusion and avoided by the low-
frequency smoothing of multigrid anisotropic diffusion. Both
methods were iterated until the updates became insignificant

1% change between iterations). The norm of the residual for
both methods is shown in Fig. 2, with time expressed in work
units. In this case, the norm of the residual is equal to the norm
of since for anisotropic diffusion. Each
iteration of fine grid anisotropic diffusion is one work unit, but
each iteration of the multigrid implementation is expressed as
8/3 work units, due to (42).

The graphs in Fig. 2 show that the multigrid method is able
to rapidly reduce the norm of the residual [Fig. 2(b)], while
the fine grid anisotropic diffusion method becomes stuck in
a locally optimal solution that corresponds to the “staircase”
artifact [Fig. 2(a)]. The standard fixed-resolution algorithm
actually yields a residual with a larger magnitude than the
residual of the initial image. The peak in both graphs can
be interpreted as follows: As the anisotropic diffusion of the
smooth sigmoid commences, the neighboring signal samples
are close in value and diffusion progresses slowly. The rate
of diffusion increases as the sigmoid is transformed into a
piecewise constant signal. This increase is halted when a
step edge of sufficient height to inhibit diffusion has evolved.
Then, intraregion smoothing continues until equilibrium has
been achieved. However, the equilibrium state of the multigrid
implementation yields a residual that is four times smaller than
that given by the fine grid implementation.

On real imagery, low-frequency error appears as false
regions in the smoothed result. Fig. 3(b) is a corrupted version
of the 64 64 image in Fig. 3(a), where Laplacian-distributed

noise—signal-to-noise ratio (SNR) 9 dB—has been added.
When two iterations of fine grid anisotropic diffusion are
performed on Fig. 3(b), several blotch artifacts are revealed,
as depicted in Fig. 3(c). After just one iteration of multigrid
anisotropic diffusion, the false regions have been subdued
[Fig. 3(d)]. Note that both solutions utilized the same diffusion
coefficient formulation (DC 2 with For DC 2, a 5
5 Gaussian kernel with was used to compute (28).

The example given in Fig. 4 shows the results that can
be obtained by multigrid anisotropic diffusion in just a few
iterations. The image in Fig. 4(b) has been corrupted by
Laplacian noise (SNR 13 dB). In Fig. 4(c)–(e), eight itera-
tions of fixed-resolution anisotropic diffusion has been applied
to Fig. 4(b), using each one of the three DC’s discussed
in Section IV. With three iterations of multigrid anisotropic
diffusion using DC 2, intraregion smoothing is accomplished
[Fig. 4(f)]. Compare the patchy background in Fig. 4(d) with
the smooth background in Fig. 4(f), the multigrid result. The
outliers shown in Fig. 4(c) and (e) can not be alleviated by
the introduction of a multigrid method. The remaining noise
in Fig. 4(c) is due to the form of DC 1 [9], [21], and the
outliers in Fig. 4(e) are due to insufficient iteration.

With 75 iterations of DC 3, an excellent result is obtained
[Fig. 5(a)] that eliminates the impulse noise without destroying
important image features. Applying 15 iterations of multigrid
anisotropic diffusion with DC 2, interregion smoothing is
also achieved [Fig. 5(b)]. For both methods, the number of
iterations used represents the fewest number of iterations
required to eliminate the majority of the outliers due to
the heavy-tailed noise. With the multigrid result [Fig. 5(b)],
notice the smoothness of the background and the degree of
detail preservation, especially in the face, the camera, and the
colonnade of the background building. Although both results
in Fig. 5 are visually appealing, the multigrid implementation
involves a significantly lower computational cost.
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(a) (b)

Fig. 5. (a) After 75 iterations of anisotropic diffusion with DC 3(T = 6; " = 1; p = 0:5); (b) after 15 iterations of multigrid anisotropic diffusion
with DC 2 (k = 6):

In this paper, a multigrid method for performing anisotropic
diffusion has been introduced. The multigrid method capital-
izes on the multiresolution structure to rapidly eliminate low-
frequency error in the diffusion process. The implementation
of the multigrid method has been analyzed, and the storage
requirements, the computational cost, and the solution quality
have been discussed. Results have been provided for synthetic
and natural images that show the strengths of the multigrid
approach.

Future research includes further analysis of convergence
for multigrid anisotropic diffusion and improved methods
of forming the original problem. The system of equations
described by (8) and (9) has no unique solution. Instead, an
initial solution is given by and diffusion progresses from
this starting point. An alternative approach to implementing
diffusion involves the use of a data constraint on the solution.
The data constraint bounds the distance norm between the
solution and the original image. Then (9) takes the form

(46)

where is a regularization parameter. (46) resembles the
traditional regularized image restoration approach. Given (46),
a full multigrid method could be employed [6]. This approach
is currently under investigation.
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