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Multigrid Anisotropic Diffusion

Scott T. Acton,Member, IEEE

Abstract—A multigrid anisotropic diffusion algorithm for im- ~ Gaussian elimination, are applied to achieve a precise solution
age processing is presented. The multigrid implementation pro- in a defined number of steps. For some problems, such as

vides an efficient hierarchical relaxation method that facilitates ¢ jmage enhancement and image segmentation tasks defined
the application of anisotropic diffusion to time-critical processes.

Through a multigrid V-cycle, the anisotropic diffusion equations PY anisotropic diffusion, a direct closed-form solution may
are successively transferred to coarser grids and used in a coarse-be difficult to formulate or may be nonexistent. Alternatively,
to-fine error correction scheme. When a coarse grid with a trivial  relaxation methods, such as Jacobi and Gauss—Seidel iteration,
solution is reached, the coarse grid estimates of the residual cg3n pe used to obtain approximate solutions. The relaxation

error can be propagated to the original grid and used to refine . . . . . .
the solution. The main benefits of the multigrid approach are schemes iteratively eliminate noise through smoothing, while

rapid intraregion smoothing and reduction of artifacts due to the retain?ng impor'Fant region boundaries. A'FhOUQh_ ef‘fective. in
elimination of low-frequency error. In the paper, the theory of reducing the high-frequency error, the fine grid relaxation
multigrid anisotropic diffusion is developed. Then, the intergrid  schemes produce low-frequency error in the solution, which

transfer functions, relaxation techniques, diffusion coefficients, 5y manifest itself as false edges, blotches, or blocky artifacts
and boundary conditions are discussed. The analysis includes .

the examination of the storage requirements, the computational in the processed image' Given a We”'F_’O_Sed forml_JIation such
cost, and the solution quality. Finally, experimental results are as in [21], these artifacts may be eliminated with a large
reported that demonstrate the effectiveness of the multigrid number of updates (possibly hundreds of iterations), but this

approach. may be prohibitive in time-critical applications.
Index Terms—Anisotropic diffusion, image enhancement, PDE  Within the mathematical community, there has been wide-
methods. spread recent interest in multigrid methods [6], [7], [11], [12].

Multigrid techniques have already been used to expedite relax-
ation problems in image processing [15], [16]. The multigrid
o ] ) methods can be used to provide numerical solutions to the
ANISOTR’_OPIC diffusion has been widely applied as gnisotropic diffusion problem. With the multigrid approach,
mechanism for intraregion smoothing of images. The Iy ang low-frequency error are eliminated rapidly through
sults of anisotropic diffusion can be used to obtain an e_nha”‘iﬂa use of a multiresolution representation. The original input
image [14] or as a precursor to higher-level processing Suﬁﬂage provides the initial estimate that can be processed using

as_shape descrip_tion_[lS],_ gdg_e detection [_4]' image SEIMYE standard anisotropic diffusion equations. At the original
tation [3], and object identification and tracking [8]. AIthougr}

2l t edae localizati dthe abil ?Tsolution, only high-frequency error is eliminated quickly,
attractive in terms of edge localization and the ability to contrey o 4, e |9cal smoothing of anisotropic diffusion. The error

d q fal . ther ill effects. As with %t the finest grid may be estimated at a coarse resolution. Then,
Z'ﬁgesointecii'e rtzglons,C:m%ngr? r?rel oei te'gnS.'mS V(\;' aNe error estimate can then be used to correct the solution.
musi Ique, processing nigh-resolution IMagery Vg, ., rection at coarser resolutions enables the elimination

anisotropic diffusion usually requires a significant number g :
. . . . . : of low-frequency error, since the low frequency error becomes
iterations, precluding real-time processing. Depending upan _. . )

oscillatory at a coarse sampling. Also, relaxation on a coarser

the realization of the diffusion process, high-frequency error..” . :
; : o iid is less expensive, because there are fewer unknowns,
or noise, can be rapidly eliminated. Even when a Well-posgd

. . o . . —and convergence is improved. The process of computing
formation of anisotropic diffusion is given, limited relaxatio he residual error on a coarser sampling grid is repeated
can lead to undesirable artifacts due to low-frequency error. . . o :
The multigrid approach alleviates the computational cost B?curswely un'gl a trivial solution can b e computed at a very
the diffusion process and reduces the processing artifacts t%%@"se resolutl_on. Then, the error estimates computed at each
can be associated with a reasonable number of iterations. SY sampled grid can be used to correct the results at the next

Continuous-domain diffusion problems described by Ioarti‘Ljﬂwer (finer) resolution grid, until the original image resolution

differential equations can be cast in the discrete form (on'sa reached. This is the essence of the multigrid approach

finite grid of points). Traditionally, direct methods, such aBresented .h.ere. L ) ,
In the spirit of multigrid, image pyramids have been used in
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However, the pyramidal approach lacks the rigor the multigrslibscripts in (4) correspond to the four directions of diffusion
approach. The two paradigms also have slightly differeftorth, south, east, and west) w.r.t. the locat{eny). Each
motivations. Where the pyramid method attempts to use coadsfusion coefficient and gradient term are computed in the
representations to guide enhancement and segmentatiorsaahe manner. For example, in the “northern” direction, the
the higher resolution pyramid levels, the multigrid techniqugradient can be defined as a simple differe(®dy(z,y) =
reduces the residual error in relaxation at finer representatidiis, y + 1) — I(z,y)), anden(x, y) is typically a function of
by coarse grid correction. Thus, the pyramidal algorithms ha%ely (x, y).
a spatially intuitive coarse-to-fine strategy, and the multigrid The multigrid anisotropic diffusion method is not limited
algorithm has an interpretation from the realm of numeric&d any single realization of the diffusion coefficient. For
analysis. completeness, the performance of the fixed-resolution and

The paper first provides the necessary background opmltigrid methods are evaluated using three different solutions
anisotropic diffusion. Then, the multigrid approach ifor the diffusion coefficient (presented in Section IV), which
discussed, and the multigrid solution for anisotropic diffusioessentially represent three different classes of anisotropic diffu-
is outlined. The implementation and performance of multigrision techniques. For a comparison of several implementations
anisotropic diffusion are analyzed. Finally, results thaif the diffusion coefficient, see [20].
demonstrate the efficacy of the multigrid method are presented.

[ll. M ULTIGRID ANISOTROPIC DIFFUSION
[I. ANISOTROPIC DIFFUSION

The adaptive smoothing of anisotropic diffusion may b@- The Multigrid Approach
implemented by a system of partial differential equations. OnThe marriage between multigrid methods and problems
a continuous domain, the diffusion equation for imafjés defined by partial differential equations has been profitable.

given by The multigrid approach has been extended from simple finite
ol difference problems to include finite element/volume prob-
i div[eVI] (1) lem, nonlinear problems, and time-dependent problems. Here,

) i o ) we apply the multigrid technique to a nonlinear problem:
where V is the gradient operator, div is the divergencgnisotropic diffusion of digital images.

operator, and: describes the diffusion coefficients [14]. The | gt
system of equations has initial conditiad, which is the
initial (possibly corrupted) image. If the elementsaofemain Al)=F ©)

constagt ffor. alllllma%e locations, tr:jgn |sotrr?p|c d|ﬁg$|gn 'Eescribe a system of nonlinear equations, whatd) is a
enacted. lcis allowed to vary according to the magnitude of ,\jinear function on the imagk, and A(I),I and F* have

the Iocal_ image g_radient, anisotropic (_1iffu§ion is perfo_rmed.dimensionsNxN. Since the precise solution of (5) is assumed
Adopting the discrete anisotropic diffusion update in [14} o unknown, an approximate solution imadewill be
diffusion may be implemented by

computed.
Q For approximate solutions to the anisotropic diffusion prob-
H(@)])t41 = [{(z) + (1/2) cd(:c)VId(:c)] . (2) lem, (2) can be used in a relaxation process as follows:
d=1 t Q
Here,z represents the coordinates of the-dimensional dis- [J(®)]t41 — |J(z) + (1/Q) ch(:c)VJd(:c) (6)
crete domaing is the number of directions in which diffusion d=1 t

is computed/(z) is the intensity at locatios, VIa(z) is the \hich defines Jacobi (simultaneous displacement) iteration,
directional derivative in directiod at locationz, and time (in  \yheret is the time in terms of the number of complete sweeps.

iterations) is given byt. o o In a Gauss—Seidel framework, we have
In one dimension (witl2 = 2 directions of diffusion), the

discrete anisotropic diffusion equation may be given as J(x) — J(z) + (1/Q) EQ: ca(®)VJolz) 7)
[L(@)]e1 =L (2) + (1/Dcr(z)VIE(r) d=1
+ ew (2)VIw(x)]}+ (3) since the intensities of the new approximation are used im-

) ) ) ) _ ~ mediately in Gauss—Seidel iteration. Equations (6) and (7) can
and, in two dimensions, the corresponding equation [14] iSpe interpreted as relaxation methods for a system of equations

[, )ess ={I(m.9) + (1/Q)en (@, 9) Vi (w.y) defined by
+es(@,y)Vis(z,y) + ce(r,y)Vie(s,y) A(I) = 0. (8)
+ow (@, y)Viw (2,9)] ). (4)  ForJ, the approximation of, A(J) has scalar elements given

= 4 is typically used for two-dimensional (2-D) dif“fusion,by

although more elaborate definitions of connectivity are possi- Q

ble. The terms in (3) with subscripfs and W correspond to Alz) = (1/9Q) ch(:c)VJd(:c). 9)
the two directions of diffusion in the 2-D case. Likewise, the d=1
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(©)
Fig. 1. (a) Original sigmoidal ramp edge. (b) After anisotropic diffusion with D@ &= 10). (c) After multigrid anisotropic diffusion with DC {k = 10).

The algebraic error of the approximatiohis defined as In using the residual to correct the estimatel pfwo cases
E—I—J 10 must be examined, the case of lineAf-) and the case of
e (10) nonlinear A(-). Given a linear functionA(-), (11) can be
Since I is unknown, E is also unknown and inaccessiblearranged to form
fjurin.g the process of computing a suitable Traditionally, A(J)=F—-R. (12)
in this case, the residuak has been used to measure the . _ .
goodness of the approximatioh R may be computed during Subtracting (12) from (5), the relationship

relaxation and is AE)=R (13)
R=F-A(J). (11) is attained, which is the residual equation. A solution to (13)

For a problem with a unique solutiod = 0 if and only COXIS be usedt_to correct error ": thelatppr?rilmaul_); |
if £ = 0. Note that Youet al. have presented well-posed er computing an approximate solutiohy the residual can

formulations of anisotropic diffusion with unique solutions irPe computed using (11). Thef" a SO!UtIOI’] to residual equation
[21]. Even in the cases whew(I) = F is not well-posed, can be generated. The resulting estimaté&’afan be used to

the norm ofR provides a good measure of how well an imag%OrreCt J, since
J satisfies the system of nonlinear equations in (5). I=J+E. (14)
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Fig. 2. (a) Norm of residual versus time using anisotropic diffusion [corresponding to result in Fig. 1(b)]. (b) Norm of residual versus time using
multigrid anisotropic diffusion [corresponding to result in Fig. 1(c)]. Time is expressed in work units—the amount of computation requiredriio perfo
one iteration of anisotropic diffusion.

Thus far, the discussion has not included multiple resolthe error. Given the error estimate computed by relaxing (13),
tions. Intergrid transfer functions can be used to move vectdlg correction scheme for the estimate at ldvisl expressed
(2-D matrices in the image processing case) between grids
of different resolutions. Interpolation operators move a vector Ji = Jit (B (16)
from a coarse grid to the next finer grid. The restrictio
operators move vectors from fine grids to coarse grids. L
()12 denote interpolation an¢l) > denote restriction, for the Because the anisotropic diffusion problem involves a non-
case where a fine grid has twice as many samples in editiear functionA(-), (13) does not hold, and additional steps
linear dimension as the next coarser grid. Also,/letenote must be taken to estimate the error and perform correction.
the multigrid level, where level = 0 is the original image at Of course, the nonlinear functiod(-) may be assumed to
full resolution and level = log, N is the grid with one point. be locally linear, and the additional steps could be ignored.
For example{E;)» is the interpolation of the error at level Or, a global linearization step may be used in combination
and has same number of grid points.As;. The selection of with a Newton method to solve for the error iteratively [6].
the appropriate intergrid transfer functions will be discussédere, thefull approximation schemégFAS) is employed for
in Section IV. the anisotropic diffusion problem [11]. FAS minimizes the

It was stated earlier that multigrid methods are effectiveomputational effort by avoiding a global linearization step.
in reducing low-frequency error that may cause significafdiven (8), (10), and (11), we have
image artifacts. If a smoothly varying error is subsampled, AJ+E)—AJ)=R (17)
the error appears more oscillatory. So, the subsampled error
can be smoothed using the original system of equations (whiegh the anisotropic diffusion problem. If (17) is transferred
essentially eliminates oscillatory behavior). Then, the smodfitom level [ to a coarser grid at levél+ 1, we have
modes in the error can be eliminated and the original estimates

t Coarse Grid Correction (Nonlinear Case)

corrected. Al(J0) 12 + (Er) 2] = A[(J0) 2] + (Bi) 2. (18)
Let
B. Coarse Grid Correction (Linear Case) N
. i Jip1 = (Ji) 12 + (E)) 2, (19)
For the linear case, combining (11) and (13) at lévahd
transferring to the coarser grid at level 1, we have and
A(El-l—l) = (FI)LQ - A[(JI)LQ] (15) Fl-l-l = A[(JI)LQ] + (Rl)lQ' (20)

Note that(F;),, = 0 for the anisotropic diffusion problem NOW. we can relax on

formulated by (8) and (9). Using (15) with initial estimate A[jz+1] Iﬁz+1 (21)
E;.1 = 0, the error can be estimated. In fact, relaxing on

the orlglnal equation (5) with arbitrary initial solutiohis the With initial estimateJ41 = (J;)(2. Note that (21) has the
equivalent to relaxing on the residual equation (13) with initigame form as (5), so the same relaxation methods can be
estimateE = 0 [7]. A simple two-level multigrid method utilized. Using the estimate OII_H computed via relaxation
involves relaxation on (8) with initial estimate= G, transfer on (21), the error is computed by

of the residual to the coarse level, relaxation on the residual Eipr = Jig — (J1)12 (22)
equation (13) at the coarse level with initial estim#lg ; =

0, and finally correction on the fine level via interpolation ofind (16) may be used for correction as with the linear case.
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D. Multigrid V-Cycle since it is simply a sampling scheme. Full-weighting methods,

To this point, only two-level correction methods have bee! the other hand, use a linear combination of the finer samples
introduced. One may notice that computation of the error 1 Produce a coarse grid point value. Because injection is
a coarse level has the same form as the original problem. YPEror in preserving step edges, the injection operator has

it is logical to repeat this correction process and compute tREE" émployed in this multigrid method. For the 2-D solution

error at the next coarse level to correct the error estimate itself @t 1evell; injection is given by
This process can be continued recursively until a level with
an exact solution is reached. Finally, the error corrections can Sz, y) = Jima (22, 2y) (23)

be propagated back to the original resolution. This is called ,

the multigrid V-cycle, as the algorithm starts with an initiafVhere« andy are row and column, respectively.

estimate, telescopes down to the coarsest grid, and then retur_ﬁé"th coarse—tp—flne transfers, tradl_tlonal interpolation tech-
in order to the finest grid [7]. The so-callddll multigrid V- Nidues can be implemented, or a simple “sample and hold"
cyclestarts with the exact solution at the coarsest grid and thBfplongation strategy can be used. It must be noted that inter-
performs a succession of nested V-cycles to obtain a solutiBplation introduces additional smoothing, which may violate
at the finest grid. Full multigrid is valuable when no informedh® intent of anisotropic diffusion. Therefore, the prolongation
initial estimate is available. Because the anisotropic diffusicPProach is applied, although no perceivable difference in
problem here relies on an initial estimate (the initial image olution quality has been observed between the two operators.

the full multigrid V-cycle is not appropriate, and the V-cycld rolongation is achieved via
method is utilized. ] ]

The multigrid anisotropic diffusion algorithm commences Ji(e,y) = Jiga[int(z/2), int(y/2)] (24)
with relaxation on the initial image and proceeds with error ] ) _ ) )
correction until the level with just one pixel is reached (on¥hereint(-) is an integer-range truncation function.
grid point). At this level, the error is set to zero, since the
diffusion equations are satisfied for any solution. Alternativelj§. Relaxation
error correction can be halted at the level below the apex (WithThe choice of the relaxation method for the discrete
four pixel; in the 2-D case), WithOl,!t any undesirable eﬁeCténisotropic diffusion problem is important in both the
The algorithm then returns to the f_mes_t |e\_/el. _ _traditional and multigrid solutions. The Jacobi (6) and
~ The V-cycle multigrid anisotropic diffusion technique isgayss-Seidel (7) iterates have been introduced. Because
implemented as follows. the solutions at each grid point (at each pixel site) are

* At Level 0 Relax on (8)v times with the initial estimate replaced simultaneously with the Jacobi approach, oscillatory

J = G, where G is the original (possibly corrupted) behavior can occur and convergence rates can be reduced. The
image. Gauss—Seidel approach can be utilized, but, unlike the Jacobi

* At Level 1 to Levelog,(NV) — 1 (in Ascending Order) iterates, the Gauss-Seidel iterates are affected by the order of

Relax on (15) (linear case) or (21) (nonlinear case) replacement. For the anisotropic diffusion problem, streaking
times with the initial error estimat&; = 0. artifacts have been observed when sequential updating is used.

* At Levellog,(N): Set error toE),, v = 0. This can be alleviated by utilizing d-blackupdate scheme

* At Levellog,(V) — 1 to Level O (in Descending Order) on each row, and aebrascheme on the columns [7]. Simply

Correct estimates using (16), then relatimes at each stated, the grid sites at even columns and even rows are

level. computed, then those with odd rows and odd columns, then
odd rows and even columns, and finally even rows with odd
columns. This Gauss—Seidel update scheme is used for all
results produced in Section V.

Section Il presented the multigrid anisotropic diffusion It must also be observed that a Gauss—Seidel-Newton
algorithm for adaptive image smoothing. In this section, th@ethod can be used for nonlinear problems [11]. In this case,
algorithm and its implementation are analyzed. First, intergr{@) is replaced by a single Newton iteration, as follows:
transfer functions and relaxation techniques for multigrid

IV. ANALYSIS AND DISCUSSION

anisotropic diffusion are suggested. Then, three variations of _ Ax)

the diffusion coefficient are introduced, and guidelines on (@) = J(=) 0A(x) (25)
boundary conditions are given. Finally, the storage require- dJ(x)

ments, computational cost, and the solution quality of the

multigrid method are discussed. where A(x) is computed using (9).

A. Intergrid Transfers C. Diffusion Coefficients

There are several options for the intergrid transfer functionsTo achieve relaxation, a diffusion coefficient must be cho-
[11], [12]. The main division in the fine-to-coarse transfersen. As mentioned earlier, three classes of diffusion coeffi-
is between injection and full-weighting. An injection operatocients are used here. The three (discrete domain) diffusion
should be familiar to those acquainted with image processirapefficients are summarized as follows.
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Diffusion Coefficient 1:Perona and Malik [14] suggested “staircase” effects with sufficient iteration. Also, with a large
9 number of iterations, impulse noise can be eliminated with DC
ca(x) = exp{ — [M} (26) 3. The main drawback is computational expense. Smoothing
k progresses slowly with DC 3, as demonstrated in the results.

as a diffusion coefficient (DC) , where;(x) is the DC for .
location = in diffusion directiond. VIy(z) is the gradient P- Boundary Conditions
(typically a simple difference) associated with locatiorand Another choice in relaxation with a system of partial dif-
direction d. A method for selectingt is discussed in [1]. ferential equations concerns the boundary conditions. It is
The advantages of DC 1 include the ability to sharpen edgeast logical in the anisotropic diffusion problem to set the
(backward diffusion), inexpensive implementation, and raplibrder pixels as boundary conditions. The other choices in-
smoothing. The disadvantages include the inability to rejeciude zero-padding, assuming a periodic image (wraparound),
outliers (especially in the presence of impulse noise) and taed assuming values beyond the border are equivalent to
creation of “staircase” artifacts, as documented in [19] aride border values. As zero-padding and wraparound lead to
[22]. You et al. have also shown that DC 1 leads to an ill-posedndesirable false discontinuities, the third approach is utilized.
problem, where a small perturbation in the data may caus€amputation of (7) is achieved at the borders by allowing
significant change in the final result [21]. Furthermore, DC \lalues beyond the border to be equal to the border value that
does not lead to a unique optimal solution [21]. is being relaxed.

Diffusion Coefficient 2:Catteet al. [9] and Alvarezet al.
[5] proposed a modification to DC 1 that utilizes a Gaussiag Storage Requirements
convolved version of the image to compute the diffusion

. . . . In time-critical applications, the system architecture may
coefficient. The idea is implemented here using the same forrin o . .
as DC 1 and is also be limited and storage requirements must be considered.

At first glance, the storage requirements for the multigrid
VSa(x) 2 implementation may appear to be immense, but this is not the
ca(®) = exp {_ { k } } (27) case. For the multigrid V-cycle, the solution and the right hand
side variables must be stored at each level above the original
where grid. On the originalV x N grid, only the solution is stored,
S =1+G(o). (28) since the right hand side is zero for anisotropic diffusion. So,
the number of scalar variables that are stored for the 2-D
G(o) is a Gaussian kernel with standard deviatienThe anisotropic diffusion problem is
main advantage of DC 2 is improved performance in removing
outliers, while maintaining the smoothing rate of DC 1. The S =N?+2(N?/2% + N?/2* + N?/2°
use of the smoothed image in the computation of the diffusion R N2/2210g2 N) (31)
coefficients can produce well-posed diffusion that converges
to a unique result, under certain conditions [9]. However, é&nd
is noted in [21] that algorithms that utilize coefficients such

as DC 2 actually contain an isotropic diffusion process, which S <(5/3)N? (32)
adds to the computational burden and is against the spirit of | . ) ) o
anisotropic diffusion. which is less than twice the number of pixels in the original

A morphological variant of DC 2 can be formed by replacMage:
ing (28) with

F. Computational Expense
S=(IoB)eB (29) _ . .
The fundamental difference between the efficiency of multi-

where B is a structuring element of sizex x m,I o B is grid anisotropic diffusion and the efficiency of fine grid
the morphological opening of by B, and I e B is the anisotropic diffusion is that multigrid gives a convergence rate
morphological closing of by B. Early results show that (29) that is independent of the size of the image [17]. For fine grid
allows effective elimination of impulse noise with improvedelaxation schemes (e.g., Jacobi or Gauss—Seidel), the rate of
edge preservation. convergence deteriorates as the number of pixels increases.
Diffusion Coefficient 3:Posing anisotropic diffusion as anLow-frequency error will be reduced at a ratelof O(1/N?)
optimization problem, Yot al.[21] introduced the following with the basic iterative schemes [17], whereas multigrid pro-

diffusion coefficient: vides an overall convergence ratg.3f (independent of signall
1T +p(T + =T, Viy(z) <T size) [12], whergu is the convergence rate for a dgmped Jacobi
ca(z) = { 1/|VI()| + p(| V()| + )P~/ method(x ~ 2/3), andr is the number of relaxation steps per
IV I1y(x)|, |VIg(z)| > T multlgnd Ievgl _(typ_lcallyz/ =1). Hence, for the anisotropic
(30) diffusion of digital images, the multigrid approach is strongly
motivated.

wheree >0 and0< p< 1. T is a threshold on the gradient Although convergence is determined by the specific relax-
magnitude, similar tok in DC 1. DC 3 can avoid the ation method and DC used, some guidelines for the number
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of operations required can be given. In general, converger®een integert) is given by
can be described as k()

sup[J(z):0<z < N-1]= 5 (36)
e 2y
1B = |1 - J|| <. (33) 2 <2)
So, the condition for convergence becomes
To reduce the algebraic error froM(1), the error in an ar- ak(t!)
bitrary guess, ta@)(1/N?), O(log, N?) V-cycles are required PN <é& (37)
[7]. Because a single V-cycle has a cost@fN?) updates, 2t<§!>

O(N?log, N?) updates are required for convergence. L N , L :
The comparison between the convergence behavior of ﬁﬁgth multigrid anisotropic diffusion and fine grid anisotropic

grid anisotropic diffusion and multigrid anisotropic diffusion jdiffusion reduce this pulse (high-frequency error) in a rapid

difficult, because some diffusion implementations will divergB1@nner by simple relaxation at the highest resolution. For

[21], [22]. Given a diffusion coefficient and parameters th&x@mple, consider an impulse of initial height/V/2) = 6.0

lead to convergence, Chen [10] provided a “rule of thumb” fg¥th @ = 3 and k = 2; (37) suggests that only” = 24 fine

diffusion convergence of &/ iterations/pixel, wheres ranged grid |terat_|ons are needed to reduce the impulse to a height

from 0.01 to 0.05. In other words, hundreds of iterations aR€low unity (e = 1). _ _

required to achieve equilibrium. Using Chen’s empirical re- Examining the results for a feature with the same height,

sults, O(8N2 /w) updates are needed for anisotropic diffusioRut With greater width (the double impulse), the results are

on a fine grid, as opposed to th@(~N2log, N2) updates duite dlfferent.. Lety(t) represent the convergence rate (the

for multigrid convergence. The difference gives the multigriéfte of reduction) of the maximum value ih at iterationt.

approach at least one order of magnitude improvement pte that the open-close operation of (29) leaves the gradients

computational cost for typical images. A more formal cordnchanged in this case (as does DC 1). So, after the first

vergence result was given by Nordstrom [13]. For a restrictéglaxation step, the double impulse is reduced by a factor of

(convergent) version of anisotropic diffusion, it was shown (1) =1 — exp(—a?). (38)

that the updates converggponentially{13, Lemma 8.3]. The Subsequent iteration vields

empirical results of [13] showed that although the exponentiafJ q y

rate is conservative, more than 100 sweeps were required on pE+1) > 1 — exp {_ JQ(aan)} (39)

. ) ) 2 3

a fine grid. For convergence to the level of truncation (to an k

error of O(1/N?)) on a 256x 256 image, our experimentswhere z,,, is the position of the maximum value id at

showed that the multigrid algorithm improved upon the fingeration¢. A necessary, but not sufficient, condition on the

grid computational expense by an order of magnitude. number of iterationd” needed to reduce the signal such that

The contrast between the efficiency of fine grid anisotropjd(z)|< ¢ is

diffusion and multigrid anisotropic diffusion can be illustrated r

by a brief mathematical analysis of two simple signals. Con- T > min {7’: ak Hu(t) < 5}. (40)

sider two 1-D signals—an impulse of heighk and a double t=1

impulse (of width 2) and height. Both the single impulse with the double impulse of initial height(N/2) = J(N/2+

and the double impulse are embedded in a 1-D sighal 1) = 6.0, over 524 iterations are required with the fine grid

of length N and are located at = N/2. So, the impulse implementation!

has J(N/2) = ak and the double impulse ha§(N/2) = For simplicity, consider a two-grid multigrid implemen-

J(N/2+1) = ak andJ(z) = 0 otherwise. The rate at whichtation based on (15). The multigrid anisotropic diffusion

the fine grid anisotropic diffusion process removes these twéchnique immediately reduces the difficult double impulse

features is markedly different. Let the condition for featurgroblem to the single impulse problem by a grid transfer. On

removal be a redu_ctiqn in feature heigh§ to Iesg thgso that the first iteration, we havel((Jo) 2)(N/4) = E (N/4) =

|J(x)| < e Yx), which is to say that all signal differences are_ o, A((Jo),2)(N/4 — 1) = ak/2, and A((Jo) 2)(N/4 +

reduced such thaW Jy(z)| <e Vd, z given that/(z) > 0Vz. 1) = ok/2. When transferred to the coarse grid, the double

For the single impulse, the value of at locationz = N/2  impulse is eliminated in the same manner as the single

(given by (9) with©2 = 2) is impulse. The sequence converges according to (37), and for
A(N/2) = —ak (34) the example with heigh# (N /2) = J(N/2 + 1) = 6.0, only

using DC 2 with (29) and a structuring elemeltof width ZAT m_ult|gr_|d |terat|9ns are nge_:ded, as opposed to over 52.4 f_me

m = 2. At each side of the impulse, we have grid |t.erat|ons. Th|§ exg'mpllfles the strgngth of the m'ult'|gr|d

technique and the inability of the fine grid method to eliminate
A(N/2-1) = A(N/2+1) = ak/2. (35)  lower frequency error.

The diffusion of this signal proceeds as an isotropic diffusion For the experimental results, the comparison of compu-

since VSy(z) = 0 Vz,d due to the open-close operation ofational expense between the fine grid approach and the

(29). Thus, reduction of the impulse signal is equivalent tmultigrid method is best evaluated by work units. A work unit

the successive convolution with the kernel [1/2 0 1/2]. This essentially the amount of computation required for a single

maximum value in the resultant sequence at iteratidfor relaxation sweep at the original image resolution. One iteration
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(b)

(© (d)

Fig. 3. (a) Original “eye” image; (b) corrupted image (Laplacian noise, SNR dB) used as input for results in (c) and (d); (c) after two iterations of
anisotropic diffusion with DC 2k = 25); (d) After one iteration of multigrid anisotropic diffusion with DC (& = 25).

of anisotropic diffusion on the (fine grid) image requires oneals are computed after each relaxation sweep and used in
work unit. For the multigrid V-cycle, the number of workconjunction with the following stopping rule:

units w required is | Resr|| > 1| Rel (43)
— 2 2 162 2 104 2 166
w=20(N"+N"/2 ":N /27 +N7/2 which measures the effectiveness of the relaxation step. For
<o N2 /221082 Ny work units (41) 2-D problemsy; = 0.6 is suggested in [7].

since each level is visite@r times. For a V-cycle with one 5 ggjution Quality

sweep(r = 1) per level . ] . o ) )
) As with most image processing applications, solution quality
w < (8/3) work units (42)  can be evaluated qualitatively and quantitatively. For qualita-
Hence, one V-cycle requires less than 8/3 the computatitwe comparisons between the standard anisotropic diffusion
required for one sweep of the standard anisotropic diffusiamplementation and the multigrid method, both high- and
technique. For the comparisons in Section V, computationalv-frequency error can be observed. High-frequency error
expense (time) is measured in work units. includes the lack of impulse rejection or edge preservation.
Selection ofr can be fixed [7] (usually ai# = 1) or Low-frequency error is manifested as blotches, false regions,

accommodative [7], [11]. In the accommodative scheme, resi@hd wavy backgrounds.
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(b)

(d

Fig. 4. (a) Original cameraman image; (b) corrupted image (Laplacian noise,=SHI& dB) used as input for results in (c)—(f) and Fig. 5(a) and (b); (c)
after eight iterations of anisotropic diffusion with DC & & 25); (d) after eight iterations of anisotropic diffusion with DQ(R = 25).

To compare the traditional fine grid relaxation approadmagery. The main benefits of using the multigrid approach are
with the multigrid method in a quantitative manner, the moshe reduction of the computational expense of diffusion and
appropriate measure is the norm of the residual. The notfie rapid elimination of low-frequency error. Both of these
of the residual evaluates to degree to which the anisotropigntributions can be observed by diffusing a synthetically

diffusion equations (8)—(9) are satisfied. In Section V, he created 2-D ramp edge. A ramp edge can be modeled in 1-D
norm, is applied to measutR as follows: by the sigmoid defined by

N—-1N-1

IRl = > > R’ ). (44) L(z) = étanh( fo+0)+B (45)

=0 j5=0

where A is the magnitude of the edg¢,dictates the edge rate
V. RESULTS AND CONCLUSIONS of change# is the edge displacement, af#lis the baseline
In this section, results are given that demonstrate the perfgalue of the edge. The inflection point (the center) of the
mance of the multigrid anisotropic diffusion method on digitaédge is atz;, = —q/f. Fig. 1(a) shows a 64< 64 image
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Fig. 4. Continued) (e) After eight iterations of anisotropic diffusion with DC @ = 25, = 1,p = 0.5); (f) after three iterations of multigrid
anisotropic diffusion with DC 2(k = 25).

in which the rows are identical 1-D signals governed by (45)oise—signal-to-noise ratio (SNR} 9 dB—has been added.
with A = 100, B = 120, f = 0.1, andf§ = —3.2. When two iterations of fine grid anisotropic diffusion are
The image shown in Fig. 1(b) is the result of fine grigherformed on Fig. 3(b), several blotch artifacts are revealed,
anisotropic diffusion using DC 1 witk = 10. The image in as depicted in Fig. 3(c). After just one iteration of multigrid
Fig. 1(c) is the result of multigrid anisotropic diffusion usinganisotropic diffusion, the false regions have been subdued
DC 1 with k& = 10. Note that a false region was creategFig. 3(d)]. Note that both solutions utilized the same diffusion
by fine grid anisotropic diffusion and avoided by the lowgoefficient formulation (DC 2 with: = 25). For DC 2, a 5x
frequency smoothing of multigrid anisotropic diffusion. Boths Gaussian kernel with = 1 was used to compute (28).
methods were iterated until the updates became insignificantrne example given in Fig. 4 shows the results that can
(<1% change between iterations). The norm of the residual fg& optained by multigrid anisotropic diffusion in just a few
both methods is shown in Fig. 2, with time expressed in Wofferations. The image in Fig. 4(b) has been corrupted by
units. In thi_s case, the norm of the residua_l is gqugl to the NOIMplacian noise (SNR= 13 dB). In Fig. 4(c)—(e), eight itera-
of A(_J), since R = —_A(J) for anisotropic diffusion. Each ¢ of fixed-resolution anisotropic diffusion has been applied
iteration of fine grid anisotropic diffusion is one work unit, bu{O Fig. 4(b), using each one of the three DC's discussed

each iteration of the muligrid implementation is expressed fi¥ Section IV. With three iterations of multigrid anisotropic

8/3 work units, due to (42). e . . : S .
The graphs in Fig. 2 show that the multigrid method is ab&ﬁusmn using DC 2, intraregion smoothing is accomplished

to rapidly reduce the norm of the residual [Fig. 2(b)], whil h:ag.s:ln((f))i-tr? E;nciarriljrr:z |i3:t|<::ihy 23;: k?;gumnﬂnlin rli:cligr.ei(lfllz V_\II_'EZ
the fine grid anisotropic diffusion method becomes stuck In 9 9. ' 9 '

a locally optimal solution that corresponds to the “stairca\sémtllers shown in Fig. 4(c) and (e) can not be alleviated by

artifact [Fig. 2(a)]. The standard fixed-resolution algorithr{ih € |.ntroduct'|on of a multigrid method. The remaining noise
actually yields a residual with a larger magnitude than tH8 F_'g' 4(c) IS due to the form_ of DC 1 [_9]' [2_1]’ and the
residual of the initial image. The peak in both graphs cafHUliers in Fig. 4(e) are due to insufficient iteration. _
be interpreted as follows: As the anisotropic diffusion of the With 75 iterations of DC 3, an excellent result is obtained
smooth sigmoid commences, the neighboring signal samplEid- 5(@)] that eliminates the impulse noise without destroying
are close in value and diffusion progresses slowly. The rdfBPortant image features. Applying 15 iterations of multigrid
of diffusion increases as the sigmoid is transformed into @pisotropic diffusion with DC 2, interregion smoothing is
piecewise constant signal. This increase is halted when@l§0 achieved [Fig. 5(b)]. For both methods, the number of
step edge of sufficient height to inhibit diffusion has evolvedterations used represents the fewest number of iterations
Then, intraregion smoothing continues until equilibrium hagquired to eliminate the majority of the outliers due to
been achieved. However, the equilibrium state of the multigriieé heavy-tailed noise. With the multigrid result [Fig. 5(b)],
implementation yields a residual that is four times smaller thawtice the smoothness of the background and the degree of
that given by the fine grid implementation. detail preservation, especially in the face, the camera, and the
On real imagery, low-frequency error appears as falselonnade of the background building. Although both results
regions in the smoothed result. Fig. 3(b) is a corrupted versionFig. 5 are visually appealing, the multigrid implementation
of the 64x 64 image in Fig. 3(a), where Laplacian-distributeéhvolves a significantly lower computational cost.
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(@) (b)

Fig. 5. (a) After 75 iterations of anisotropic diffusion with DC(F = 6, = 1,p = 0.5); (b) after 15 iterations of multigrid anisotropic diffusion
with DC 2 (k = 6).
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