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ABSTRACT | Network protocols in layered architectures have

historically been obtained on an ad hoc basis, and many of the

recent cross-layer designs are also conducted through piece-

meal approaches. Network protocol stacks may instead be

holistically analyzed and systematically designed as distributed

solutions to some global optimization problems. This paper

presents a survey of the recent efforts towards a systematic

understanding of Blayering[ as Boptimization decomposition,[

where the overall communication network is modeled by a

generalized network utility maximization problem, each layer

corresponds to a decomposed subproblem, and the interfaces

among layers are quantified as functions of the optimization

variables coordinating the subproblems. There can be many

alternative decompositions, leading to a choice of different

layering architectures. This paper surveys the current status of

horizontal decomposition into distributed computation, and

vertical decomposition into functional modules such as con-

gestion control, routing, scheduling, random access, power

control, and channel coding. Key messages and methods

arising from many recent works are summarized, and open

issues discussed. Through case studies, it is illustrated how

BLayering as Optimization Decomposition[ provides a common

language to think about modularization in the face of complex,

networked interactions, a unifying, top-down approach to

design protocol stacks, and a mathematical theory of network

architectures.
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I . INTRODUCTION

A. Overview

1) Structures of the Layered Protocol Stack: Network

architecture determines functionality allocation: Bwho does

what[ and Bhow to connect them,[ rather than just resource
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allocation. It is often more influential, harder to change,
and less understood than any specific resource allocation

scheme. Functionality allocations can happen, for example,

between the network management system and network

elements, between end-users and intermediate routers, and

between source control and in-network control such as

routing and physical resource sharing. The study of network

architectures involves the exploration and comparison of

alternatives in functionality allocation. This paper presents
a set of conceptual frameworks and mathematical languages

for a foundation of network architectures.

Architectures have been quantified in fields such as

information theory, control theory, and computation

theory. For example, the source-channel separation prin-

ciple is a fundamental result on architecture in informa-

tion theory. The choices of architectural decisions are even

more complicated in networking. For example, the
functionality of rate allocation among competing users

may be implemented through various combinations of the

following controls: end-to-end congestion control, local

scheduling, per-hop adaptive resource allocation, and

routing based on end-to-end or per-hop actions. However,

we do not yet have a mature theoretical foundation of

network architectures.

Layered architectures form one of the most fundamen-
tal structures of network design. They adopt a modularized

and often distributed approach to network coordination.

Each module, called layer, controls a subset of the decision

variables, and observes a subset of constant parameters and

the variables from other layers. Each layer in the protocol

stack hides the complexity of the layer below and provides

a service to the layer above. Intuitively, layered architec-

tures enable a scalable, evolvable, and implementable net-
work design, while introducing limitations to efficiency

and fairness and potential risks to manageability of the

network. There is clearly more than one way to Bdivide

and conquer[ the network design problem. From a data-

plane performance point of view, some layering schemes

may be more efficient or fairer than others. Examining

these choices of modularized design of networks, we

would like to tackle the question of Bhow to[ and Bhow
not to[ layer.

While the general principle of layering is widely rec-

ognized as one of the key reasons for the enormous success

of data networks, there is little quantitative understanding

to guide a systematic, rather than an ad hoc, process of

designing layered protocol stack for wired and wireless

networks. One possible perspective to understand layering

is to integrate the various protocol layers into a single
theory, by regarding them as carrying out an asynchronous

distributed computation over the network to implicitly

solve a global optimization problem modeling the network.

Different layers iterate on different subsets of the decision

variables using local information to achieve individual

optimality. Taken together, these local algorithms attempt

to achieve a global objective. Such a design process can be

quantitatively understood through the mathematical lan-
guage of decomposition theory for constrained optimization

[104]. This framework of BLayering as Optimization

Decomposition[ exposes the interconnections between

protocol layers as different ways to modularize and dis-

tribute a centralized computation. Even though the design

of a complex system will always be broken down into

simpler modules, this theory will allow us to systematically

carry out this layering process and explicitly tradeoff
design objectives.

The core ideas in BLayering as Optimization Decom-

position[ are as follows. Different vertical decompositions
of an optimization problem, in the form of a generalized

network utility maximization (NUM), are mapped to dif-

ferent layering schemes in a communication network. Each

decomposed subproblem in a given decomposition cor-

responds to a layer, and certain functions of primal or
Lagrange dual variables (coordinating the subproblems)

correspond to the interfaces among the layers. Horizontal
decompositions can be further carried out within one

functionality module into distributed computation and
control over geographically disparate network elements.

Since different decompositions lead to alternative layering

architectures, we can also tackle the question of Bhow and

how not to layer[ by investigating the pros and cons of
decomposition methods. Furthermore, by comparing the

objective function values under various forms of optimal

decompositions and suboptimal decompositions, we can

seek Bseparation theorems[ among layers: conditions

under which layering incurs no loss of optimality. Robust-

ness of these separation theorems can be further char-

acterized by sensitivity analysis in optimization theory:

how much will the differences in the objective value
(between different layering schemes) fluctuate as constant

parameters in the generalized NUM formulation are

perturbed.

There are two intellectually fresh cornerstones behind

BLayering as Optimization Decomposition.[ The first is

Bnetwork as an optimizer.[ The idea of viewing protocols

as a distributed solution (to some global optimization

problem in the form of the basic NUM) has been suc-
cessfully tested in the trials for transmission control

protocol (TCP) [56]. The key innovation from this line of

work (e.g., [64], [72], [73], [87], [89], [90], [96], [116],

[125], and [161]) is to view the TCP/IP network as an

optimization solver, and each variant of congestion control

protocol as a distributed algorithm solving a specified basic

NUM with a particular utility function. The exact shape of

the utility function can be reverse-engineered from the
given protocol. In the basic NUM, the objective is to

maximize the sum of source utilities as functions of rates,

the constraints are linear flow constraints, and optimiza-

tion variables are source rates. Other recent results also

show how to reverse-engineer border gateway protocols

(BGPs) as a solution to the stable path problem [44], and

contention-based medium access control (MAC) protocols
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as a game-theoretic selfish utility maximization [76], [78].
Starting from a given protocol originally designed based on

engineering heuristics, reverse-engineering discovers the

underlying mathematical problems being solved by the

protocols. Forward-engineering based on the insights

obtained from reverse-engineering then systematically

improves the protocols.

The second key concept is Blayering as decomposition.[
As will be discussed in Sections I-A2, generalized NUM
problems can be formulated to represent a network design

problem involving more degrees of freedom than just the

source rates. These generalized NUM problems put the

end-user utilities in the Bdriver’s seat[ for network design.

For example, benefits of innovations in the physical layer,

such as better modulation and coding schemes, are now

characterized by the enhancement to applications rather

than just the drop in bit-error rates (BERs), which the users
do not directly observe. Note that an optimal solution to a

generalized NUM formulation automatically establishes the

benchmark for all layering schemes. The problem itself does

not have any predetermined layering architecture. Indeed,

layering is a human engineering effort.

The overarching question then becomes how to attain

an optimal solution to a generalized NUM in a modular-

ized and distributed way. Vertical decompositions across
functional modules and horizontal decompositions across

geographically disparate network elements can be con-

ducted systematically through the theory of decomposition

for nonlinear optimization. Implicit message passing

(where the messages have physical meanings and may

need to be measured anyway) or explicit message passing

quantifies the information sharing and decision coupling

required for a particular decomposition.
There are many ways to decompose a given problem,

each of which corresponds to a different layering

architecture. Even a different representation of the same

NUM problem may lead to different decomposability

structures even though the optimal solution remains the

same. These decompositions have different characteristics

in efficiency, robustness, asymmetry of information and

control, and tradeoff between computation and commu-
nication. Some are Bbetter[ than others depending on the

criteria set by network users and operators. A systematic

exploration in the space of alternative decompositions is

possible, where each particular decomposition leads to a

systematically designed protocol stack.

Given the layers, crossing layers is tempting. As ev-

idenced by the large and ever growing number of papers on

cross-layer design over the last few years, we expect that
there will be no shortage of cross-layer ideas based on

piecemeal approaches. The growth of the Bknowledge

tree[ on cross-layer design has been exponential. How-

ever, any piecemeal design jointly over multiple layers

does not bring a more structured thinking process than

the ad hoc design of just one layer. What seems to be

lacking is a level ground for fair comparison among the

variety of cross-layer designs, a unified view on how and
how not to layer, and fundamental limits on the impacts

of layer-crossing on network performance and robustness

metrics.

BLayering as Optimization Decomposition[ provides a

candidate for such a unified framework. It advocates a

first-principled way to design protocol stacks. It attempts

at shrinking the Bknowledge tree[ on cross-layer design

rather than growing it. It is important to note that
BLayering as Optimization Decomposition[ is not the same

as the generic phrase of Bcross-layer optimization.[ What

is unique about this framework is that it views the network

as the optimizer itself, puts the end-user application needs

as the optimization objective, establishes the globally

optimal performance benchmark, and offers a common set

of methodologies to design modularized and distributed

solutions that may attain the benchmark.
There have been many recent research activities

along the above lines by research groups around the

world. Many of these activities were inspired by the

seminal work by Kelly et al. in 1998 [64], which initiated

a fresh approach of optimization-based modeling and

decomposition-based solutions to simplify our under-

standing of the complex interactions of network

congestion control. Since then, this approach has been
substantially extended in many ways, and now forms a

promising direction towards a mathematical theory of

network architectures. This paper1 provides a summary

of the key results, messages, and methodologies in this

area over the last 8 years. Most of the surveyed works

focus on resource allocation functionalities and perfor-

mance metrics. The limitations of such focus will also be

discussed in Section V.

2) NUM: Before presenting an overview of NUM in this

section, we emphasize the primary use of NUM in the

framework of BLayering as Optimization Decomposition[
as a modeling tool, to capture end-user objectives (the

objective function), various types of constraints (the

constraint set), design freedom (the set of optimization

variables), and stochastic dynamics (reflected in the
objective function and constraint set). Understanding

architectures (through decomposition theory), rather

than computing an optimum of a NUM problem, is the

main goal of our study.

The Basic NUM problem is the following formulation

[64], known as Monotropic Programming and studied

since the 1960s [117]. TCP variants have recently been

reverse-engineered to show that they are implicitly solving
this problem, where the source rate vector x � 0 is the

1Various abridged versions of this survey have been presented in 2006
at the Conference of Information Science and Systems, IEEE Information
Theory Workshop, and IEEE MILCOM. Two other shorter, related
tutorials can be found in [85] and [105].
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only set of optimization variables, and the routing matrix
R and link capacity vector c are both constants

maximize
X

s

UsðxsÞ

subject to Rx � c: (1)

Utility functions Us are often assumed to be smooth, in-

creasing, concave, and dependent on local rate only,

although recent investigations have removed some of these

assumptions for applications where they are invalid.

Many of the papers on BLayering as Optimization
Decomposition[ are special cases of the following generic

problem [18], one of the possible formulations of a

Generalized NUM for the entire protocol stack:

maximize
X

s

Usðxs; Pe;sÞ þ
X

j

VjðwjÞ

subject to Rx � cðw;PeÞ;
x 2 C1ðPeÞ; x 2 C2ðFÞ or 2 /ðwÞ;
R 2 R; F 2 F ; w 2 W: (2)

Here, xs denotes the rate for source s and wj denotes the

physical layer resource at network element j. The utility
functions Us and Vj may be any nonlinear, monotonic

functions. R is the routing matrix, and c are the logical

link capacities as functions of both physical layer resources

w and the desired decoding error probabilities Pe. For

example, the issue of signal interference and power control

can be captured in this functional dependency. The rates

may also be constrained by the interplay between channel

decoding reliability and other hop-by-hop error control
mechanisms like Automatic Repeat Request (ARQ). This

constraint set is denoted as C1ðPeÞ. The issue of rate-

reliability tradeoff and coding is captured in this con-

straint. The rates are further constrained by the medium

access success probability, represented by the constraint set

C2ðFÞ, whereF is the contention matrix, or, more generally,

the schedulability constraint set /. The issue of MAC

(either random access or scheduling) is captured in this
constraint. The sets of possible physical layer resource

allocation schemes, of possible scheduling or contention-

based medium access schemes, and of single-path or

multipath routing schemes are represented by W, F , and

R, respectively. The optimization variables are x, w, Pe, R,

and F. Holding some of the variables as constants and

specifying some of these functional dependencies and

constraint sets will then lead to a special class of this
generalized NUM formulation. Utility functions and con-

straint sets can be even more general than those in problem

(2), possibly at the expense of losing specific problem

structures that may help with finding distributed solutions.

A deterministic fluid model is used in the above
formulations. Stochastic network dynamics change the

NUM formulation in terms of both the objective function

and the constraint set. As will be discussed in Section V-D,

stochastic NUM is an active research area.

Whether modeled through a basic, general, or stochas-

tic NUM, there are three separate steps in the design

process of BLayering as Optimization Decomposition:[
First formulate a specific NUM problem, then devise a
modularized and distributed solution following a particu-

lar decomposition, and finally explore the space of al-

ternative decompositions that provide a choice of layered

protocol stacks.

The following questions naturally arise: How to pick

utility functions, and how to guarantee quality-of-service

(QoS) to users?

First of all, in reverse-engineering, utility functions are
implicitly determined by the given protocols already, and

are to be discovered rather than designed. In forward-

engineering, utility functions can be picked based on any

combination of the following four considerations:

• First, as in the first paper [122] that advocated the

use of utility as a metric in networking, elasticity of

application traffic can be represented through

utility functions.
• Second, utility can be defined by human psycho-

logical and behavioral models such as mean opin-

ion score in voice applications.

• Third, utility functions provide a metric to define

optimality of resource allocation efficiency.

• Fourth, different shapes of utility functions lead to

optimal resource allocations that satisfy well

established definitions of fairness (e.g., a maxi-
mizer of �-fair utilities parameterized by � � 0:

UðxÞ ¼ ð1� �Þ�1x1�� [96] can be proved to be an

�-fair resource allocation).

In general, depending on who is interested in the

outcome of network design, there are two types of

objective functions: sum of utility functions by end users,

which can be functions of rate, reliability, delay, jitter,

power level, etc., and a network-wide cost function by
network operators, which can be functions of congestion

level, energy efficiency, network lifetime, collective es-

timation error, etc. Utility functions can be coupled across

the users, and may not have an additive structure (e.g.,

network lifetime).

Maximizing a weighted sum of all utility functions is

only one of the possible formulations. An alternative is

multiobjective optimization to characterize the Pareto-
optimal tradeoff between the user objective and the

operator objective. Another set of formulations, which is

not covered in this survey, is game-theoretic between users

and operators, or among users or operators themselves.

While utility models lead to objective functions, the

constraint set of a NUM formulation incorporates the

following two types of constraints. First is the collection of
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physical, technological, and economic restrictions in the

communication infrastructure. Second is the set of per-

user, hard, inelastic QoS constraints that cannot be vi-

olated at the equilibrium. This is in contrast to the utility
objective functions, which may represent elastic QoS

demands of the users.

Given a generalized NUM formulation, we do not wish

to solve it through centralized computation. Instead, we

would like to modularize the solution method through

decomposition theory. Each decomposed subproblem con-

trols only a subset of variables (possibly a scalar variable),

and observes only a subset of constant parameters and
values of other subproblems’ variables. These correspond,

respectively, to the limited control and observation that

each layer has.

The basic idea of decomposition is to divide the original

large optimization problem into smaller subproblems,

which are then coordinated by a master problem by means

of signaling. Most of the existing decomposition techni-

ques can be classified into primal decomposition and dual
decomposition methods. The former is based on decom-

posing the original primal problem, whereas the latter is

based on decomposing the Lagrange dual of the problem.

Primal decomposition methods have the interpretation

that the master problem directly gives each subproblem an

amount of resources that it can use; the role of the master

problem is then to properly allocate the existing re-

sources. In dual decomposition methods, the master
problem sets the price for the resources to each sub-

problem which has to decide the amount of resources to

be used depending on the price; the role of the master

problem is then to obtain the best pricing strategy.

Most papers in the vast, recent literature on NUM use a

standard dual-decomposition-based distributed algorithm.

Contrary to the apparent impression that such a decom-

position is the only possibility, there are in fact many
alternatives to solve a given NUM problem in different but

all distributed manners [104], including multilevel and

partial decompositions. Each of the alternatives provides a

possibly different network architecture with different

engineering implications.

Coupling for generalized NUM can happen not only in

constraints, but also in the objective function, where the

utility of source s, Usðxs; fxigi2IðsÞÞ, depends on both its

local rate xs and the rates of a set of other sources with

indices in set IðsÞ. If Us is an increasing function of

fxigi2IðsÞ, this coupling models cooperation, for example,
in a clustered system, otherwise it models competition,

such as power control in wireless network or spectrum

management in digital subscriber loop (DSL). Such

coupling in the objective function can be decoupled

through Bconsistency prices[ [130].

3) Key Messages and Methodologies: The summary list of

key messages in Table 1 illustrates the conceptual
simplicity in this rigorous and unifying framework, which

is more important than any specific cross-layer design

derived from this framework.

In Table 2, the summary list of main methods de-

veloped in many recent publications aims at popularizing

these analytical techniques so that future research can

invoke them readily. Each method will be summarized in a

stand-alone paragraph at the end of the associated
development or explanation.

Sections II and III cover the reverse- and forward-

engineering aspects for both horizontal and vertical de-

compositions, as outlined in Table 3.

After presenting the main points of horizontal and

vertical decompositions, we turn to a more general dis-

cussion on decomposition methods in Section IV.

At this point, curious readers may start to raise
questions, for example, on the issues involving stochastic

network dynamics, the difficulties associated with non-

convex optimization formulations, the coverage of accu-

rate models, the comparison metrics for decomposition

alternatives, the engineering implications of asymptotic

convergence, and the justification of performance optimi-

zation in the first place. Some of these questions have

recently been answered, while others remain under-
explored. Indeed, there are many challenging open prob-

lems and interesting new directions in this emerging

research area, and they will be outlined in Section V.

In concluding this opening section, we highlight that,

more than just an ensemble of specific cross-layer designs

for existing protocol stacks, BLayering as Optimization

Decomposition[ is a mentality that views networks as

Table 1 Summary of 10 Key Messages
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optimizers, a common language that allows researchers to

quantitatively compare alternative network architectures,

and a suite of methodologies that facilitates a systematic
design approach for modularized and distributed network

architectures.

Notation: Unless otherwise specified, vectors are

denoted in boldface small letters, e.g., x with xi as its ith
component; matrices are denoted by boldface capital

letters, e.g., H, W, R; and sets of vectors or matrices are

denoted by script letters, e.g., Wn, Wm, Rn, Rm.
Inequalities between two vectors denote component-wise

inequalities. We will use the terms Buser,[ Bsource,[
Bsession,[ and Bconnection[ interchangeably.

Due to the wide coverage of materials in this survey

paper, notational conflicts occasionally arise. Consistency

is maintained within any section, and main notation is

summarized in the tables of notation for each section:

Tables 4–9.

B. From Theory to Practice

1) Optimization: Linear programming has found impor-

tant applications in communication networks for several

decades. In particular, network flow problems, i.e.,

minimizing linear cost subject to linear flow conservation

and capacity constraints, include important special cases
such as the shortest path routing and maximum flow

problems. Recently, there have been many research ac-

tivities that utilize the power of recent developments in

nonlinear convex optimization to tackle a much wider
scope of problems in the analysis and design of commu-

nication systems. These research activities are driven by

both new demands in the study of communications and

networking, and new tools emerging from optimization

theory. In particular, a major breakthrough in optimization

over the last two decades has been the development of

powerful theoretical tools, as well as highly efficient com-

putational algorithms like the interior-point method, for
nonlinear convex optimization, i.e., minimizing a convex

function (or maximizing a concave function as is often seen

in this paper) subject to upper bound inequality constraints

on other convex functions and affine equality constraints

minimize f0ðxÞ
subject to fiðxÞ � 0; i ¼ 1; 2; . . . ;m

Ax ¼ a (3)

where the variables are x 2 Rn. The constant parameters

are A 2 Rl�n and a 2 Rl. The objective function f0 to be

minimized and the m constraint functions fi are convex

functions.

Since the early 1990s, it has been recognized that the
watershed between efficiently solvable optimization

Table 3 Organization of Sections II and III

Table 2 Summary of 20 Main Methods Surveyed
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problems and intractable ones is convexity. It is well
known that for a convex optimization problem, a local

minimum is also a global minimum. The Lagrange duality

theory is also well-developed for convex optimization. For

example, the duality gap is zero under constraint

qualification conditions, such as Slater’s condition [9]

that requires the existence of a strictly feasible solution to

nonlinear inequality constraints. When put in an appro-

priate form with the right data structure, a convex optimi-
zation problem can also be efficiently solved numerically,

such as the primal-dual interior-point method, which has

worst-case polynomial-time complexity for a large class

of functions and scales gracefully with problem size in

practice.

Special cases of convex optimization include convex

quadratic programming, second-order cone programming,

and semidefinite programming [9], as well as seemingly
nonconvex optimization problems that can be readily

transformed into convex problems, such as geometric

programming [19]. The last decade has witnessed the

appreciation-application cycle for convex optimization,

where more applications are developed as more people

start to appreciate the capabilities of convex optimization

in modeling, analyzing, and designing communication sys-

tems. When tackling the much more difficult nonconvex
optimization problems, there are some classical approaches,

which have been enhanced by new ones in recent years.

The phrase Boptimization of communication systems[
in fact carries three different meanings. In the most

straight-forward way, an analysis or design problem in a

communication system may be formulated as minimizing a

cost, or maximizing a utility function, or determining

feasibility over a set of variables confined within a con-
straint set. Decomposition, robustness, and fairness, in

addition to optimality of the solutions, can then be studied

on top of the optimization model. In a more subtle and

recent approach, emphasized in Section II, a given net-

work protocol may be interpreted as a distributed algorithm

solving an implicitly defined global optimization problem.

In yet another approach, the underlying theory of a net-

work control method or a communication strategy may be
generalized using nonlinear optimization techniques, thus

extending the scope of applicability of the theory.

In addition to optimization theory and distributed

algorithm theory, the results surveyed here also naturally

borrow tools from feedback control theory, stochastic

network theory, game theory, and general market equilib-

rium theory. They are also connected with other branches of

mathematics, such as algebraic geometry and differential
topology.

2) Practice: Industry adoption of BLayering as Optimi-

zation Decomposition[ has already started. For example,

insights from reverse-engineering TCP have led to an

improved version of TCP in the FAST Project (Fast AQM

Scalable TCP) [56], [57], [146], [147]. Putting end-user

application utilities as the objective function has led to a
new way to leverage innovations in the physical and link

layers beyond the standard metrics such as BER, e.g., in the

BFAST Copper[ Project (here FAST stands for frequency,

amplitude, space, time) for an order-of-magnitude boost to

rates in fiber/DSL broadband access systems [38].

FAST TCP [37] is a joint project between computer

science, control and dynamic systems, electrical engineer-

ing, and physics departments at Caltech and UCLA, and
involves partners at various national laboratories around

the world. It integrates theory, algorithms, implementa-

tion, and experiment so that they inform and influence

each other intimately. Its goal is to understand the current

TCP congestion control, design new algorithms, imple-

ment and test them in real high-speed global networks.

Through reverse-engineering, as will be discussed in

Section II-A2, the NUM and duality model allows us to
understand the limitations of the current TCP and design

new algorithms. Until about six years ago, the state of the

art in TCP research had been simulation-based using

simplistic scenarios, with often a single bottleneck link and

a single class of algorithms. We now have a theory that can

predict the equilibrium behavior of a TCP-like algorithm in

any arbitrary network topology. Moreover, we can prove,

and design, their stability properties in the presence of
feedback delay for large scale networks. As explained in

detail in Section II-A5, the insights from this series of

theoretical work have been implemented in a software

prototype FAST TCP and it has been used to break world

records in data transfer in the last few years.

FAST Copper [38] is a joint project at Princeton Uni-

versity, Stanford University, and Fraser Research Institute,

aiming at providing at least an order-of-magnitude increase
in DSL broadband access speed, through a joint optimi-

zation of frequency, amplitude, time, and space dimen-

sions to overcome the attenuation and crosstalk

bottlenecks in today’s DSL systems. One of the key ideas

is to treat the DSL network as a multiple-input–multiple-

output (MIMO) system rather than a point-to-point

channel, thus leveraging the opportunities of multiuser

cooperation and mitigating the current bottleneck due to
multiuser competition. Another key idea is to leverage

burstiness of traffic over broadband access networks under

QoS constraints. The overarching research challenge is to

understand how to engineer the functionality allocation

across modules and network elements. BLayering as

Optimization Decomposition[ provides a framework for

these design issues in the interference environment of

fiber/DSL broadband access.
Clean-slate design of the entire protocol stack is

another venue of application of BLayering as Optimization

Decomposition.[ For example, Internet 0 [54] is a project

initiated at the Center for Bits and Atoms at MIT and

jointly pursued by an industrial consortium. Its goal is to

develop theory, algorithms, protocols, and implementa-

tions to connect a large number of small devices. Another
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opportunity of clean-slate protocol stack design for

wireless ad hoc networks is the control-based MANET

program by DARPA. Eventually, BLayering as Optimization

Decomposition[ may even be used to develop computer-

aided design tools for protocol design and implementation.
There are also other potential points of interaction

between the theoretical foundation surveyed in this paper

and industry practice, e.g., distributed joint rate and power

control through decomposition theory by cellular network

infrastructure vendors [47], and Bvisibility[ across layers

enabled by service providers [70].

II . HORIZONTAL DECOMPOSITION

It is well-known that physical layer algorithms try to solve

the data transmission problem formulated by Shannon:

maximizing data rate subject to the constraint of asymp-

totically vanishing error probability. Widely used network

protocols, such as TCP, BGP, and IEEE 802.11 DCF, were

instead designed based primarily on engineering intui-

tions and ad hoc heuristics. Recent progress has put many

protocols in layers 2–4 (of the standard seven-layer

reference model) on a mathematical foundation as well.

• The congestion control functionality of TCP has

been reverse-engineered to be implicitly solving

the basic NUM problem [87], [88], [125]. While
heterogeneous congestion control protocols do not

solve an underlying NUM problem, their equilib-

rium and dynamic properties can still be analyzed

through a vector field representation and the

Poincare–Hopf index theorem [134], which to-

gether show that bounded heterogeneity implies

global uniqueness and local stability of network

equilibrium.
• Interior gateway protocol of IP routing is known to

solve variants of the shortest path problem, and the

policy-based routing protocol in BGP has recently

been modeled as the solution to the stable path

problem [44].

• Scheduling-based MAC protocols are known to

solve variants of maximum weight matching prob-

lems [12], [14], [80], [121], [149], [150], [165] or

Table 4 Summary of Main Notation for Section II-A
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graph-coloring problems [114] (and the references
therein), and random access (contention-based

MAC) protocols have recently been reverse-

engineered as a noncooperative utility maximiza-

tion game [76], [78].

In Sections II-A and II-B, the reverse- and forward-

engineering results for TCP congestion control and

random access MAC are summarized, respectively.

A. TCP Congestion Control

1) Congestion Control Protocols: Congestion control is a

distributed mechanism to share link capacities among

competing users. In this section, a network is modeled as a

set L of links (scarce resources) with finite capacities

c ¼ ðcl; l 2 LÞ. They are shared by a set N of sources

indexed by s. Each source s uses a set LðsÞ � L of links. Let
SðlÞ ¼ fs 2 Njl 2 LðsÞg be the set of sources using link l.
The sets fLðsÞg define an L� N routing matrix2

Rls ¼
1; if l 2 LðsÞ, i.e., source s uses link l
0; otherwise.

�

Associated with each source s is its transmission rate xsðtÞ
at time t, in packets/second. Associated with each link l is a

scalar congestion measure �lðtÞ � 0 at time t. We will call
�lðtÞ the link (congestion) price.

A congestion control algorithm consists of two

components: a source algorithm that dynamically adjusts

its rate xsðtÞ in response to prices �lðtÞ in its path, and a

link algorithm that updates, implicitly or explicitly, its

price �lðtÞ and sends it back, implicitly or explicitly, to

sources that use link l. On the current Internet, the source

algorithm is carried out by TCP, and the link algorithm is
carried out by (active) queue management (AQM)

schemes such as DropTail or RED [43]. Different protocols

use different metrics to measure congestion, e.g., TCP

Reno [55], [127] and its variants use loss probability as the

congestion measure, and TCP Vegas [10] and FAST [56],

[147] use queueing delay as the congestion measure [89].

Both are implicitly updated at the links and implicitly fed

back to sources through end-to-end loss or delay,
respectively. Mathematical models for congestion control

started [25] immediately after the development of the

protocol, and many of the results since 1999 follow the

approach advocated in [64] and focus on average models of

the congestion avoidance phase in TCP.

In this section, we show that a large class of congestion

control algorithms can be interpreted as distributed algo-

rithms to solve a global optimization problem. Specifi-
cally, we associate with each source s a utility function

UsðxsÞ as a function of its rate xs. Consider the basic NUM
proposed in [64]

maximize
X

s

UsðxsÞ

subject to Rx � c (4)

and its Lagrangian dual problem [90]

minimizeL�0 DðLÞ :¼
X

s

max
xs�0

UsðxsÞ � xs

X
l

Rls�l

 !

þ
X

l

cl�l: (5)

We now present a general model of congestion control

algorithms and show that they can be interpreted as

distributed algorithms to solve NUM (4) and its dual (5).
Let ylðtÞ ¼

P
s RlsxsðtÞ be the aggregate source rate at

link l and let qsðtÞ ¼
P

l Rls�lðtÞ be the end-to-end price for

source s. In vector notation, we have

yðtÞ ¼ RxðtÞ
and

qðtÞ ¼ RTLðtÞ:

Here, xðtÞ ¼ ðxsðtÞ; s 2 NÞ and qðtÞ ¼ ðqsðtÞ; s 2 NÞ are in

RN
þ, and yðtÞ ¼ ð ylðtÞ; l 2 LÞ and LðtÞ ¼ ð�lðtÞ; l 2 LÞ are

in RL
þ.

In each period, the source rates xsðtÞ and link prices

�lðtÞ are updated based on local information. Source s can
observe its own rate xsðtÞ and the end-to-end price qsðtÞ of

its path, but not the vector LðtÞ, nor other components of

xðtÞ or qðtÞ. Similarly, link l can observe just local price

�lðtÞ and flow rate ylðtÞ. The source rates xsðtÞ are updated

according to

xsðtþ 1Þ ¼ Fs xsðtÞ; qsðtÞð Þ (6)

for some nonnegative functions Fs. The link congestion
measure �lðtÞ is adjusted in each period based only on �lðtÞ
and ylðtÞ, and possibly some internal (vector) variable

vlðtÞ, such as the queue length at link l. This can be

modeled by some functions ðGl;HlÞ: for all l

�lðtþ 1Þ ¼ Gl ylðtÞ; �lðtÞ;vlðtÞð Þ (7)

vlðtþ 1Þ ¼ Hl ylðtÞ; �lðtÞ;vlðtÞð Þ (8)
2We abuse notation to use L and N to denote both sets and their

cardinalities.
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where Gl are nonnegative so that �lðtÞ � 0. Here, Fs model
TCP algorithms (e.g., Reno or Vegas) and ðGl;HlÞ model

AQMs (e.g., RED, REM). We will often refer to AQMs by

Gl, without explicit reference to the internal variable vlðtÞ
or its adaptation Hl. We now present some examples.

TCP Reno/RED: The congestion control algorithm in

the large majority of current TCP implementations is (an

enhanced version of ) TCP Reno, first proposed in [55]. A

source maintains a parameter called window size that
determines the number of packets it can transmit in a

round-trip time (RTT), the time from sending a packet to

receiving its acknowledgment from the destination. This

implies that the source rate is approximately equal to the

ratio of window size to RTT, in packets per second. The

basic idea of (the congestion avoidance phase of ) TCP

Reno is for a source to increase its window by one packet in

each RTT and halve its window when there is a packet loss.
This can be modeled by (see, e.g., [72], [87]) the source

algorithm Fsðtþ 1Þ :¼ FsðxsðtÞ; qsðtÞÞ

Fsðtþ 1Þ ¼ xsðtÞ þ
1

T2
s

� 2

3
qsðtÞx2

s ðtÞ
� �þ

(9)

where Ts is the RTT of source s, i.e., the time it takes for s
to send a packet and receive its acknowledgement from the
destination. Here we assume Ts is a constant even though

in reality its value depends on the congestion level and is

generally time-varying. The quadratic term reflects the

property that, if rate doubles, the multiplicative decrease

occurs at twice the frequency with twice the amplitude.

The AQM mechanism of RED [43] maintains two

internal variables, the instantaneous queue length blðtÞ and

average queue length rlðtÞ. They are updated according to

blðtþ 1Þ ¼ blðtÞ þ ylðtÞ � cl½ �þ (10)

rlðtþ 1Þ ¼ ð1� !lÞrlðtÞ þ !lblðtÞ (11)

where !l 2 ð0; 1Þ. Then, (the Bgentle[ version of) RED

marks a packet with a probability �lðtÞ that is a piecewise

linear, increasing the function of rlðtÞ with constants �1,

�2, Ml, bl, and bl

�lðtÞ ¼

0; rlðtÞ � bl

�1 rlðtÞ � blð Þ; bl � rlðtÞ � bl

�2 rlðtÞ � bl

� 	
þMl; bl � rlðtÞ � 2bl

1; rlðtÞ � 2bl.

8>>><
>>>:

(12)

Equations (10)–(12) define the model ðG;HÞ for RED.

TCP Vegas/DropTail: A duality model of Vegas has

been developed and validated in [89]; see also [96]. We
consider the situation where the buffer size is large enough

to accommodate the equilibrium queue length so that
Vegas sources can converge to the unique equilibrium. In

this case, there is no packet loss in equilibrium.

Unlike TCP Reno, Vegas uses queueing delay as

congestion measure �lðtÞ ¼ blðtÞ=cl, where blðtÞ is the

queue length at time t. The update rule GlðylðtÞ; �lðtÞÞ is

given by (dividing both sides of (10) by cl)

�lðtþ 1Þ ¼ �lðtÞ þ
ylðtÞ

cl
� 1

� �þ
: (13)

Hence, AQM for Vegas does not involve any internal

variable. The update rule FsðxsðtÞ; qsðtÞÞ for source rate is

given by

xsðtþ 1Þ ¼ xsðtÞ þ
1

T2
s ðtÞ

1 �sds � xsðtÞqsðtÞð Þ (14)

where �s is a parameter of Vegas, ds is the round-trip

propagation delay of source s, and 1ðzÞ ¼ 1 if z 9 0, �1 if

z G 0, and 0 if z ¼ 0. Here TsðtÞ ¼ ds þ qsðtÞ is the RTT at
time t.

FAST/DropTail: The FAST algorithm is developed in

[56], [57], and [147]. Let ds denote the round-trip

propagation delay of source s. Let �lðtÞ denote the queue-

ing delay at link l at time t. Let qsðtÞ ¼
P

l Rls�lðtÞ be the

round-trip queueing delay, or in vector notation,

qðtÞ ¼ RTLðtÞ. Each source s adapts its window WsðtÞ
periodically according to

Wsðtþ 1Þ ¼ �
dsWsðtÞ

ds þ qsðtÞ
þ �s

� �
þ ð1� �ÞWsðtÞ (15)

where � 2 ð0; 1� and �s 9 0 is a protocol parameter. A key

departure from the model described above and those in the

literature is that, here, we assume that a source’s send rate
cannot exceed the throughput it receives. This is justified

because of self-clocking: within one RTT after a congestion

window is increased, packet transmission will be clocked
at the same rate as the throughput the flow receives. A

consequence of this assumption is that the link queueing

delay vector LðtÞ is determined implicitly by the instan-

taneous window size in a static manner: given WsðtÞ ¼ Ws

for all s, the link queueing delays �lðtÞ ¼ �l � 0 for all l are

given by

X
s

Rls
Ws

ds þ qsðtÞ
¼ cl; if �lðtÞ 9 0

� cl; if �lðtÞ ¼ 0

�
(16)

where again qsðtÞ ¼
P

l Rls�lðtÞ.
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Hence, FAST is defined by the discrete-time model
(15), (16) of window evolution. The sending rate is then

defined as xsðtÞ :¼ WsðtÞ=ðdsðtÞ þ qsðtÞÞ.

2) Reverse-Engineering: Congestion Control as Distributed
Solution of Basic NUM: Under mild assumptions on

ðF;G;HÞ, it can be shown using Kakutani’s fixed point

theorem that equilibrium ðx;LÞ of (6)–(8) exists and is

unique [96], [134]. The fixed point of (6) defines an
implicit relation between equilibrium rate xs and end-to-

end congestion measure qs

xs ¼ Fsðxs; qsÞ:

Assume Fs is continuously differentiable and @Fs=@qs 6¼ 0

in the open set A :¼ fðxs; qsÞjxs 9 0; qs 9 0g. Then, by the

implicit function theorem, there exists a unique continu-
ously differentiable function fs from fxs 9 0g to fqs 9 0g
such that

qs ¼ fsðxsÞ 9 0: (17)

To extend the mapping between xs and qs to the closure of

A, define

fsð0Þ ¼ inf qs � 0jFsð0; qsÞ ¼ 0f g: (18)

If ðxs; 0Þ is an equilibrium point Fsðxs; 0Þ ¼ xs, then define

fsðxsÞ ¼ 0: (19)

Define the utility function of each source s as

UsðxsÞ ¼
Z

fsðxsÞdxs; xs � 0 (20)

which is unique up to a constant.

Being an integral, Us is a continuous function. Since

fsðxsÞ ¼ qs � 0 for all xs, Us is nondecreasing. We assume

that fs is a nonincreasing functionVthe more severe the

congestion, the smaller the rate. This implies that Us is

concave. If fs is strictly decreasing, then Us is strictly

concave since U00s ðxsÞ G 0. An increasing utility function
models a greedy source (a larger rate yields a higher

utility) and its concavity models diminishing marginal
return.

We assume the following conditions:

C1: For all s 2 S and l 2 L, Fs and Gl are nonnegative

functions. Fs are continuously differentiable and

@Fs=@qs 6¼ 0 in fðxs; qsÞjxs 9 0; qs 9 0g; moreover,

fs in (17) are strictly decreasing.

C2: R has full row rank.

C3: If �l ¼ Glð yl; �l;vlÞ and vl ¼ Hlð yl; �l;vlÞ, then
yl � cl, with equality if �l 9 0.

Condition C1 guarantees that ðxðtÞ;LðtÞÞ � 0 and

ðx�;L�Þ � 0, and that utility functions Us exist and are

strictly concave. C2 guarantees uniqueness of equilibrium

price vector L�. C3 guarantees the primal feasibility and

complementary slackness of ðx�;L�Þ. We can regard

congestion control algorithms (6)–(8) as distributed

algorithms to solve the NUM (4) and its dual (5) [87].

Theorem 1: Suppose assumptions C1 and C2 hold. Then

(6)–(8) has a unique equilibrium ðx�;L�Þ. Moreover, it

solves the primal problem (4) and the dual problem (5)

with utility function given by (20) if and only if C3 holds.

Hence, the various TCP/AQM protocols can be

modeled as different distributed solutions ðF;G;HÞ to

solve (4) and its dual (5), with different utility functions
Us. Theorem 1 characterizes a large class of protocols

ðF;G;HÞ that admit such an interpretation. This in-

terpretation is the consequence of end-to-end control: it

holds as long as the end-to-end congestion measure to

which the TCP algorithm reacts is the sum of the

constituent link congestion measures, and that the link

prices are independent of sources (this would not be true

in the heterogeneous protocol case as in Section II-A4).
Note that the definition of utility function Us depends only

on TCP algorithm Fs. The role of AQM ðG;HÞ is to ensure

that the complementary slackness condition (condition

C3) of problem (6)–(8) is satisfied. The complementary

slackness has a simple interpretation: AQM should match

input rate to capacity to maximize utilization at every

bottleneck link. Any AQM that stabilizes queues possesses

this property and generates a Lagrange multiplier vector
L� that solves the dual problem.

The utility functions of several proposed TCP algo-

rithms turn out to belong to a simple class of functions

defined in [96] that is parameterized by a scalar parameter

�s � 0

UsðxsÞ ¼
ws log xs; �s ¼ 1

wsð1� �sÞ�1x1��s
s ; �s 6¼ 1

�

where weight ws 9 0. In particular, it has been shown that

TCP Vegas, FAST, and Scalable TCP correspond to �s ¼ 1,

HTCP to �s ¼ 1:2, TCP Reno to �s ¼ 2, and maxmin

fairness to �s ¼ 1. Maximizing �-fair utility leads to
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optimizers that satisfy the definition of �-fair resource
allocation in the economics literature.

Method 1: Reverse-Engineering Cooperative Protocol as a
Distributed Algorithm Solving a Global Optimization Problem.

The potentials and risks of networks come from the

interconnection of local algorithms. Often, interesting and

counter-intuitive behaviors arise in such a setting where
users interact through multiple shared links in intricate

and surprising ways. Reverse-engineering of TCP/AQM has

also led to a deeper understanding of throughput and

fairness behavior in large scale TCP networks. For ex-

ample, there is a general belief that one can design systems

to be efficient or fair, but not both. Many papers in the

networking, wireless, and economics literature provide

concrete examples in support of this intuition. The work in
[132] proves an exact condition under which this con-

jecture is true for general TCP networks using the duality

model of TCP/AQM. This condition allows us to produce

the first counter-example and trivially explains all the

supporting examples found in the literature. Surprisingly,

in some counter-examples, a fairer throughput allocation is

always more efficient. It implies for example that maxmin

fair allocation can achieve higher aggregate throughput on
certain networks. Intuitively, we might expect that the

aggregate throughput will always rise as long as some links

increase their capacities and no links decrease theirs. This

turns out not to be the case, and [132] characterizes

exactly the condition under which this is true in general

TCP networks. Not only can the aggregate throughput be

reduced when some link increases its capacity, more

strikingly, it can also be reduced even when all links in-
crease their capacities by the same amount. Moreover, this

holds for all fair bandwidth allocations. This paradoxical

result seems less surprising in retrospect: according to the

duality model of TCP/AQM, raising link capacities always

increases the aggregate utility, but mathematically there is

no a priori reason that it should also increase the aggregate

throughput. If all links increase their capacities propor-

tionally, however, the aggregate throughput will indeed
increase, for �-fair utility functions.

3) Stability of Distributed Solution: Theorem 1 charac-

terizes the equilibrium structure of congestion control

algorithm (6)–(8). We now discuss its stability. We assume

conditions C1 and C2 in this section so that there is a

unique equilibrium ðx�;L�Þ. In this section, an algorithm

is said to be locally asymptotically stable if it converges to
the unique equilibrium starting from a neighborhood of

the equilibrium, and globally asymptotically stable if it

converges starting from any initial state. Global asymptotic

stability in the presence of feedback delay is desirable but

generally hard to prove. Most papers in the literature

analyze global asymptotic stability in the absence of

feedback delay, or local stability in the presence of

feedback delay. Proof techniques that have been used for
global asymptotic stability in the absence of feedback delay

include Lyapunov stability theorem, gradient decent

method, passivity technique, and singular perturbation

theory. In the following, we summarize some representa-

tive algorithms and illustrate how these methods are used

to prove their stability in the absence of feedback delay.

For analysis with delay, see, e.g., [102], [103], [140], and

[141] for local stability of linearized systems and [90],
[106], [107], and [115] for global stability; see also surveys

in [63] [91], and [125] for further references. In particular,

unlike the Nyquist argument, [107] handles nonlinearity

and delay with Lyapunov functionals.

Consider the algorithm (using a continuous-time

model) of [64]

_xs ¼
sxsðtÞ U0s xsðtÞð Þ � qsðtÞ
� 	

(21)

�lðtÞ ¼ gl ylðtÞð Þ (22)

where 
s 9 0 is a constant of gain parameter. This is

called a primal-driven algorithm, which means that there

is dynamics only in the source control law but not the link

control law. To motivate (21) and (22), note that qsðtÞ is

the unit price for bandwidth that source s faces end-to-
end. The marginal utility U0sðxsðtÞÞ can be interpreted as

source its willingness to pay when it transmits at rate

xsðtÞ. Then, according to (21), source s increases its rate

(demand for bandwidth) if the end-to-end bandwidth

price is less than its willingness to pay, and decreases it

otherwise. Since gl is an increasing function, the price

increases as the aggregate demand for bandwidth at link l
is large. To prove that (21) and (22) are globally
asymptotically stable, consider the function

VðxÞ :¼
X

s

UsðxsÞ �
X

l

Zyl

0

glðzÞdz: (23)

Using (21) and (22), it is easy to check that

_V :¼ d

dt
V xðtÞð Þ ¼ 9 0; for all xðtÞ 6¼ x�

¼ 0; if xðtÞ ¼ x�

�

where x� is the unique maximizer of the strictly concave

function VðxÞ. Hence VðxÞ is a Lyapunov function for the

dynamical system (21), (22), certifying its global asymp-
totic stability. The function VðxÞ in (23) can be inter-

preted as the penalty-function version of the NUM (4).

Hence the algorithm in (21) and (22) can also be thought

of as a gradient ascent algorithm to solve the approxi-

mate NUM.
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Method 2: Lyapunov Function Construction to Show
Stability.

A dual-driven algorithm is proposed in [90].

�lðtþ 1Þ ¼ �lðtÞ þ �0 ylðtÞ � clð Þ½ �þ (24)

xsðtÞ ¼U0�1
s qsðtÞð Þ (25)

where U0�1
s is the inverse of U0s. The algorithm is derived as

the gradient projection algorithm to solve the dual (5) of

NUM. The source algorithm (25) is called the demand

function in economics: the larger the end-to-end band-

width price qsðtÞ, the smaller the demand xsðtÞ. The link

algorithm (24) is the law of supply and demand (for

variable demand and fixed supply in this case): if demand
ylðtÞ exceeds supply, increase the price �lðtÞ; otherwise,

decrease it. By showing that the gradient rDðLÞ of the

dual objective function in (5) is Lipschitz, it is proved in

[90] that, provided the stepsize �0 is small enough, xðtÞ
converges to the unique primal optimal solution of NUM

and LðtÞ converges to its unique dual solution. The idea is

to show that the dual objective function DðLðtÞÞ strictly

decreases in each step t. Hence, one can regard DðLÞ as a
Lyapunov function in discrete time.3 The same idea is

extended in [90] to prove global asymptotic stability in an

asynchronous environment where the delays between

sources and links can be substantial, diverse, and time-

varying, sources and links can communicate at different

times and with different frequencies, and information can

be outdated or out of order.

Method 3: Proving Convergence of Dual Descent Algorithm
Through Descent Lemma.

Several variations of the primal and dual-driven
algorithms above can all maintain local stability in the

presence of feedback delay [102], [103], [140], [141]. They

are complementary in the sense that the primal-driven

algorithm has dynamics only at the sources, allows
arbitrary utility functions and therefore arbitrary fairness,

but typically has low link utilization, whereas the dual-

driven algorithm has dynamics only at the links, achieves

full link utilization, but requires a specific class of utility

functions (fairness) to maintain local stability in the

presence of arbitrary feedback delays. The next algorithm

has dynamics at both. It allows arbitrary utility functions,

achieves arbitrarily close to full link utilization, and can
maintain local stability in the presence of feedback delay.

Algorithms that have dynamics at both links and sources

are called primal-dual-driven algorithms. The algorithm of

[71] extends the primal-driven algorithm (21), (22) to a

primal-dual-driven algorithm and the algorithm of [103]
extends the dual-driven algorithm (24), (25) to a primal-

dual-driven algorithm. The paper [103] focuses on local

stability in the presence of feedback delay. We now

summarize the proof technique in [71] for global stability

in the absence of feedback delay.

The algorithm of [71] uses a source algorithm that is

similar to (21)

_xiðtÞ ¼ wi �
1

U0i xiðtÞð Þ
X

l

Rli�lðtÞ: (26)

Its link algorithm adaptive virtual queue (AVQ) maintains

an internal variable at each link called the virtual capacity
~cl that is dynamically updated

_~cl ¼
�

@gl=@~cl
cl � ylðtÞð Þ; if ~cl � 0

0; if ~cl ¼ 0 and ylðtÞ 9 cl

�
(27)

where � 9 0 is a gain parameter and gl is a link Bmarking[
function that maps aggregate flow rate ylðtÞ and virtual

capacity ~cl into a price

�lðtÞ ¼ gl ylðtÞ; clðtÞð Þ: (28)

Using singular perturbation theory, it is proved in [71]

that, under (26)–(28), xðtÞ converges exponentially to the
unique solution of the basic NUM, provided � is small

enough. Furthermore, �ðtÞ then converges to the optimum

of the dual problem. The idea is to separately consider the

stability of two approximating subsystems that are at

different time scales when � is small. The boundary-layer

system approximates the source dynamics and assumes that

the virtual capacity ~cl are constants at the fast time scale

_xs ¼ ws �
1

U0s xsðtÞð Þ
X

l

Rlsgl yðtÞ; ~clð Þ: (29)

The reduced system approximates the link dynamics and

assumes the source rates xs are the unique maximizers

of (23)

_~cl ¼ cl � yl (30)

where yl ¼
P

l Rlsxs are constants and xs are the unique

maximizers of VðxÞ defined in (23). Now we already know
from above that the boundary-layer system (29) is

asymptotically stable. In [71], it is further shown that it is
3Indeed, for a continuous-time version of (24) and (25), it is trivial to

show that DðLÞ is a Lyapunov function.
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exponentially stable uniformly in ~c, and that the reduced
system (30) is exponentially stable provided the trajectory

remains in a compact set. Singular perturbation theory then

implies that the original system (26)–(28) is globally

exponentially stable provided � is small enough (and the

initial state ðxð0Þ;Lð0ÞÞ is in a compact set).

Method 4: Proving Stability by Singular Perturbation
Theory.

A different approach is used in [148] to prove global

asymptotic stability for primal-dual-driven algorithms

based on passivity techniques. A system, described by its

state zðtÞ, input uðtÞ and output vðtÞ, is called passive if

there are positive semidefinite functions VðxÞ � 0 and

WðxÞ � 0 such that

_V xðtÞð Þ � �W xðtÞð Þ þ uTðtÞvðtÞ:

VðxÞ is called a storage function. The passivity theorem

states that the feedback interconnection of two passive

systems is globally asymptotically stable and

VðxÞ :¼ V1ðxÞ þ V2ðxÞ

is a Lyapunov function for the feedback system, provided

one of the storage functions V1, V2 of the individual sys-

tems are positive definite and radially unbounded. Con-

sider the following variants of the primal-driven algorithm

(21), (22):

_xsðtÞ ¼
s U0s xsðtÞð Þ � qsðtÞ
� 	

(31)

�lðtÞ ¼ gl ylðtÞð Þ: (32)

To show that it is the feedback interconnection of two

passive systems, the trick is to consider the forward system

from LðtÞ � L� to _yðtÞ, and the backward system from
_yðtÞ to LðtÞ � L�. From LðtÞ � L� to _yðtÞ, the storage

function is

V1ðxÞ ¼
X

s

xsq
�
s � UsðxsÞ:

Then V1ðxÞ is a positive definite function since its Hessian is
a positive definite matrix for all x. Moreover, it can be

shown, using qðtÞ ¼ RTLðtÞ, that

_V1ðxÞ ¼ �
X

s


s qsðtÞ � U0s xsðtÞð Þ
� 	2 þ LðtÞ � L�ð ÞT _y

hence the forward system from LðtÞ � L� to _yðtÞ is passive.
For the reverse system, consider the storage function

V2ðy� y�Þ ¼
X

l

Zy�l

yl

glðzÞ � glðz�Þdz:

V2 is positive semidefinite since its Hessian is a positive

semidefinite matrix. Moreover

_V2 ¼ LðtÞ � L�ð ÞT _y

and, hence, the reverse system is passive. Then,

VðxÞ :¼ V1ðxÞ þ V2ðxÞ can be used as a Lyapunov function

for the feedback system, because

_V¼�
X

s


s qsðtÞ�U0s xsðtÞð Þ
� 	2

G 0;

except for xðtÞ�x�:

This implies global asymptotic stability.

The same argument proves the global asymptotic
stability of the dual-driven algorithm (24), (25) [148].

Moreover, since the primal source algorithm from L� L�

to y� y� and the dual link algorithm from y� y� to

L� L� are both passive, the passivity theorem asserts the

global asymptotic stability of their feedback interconnec-

tion, i.e., that of the following primal-dual-driven algorithm:

_xs ¼
s U0s xsðtÞð Þ � qsðtÞ
� 	þ

xs

_�l ¼ �l ylðtÞ � clð Þþ�l

where ðhÞþz ¼ 0, if z ¼ 0 and h G 0, and ¼ h, otherwise.

The global asymptotic stability of the AVQ algorithm (26)

and (27) is similarly proved in [148].

Method 5: Proving Stability by Passivity Argument.

4) Heterogeneous Congestion Control Protocols: A key as-

sumption in the current model (6)–(8) is that the link

prices �lðtÞ depend only on links but not sources, i.e., the

sources are homogeneous in that, even though they may

control their rates using different algorithms Fs, they all
adapt to the same type of congestion signals, e.g., all react

to loss probabilities, as in TCP Reno, or all to queueing

delay, as in TCP Vegas or FAST. When sources with

heterogeneous protocols that react to different congestion

signals share the same network, the current convex
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optimization and duality framework is no longer applica-
ble. This is modeled in [133] and [134] by introducing price

mapping functions ms
l that maps link prices �l to Beffective

prices[ seen by source s. However, one can no longer

interpret congestion control as a distributed solution of the

basic NUM when there are heterogeneous protocols. In

this section, we summarize the main results of [134] on the

equilibrium structure of heterogeneous protocols. Dynam-

ic properties have also recently been characterized.
Suppose there are J different protocols indexed by

superscript j, and Nj sources using protocol j, indexed by

ð j; sÞ, where j ¼ 1; . . . ; J and s ¼ 1; . . . ;Nj. The total

number of sources is N :¼
P

j Nj. The L� Nj routing

matrix Rj for type j sources is defined by R
j
ls ¼ 1 if source

ð j; sÞ uses link l, and 0, otherwise. The overall routing

matrix is denoted by

R ¼ ½R1 R2 � � � RJ�:

Every link l has an Bintrinsic price[ �l. A type j source

reacts to the Beffective price[ m
j
lð�lÞ in its path, where m

j
l is

a price mapping function, which can depend on both the

link and the protocol type. By specifying functions m
j
l, we

can let the link feed back different congestion signals to

sources using different protocols, for example, Reno with
packet losses and Vegas with queueing delay. Let

mjðLÞ ¼ ðmj
lðLlÞ; l ¼ 1; . . . LÞ a n d mðLÞ ¼ ðmjðLlÞ;

j ¼ 1; . . . JÞ.
The aggregate prices for source ð j; sÞ is defined as

qj
s ¼

X
l

R
j
lsm

j
lð�lÞ: (33)

Let qj ¼ ðqj
s; s ¼ 1; . . . ;NjÞ and q ¼ ðqj; j ¼ 1 . . . ; JÞ be

vectors of aggregate prices. Then qj ¼ ðRjÞTmjðLÞ and

q ¼ RTmðLÞ. Let xj be a vector with the rate xj
s of source

ð j; sÞ as its sth entry, and x be the vector of xj

x ¼ ðx1ÞT; ðx2ÞT; . . . ; ðxJÞT
h iT

:

Source ðj; sÞ has a utility function Uj
sðxj

sÞ that is strictly
concave increasing in its rate xj

s. Let U ¼ ðUj
s; s ¼ 1; . . . ;

Nj; j ¼ 1; . . . ; JÞ. We call ðc;m;R;UÞ a network with

heterogeneous congestion control protocols.

A network is in equilibrium, or the link prices L and

source rates x are in equilibrium, when each source ð j; sÞ
maximizes its net benefit (utility minus bandwidth cost),

and the demand for and supply of bandwidth at each

bottleneck link are balanced. Formally, a network equi-
librium is defined as follows.

Given any prices L, we assume that the source rates xj
s

are uniquely determined by

xj
s qj

s

� 	
¼ Uj

s

� 	0�1
qj

s

� 	h iþ
:

This implies that the source rates xj
s uniquely solve

maxz�0 ½Uj
sðzÞ � zqj

s�. As usual, we use xjðqjÞ ¼ ðxj
sðqj

sÞ;
s ¼ 1; . . . ;NjÞ and xðqÞ ¼ ðxjðqjÞ; j ¼ 1; . . . ; JÞ to denote

the vector-valued functions composed of xj
s. Since

q ¼ RTmðLÞ, we often abuse notation and write xj
sð�Þ,

xjðLÞ, xðLÞ. Define the aggregate source rates yðLÞ ¼
ð ylðLÞ; l ¼ 1; . . . ; LÞ at links l by

yjðLÞ ¼ RjxjðLÞ; yðLÞ ¼ RxðLÞ: (34)

In equilibrium, the aggregate rate at each link is no more

than the link capacity, and they are equal if the link price is
strictly positive. Formally, we call L an equilibrium price, a

network equilibrium, or just an equilibrium if it satisfies

[from (33) and (34)]

diagð�lÞ yðLÞ � cð Þ ¼ 0; yðLÞ � c; L � 0: (35)

The theory in Section II-A2 corresponds to J ¼ 1. When

there are J 9 1 types of prices, it breaks down because there

cannot be more than one Lagrange multiplier at each link.
In general, an equilibrium no longer maximizes aggregate

utility, nor is it unique. It is proved in [134] that, under mild

assumptions, an equilibrium always exists. There can be

networks ðR; c;m;UÞ that have uncountably many

equilibria, but except for a set of measure zero, all networks

have finitely many equilibria. Moreover, the Poincare–Hopf

index theorem implies that the number of equilibria is

necessarily odd. Specifically, suppose the following assump-
tions hold:

C4: Price mapping functions m
j
l are continuously dif-

ferentiable in their domains and strictly increasing

with m
j
lð0Þ ¼ 0.

C5: For any � 9 0, there exists a number �max such that

if �l 9 �max for link l, then

x
j
iðLÞ G � for all ðj; iÞ with R

j
li ¼ 1:

C6: Every link l has a single-link flow ðj; iÞ with

ðUj
iÞ
0ðclÞ 9 0.

Assumption C6 can be relaxed; see [124]. We call an

equilibrium L� locally unique if @y=@L 6¼ 0 at L�. We call

a network ðc;m;R;UÞ regular if all equilibrium points are
locally unique.
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Theorem 2:
1) There exists an equilibrium price L� for any net-

work ðc;m;R;UÞ.
2) Moreover, the set of link capacities c for which

not all equilibrium points are locally unique (i.e.,

the network is not regular) has Lebesgue measure

zero in RL
þ.

3) A regular network has a finite and odd number of

equilibrium points.
Despite the lack of an underlying NUM, heterogeneous

protocols are still Pareto efficient for general networks.

Moreover, the loss of optimality can be bounded in terms

of the slope of the price mapping functions m
j
l. Specifically,

suppose we use the optimal objective value U� of the

following NUM as a measure of optimality for heteroge-

nous protocols:

maximize
X

j

X
s

Uj
s xj

s

� 	
subject to Rx � c: (36)

Let UðL�Þ :¼
P

j

P
s Uj

sðxj
sðL�ÞÞ be the utility achieved by

any equilibrium L� of the heterogeneous protocol. Then it

can be shown that, for any equilibrium L�

UðL�Þ
U�

� min _m
j
lðLÞ

max _m
j
lðLÞ

where _m
j
l denotes the derivative of m

j
l, and the minimization

and maximization are over all types j, all links l used by all

type j flows, and all prices L. For common AQM schemes

such as RED with (piecewise) linear m
j
l, the bound reduces

to a simple expression in terms of their slopes.

For a homogeneous congestion control protocol, the

utility functions determine how bandwidth is shared among

all the flows. For heterogeneous protocols, how is bandwidth
shared among these protocols (interprotocol fairness), and

how is it shared among flows within each protocol (intra-

protocol fairness)? It is shown in [133] (and a generalization

of results there) that any desired degree of fairness among

the different protocols is achievable by appropriate linear

scaling of utility functions. Within each protocol, the flows

would share the bandwidth among themselves as if they

were in a single-protocol network according to their own
utility functions, except that the link capacities are reduced

by the amount consumed by the other protocols. In other

words, intraprotocol fairness is unaffected by the presence of

other protocols.

Theorem 2 guarantees local unique equilibrium points

for almost all networks under mild conditions. If the degree
of heterogeneity, as measured by the slopes _m

j
l of the price

mapping functions m
j
l, is small, then global uniqueness is

guaranteed: if _m
j
l do not differ much across source types at

each link, or they do not differ much along links in every

source’s path, the equilibrium is globally unique. More-

over, under this condition, global uniqueness is equivalent

to local stability. Specifically, consider the dual-driven

algorithm (in continuous-time)

_�l ¼ � ylðtÞ � clð Þ
xj

sðtÞ ¼U0�1
s qj

sðtÞ
� 	

where the effective prices qj
sðtÞ are defined by (33)

(compare with (24) and (25) in the homogeneous case).

The linearized system with a small perturbation 
L around

an equilibrium point L� is, in vector form


 _L ¼ �
@y

@L
ðL�Þ
L: (37)

The equilibrium L� is called locally stable if all the

eigenvalues of @y=@LðL�Þ are in the left-half plane. Given

the price mapping functions m
j
l, we say their degree of

heterogeneity is small if they satisfy any one of the

following conditions:

1) For each l ¼ 1; . . . ; L, j ¼ 1; . . . ; J

_m
j
lðL�Þ 2 al; 2

1
Lal

h i
for some al 9 0 for any equilibrium L�: (38)

2) For all j ¼ 1; . . . ; J, l ¼ 1; . . . ; L

_m
j
lðL�Þ 2 aj; 2

1
Laj

h i
for some aj 9 0 for any equilibrium L�: (39)

Theorem 3: For almost all networks ðc;m;R;UÞ:
1) Suppose their degree of heterogeneity is small,

then the equilibrium is globally unique. Moreover,

it is locally stable.

2) Conversely, if all equilibrium points are locally

stable, it is also globally unique.
Asymptotically when L!1, both conditions (38) and

(39) converge to a single point. Condition (38) reduces to

_m
j
l ¼ al which essentially says that all protocols are the

same ðJ ¼ 1Þ. Condition (39) reduces to _m
j
l ¼ aj, which is

the case where price mapping functions m
j
l are linear and

link independent. Various special cases are shown to have

a globally unique equilibrium in [134].
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Method 6: Proving Equilibrium Properties Through Vector
Field Representation and Poincare–Hopf Index Theorem.

Recall that since a network of homogeneous protocols

solves the basic NUM, it always has a unique equilibrium

point as long as the routing matrix R has full row rank. The

equilibrium source rates x� does not depend on link

parameters, such as buffer size, as long as the AQM

guarantees complementary slackness condition for the
basic NUM. Moreover, x� does not depend on the flow

arrival pattern. These properties no longer hold in the

heterogeneous case. We now present a simulation using

Network Simulator 2 (ns2) that shows that x� can depend

on the flow arrival pattern because of the existence of

multiple equilibria.

The topology of this network is shown in Fig. 1.

All links run the RED algorithm. Links 1 and 3 are
each configured with 9.1 pkts/ms capacity (equivalent to

111 Mb/s), 30 ms one-way propagation delay and a buffer

of 1500 packets. The RED parameter is set to be

ðb; b; �1Þ ¼ ð300; 1500; 10�4Þ. Link 2 has a capacity of

13.8 pkts per ms (166 Mb/s) with 30 ms one-way

propagation delay and buffer size of 1500 packets. RED

parameter is set to (0, 1500, 0.1). There are 8 Reno flows

on path 3 utilizing all the three links, with one-way
propagation delay of 90 ms. There are two FAST flows on

each of paths 1 and 2. Both of them have one-way

propagation delay of 60 ms. All FAST flows use a common

parameter value � ¼ 50 packets. Two sets of simulations

have been carried out with different starting times for

Reno and FAST flows. One set of flows (Reno or FAST)

starts at time zero, and the other set starts at the 100th

seconds. Fig. 2 shows the sample throughput trajectories of
one of FAST flows and one of Reno flows. The large

difference in the rate allocations of FAST and Reno

between these two scenarios results from that the network

reaches two different equilibrium points, depending on

which type of flows starts first.

The model introduced in [133] and [134] is critical in

deepening our understanding of such complex behavior,

and providing design guidelines to manage it in practice.
Indeed, a distributed algorithm is proposed in [135] that can

steer a heterogeneous network to the unique equilibrium

point that maximizes aggregate utility. The basic idea is

simple: Besides regulating their rates according to their

congestion signals, sources also adapt a parameter in a slow
time scale based on a common congestion signal. This allows
a source to choose a particular congestion signal in a fast

time scale (and therefore maintain benefits associated with

it) while asymptotically reaching the optimal equilibrium.

The theoretical foundation and empirical supports of the

algorithm are provided in [135].

5) Forward-Engineering: FAST: The congestion control

algorithm in the current TCP, which we refer to as Reno,
was developed in 1988 [55] and has gone through several

enhancements since. It has performed remarkably well

and is generally believed to have prevented severe

congestion as the Internet scaled up by six orders of

magnitude in size, speed, load, and connectivity. It is also

well-known, however, that as bandwidth-delay product

continues to grow, TCP Reno will eventually become a

performance bottleneck itself. Even though, historically,
TCP Reno was designed, implemented, and deployed

without any consideration of NUM, and its equilibrium,

fairness, and dynamic properties were understood only as

an afterthought, it indeed solves a NUM implicitly as

shown in Section II-A2.

Several new algorithms have been proposed in the last

few years to address the problems of Reno, including TCP

Westwood, HSTCP [42], FAST TCP [56], [57], STCP [67],
BIC TCP [155], HTCP [123], MaxNet [153], [154], XCP

[62], and RCP [33], etc. (see [147] for other references).

Some of these designs were explicitly guided by the

emerging theory surveyed in this paper, which has become

indispensable to the systematic design of new congestion

control algorithms. It provides a framework to understand

issues, clarify ideas and suggest directions, leading to more

understandable and better performing implementations.
The congestion control mechanism of FAST TCP is

separated into four components, as shown in Fig. 3. These

four components are functionally independent so that they

can be designed separately and upgraded asynchronously.

The data control component determines which packets to
Fig. 1. Scenario with multiple equilibria with heterogeneous

congestion control protocol.

Fig. 2. Sample throughput trajectories of FAST and Reno. (a) FAST

starts first; (b) Reno starts first.
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transmit, window control determines how many packets

to transmit, and burstiness control determines when to

transmit these packets. These decisions are made based

on information provided by the estimation component.

More specifically, the estimation component computes
two pieces of feedback information for each data packet

sentVa multibit queueing delay and an one-bit loss-or-

no-loss indicationVwhich are used by the other three

components. Data control selects the next packet to send

from three pools of candidates: new packets, packets that

are deemed lost (negatively acknowledged), and transmit-

ted packets that are not yet acknowledged. Window

control regulates packet transmission at the RTT time
scale, while burstiness control smoothes out the transmis-

sion of packets at a smaller time scale. The theory surveyed

in this paper forms the foundation of the window control

algorithm. FAST periodically updates the congestion

window based on the average RTT and average queueing

delay provided by the estimation component, according to

(15) in Section II-A1.

The equilibrium values of windows W� and delays L�

of the network defined by (15) and (16) are obtained from

the unique solutions to the utility maximization problem

over x

maximize
X

s

ws log xs

subject to Rx � c

and its Lagrangian dual problem over L

minimize
X

l

cl�l �
X

s

ws log
X

l

Rls�l:

This implies that the equilibrium rate x� is �s-weighted

proportionally fair. In equilibrium, source s maintains �s

packets in the buffers along its path. Hence, the total

amount of buffering in the network must be at least
P

s �s

packets in order to reach the equilibrium. FAST TCP is

proved in [145] to be locally asymptotically stable for
general networks if all flows have the same feedback delay,

no matter how large the delay is. It is proved in [26] to be

globally asymptotically stable in the presence of heteroge-
neous feedback delay at a single link.

We have implemented the insights from this series

of theoretical work in a software prototype FAST TCP

[56], [147] and have been working with our collaborators

to test it in various networks around the world [57].

Physicists have been using FAST TCP to break various

world records in data transfer in the last few years.

Fig. 4 shows its performance in several experiments
conducted during 2002–2005 over a high-speed trans-

Atlantic network, over a home DSL, and over an emu-

lated lossy link.

B. MAC

1) Reverse-Engineering: MAC as Noncooperative Game: If

contentions among transmissions on the same link in wired
networks, or across different links in wireless networks, are

not appropriately controlled, a large number of collisions

may occur, resulting in waste of resources such as band-

width and energy, as well as loss of system efficiency and

fairness. There are two major types of MAC: scheduling-

based contention-free mode and random-access-based

contention-prone mode. The first is often shown to solve

certain maximum weight matching or graph coloring
problems. The second has been extensively studied through

the perspective of queuing-theoretic performance evalua-

tion, but was only recently reverse-engineered to recover

the underlying utility maximization structure [75], [78].

Table 5 Summary of Main Notation for Section II-B

Fig. 3. Schematic of FAST TCP.
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In TCP reverse-engineering considered in the last
section, the utility function of each source depends only on

its data rate that can be directly controlled by the source

itself. TCP/AQM can be modeled as a distributed

algorithm that solves the basic NUM problem and its

Lagrange dual problem.

In contrast, in the exponential-backoff (EB) MAC

protocol, the utility of each link directly depends not only

on its own transmission (e.g., persistence probability) but
also transmissions of other links due to collisions. We show

that the EB protocol can be reverse-engineered through a

noncooperative game in which each link tries to maximize,

using a stochastic subgradient formed by local information,

its own utility function in the form of expected net reward

for successful transmission. While the existence of the
Nash equilibrium can be proved, neither convergence nor

social welfare optimality is guaranteed. We then provide

sufficient conditions on user density and backoff aggres-

siveness that guarantee uniqueness and stability of the

Nash equilibrium (i.e., convergence of the standard best

response strategy).

Consider an ad hoc network represented by a directed

graph GðV; EÞ, e.g., as in Fig. 5, where V is the set of nodes
and E is the set of logical links. We define LoutðnÞ as a set of

outgoing links from node n, LinðnÞ as a set of incoming

links to node n, tl as the transmitter node of link l, and rl as

the receiver node of link l. We also define NI
toðlÞ as the set

of nodes whose transmission cause interference to the

Fig. 4. Performance of FAST TCP. (a) At 1 Gb/s, FAST TCP utilized 95% of a trans-Atlantic network bandwidth while maintaining a fairly

constant throughput. Linux TCP on average used 19% of the available bandwidth, while producing a throughput that fluctuates from 100 to

400 Mb/s. (b) At an 512-Kb/s DSL uplink, data transfer using FAST TCP increased the latency from 10 ms to around 50 ms, while Linux and

Windows TCP increased it to as high as 600 ms, an order of magnitude larger. (c) Over an emulated lossy link, FAST TCP achieved close to optimal

data rate while other (loss-based) TCP variants collapsed when loss rate exceeded 5%. Figure from unpublished work by B. Wydrowski,

S. Hegde, and C. Jin.
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receiver of link l, excluding the transmitter node of link l
(i.e., tl), and LI

fromðnÞ as the set of links whose transmission

suffers interference from the transmission of node n,

excluding outgoing links from node n (i.e., l 2 LoutðnÞ).

Hence, if the transmitter of link l and a node in set NI
toðlÞ

transmit data simultaneously, the transmission of link l
fails. If node n and the transmitter of link l in set LI

fromðnÞ
transmit data simultaneously, the transmission of link l
also fails.

Random-access protocols in such wireless networks

usually consist of two phases: contention avoidance and

contention resolution. We focus only on the second phase

here. The EB protocol is a prototypical contention

resolution protocol. For example, in the IEEE 802.11

DCF (Distributed Coordination Function) implementa-

tion, the EB protocol is window-based: each link l
maintains its contention window size Wl, current window
size CWl, and minimum and maximum window sizes Wmin

l

and Wmax
l . After each transmission, contention window

size and current window size are updated. If transmission

is successful, the contention window size is reduced to

the minimum window size (i.e., Wl ¼ Wmin
l ), otherwise it

is doubled until reaching the maximum window size Wmax
l

(i.e., Wl ¼ minf2Wl;Wmax
l g). Then, the current window

size CWl is chosen to be a number between ð0;WlÞ
uniformly at random. It decreases in every time slot, and

when it becomes zero, the link transmits data. Since the

window size is doubled after each transmission failure, the

random access protocol in DCF is called the binary

exponential backoff (BEB) protocol, which is a special case

of EB protocols.

We study the window-based EB MAC protocol

through a persistence probabilistic model, an approach
analogous to the source rate model for the window-based

TCP congestion control protocol in Section II-A2. Here

each link l transmits data with a probability pl, which we

refer to as the persistence probability of link l. After each

transmission attempt, if the transmission is successful

without collisions, then link l sets its persistence

probability to be its maximum value pmax
l . Otherwise, it

multiplicatively reduces its persistence probability by a
factor �l ð0 G �l G 1Þ until reaching its minimum value

pmin
l . This persistence probability model is a memoryless

one that approximates the average behavior of EB

protocol.

Since in the window-based EB protocol the current

window size CWl of link l is randomly selected between

ð0;WlÞ, when its window size is Wl, we may think that

link l transmits data in a time slot with an attempt
probability 1=Wl, which corresponds to the persistence

probability pl in our model for the average behavior of

the EB protocols. In the window-based protocol, after

every transmission success, the attempt probability is set

to be its maximum value (i.e., 1=Wmin
l ), which corre-

sponds to pmax
l in our model, and after every transmission

failure, the attempt probability is set to be a fraction of

its current value until it reaches its minimum value,
which corresponds to reducing the persistence probabil-

ity by a factor of � ¼ 0:5 in BEB (and in general

� 2 ð0; 1Þ in EB) until reaching the minimum persistence

probability pmin
l .

The update algorithm for the persistence probability

described above can be written as

plðtþ 1Þ ¼ max pmin
l ; pmax

l 1 TlðtÞ¼1f g1 ClðtÞ¼0f g
�

þ �lplðtÞ1 TlðtÞ¼1f g1 ClðtÞ¼1f g þ plðtÞ1 TlðtÞ¼0f g
�

(40)

where plðtÞ is a persistence probability of link l at time slot

t, 1a is an indicator function of event a, and TlðtÞ and ClðtÞ
are the events that link l transmits data at time slot t and

that there is a collision to link l’s transmission given that
link l transmits data at time slot t, respectively. In the rest

of this section, we will examine the case when pmin
l ¼ 0.

Given pðtÞ, we have

Prob TlðtÞ ¼ 1jpðtÞf g ¼ plðtÞ

and

Prob ClðtÞ ¼ 1jpðtÞf g ¼ 1�
Y

n2LI
toðlÞ

1� pnðtÞð Þ:

Since the update of the persistence probabilities for the
next time slot depends only on the current persistence

probabilities, we will consider the update conditioning on

the current persistence probabilities. Note that plðtÞ is a

random process whose transitions depend on events TlðtÞ
and ClðtÞ. We first study its expected trajectory and will

return to (40) later in this section. Slightly abusing theFig. 5. Logical topology graph of a network illustrating contention.
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notation, we still use plðtÞ to denote the expected
persistence probability. From (40), we have

plðtþ 1Þ ¼ pmax
l E 1 TlðtÞ¼1f g1 ClðtÞ¼0f gjpðtÞ

� �
þ �lE plðtÞ1 TlðtÞ¼1f g1 ClðtÞ¼1f gjpðtÞ

� �
þ E plðtÞ1 TlðtÞ¼0f gjpðtÞ
� �

¼ pmax
l plðtÞ

Y
n2LI

toðlÞ
1� pnðtÞð Þ

þ �lplðtÞplðtÞ 1�
Y

n2LI
toðlÞ

1� pnðtÞð Þ

0
@

1
A

þ plðtÞ 1� plðtÞð Þ (41)

where Efajbg is the expected value of a given b and 1
denotes the indicator function of probabilistic events.

We now reverse-engineer the update algorithm in (41)

as a game, in which each link l updates its strategy, i.e.,

its persistence probability pl, to maximize its utility Ul

based on strategies of the other links, i.e., p�l ¼
ðp1; � � � ; pl�1; plþ1; � � � ; pjEjÞ. Formally, the game is

GEB�MAC ¼ ½E;�l2EAl; fUlgl2E�, where E is a set of play-

ers, i.e., links, Al ¼ fplj0 � pl � pmax
l g is an action set of

player l, and Ul is a utility function of player l to be

determined through reverse-engineering.

Theorem 4: The utility function is the following

expected net reward (expected reward minus expected

cost) that the link can obtain from its transmission:

UlðpÞ ¼ RðplÞSðpÞ � CðplÞFðpÞ; 8l (42)

where SðpÞ ¼ pl

Q
n2LI

toðlÞð1� pnÞ is the probability of

transmission success, FðpÞ ¼ plð1�
Q

n2LI
toðlÞð1� pnÞÞ is

the probability of transmission failure, and RðplÞ ¼
def

plðð1=2Þpmax
l � ð1=3ÞplÞ can be interpreted as the reward

for transmission success, CðplÞ ¼def ð1=3Þð1� �lÞp2
l can be

interpreted as the cost for transmission failure.

Furthermore, there exists a Nash equilibrium in the

EB-MAC Game GEB�MAC ¼ ½E;�l2EAl; fUlgl2E� character-
ized by the following system of equations:

p�l ¼
pmax

l

Q
n2LI

toðlÞ 1� p�n
� 	

1� �l 1�
Q

n2LI
toðlÞ 1� p�n
� 	� � ; 8l: (43)

Note that the expressions of SðpÞ and FðpÞ come
directly from the definitions of success and failure

probabilities, while the expressions of RðplÞ and CðplÞ
(thus exact form of Ul) are in fact derived in the proof by

reverse-engineering the EB protocol description.

In the EB protocol, there is no explicit message passing
among links, and the link cannot obtain the exact

information to evaluate the gradient of its utility function.

Instead of using the exact gradient of its utility function as in

(41), each link attempts to approximate it using (40). It can

be shown [76], [78] that the EB protocol described by (40) is

a stochastic subgradient algorithm to maximize utility (42).

Method 7: Reverse-Engineer a Noncooperative Protocol as
a Game.

The next step is to investigate uniqueness of the Nash

equilibrium together with the convergence of a natural

strategy for the game: the best response strategy,

commonly used to study stability of the Nash equilibrium.

In best response, each link updates its persistence

probability for the next time slot such that it maximizes
its utility based on the persistence probabilities of the

other links in the current time slot

p�l ðtþ 1Þ ¼ arg max
0 � pl � pmax

l

Ul pl;p
�
�lðtÞ

� 	
: (44)

Hence, p�l ðtþ 1Þ is the best response of link l given p��lðtÞ.
The connection between the best response strategy and

stochastic subgradient update strategy has been quantified

for the EB MAC Game [78].

Let K ¼ maxlfjLI
toðlÞjg, which captures the amount of

potential contention among links. We have the following

theorem that relates three key quantities: amount of

potential contention K, backoff multiplier � (speed of

backoff), and pmax that corresponds to the minimum

contention window size (minimum amount of backoff).

Theorem 5: If pmaxK=4�ð1� pmaxÞ G 1, then

1) the Nash equilibrium is unique;
2) starting from any initial point, the iteration

defined by best response converges to the unique

equilibrium.

There are several interesting engineering implications

from the above theorem. For example, it provides guidance

on choosing parameters in the EB protocols, and quantifies

the intuition that with a large enough � (i.e., links do not

decrease the probabilities suddenly) and a small enough
pmax (i.e., links backoff aggressively enough), uniqueness

and stability can be ensured. The higher the amount of

contention (i.e., a larger value of K), the smaller pmax needs

to be. The key idea in the proof is to show the updating rule

from pðtÞ to pðtþ 1Þ is a contraction mapping by verifying

the infinity norm of the Jacobian of the update dynamics in

the game is less than one.

Method 8: Verifying Contraction Mapping by Bounding the
Jacobian’s Norm.
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Reverse-engineering for the vertical interaction be-
tween TCP Reno congestion control and 802.11 DCF

random access has also been carried out [168].

As will be discussed in Section V, session level

stochastic effects need to be incorporated in the above

reverse-engineering model to include the arrival statistics

of finite-duration sessions. Then MAC protocols can be

analyzed and designed through a union of stochastic

stability results in traditional queuing models and opti-
mality results in the utility maximization models.

2) Forward-Engineering: Utility-Optimal MAC Protocol:
The Nash equilibrium attained by existing EB MAC

protocols may not be socially optimal. This motivates

forward-engineering where adequate feedback is generated

to align selfish utility maximization by each logical link to

maximize the social welfare in terms of total network
utility. By imposing different utility functions, different

types of services and different efficiency-fairness tradeoffs

can be provisioned. Two suites of protocols are possible:

scheduling-based and random-access-based. We again focus

on the second in this subsection on forward-engineering.

Contentions among links can be modeled by using a

contention graph first proposed in [98]. An example is

shown in Fig. 6, which is obtained from Fig. 5 assuming that
if the distance between the receiver of one link and the

transmitter of the other link is less than 2d, there is

interference between those two links. Each vertex in the

contention graph corresponds to a link in the network

topology graph. If two links’ transmissions interfere with

each other, the vertices corresponding to them in the

contention graph are connected with an edge. Only one link

at a time among links in the same maximal clique in the
contention graph can transmit data without collision. This

constraint can be visualized by using a bipartite graph, as in

Fig. 7, where one partition of vertices corresponds to links

in the network (i.e., nodes in the contention graph) and the

other corresponds to maximal cliques in the contention

graph. An edge is established in the bipartite graph if a node

in the contention graph belongs to a maximal clique. Hence,

only network links represented by the nodes in the bipartite
graph that are covered by a matching can transmit data

simultaneously without collisions.

In [16], [39], and [98], a fluid approximation approach

is used where each maximum clique is defined as a resource

with a finite capacity that is shared by the links belonging to

the clique. Capacity of a clique is defined as the maximum

value of the sum of time fractions such that each link in the

clique can transmit data without collision. Consequently, a
generalized NUM problem has been formulated as follows,

with capacity constraint CCLi
at each maximal clique CLi:

maximize
X

l

UlðxlÞ

subject to
X

l2LðCLiÞ

xl

cl
� CCLi

8i: (45)

This problem formulation essentially takes the same

structure as the basic NUM (4) for TCP congestion

control, and can be solved following the same dual-

decomposition algorithm. We refer to this as the deter-

ministic approximation approach.

An alternative approach is to explicitly model collision

probabilities, as shown in [61] for log utility and in [76]
and for general concave utility. Consider a random-access-

based MAC protocol in which each node n adjusts its own

persistence probability and also the persistence probability

of each of its outgoing links. Since persistent transmission

decisions are made distributively at each node, we need a

shift from graph models based on logical links to graph

models that incorporate nodes as well. Let Pn be the

transmission probability of node n, and pl be that of link l.
The appropriate generalized NUM thus formulated is as

follows, with variables fxlg, fPng, fplg:

maximize
X

l

UlðxlÞ

subject to xl ¼ clpl

Y
k2NI

toðlÞ
ð1� PkÞ; 8l

X
l2LoutðnÞ

pl ¼ Pn; 8n

0 � Pn � 1; 8n

0 � pl � 1; 8l: (46)Fig. 6. Contention graph derived from the logical topology graph.

Fig. 7. Bipartite graph between maximal cliques and links in the

contention graph.
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Without loss of generality, we can replace the equality
in the first constraint with an inequality. This is because

such an inequality will always be achieved with an equality

at optimality. The next step of problem transformation is

to take the log of both sides of the first constraint in

problem (46) and a log change of variables and constants:

x0l ¼ log xl, U0l ðx0lÞ ¼ Ulðex0l Þ, and c0l ¼ log cl. This reformu-

lation turns the problem into

maximize
X
l2L

U0l x0l
� 	

subject to c0lþlog plþ
X

k2NI
toðlÞ

logð1�PkÞ�x0l � 0; 8l

X
l2LoutðnÞ

pl¼Pn; 8n

0 � Pn�1; 8n

0�pl�1; 8l: (47)

Note that problem (47) is now separable but still may

not be a convex optimization problem, since the objective

U0l ðx0lÞ may not be a strictly concave function, even though

UlðxlÞ is a strictly concave function. However, the

following simple sufficient condition guarantees its
concavity:

@2UlðxlÞ
@x2

l

G� @UlðxlÞ
xl@xl

which states that the curvature (degree of concavity) of the

utility function needs to be not just nonpositive but
bounded away from zero by as much as �ð@UlðxlÞ=xl@xlÞ,
i.e., the application represented by this utility function

must be elastic enough.

Method 9: Log Change of Variables for Decoupling, and
Computing Minimum Curvature Needed for Concavity After
the Change of Variables.

Following dual decomposition and the subgradient4

method, the NUM problem (46) for random access MAC

protocol design can be solved by the following algorithm.

Algorithm 1: Utility Optimal Random Access Algorithm

Each node n constructs its local interference graph to

obtain sets LoutðnÞ, LinðnÞ, LI
fromðnÞ, and NI

toðlÞ, 8l 2 LoutðnÞ.
Each node n sets t ¼ 0, �lð1Þ ¼ 1, 8l 2 LoutðnÞ, Pnð1Þ ¼
jLoutðnÞj=ðjLoutðnÞj þ jLI

fromðnÞjÞ, and plð1Þ ¼ 1=ðjLoutðnÞjþ
jLI

fromðnÞjÞ, 8l 2 LoutðnÞ.

For each node n, do
1) Set t tþ 1.

2) Inform �lðtÞ to all nodes in NI
toðlÞ, 8l 2 LoutðnÞ and

PnðtÞ to tl, 8l 2 LI
fromðnÞ.

3) Set knðtÞ ¼
P

l2LoutðnÞ �lðtÞ þ
P

k2LI
from
ðnÞ �kðtÞ and

�ðtÞ ¼ 1=t.
4) Solve the following problems to obtain Pnðtþ 1Þ,

and x0lðtþ 1Þ, plðtþ 1Þ, and �lðtþ 1Þ, 8l 2 LoutðnÞ:

Pnðtþ 1Þ ¼

P
l2LoutðnÞ

�lðtÞP
l2LoutðnÞ

�lðtÞþ
P

k2LI
from

ðnÞ �kðtÞ
; if knðtÞ 6¼ 0

LoutðnÞj j
LoutðnÞj jþ LI

from
ðnÞj j ; if knðtÞ ¼ 0

8>><
>>:

plðtþ 1Þ ¼

�lðtÞP
l2LoutðnÞ

�lðtÞþ
P

k2LI
from

ðnÞ �kðtÞ
; if knðtÞ 6¼ 0

1

LoutðnÞj jþ LI
from
ðnÞj j ; if knðtÞ ¼ 0

8><
>:

x0lðtþ 1Þ ¼ arg max
x0min

l
�x0�x

0max
l

U0l x0l
� 	
� �lðtÞx0l

� �

and

�lðtþ 1Þ ¼
"
�lðtÞ � �ðtÞ

 
c0l þ log plðtÞ

þ
X

k2NI
toðlÞ

log 1� PkðtÞ
� 	

� x0lðtÞ

1
A
3
5:

5) Set its persistence probability Pn� ¼ PnðtÞ and the
conditional persistence probability of each of its

outgoing links q�l ¼ plðtÞ=PnðtÞ.
6) Decide if it will transmit data with a probability

Pn�, in which case it chooses to transmit on one

of its outgoing links with a probability q�l ,

8l 2 LoutðnÞ.
while (1).

Note that the above algorithm is conducted at each

node n to calculate Pn, and pl, �l, and x0l for its outgoing

link l (i.e., 8l 2 LoutðnÞ). Hence, it is conducted at the

transmitter node of each link. If we assume that two nodes
within interference range can communicate with each

other (i.e., if nodes within distance 2d in Fig. 5 can

establish a communication link), in the above algorithm

each node requires information from nodes within two-

hop distance from it. To calculate Pn and pl for its outgoing

link l (i.e., 8l 2 LoutðnÞ), node n needs �m from the

transmitter node tm of link m that is interfered from the

transmission of node n (i.e., from tm, 8m 2 LI
fromðnÞ). Note

that tm is within two-hop from node n.

4A subgradient of a (possibly nondifferentiable) function f : Rn ! R
at point x is a vector g such that fðyÞ � fðxÞ þ gTðy� xÞ, 8y.
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Alternatively, if �l and x0l for each link l are calculated

at its receiver node rl instead of its transmitter node tl, a
modified version of Algorithm 1 can be devised in which

each node requires information only within one-hop dis-

tance [76].

Theorem 6: Algorithm 1 converges to a globally optimal

solution of (46) for sufficiently concave utility functions.

We now show a numerical example of the desired

tradeoff between efficiency and fairness that can be
achieved by appropriately adjusting the parameters of

utility functions. In this experiment, the utility function

for each link l, UlðxlÞ is in the following standard form of

concave utility parameterized by �, shifted such that

Ulðxmin
l Þ ¼ 0 and Ulðxmax

l Þ ¼ 1

UlðxlÞ ¼
x
ð1��Þ
l � x

minð1��Þ
l

x
maxð1��Þ
l � x

minð1��Þ
l

:

We set xmin
l ¼ 0:5 and xmax

l ¼ 5, 8l, varying the value of �
from 1 to 2 with a step size 0.1.

We compare the performances of Algorithm 1 and its

one-hop message passing variant (modified Algorithm 1,

not shown here) with deterministic fluid approximation

and the BEB protocol in IEEE 802.11 standard.5

In Fig. 8, we compare the network utility achieved by

each protocol. We show the tradeoff curve of rate and

fairness for each protocol in Fig. 9. Here, the fairness
index is ðð

P
l x2

l Þ=jLj
P

l x2
l Þ. For each protocol shown in

the graph, the area to the left and below of the tradeoff

curve is the achievable region (i.e., every (rate, fairness)

point in this region can be obtained), and the area to the

right and above of the tradeoff curve is the infeasible
region (i.e., it is impossible to have any combination of

(rate, fairness) represented by points in this region). It is

impossible to operate in the infeasible region and inferior

to operate in the interior of the achievable region.

Operating on the boundary of the achievable region, i.e.,

the Pareto optimal tradeoff curve, is the best. Points on the

Pareto optimal tradeoff curve are not comparable: which

point is better depends on the desired tradeoff between
efficiency and fairness. Since the BEB protocol is a static

protocol, it always provides the same efficiency (rate) and

fairness regardless of the choice of utility functions.

Hence, we cannot flexibly control the efficiency-fairness

tradeoff in the BEB protocol. Algorithm 1 and its variant

achieve higher network utilities and wider dynamic

ranges of rate-fairness tradeoff.

Further discussions on distributed, suboptimal sched-
uling algorithms for different interference models can be

found in Sections III-D and V-A.

III . VERTICAL DECOMPOSITION

In this section, we turn to vertical decomposition across

the protocol stack. Following is a nonexhaustive list of some

of the recent publications using BLayering as Optimization
Decomposition[ for vertical decomposition.6 Almost all of

the following papers start with some generalized NUM

formulations, and use either dual decomposition or primal

penalty function approach to modularize and distribute the

solution algorithm, followed by proofs of optimality,

stability, and fairness. The individual modules in the

5The performance of the BEB protocol highly depends on the choice
of maximum and minimum window sizes, Wmax

l and Wmin
l . It turns out

that for the network in Fig. 5, the average-performance parameters are:
Wmax

l ¼ 20 and Wmin
l ¼ 10.

Fig. 8. Comparison of network utilities in a numerical example. Fig. 9. Comparison of rate-fairness tradeoff in a numerical

example.

6Note that there are many more publications on joint design across
these layers that did not use NUM modeling or decomposition theory. In
addition, we apologize in advance for missing any references we should
have included and would appreciate any information about such citations.
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holistic solution range from adaptive routing and distrib-
uted matching to information-theoretic source coding and

video signal processing, coupled through implicit or

explicit message passing of functions of appropriate

Blayering prices[: variables that coordinate the layers.

• joint congestion control and adaptive coding or

power control [18], [21], [75];

• joint congestion and contention control [16], [61],

[74], [143], [168]–[170];
• joint congestion control and scheduling [1], [12],

[35], [92], [129];

• joint routing and power control [58], [100], [158];

• joint congestion control, routing, and scheduling

[17], [35], [36], [82], [83], [99], [129];

• joint routing, scheduling, and power control [27],

[156];

• joint routing, resource allocation, and source
coding [53], [167];

• TCP/IP interactions [50], [49], [112], [144] and
HTTP/TCP interactions [13];

• joint congestion control and routing [46], [49],

[60], [65], [69], [101];

• network lifetime maximization [97].

Four case studies and the associated illustrative

numerical examples are summarized here, each picked

mainly to convey several key messages. We present more

details on the first two cases, which mainly illustrate the
applications to the analysis and design aspects, respective-

ly. In all case studies, we first formulate generalized NUM

problems to capture the interactions across such functional

modules. These can be decomposed into subproblems, each

of which is solved by a layer, and the interface between the

layers represented by some function of the optimization

variables. Then in Section IV-C, we will show that these

case studies have only spanned a subset of alternative
layering architectures.

Table 6 Summary of Main Notation for Section III
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There are obviously many more case studies in the
rapidly developing research literature in this area. Many of

these are not covered in this survey, in part because of

space limitation, and in part because we hope to highlight

the concepts of the top-down approach to design layered

architecture from first principles, rather than any set of

specific cross-layer schemes or their performance en-

hancements. Case studies are surveyed here only to

illustrate the conceptual simplicity in the structured thinking
of Blayering as decomposition,[ a simplicity that we hope

will not be buried under the rich details in all these recent

publications.

Even for these selected illustrative examples, there are

many related works by various research groups. Our pre-

sentation is inevitably somewhat biased towards relying

on the materials from publications by ourselves and

coauthors.

A. Case Study 1: Jointly Optimal Congestion
Control and Routing

The word Brouting[ carries different meanings in dif-

ferent parts of the research literature. It can refer to

dynamic or static routing, single-path or multipath routing,

distance-vector or link-state-based routing, inter-domain

or intra-domain routing, fully distributed routing or
centralized-computation-aided routing, and other types of

routing in wireless ad hoc networks, optical networks, and

the Internet. Several notions of routing will be used in the

models in this section.

1) TCP/IP Interaction: Suppose that there are Ks acyclic

paths from source s to its destination, represented by a

L� Ks 0–1 matrix Hs, where

Hs
lj ¼

1; if path j of source s uses link l
0; otherwise.

�

Let Hs be the set of all columns of Hs that represents all

the available paths to s. Define the L� K matrix H as

H ¼ ½H1 . . . HN�

where K :¼
P

s Ks. H defines the physical topology of the

network.

Let ws be a Ks � 1 vector where the jth entry represents

the fraction of i’s flow on its jth path such that

ws
j � 0 8j and 1Tws ¼ 1

where 1 is a vector of an appropriate dimension with the

value 1 in every entry. We require ws
j 2 f0; 1g for single

path routing, and allow ws
j 2 ½0; 1� for multipath routing.

Collect the vectors ws, s ¼ 1; . . . ;N, into a K � N block-

diagonal matrix W. LetWn be the set of all such matrices

corresponding to single path routing, defined as

WjW¼diagðw1; . . . ;wNÞ2f0; 1gK�N;1Tws¼1; 8s:
� �

:

Define the corresponding setWm for multipath routing as

WjW¼diagðw1; . . . ;wNÞ2½0; 1�K�N;1Tws¼1; 8s:
� �

:

(48)

As mentioned above, H defines the set of acyclic paths

available to each source, and W defines how the sources
load balance across these paths. Their product defines an

L� N routing matrix R ¼ HW that specifies the fraction

of s’s flow at each link l. The set of all single-path routing

matrices is

Rn ¼ fRjR ¼ HW;W 2 Wng (49)

and the set of all multipath routing matrices is

Rm ¼ fRjR ¼ HW;W 2 Wmg: (50)

The difference between single-path routing and multipath

routing is the integer constraint on W and R. A single-

path routing matrix in Rn is an 0-1 matrix:

Rls ¼
1; if link l is in the path of source s
0; otherwise.

�

A multipath routing matrix in Rm is one whose entries are

in the range [0, 1]

Rls
9 0; if link l is in a path of source s
¼ 0; otherwise.

�

The path of source s is denoted by rs ¼ ½R1s . . . RLs�T, the

sth column of the routing matrix R. We now model the

interaction of congestion control at the transport layer and

shortest-path routing at the network layer.

We first consider the situation where TCP-AQM

operates at a faster time scale than routing updates. We
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assume for now a single path is selected for each source-
destination pair that minimizes the sum of the link costs in

the path, for some appropriate definition of link cost. In

particular, traffic is not split across multiple paths from the

source to the destination even if they are available. We

focus on the time scale of the route changes, and assume

TCP-AQM is stable and converges instantly to equilibrium

after a route change. As explained in the last section, we

interpret the equilibria of various TCP and AQM
algorithms as solutions of NUM and its dual.

Specifically, let RðtÞ 2 Rn be the (single-path) routing

in period t. Let the equilibrium rates xðtÞ ¼ xðRðtÞÞ
and prices LðtÞ ¼ LðRðtÞÞ generated by TCP-AQM in

period t, respectively, be the optimal primal and dual so-

lutions, i.e.,

xðtÞ¼ arg max
x�0

X
s

UsðxsÞ subject to RðtÞx � c (51)

LðtÞ¼ arg min
L�0

X
s

max
xs�0

UsðxsÞ � xs

X
l

RlsðtÞ�l

 !

þ
X

l

cl�l: (52)

The link costs used in routing decision in period t are the

congestion prices �lðtÞ. Each source computes its new
route rsðtþ 1Þ 2 Hs individually that minimizes the total

cost on its path

rsðtþ 1Þ ¼ arg min
rs2Hs

X
l

�lðtÞrs
l : (53)

We say that ðR�;x�;L�Þ is an equilibrium of TCP/IP if it is a

fixed point of (51)–(53), i.e., starting from routing R� and

associated ðx�;L�Þ, the above iterations yield ðR�;x�;L�Þ
in the subsequent periods.

We now characterize the condition under which TCP/

IP as modeled by (51)–(53) has an equilibrium. Consider

the following generalized NUM:

maximizeR2Rn
maximizex�0

X
s

UsðxsÞ subject to Rx�c

(54)

and its Lagrange dual problem

minimizeL�0

X
s

max
xs�0

UsðxsÞ � xs min
rs2Hs

X
l

Rls�l

 !

þ
X

l

cl�l (55)

where rs is the sth column of R with rs
l ¼ Rls. While (51)

maximizes utility over source rates only, problem (54)

maximizes utility over both rates and routes. While (51) is

a convex optimization problem without duality gap,

problem (54) is nonconvex because the variable R is

discrete, and generally has a duality gap.7 The interesting

feature of the dual problem (55) is that the maximization

over R takes the form of minimum-cost routing with

congestion prices L generated by TCP-AQM as link costs.
This suggests that TCP/IP might turn out to be a

distributed algorithm that attempts to maximize utility,

with a proper choice of link costs. This is indeed true,

provided that an equilibrium of TCP/IP actually exists.

Theorem 7: An equilibrium ðR�;x�;L�Þ of TCP/IP

exists if and only if there is no duality gap between (54)

and (55). In this case, the equilibrium ðR�;x�;L�Þ is a
solution of (54) and (55).

Method 10: Analyzing a Given Cross-Layer Interaction
Through Generalized NUM.

Hence, one can regard the layering of TCP and IP

as a decomposition of the NUM problem over source

rates and routes into a distributed and decentralized
algorithm, carried out on two different time scales, in

the sense that an equilibrium of the TCP/IP iteration

(51)–(53), if it exists, solves (54) and (55). However,

an equilibrium may not exist. Even if it does, it may

not be stable [144].

The duality gap can be interpreted as a measure of

Bcost for not splitting.[ To elaborate, consider the

Lagrangian

LðR;x;LÞ ¼
X

s

UsðxsÞ � xs

X
l

Rls�l

 !
þ
X

l

cl�l:

The primal (54) and dual (55) can then be expressed,

respectively, as

Vnp ¼ max
R2Rn; x�0

min
L�0

LðR;x;LÞ

Vnd ¼ min
L�0

max
R2Rn; x�0

LðR;x;LÞ:

7The nonlinear constraint Rx � c can be converted into a linear
constraint (see proof of Theorem 8 in [144]), so the integer constraint on
R is the real source of difficulty.
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If we allow sources to distribute their traffic among mul-
tiple paths available to them, then the corresponding

problems for multipath routing are

Vmp ¼ max
R2Rm; x�0

min
L�0

LðR;x;LÞ

Vmd ¼ min
L�0

max
R2Rm; x�0

LðR;x;LÞ: (56)

Since Rn � Rm, Vnp � Vmp. The next result clarifies the
relation among these four problems.

Theorem 8: Vsp � Vsd ¼ Vmp ¼ Vmd.

According to Theorem 7, TCP/IP has an equilibrium

exactly when there is no duality gap in the single-path

utility maximization, i.e., when Vnp ¼ Vnd. Theorem 8 then

says that in this case, there is no penalty in not splitting the

traffic, i.e., single-path routing performs as well as
multipath routing, Vnp ¼ Vmp. Multipath routing achieves

a strictly higher utility Vmp precisely when TCP/IP has no

equilibrium, in which case the TCP/IP iteration (51)–(53)

cannot converge, let alone solve the single-path utility

maximization problem (54) or (55). In this case the

problem (54) and its dual (55) do not characterize TCP/IP,

but their gap measures the loss in utility in restricting

routing to single-path and is of independent interest.
Even though shortest-path routing is polynomial, the

single-path utility maximization is NP-hard.

Theorem 9: The primal problem (54) is NP-hard.

Theorem 9 is proved [144] by reducing all instances of

the integer partition problem to some instances of the

primal problem (54). Theorem 8, however, implies that

the subclass of the utility maximization problems with no
duality gap are in P, since they are equivalent to multipath

problems which are convex optimization problems and

hence polynomial-time solvable. Informally, the hard

problems are those with nonzero duality gap.

Theorem 7 suggests using pure prices LðtÞ generated

by TCP-AQM as link costs, because in this case, an

equilibrium of TCP/IP, when it exists, maximizes aggre-

gate utility over both rates and routes. It is shown in [144],
however, that such an equilibrium can be unstable, and

hence not attainable by TCP/IP.

Routing can be stabilized by including a strictly positive

traffic-insensitive component in the link cost, in addition

to congestion price. Stabilization, however, reduces the

achievable utility. There thus seems to be an inevitable

tradeoff between achievable utility and routing stability,

when link costs are fixed. If the link capacities are
optimally provisioned, however, pure static routing, which

is necessarily stable, is enough to maximize utility.

Moreover, it is optimal even within the class of multipath

routing: again, there is no penalty in not splitting traffic

across multiple paths.

Indeed, pure dynamic routing that uses only congestion
prices as link cost was abandoned in APARNet precisely

because of routing instability [3]. In practice, a weighted

sum of congestion price and a traffic insensitive compo-

nent is often used as link cost in shortest-path routing, i.e.,

(53) is replaced by

rsðtþ 1Þ ¼ arg min
rs2Hs

X
l

a�lðtÞ þ b�lð Þrs
l (57)

for some positive constant �l. We will interpret �l as the

propagation delay over link l. The parameters a; b
determine the responsiveness of routing to network traffic:

the larger the ratio of a=b, the more responsive routing is.
The result summarized above corresponds to pure dynamic

routing b ¼ 0 which is never used in practical networks.

When b 9 0, however, it can be shown that for any delay-

insensitive utility function UsðxsÞ, there exists a network

with sources using this utility function where TCP/IP

equilibrium exists but does not solve the joint utility

maximization problem (54) and its dual (55). It turns out

that when b 9 0, TCP/IP equilibrium, if it exists,
maximizes a class of delay-sensitive utility functions and

their dual [112].

Specifically, Theorems 7 and 8 generalize directly to

the case with a 9 0 and b 9 0 when utility functions UsðxsÞ
in (51), (52), (53) are replaced by

Usðxs; �
sÞ :¼ VsðxsÞ �

b

a
xs�

s (58)

where

� s :¼
X

l

Rls�l

is the end-to-end propagation delay, and VsðxsÞ is a strictly

concave increasing and continuously differentiable func-

tion. This is an example of general delay-sensitive utility

functions Usðxs; �
sÞ where the utility of source s depends

not only on its throughput xs, but also on its end-to-end
propagation delay � s. Note that � s is determined by

routing. The particular class of utility functions in (58) has

two distinct components: VsðxsÞ which is strictly increasing

in throughput xs and ðb=aÞxs�
s which is strictly decreasing

in delay. The weights a; b in the link cost in the routing

decision translate directly into a weight in the utility

function that determines how sensitive utility is to delay.

In [112], some counter-intuitive properties are also
proved for any class of delay-sensitive utility functions

optimized by TCP/IP with a; b 9 0, as well as a sufficient

condition for global stability of routing updates for general

networks.
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In [50], three alternative time-scale separations are
further considered for the joint congestion control and

shortest-path routing dynamics based on congestion price.

Analytical characterizations and simulation experiments

demonstrate how the step size of the congestion-control

algorithm affects the stability of the system models, and

how the time scale of each control loop and homogeneity

of link capacities affect system stability and optimality. In

particular, the stringent conditions on capacity configura-
tion for TCP/IP interaction to remain stable suggest that

congestion price, on its own, would be a poor Blayering

price[ for TCP and (dynamic routing-based) IP.

In a different routing model capturing today’s opera-

tional practice by service providers, [49] considers the

following interaction between congestion control and

traffic engineering. For a given routing configuration, the

utilization of link l is ul ¼ yl=cl, where yl ¼
P

s Rlsxs. To
penalize routing configurations that congest the links,

candidate routing solutions are evaluated based on an

increasing, convex cost function fðulÞ that increases steeply

as ul approaches 1. The following optimization problem

over R, for a fixed x and c, captures the traffic-engineering

practice:

minimize
X

l

f
X

s

Rlsxs=cl

 !
: (59)

This optimization problem avoids solutions that operate

near the capacity of the links and consequently tolerates

temporary traffic bursts. The resulting routing configura-
tion can, therefore, be considered robust. It is proved [49]

that, for certain classes of cost function f , the interaction

between end-user congestion control and the above traffic

engineering (at the same time scale) converges for

sufficiently concave utilities (i.e., sufficiently elastic

traffic): ð@2UsðxsÞ=@x2
s Þ � �@UsðxsÞ=xs@xsÞ.

2) Joint Congestion Control and Traffic Engineering:
Researchers have also carried out forward-engineering of

joint congestion control and traffic engineering over

multiple paths. Various designs have been presented based

on somewhat different NUM formulations and decompo-

sition methods: MATE in [34], TeXCP in [59], distributed

adaptive traffic engineering (DATE) in [49], Overlay TCP

in [46], and others [60], [69], [84], [101], [142].

For example, in the DATE algorithm [49], edge and
core routers work together to balance load, limit the

incoming traffic rate, and route around failures. The

core routers compute prices based on local information

and feed it back to the edge routers which adjust the

end-to-end throughput on paths. Using the decomposi-

tion approach of Bconsistency pricing[ (presented in

Section IV-B), an algorithm is developed to update both

congestion prices and consistency prices at core routers

and feedback to edge routers for multipath load splitting. It
is shown to be stochastically stable (more discussions in

Section V-D) and converge to the joint and global optimum

of the following NUM over both R and x:

maximize
X

s

UsðxsÞ �
X

l

f
X

s

Rlsxs=cl

 !

subject to Rx � c; x � 0: (60)

Note that the objective function above favors a solution

that provides both high aggregate utility to end-users and a

low overall network congestion to the network operator, in
order to satisfy the need for both performance (reflected

through the utility function) and robustness (reflected

through the cost function).

Other related works have studied different NUM

formulations, e.g., without the linear capacity constraint

or without the link congestion penalty term in the

objective function in problem (60), using different

distributed solution approaches. This is one of the cases
where alternative decompositions naturally arise and lead

to different implementation implications. More discus-

sions on alternative vertical decompositions will appear in

Section IV-C.

B. Case Study 2: Jointly Optimal Congestion Control
and Physical Resource Allocation

Adaptive resource allocation per link, such as power

control and error correction coding considered in this

section, produces intriguing interactions with end-to-end
congestion control.

1) Power Control: First consider a wireless multihop

network with an established logical topology represented

by R or equivalently fSðlÞg, 8l, where some nodes are

sources of transmission and some nodes act as relay nodes.

Revisiting the basic NUM (4), we observe that in an

interference-limited wireless network, data rates attain-
able on wireless links are not fixed numbers c as in (4), and

instead can be written as global and nonlinear functions of

the transmit power vector P and channel conditions

clðPÞ ¼
1

T
log 1þ KSIRlðPÞð Þ; 8l:

Here constant T is the symbol period, which will be

assumed to be one unit without loss of generality, and

constant K ¼ ð��1= logð�2BERÞÞ, where �1 and �2 are

constants depending on the modulation and BER is the

required bit-error rate. The signal-to-interference ratio for

link l is defined as SIRlðPÞ ¼ PlGll=ð
P

k 6¼l PkGlk þ nlÞ for a
given set of path losses Glk (from the transmitter on
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logical link k to the receiver on logical link l) and a given
set of noises nl (for the receiver on logical link l). The Glk

factors incorporate propagation loss, spreading gain, and

other normalization constants. Notice that Gll is the path

gain on link l (from the transmitter on logical link l to the

intended receiver on the same logical link). With

reasonable spreading gain, Gll is much larger than Glk,

k 6¼ l, and assuming that not too many close-by nodes

transmit at the same time, KSIR is much larger than 1. In
this high-SIR regime, cl can be approximated as

logðKSIRlðPÞÞ.
With the above assumptions, we have specified the

following generalized NUM with Belastic[ link capacities:

maximize
X

s

UsðxsÞ

subject to
X
s2SðlÞ

xs � clðPÞ; 8l

x;P � 0 (61)

where the optimization variables are both source rates x
and transmit powers P. The key difference from the

standard utility maximization (4) is that each link capacity

cl is now a function of the new optimization variables: the

transmit powers P. The design space is enlarged from x to

both x and P, which are clearly coupled in (61). Linear
flow constraints on x become nonlinear constraints on

ðx;PÞ. In practice, problem (61) is also constrained by the

maximum and minimum transmit powers allowed at each

transmitter on link l : Pl;min � Pl � Pl;max, 8l.
The major challenges are the two global dependencies

in (61).

• Source rates x and link capacities c are globally

coupled across the network, as reflected in the
range of summation fs 2 SðlÞg in the constraints

in (61).

• Each link capacity clðPÞ, in terms of the attainable

data rate under a given power vector, is a global

function of all the interfering powers.

We present the following distributive algorithm and

later prove that it converges to the global optimum of (61).

To make the algorithm and its analysis concrete, we focus
on delay-based price and TCP Vegas window update (as

reflected in items 1 and 2 in the algorithm, respectively),

and the corresponding logarithmic utility maximization

over ðx;PÞ, where �s is a constant parameter in TCP Vegas

(not as the �-fairness parameter here)

maximize
X

s

�s log xs

subject to
X
s2SðlÞ

xs � clðPÞ; 8l

x;P � 0: (62)

Algorithm 2: Joint Congestion Control and Power

Control Algorithm

During each time slot t, the following four updates are

carried out simultaneously, until convergence:

1) At each intermediate node, a weighted queuing

delay �l is implicitly updated, where �1 9 0 is a

constant

�lðtþ 1Þ ¼ �lðtÞ þ
�1

clðtÞ
X
s2SðlÞ

xsðtÞ � clðtÞ

0
@

1
A

2
4

3
5
þ

: (63)

2) At each source, total delay Ds is measured and

used to update the TCP window size ws.

Consequently, the source rate xs is updated

wsðtþ 1Þ ¼
wsðtÞ þ 1

DsðtÞ ; if
wsðtÞ

ds
� wsðtÞ

DsðtÞ G �s

wsðtÞ � 1
DsðtÞ ; if

wsðtÞ
ds
� wsðtÞ

DsðtÞ 9 �s

wsðtÞ; else.

8>><
>>:

xsðtþ 1Þ ¼ wsðtþ 1Þ
DsðtÞ

: (64)

3) Each transmitter j calculates a message mjðtÞ 2
Rþ

8 based on locally measurable quantities, and

passes the message to all other transmitters by a

flooding protocol

mjðtÞ ¼
�jðtÞSIRjðtÞ

PjðtÞGjj
:

4) Each transmitter updates its power based on

locally measurable quantities and the received
messages, where �2 9 0 is a constant

Plðtþ 1Þ¼PlðtÞþ
�2�lðtÞ

PlðtÞ
� �2

X
j 6¼l

GljmjðtÞ: (65)

With the minimum and maximum transmit power

constraint ðPl;min; Pl;maxÞ on each transmitter, the

updated power is projected onto the interval

½Pl;min; Pl;max�.

8Note that here mj does not denote price-mapping functions as in
Section II-A4.
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Item 2 is simply the TCP Vegas window update [10].
Item 1 is a modified version of queuing delay price update

[89] (and the original update [10] is an approximation of

item 1). Items 3 and 4 describe a new power control using

message passing. Taking in the current values of

�jðtÞSIRjðtÞ=PjðtÞGjj as the messages from other transmit-

ters indexed by j, the transmitter on link l adjusts its power

level in the next time slot in two ways: first increases

power directly proportional to the current price and
inversely proportional to the current power level, then

decreases power by a weighted sum of the messages from

all other transmitters, where the weights are the path

losses Glj.
9 Intuitively, if the local queuing delay is high,

transmit power should increase, with a more moderate

increase when the current power level is already high. If

queuing delays on other links are high, transmit power

should decrease in order to reduce interference on those
links.

To compute mj, the values of queuing delay �j, signal-

interference-ratio SIRj, and received power level PjGjj can

be directly measured by node j locally. This algorithm only

uses the resulting message mj but not the individual values

of �j, SIRj, Pj and Gjj. Each message is a real number to be

explicitly passed. To conduct the power update, Glj factors

are assumed to be estimated through training sequences.
It is important to note that there is no need to change

the existing TCP congestion control and queue manage-

ment algorithms. All that is needed to achieve the joint and

global optimum of (62) is to utilize the values of weighted

queuing delay in designing power control algorithm in the

physical layer. The stability and optimality of this layering

price can be stated through the following.

Theorem 10: For small enough constants �1 and �2,

Algorithm 2 (63), (64), (65) converges to the global

optimum of the joint congestion control and power control

problem (62).

The key steps of this vertical decomposition, which

uses congestion price as the layering price, are again

through dual decomposition. We first associate a Lagrange

multiplier �l for each of the constraints
P

s2SðlÞ xs � clðPÞ.
Using the KKT optimality conditions [4], [9], solving

problem (62) [or (61)] is equivalent to satisfying the com-

plementary slackness condition and finding the stationary

points of the Lagrangian.

Complementary slackness condition states that at op-

timality, the product of the dual variable and the associated

primal constraint must be zero. This condition is satisfied

since the equilibrium queuing delay must be zero if the
total equilibrium ingress rate at a router is strictly smaller

than the egress link capacity. We also need to find the

stationary points of the Lagrangian: Lsystemðx;P;LÞ ¼P
s UsðxsÞ �

P
l �l

P
s2SðlÞ xs þ

P
l �lclðPÞ. By linearity of

the differentiation operator, this can be decomposed into
two separate maximization problems

maximizex�0 Lcongestionðx;LÞ¼
X

s

UsðxsÞ�
X

s

X
l2LðsÞ

�lxs

maximizeP�0 LpowerðP;LÞ ¼
X

l

�lclðPÞ:

The first maximization is already implicitly solved by

the congestion control mechanism for different Us (e.g.,

TCP Vegas for UsðxsÞ ¼ �s log xs). But we still need to solve

the second maximization, using the Lagrange multipliers L

as the shadow prices to allocate exactly the right power to

each transmitter, thus increasing the link data rates and

reducing congestion at the network bottlenecks. Although
the data rate on each wireless link is a global function of all

the transmit powers, distributed solution is still feasible

through distributed gradient method with the help of

message passing. Issues arising in practical implementa-

tion, such as asynchronous update and reduced message

passing, and their impacts on convergence and optimality,

are discussed in [18].

Method 11: Dual Decomposition for Jointly Optimal Cross-
Layer Design.

The logical topology and routes for four multihop

connections are shown in Fig. 10 for a numerical example.

The path losses Gij are determined by the relative physical

distances dij, which we vary in different experiments, by

Gij ¼ d�4
ij . The target BER is 10�3 on each logical link.

Transmit powers, as regulated by the proposed dis-

tributed power control, and source rates, as regulated

through TCP Vegas window update, are shown in Fig. 11.

The initial conditions of the graphs are based on the

equilibrium states of TCP Vegas with fixed power levels of

2.5 mW. With power control, the transmit powers P
distributively adapt to induce a Bsmart[ capacity c and

queuing delay L configuration in the network, which in
turn lead to increases in end-to-end throughput as in-

dicated by the rise in all the allowed source rates. Notice

that some link capacities actually decrease while the

9This facilitates a graceful reduction of message passing scope since
messages from far-away neighbors are weighted much less.

Fig. 10. Logical topology and connections for a numerical example

of joint congestion control power control.
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capacities on the bottleneck links rise to maximize the

total network utility. This is achieved through a distrib-

utive adaptation of power, which lowers the power levels

that cause the most interference on the links that are

becoming a bottleneck in the dynamic demand-supply
matching process. Confirming our intuition, such a

Bsmart[ allocation of power tends to reduce the spread

of queuing delays, thus preventing any link from becoming

a bottleneck. Queuing delays on the four links do not

become the same though, due to the asymmetry in traffic

load on the links and different weights in the logarithmic

utility objective functions.

2) Adaptive Coding: In the second half of this section, we

discuss the interaction of per-hop adaptive channel coding

with end-to-end congestion control. At the end hosts, the

utility for each user depends on both transmission rate and

signal quality, with an intrinsic tradeoff between the two.

At the same time, each link may also provide a Bfatter[ (or

Bthinner[) transmission Bpipe[ by allowing a higher (or

lower) decoding error probability.
In the basic NUM, the convexity and decomposability

properties of the optimization problem readily lead to a

distributed algorithm that converges to the globally

optimal rate allocation. The generalized NUM problems

for joint rate-reliability provisioning turn out to be

nonseparable and nonconvex. We review a price-based

distributed algorithm, and its convergence to the globally

optimal rate-reliability tradeoff under readily verifiable
sufficient conditions on link coding block lengths and user

utility curvatures. In contrast to standard price-based rate
control algorithms for the basic NUM, in which each link

provides the same congestion price to each of its users and

each user provides its willingness to pay for rate allocation

to the network, in the joint rate-reliability algorithms each

link provides a possibly different congestion price to each

of its users and each user also provides its willingness to

pay for its own reliability to the network.
On some communication links, physical layer’s adap-

tive channel coding (i.e., error correction coding) can
change the information Bpipe[ sizes and decoding error
probabilities, e.g., through adaptive channel coding in
DSL broadband access networks or adaptive diversity-
multiplexing control in MIMO wireless systems. Then each
link capacity is a function of the signal quality (i.e.,
decoding reliability) attained on that link. A higher
throughput can be obtained on a link at the expense of
lower decoding reliability, which in turn lowers the end-to-
end signal quality for sources traversing the link and
reduces users’ utilities. This leads to an intrinsic tradeoff
between rate and reliability. This tradeoff also provides an
additional degree of freedom for improving each user’s
utility as well as system efficiency. For example, if we allow
lower decoding reliability, thus higher information capacity,
on the more congested links, and higher decoding re-
liability, thus lower information capacity, on the less con-
gested links, we may improve the end-to-end rate and
reliability performance of each user. Clearly, rate-reliability
tradeoff is globally coupled across the links and users.

In the case where the rate-reliability tradeoff is
controlled through the code rate of each source on each
link, there are two possible policies: integrated dynamic
reliability policy and differentiated dynamic reliability
policy. In integrated policy, a link provides the same error
probability (i.e., the same code rate) to each of the sources
traversing it. Since a link provides the same code rate to
each of its sources, it must provide the lowest code rate that
satisfies the requirement of the source with the highest
reliability. This motivates a more general approach called
differentiated policy to fully exploit the rate-reliability
tradeoff when there exist multiclass sources (i.e., sources
with different reliability requirements) in the network.
Under the differentiated dynamic reliability policy, a link
can provide a different error probability (i.e., a different
code rate) to each of the sources using this link.

We assume that each source s has a utility function

Usðxs; �sÞ, where xs is an information data rate and �s is

reliability of source s. We assume that the utility function

is a continuous, increasing, and strictly concave function of
xs and �s. Each source s has a minimum reliability

requirement �min
s . The reliability of source s is defined as

�s ¼ 1� ps

where ps is the end-to-end error probability of source s.
Each link l has its maximum transmission capacity cmax

l .

Fig. 11. Typical numerical example of joint TCP Vegas congestion

control and power control. The top left graph shows the primal

variables lP. The lower left graph shows the dual variables L. The

lower right graph shows the primal variables x, i.e., the end-to-end

throughput. In order of their y-axis values after convergence, the

curves in the top left, top right, and bottom left graphs are indexed

by the third, first, second, and fourth links in Fig. 10. The curves in

the bottom right graph are indexed by flows 1, 4, 3, 2.
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After link l receives the data of source s from the upstream
link, it first decodes it to extract the information data of

the source and encodes it again with its own code rate, rl;s,

where the code rate is defined by the ratio of the

information data rate xs at the input of the encoder to the

transmission data rate tl;s at the output of the encoder. This

allows a link to adjust the transmission rate and the error

probability of the sources, since the transmission rate of

source s at link l can be defined as

tl;s ¼
xs

rl;s

and the error probability of source s at link l can be defined
as a function of rl;s by

pl;s ¼ Elðrl;sÞ

which is assumed to be an increasing function of rl;s. Rarely

are there analytic formulas for Elðrl;sÞ, and we will use

various upper bounds on this function. The end-to-end
error probability for each source s is

ps ¼ 1�
Y

l2LðsÞ
ð1� pl;sÞ ¼ 1�

Y
l2LðsÞ

1� Elðrl;sÞ
� 	

:

Assuming that the error probability of each link is small

(i.e., pl;s  1), we can approximate the end-to-end error

probability of source s as

ps !
X
l2LðsÞ

pl;s ¼
X
l2LðsÞ

Elðrl;sÞ:

Hence, the reliability of source s can be expressed as

�s ! 1�
X
l2LðsÞ

Elðrl;sÞ:

Since each link l has a maximum transmission capacity

Cmax
l , the sum of transmission rates of sources that are

traversing each link cannot exceed Cmax
l

X
s2SðlÞ

tl;s ¼
X
s2SðlÞ

xs

rl;s
� Cmax

l ; 8l:

For (the more general) differentiated dynamic reliabil-

ity policy, in which a link may provide a different code rate

to each of the sources traversing it, the associated gen-
eralized NUM becomes the following problem with

variables x, R, r:

maximize
X

s

Usðxs; �sÞ

subject to �s � 1�
X
l2LðsÞ

Elðrl;sÞ; 8s

X
s2SðlÞ

xs

rl;s
� Cmax

l ; 8l

�min
s � �s � 1; 8s

0 � rl;s � 1; 8l; s 2 SðlÞ: (66)

There are two main difficulties in distributively and

globally solving the above problem. The first one is the

convexity of Elðrl;sÞ. If random coding based on binary
coded signals is used, a standard upper bound on the error

probability is

pl G
1

2
2�MðR0�rlÞ

where M is the block length and R0 is the cutoff rate. In
this case, ElðrlÞ ¼ ð1=2Þ2�MðR0�rlÞ is a convex function for

given M and R0. A more general approach for discrete

memoryless channel models is to use the random code

ensemble error exponent that upper bounds the decoding

error probability

pl � exp �MErðrlÞð Þ

where M is the codeword block length and ErðrlÞ is the
random coding exponent function, which is defined as

ErðrlÞ ¼ max
0���1

max
Q

Eoð�;QÞ � �rl½ �

where

Eoð�;QÞ ¼ � log
XJ�1

j¼0

XK�1

k¼0

Qk�P
1=ð1þ�Þ
jk

" #1þ�

K is the size of input alphabet, J is the size of output

alphabet, Qk is the probability that input letter k is
chosen, and �Pjk is the probability that output letter j is

received given that input letter k is transmitted.
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In general, ElðrlÞ ¼ expð�MErðrlÞÞ may not be convex
(even though it is known that ErðrlÞ is a convex function).

However, the following lemma provides a sufficient con-

dition for its convexity.

Lemma 1: If the absolute value of the first derivatives

of ErðrlÞ is bounded away from 0 and absolute value of

the second derivative of ErðrlÞ is upper bounded, then for

a large enough codeword block length M, ElðrlÞ is a con-
vex function.

Method 12: Computing Conditions Under Which a General
Constraint Set is Convex.

The second difficulty is the global coupling of

constraints
P

s2SðlÞðxs=rl;sÞ � Cmax
l . This problem is tackled

by first introducing auxiliary variables cl;s, which can be
interpreted as the allocated transmission capacity to source

s at link l

maximize
X

s

Usðxs; �sÞ

subject to �s � 1�
X
l2LðsÞ

Elðrl;sÞ; 8s

xs

rl;s
� cl;s; 8l; s 2 SðlÞ

X
s2SðlÞ

cl;s � Cmax
l ; 8l

�min
s � �s � 1; 8s

0 � rl;s � 1; 8l; s 2 SðlÞ

0 � cl;s � Cmax
l ; 8l; s 2 SðlÞ: (67)

Note that effectively a new Bscheduling layer[ has been

introduced into the problem: scheduling of flows by

deciding bandwidth sharing on each link fcl;sg.

Method 13: Introducing a New Layer to Decouple a
Generalized NUM.

A log change of variables x0s ¼ log xs can be used to

decouple the above problem for horizontal decomposi-

tion. Define a modified utility function U0sðx0s; �sÞ ¼
Usðex0s ; �sÞ, which needs to be concave in order for the
transformed problem to remain a convex optimization

problem, similar to the curvature condition on utility

function in Section II-B2.

Define

gsðxs; �sÞ ¼
@2Usðxs; �sÞ

@x2
s

xs þ
@UsðxsÞ
@xs

hsðxs; �sÞ ¼
@2Usðxs; �sÞ
@xs@�s

� �2
 

� @2Usðxs; �sÞ
@x2

s

@2Usðxs; �sÞ
@�2

s

!
xs

� @2Usðxs; �sÞ
@�2

s

@Usðxs; �sÞ
@xs

qsðxs; �sÞ ¼
@2Usðxs; �sÞ

@�2
s

:

Lemma 2: If gsðxs; �sÞG 0, hsðxs; �sÞG 0, and qsðxs; �sÞG
0, then U0sðx0s; �sÞ is a concave function of x0s and �s.

Now the joint rate-reliability problem (66) can be
solved distributively through dual decomposition.

Algorithm 3: Differentiated Dynamic Reliability Policy

Algorithm

In each iteration t, by solving (68) over ðx0s; �sÞ, each

source s determines its information data rate and re-

quested reliability (i.e., x0sðtÞ or equivalently, xsðtÞ ¼ ex0sðtÞ,
and �sðtÞ) that maximize its net utility based on the prices

in the current iteration. Furthermore, by price update

(69), the source adjusts its offered price per unit reliability

for the next iteration.

Source problem and reliability price update at source s:
• Source problem

maximize Us x0s; �s

� 	
� �sðtÞx0s � �sðtÞ�s

subject to �min
s � �s � 1 (68)

where �sðtÞ ¼
P

l2LðsÞ �l;sðtÞ is the end-to-end con-

gestion price at iteration t.
• Price update (where step size can be set to

�ðtÞ ¼ �0=t for some �0 9 0)10

�sðtþ 1Þ ¼ �sðtÞ � �ðtÞ �sðtÞ � �sðtÞð Þ½ �þ (69)

where �sðtÞ ¼ 1�
P

l2LðsÞ Elðrl;sðtÞÞ is the end-to-

end reliability at iteration t.

10Diminishing stepsizes, e.g., �ðtÞ ¼ �0=t, can guarantee conver-
gence when the primal optimization problem’s objective function is
concave but not strictly concave in all the variables, whereas a constant
stepsize cannot.
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Concurrently in each iteration t, by solving problem
(70) over ðcl;s; rl;sÞ, 8s 2 SðlÞ, each link l determines the

allocated transmission capacity cl;sðtÞ and the code rate

rl;sðtÞ of each of the sources using the link, so as to

maximize the Bnet revenue[ of the network based on the

prices in the current iteration. In addition, by price update

(71), the link adjusts its congestion price per unit rate for

source s during the next iteration.

Link problem and congestion price update at link l:
• Link problem:

maximize
X
s2SðlÞ

�l;sðtÞðlog cl;s þ log rl;sÞ

� �sðtÞElðrl;sÞ
X
s2SðlÞ

cl;s � Cmax
l

subject to 0 � cl;s � Cmax
l ; s 2 SðlÞ

0 � rl;s � 1; s 2 SðlÞ: (70)

• Price update (where step size can be set to

�ðtÞ ¼ �0=t for some �0 9 0)

�l;sðtþ1Þ¼ �l;sðtÞ��ðtÞ log cl;sðtÞþlog rl;sðtÞ�x0sðtÞ
� 	# $þ

¼ �l;sðtÞ��ðtÞ log cl;sðtÞþlog rl;sðtÞ�log xsðtÞ
� 	# $þ

s 2 SðlÞ: (71)

In the above algorithm, to solve problem (68), source s
needs to know �sðtÞ, the sum of congestion prices �l;sðtÞ’s
of links that are along its path LðsÞ. This can be obtained by

the notification from the links, e.g., through acknowledg-

ment packets. To carry out price update (69), the source

needs to know the sum of error probabilities of the links

that are along its path (i.e., its own reliability that is

provided by the network, �sðtÞ). This can be obtained by

the notification either from the links that determine the

code rate for the source [by solving problem (70)] or from
the destination that can measure its end-to-end reliability.

To solve the link problem (70), each link l needs to know

�sðtÞ from each of sources using this link l. This can be

obtained by the notification from these sources. To carry

out price update (71), the link needs to know the

information data rate of each of the sources that are using

it (i.e., xsðtÞ). This can be measured by the link itself.

Method 14: End User Generated Pricing for Distributed
Update of Metrics in User Utility Function.

Theorem 11: For sufficiently concave utilities and

sufficiently strong codes, and diminishing stepsizes, the

dual variables LðtÞ and MðtÞ converge to the optimal dual

solutions L� and M� and the corresponding primal

variables x0�, R�, c�, and r� are the globally optimal

primal solutions of the joint rate-reliability problem, i.e.,
x� ¼ ðex0� Þ8s, R

�, c�, and r� are the globally optimal primal

solutions of problem (66).

We now present numerical examples for the proposed

algorithms by considering a simple network, shown in

Fig. 12, with a linear topology consisting of four links and

eight users. Utility function for user s is Usðxs; �sÞ in the

following �-fair form, shifted such that Usðxmin
s ; �min

s Þ ¼ 0

and Usðxmax
s ; �max

s Þ ¼ 1 (where xmin
s , �min

s , xmax
s , �max

s are
constants), and with utility on rate and utility on reliability

summed up with a given weight �s between rate and

reliability utilities

Usðxs; �sÞ ¼ �s
x1��

s � xminð1��Þ
s

x
maxð1��Þ
s � x

minð1��Þ
s

þ ð1� �sÞ
�ð1��Þs � �minð1��Þ

s

�
maxð1��Þ
s � �

minð1��Þ
s

:

Different weights �s are given to the eight users as follows:

�s ¼
0:5� v; if s is an odd number

0:5þ v; if s is an even number

�
(72)

and vary v from 0 to 0.5 in step size of 0.05.

The decoding error probability on each link l is

assumed to be of the following form, with constant M:

pl ¼
1

2
exp �Mð1� rlÞð Þ:

We trace the globally optimal tradeoff curve between

rate and reliability using differentiated and integrated

dynamic reliability policies, and compare the network

utility achieved by the following three schemes:

• Static reliability: each link provides a fixed error
probability 0.025. Only rate control is performed

to maximize the network utility.

• Integrated dynamic reliability: each link provides

the same adjustable error probability to all its users.

Fig. 12. Network topology and flow routes for a numerical example

of rate-reliability tradeoff.
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• Differentiated dynamic reliability: each link pro-

vides a possibly different error probability to each

of its users.

Fig. 13 shows the globally optimal tradeoff curves

between rate and reliability for a particular user, under the
three policies of static reliability, integrated dynamic

reliability, and differentiated dynamic reliability, respec-

tively. The differentiated scheme shows a much larger

dynamic range of tradeoff than both the integrated and

static schemes. The gain in total network utility through

joint rate and reliability control is shown in Fig. 14.

C. Case Study 3: Jointly Optimal Congestion and
Contention Control

Following the notation in Section II-B, for joint end-to-

end rate allocation and per-hop MAC, the generalized

NUM problem for random-access-based MAC and TCP can
be formulated as the following optimization over

ðx;P;pÞ:

maximize
X

s

UsðxsÞ

subject to
X
s2SðlÞ

xs � clpl

Y
k2NI

toðlÞ
ð1� PkÞ; 8l

X
l2LoutðnÞ

pl ¼ Pn; 8n

xmin
s � xs � xmax

s ; 8s

0 � Pn � 1; 8n

0 � pl � 1; 8l: (73)

Similar to the discussions on MAC forward-engineering

and jointly optimal rate reliability control, for sufficiently

concave utilities, problem (73) is a convex optimization
after a log change of variables fpl; Pkg. Its solution can

now be distributively carried out using either the penalty

function approach or the dual-decomposition-based

Lagrangian relaxation approach. Both have standard con-

vergence properties but now producing different implica-

tions to the time scale of TCP/MAC interaction (e.g., [74],

[143], [169]), as shown in the rest of this section.

First the penalty function approach is pursued.
We first define hlðp;x0Þ ¼ logð

P
s2SðlÞ ex0sÞ � c0l � log pl�P

k2NI
toðlÞ logð1�

P
m2LoutðkÞ pmÞ and wnðpÞ ¼

P
m2LoutðnÞ

pm � 1 . Then, problem (73) can be rewritten as

maximize
X

s

U0s x0s
� 	

subject to hlðp;x0Þ � 0; 8l

wnðpÞ � 0; 8n

x0min
s � x0s � x0max

s ; 8s

0 � pl � 1; 8l: (74)

Instead of solving problem (74) directly, we apply the

penalty function method and consider the following
problem:

maximize Vðp;x0Þ
subject to x0min

s � x0s � x0max
s ; 8s

0 � pl � 1; 8l (75)

Fig. 13. Comparison of data rate and reliability tradeoff in a

numerical example by each policy for User 2, when �s are changed

according to (72).

Fig. 14. Comparison of the achieved network utility attained in

a numerical example by the differentiated dynamic policy, the

integrated dynamic policy, and the static policy, when �s are

changed according to (72).
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where Vðp;x0Þ ¼
P

s U0sðx0sÞ� 

P

l maxf0; hlðp;x0Þg�


P

n maxf0;wnðpÞg and 
 is a positive constant.

Since the objective function of problem (75) is

concave, problem (75) is convex optimization with

simple, decoupled constraints, which can be solved by

using a subgradient projection algorithm. We can easily

show that

@Vðp;x0Þ
@pl

¼ 

�l

pl
�

P
k2LI

from
ðtlÞ �k

1�
P

m2LoutðtlÞ pm
� 
tl

 !
(76)

and

@Vðp;x0Þ
@x0s

¼
@U0s x0s
� 	

@x0s
� 
ex0s

X
l2LðsÞ

�lP
k2SðlÞ ex0

k

(77)

where

�l¼ 0; if
P

n2SðlÞ
ex0n � clpl

Q
k2NI

toðlÞ
1�

P
m2LoutðkÞ

pm

 !
1; otherwise

8><
>:

and


n ¼ 0; if
P

m2LoutðnÞ pm � 1

1; otherwise.

�

Then, an iterative subgradient projection algorithm, with

iterations indexed by t, that solves problem (75) is
obtained as follows.

Algorithm 4: Joint End-to-End Congestion Control and

Local Contention Control Algorithm

On each logical link, transmission is decided to take place

with persistence probability

plðtþ 1Þ ¼ pðtÞ þ �ðtÞ @Vðp;x0Þ
@pl

%%%%
p¼pðtÞ;x0¼x0ðtÞ

" #1

0

; 8l

(78)

and concurrently at each source, the end-to-end rate is
adjusted

x0sðtþ1Þ¼ x0sðtÞþ�ðtÞ
@Vðp;x0Þ

@x0s

%%%%
p¼pðtÞ;x0¼x0ðtÞ

" #x0max
s

x0min
s

; 8s

(79)

where ½a�bc ¼ maxfminfa; bg; cg.

The joint control algorithm (78) and (79) can be

implemented as follows. Each link l (or its transmission

node tl) updates its persistence probability plðtÞ using (78),
and concurrently, each source updates its data rate xsðtÞ
using (79). To calculate the subgradient in (76), each link

needs information only from link k, k 2 LI
fromðtlÞ, i.e., from

links whose transmissions are interfered from the trans-

mission of link l, and those links are in the neighborhood of

link l. To calculate the subgradient in (77), each source

needs information only from link l, l 2 LðsÞ, i.e., from links

on its routing path. Hence, to perform the algorithm, each
source and link need only local information through

limited message passing and the algorithm can be im-

plemented in a distributed way. In particular, note that 
n

is calculated at the transmitter node of each link to update

the persistence probability of that link, and does not need

to be passed among the nodes. There is no need to ex-

plicitly pass around the values of persistence probabilities,

since their effects are included in f�lg. Quantities such asP
m2LoutðtlÞ pm and

P
k2SðlÞ expðx0kÞ can be measured locally

by each node and each link.

To implement a dual-decomposition-based algorithm

instead, we can decompose problem (73) into two prob-

lems, using a standard technique of dual decomposition

also used in [16] and [143]

maximize
X

s

UsðxsÞ

subject to
X
s2SðlÞ

xs � yl; 8l

xmin
s � xs � xmax

s ; 8s (80)

where yl is the average data rate of link l, and

maximize ÛðpÞ
subject to

X
m2LoutðnÞ

pm � 1; 8n

0 � pl � 1; 8l (81)
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where

ÛðpÞ¼max
X

s

UsðxsÞ
%%%%%
X
s2SðlÞ

xs � ylðpÞ; 8l;

8<
:

ylðpÞ¼clpl

Y
k2NI

toðlÞ
1�

X
m2LoutðkÞ

pm

0
@

1
A; 8l

g:

For a given y, problem (80) can be solved by dual

decomposition and distributed subgradient method just

as before.

We now solve problem (81). To this end, we first add

a penalty function to the objective function of the prob-

lem as

maximize V̂ðpÞ
subject to 0 � pl � 1; 8l (82)

where V̂ðpÞ ¼ ÛðpÞ � 
maxf0;
P

nð1�
P

m2LoutðnÞ pmÞg
and 
 is a positive constant. Since problem (82) is a
convex problem with simple constraints, we can solve it

by using a subgradient projection algorithm as

plðtþ 1Þ ¼ pðtÞ þ �ðtÞ @V̂ðpÞ
@pl

%%%%
p¼pðtÞ

" #1

0

; 8l (83)

where @V̂ðpÞ=@pl is a subgradient of V̂ðpÞ with respect to

pl. It can be readily verified that @V̂ðpÞ=@pl is obtained as

@V̂ðpÞ
@pl

¼��l ðtÞcl

Y
k2NI

toðlÞ
1�

X
m2LoutðkÞ

pm

0
@

1
A

�
X

n2LI
from
ðtlÞ

��nðtÞcnpn

�
Y

k2NI
toðnÞ;k 6¼tl

1�
X

m2LoutðkÞ
pm

0
@

1
A�

tl

(84)

where


n ¼
0; if

P
m2LoutðnÞ pm � 1

1; otherwise

�

and L�ðtÞ is the optimal dual solution to dual problem of
(80) with y ¼ yðpðtÞÞ.

This dual-decomposition-based algorithm can also be

implemented in a distributed way. In each time slot, each

link determines its persistence probability by solving (83)

with the help of local message passing to obtain the

expression in (19). Then, within the time slot, based on

yðpðtÞÞ, each source and link use standard dual-

decomposition-based algorithm to solve (80) and deter-
mine the data rate of each source in the time slot.

Unlike the penalty-function-based algorithm, this

dual-decomposition-based algorithm clearly decomposes

TCP and MAC layers through the vertical decomposition

(80) and (81). However, it needs an embedded loop of

iterations [i.e., the convergence of a distributed sub-

gradient algorithm to solve (80) in each time slot]. Hence,

it may require longer convergence time than the penalty-
function-based algorithm. This comparison between two

alternative decompositions, together with yet another

decomposition in [169] for the same NUM formulation,

highlights the engineering implication of different de-

compositions to the time scale of the interaction between

functional modules.

Method 15: Providing Different Timescales of Protocol
Stack Interactions Through Different Decomposition Methods.

D. Case Study 4: Jointly Optimal Congestion Control,
Routing, and Scheduling

A generalized NUM is formulated in [17], [35], [36],

[82], [83], [99], and [129] where the key additional feature

is the optimization over not just source rates but also

scheduling of medium access and the incorporation of
scheduling constraint. The standard dual decomposition

decomposes it vertically into subproblems that can be

solved through congestion control, routing, and scheduling.

Consider an ad hoc wireless network with a set N of

nodes and a set L of logical links. We assume some form of

power control so that each logical link l has a fixed capacity

cl when it is active. The feasible rate region at the link layer

is the convex hull of the corresponding rate vectors of
independent sets of the conflict graph. Let / denote the

feasible rate region. Let xk
i be the flow rate generated at

node i for destination k. We assume there is a queue for

each destination k at each link ði; jÞ. Let f k
ij be the amount of

capacity of link ði; jÞ allocated to the flows on that link for

final destination k. Consider the following generalized

NUM in variables xs � 0, f k
ij � 0:

maximize
X

s

UsðxsÞ

subject to xk
i �

X
j:ði;jÞ2L

f k
ij �

X
j:ðj;iÞ2L

f k
ji ; 8i; j; k

f 2 / (85)

xmin
s � xs � xmax

s ; 8s

)
:
X
s

%%%%%
( )
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where xs is a shorthand for xk
i . The first constraint is a flow

balance equation: the flow originated from node i for final

destination k plus total capacity allocated for transit flows

through node i for final destination k should be no more

than the total capacity going out of node i for final

destination k. The second constraint is on schedulability.

The dual problem of (85) decomposes into minimizing

the sum of the resulting values of the following two

subproblems:

maximizeL�0 D1ðLÞ :¼max
xs�0

X
s

UsðxsÞ�xs�sð Þ (86)

maximizeL�0 D2ðLÞ :¼max
f k
ij�0

X
i;k

�k
i

X
j

f k
ij�f k

ji

� �
subject to f 2 /: (87)

The first subproblem is congestion control where �s is the

congestion price locally at source s ¼ ði; kÞ. The second

subproblem corresponds to a joint problem of multipath

routing and allocation of link capacities. Thus, by dual

decomposition, the flow optimization problem decom-

poses into separate local optimization problems that in-

teract through congestion prices.
The congestion control problem (86) admits a unique

maximizer xsðLÞ ¼ U0�1
s ð�sÞ. The joint routing and sched-

uling problem (87) is equivalent to

maximizeL�0

X
i;j

X
k

max
f k
ij�0

f k
ij �k

i � �k
j

� �
subject to f 2 /:

Hence, an optimal schedule is to have f k
ij ¼ cij, if k

maximizes ð�k
i � �k

j Þ and 0, otherwise. This motivates the

following joint congestion control, scheduling, and routing
algorithm:

Algorithm 5: Joint Congestion Control, Routing, and

Scheduling Algorithm

1) Congestion control: the source of flow s sets its

rate as xsð�Þ ¼ U0�1
s ð�sÞ.

2) Scheduling:

• For each link ði; jÞ, find destination k� such

that k� 2 arg maxkð�k
i � �k

j Þ and define

w�ij :¼ �k�
i � �k�

j .

• Choose an ~f 2 arg maxf2/
P
ði;jÞ2L w�ijfij such

that ~f is an extreme point. Those links ði; jÞ
with ~fij 9 0 will transmit and other links ði; jÞ
(with ~fij ¼ 0) will not.

3) Routing: over link ði; jÞ 2 L with ~fij 9 0, send data

for destination k� at full link capacity cij.

4) Price update: each node i updates the price on the
queue for destination k according to

�k
i ðtþ 1Þ¼ �k

i ðtÞ þ � xk
i LðtÞð Þ�

X
j:ði;jÞ2L

f k
ij LðtÞð Þ

0
@

2
4

þ
X

j:ðj;iÞ2L

f k
ji LðtÞð Þ

1
A
3
5
þ

:

(88)

The w�ij values represent the maximum differential

congestion price of destination k between nodes i and j,
and was introduced in [138]. The above algorithm uses

back pressure to perform optimal scheduling and hop-by-

hop routing. This is an illustrating case study on the

potential interactions between back-pressure-based sched-
uling and dual decomposition for protocol stack design,

where the Bpressures[ are the congestion prices.

Method 16: Maximum Differential Congestion Pricing for
Node-Based Back-Pressure Scheduling.

There are several variations that have lead to an array

of alternative decompositions, as will be discussed in
Section IV-C. For example, instead of using a dual-driven

algorithm, as in [17] and [99], where the congestion con-

trol part (Step 1 above) is static, the algorithms in [35] and

[129] are primal-dual-driven, where the source congestion

control algorithm can be interpreted as an ascent algo-

rithm for the primal problem.

Method 17: Architectural Implication Due to Dual
Decomposition: Absorb Routing Functionality Into Congestion
Control and Scheduling.

Starting with a different set of optimization variables

and a given NUM formulation, another family of variations

uses a link-centric formulation, rather than the node-

centric one studied in this section so far. Compared to

the dual-decomposition of the link-centric formulation,
Algorithm 5 has the following two major advantages. First,

it can accommodate hop-by-hop routing without further

modeling of multipath routing, and the routing is absorbed

into end-to-end congestion control and per-contention-

region scheduling. Second, it only requires the congestion

price at the source, rather than the sum of congestion

prices along the path, to accomplish congestion control.

However, it also suffers from a more complicated set of
dual variables: each node has to maintain a per-destination

queue. More discussions on the tradeoffs between node-

centric and link-centric formulations can be found in [85].

Now back to generalized NUM (85). It is known that

the algorithm converges statistically to a neighborhood of
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the optimal point using constant stepsize, in the sense that
the time averages tend to the optimal values arbitrarily

closely. Specifically, let the primal function (the total

achieved network utility) be PðxÞ and let x� be the

optimum. Let xðtÞ :¼ ð1=tÞ
Pt

�¼0 xð�Þ be the running av-

erage rates. Similarly, let DðLÞ be the dual objective

function, L� be an optimal value of the dual variable, and

LðtÞ :¼ ð1=tÞ
Pt

�¼1 Lð�Þ be the running average prices.

Theorem 12: Consider the dual of (85) and suppose the

subgradient of the dual objective function is uniformly

bounded. Then, for any 
 9 0, there exists a sufficiently

small stepsize � in (88) such that

lim inf
t!1

P xðtÞð Þ � Pðx�Þ � 


lim sup
t!1

D LðtÞ
� 	

�DðL�Þ þ 
:

The most difficult step in Algorithm 5 is scheduling.

Solving it exactly requires a centralized computation

which is clearly impractical in large-scale networks.
Various scheduling algorithms and distributed heuristics

have been proposed in the context of joint rate allocation,

routing, and scheduling. The effects of imperfect sched-

uling on cross-layer design have recently been character-

ized in [83], for both the case when the number of users in

the system is fixed and the case with dynamic arrivals and

departures of the users.

IV. DECOMPOSITION METHODS

Various decomposition methods have been used in the last

two sections on horizontal and vertical decompositions. In

this section, we provide a more comprehensive discussion

on the theory of optimization decomposition, first on

primal and dual decomposition for decoupling constraints,

then on consistency pricing for decoupling objective

function, and finally on alternative decompositions.

A. Decoupling Coupled Constraints
The basic idea of a decomposition is to decompose the

original large problem into subproblems which are then

coordinated by a master problem by means of some kind of

signalling, often without the need to solve the master

problem centrally either [5]. Many of the existing

decomposition techniques can be classified into primal
decomposition and dual decomposition methods. The former
(also called partitioning of variables, decomposition by

right-hand side allocation, or decomposition with respect

to variables) is based on decomposing the original primal

problem, whereas the latter (also termed Lagrangian

relaxation of the coupling constraints or decomposition

with respect to constraints) is based on decomposing the

dual of the problem. As illustrated in Fig. 15, primal

decomposition methods have the interpretation that the
master problem directly gives each subproblem an amount

of resources that it can use; the role of the master problem

is then to properly allocate the existing resources. In

computer engineering terminology, the master problem

adapts the slicing of resources among competing demands.

In dual decomposition methods, the master problem sets

the price for the resources to each subproblem which has

to decide the amount of resources to be used depending on
the price; the role of the master problem is then to obtain

the best pricing strategy. In many cases, it is desirable and

possible to solve the master problem distributively through

message passing, which can be local or global, implicit or

explicit. In summary, the engineering mechanism realizing

dual decomposition is pricing feedback while that realizing

primal decomposition is adaptive slicing.

Note that the terminology of Bprimal-dual[ has a
number of different meanings. For example, Bprimal-dual

interior-point method[ is a class of algorithms for cen-

tralized computation of an optimum for convex optimiza-

tion, and Bprimal-dual distributed algorithm[ is sometimes

used to describe any algorithm that solves the primal and

dual problems simultaneously. Two other sets of related

Fig. 15. Schematic illustrating optimization problem decomposition.

Table 7 Summary of Main Notation for Section IV
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terminology have been used in previous sections. First,
Bprimal-driven,[ Bdual-driven,[ and Bprimal-dual-driven[
algorithms are used to differentiate where is the update

dynamics carried out: over the primal variables, or over

the dual variables, or over both. Second, Bpenalty-

function-based algorithms[ refer to those distributed al-

gorithms obtained by moving the coupled constraints to

the augmented objective function in the primal problem

through a penalty term. This is in contrast to Bdual-
decomposition-based algorithms[ that are obtained

through dual decomposition. In this section, primal and

dual decompositions have yet a different set of meanings:

decomposing coupling constraints through direct resource

allocation and indirect pricing control, respectively.

It is also important to note that a given decomposition
method may in turn lead to more than one distributed al-
gorithm. Primal and dual decompositions leverage decom-
posability structures in a given optimization problem to

turn it into subproblems coordinated by a master problem.

Different distributed algorithms may then be developed

based on the same decomposition, e.g., depending on the

choice of update method (e.g., gradient or cutting plane or

ellipsoid method), the ordering of variable updates (e.g.,

Jacobi or Gauss-Siedel), and the time scale of nested loops.

1) Dual Decomposition of the Basic NUM: We first illus-

trate how the dual decomposition approach can be applied

to the basic NUM problem to produce the standard dual-

decomposition-based distributed algorithm. Assume that

the utility functions are concave, and possibly linear func-

tions. The Lagrange dual problem of (4) is readily derived.

We first form the Lagrangian

Lðx;LÞ ¼
X

s

UsðxsÞ þ
X

l

�l cl �
X
s2SðlÞ

xs

0
@

1
A

where �l � 0 is the Lagrange multiplier (i.e., link price)

associated with the linear flow constraint on link l.
Additivity of total utility and linearity of flow constraints

lead to a Lagrangian dual decomposition into individual

source terms

Lðx;LÞ ¼
X

s

UsðxsÞ �
X
l2LðsÞ

�l

0
@

1
Axs

2
4

3
5þX

l

cl�l

¼
X

s

Lsðxs; qsÞ þ
X

l

cl�l

where qs ¼
P

l2LðsÞ �l. For each source s, Lsðxs; qsÞ ¼
UsðxsÞ � qsxs only depends on local rate xs and the path
price qs (i.e., sum of �l on links used by source s).

The Lagrange dual function gðLÞ is defined as the

maximized Lðx;LÞ over x for a given L. This Bnet utility[

maximization obviously can be conducted distributively by
each source

x�s ðqsÞ ¼ argmax UsðxsÞ � qsxs½ �; 8s: (89)

Such Lagrangian maximizer x�ðLÞ will be referred to as

price-based rate allocation (for a given price L). The

Lagrange dual problem of (4) is

minimize gðLÞ ¼ L x�ðLÞ;Lð Þ
subject to L � 0 (90)

where the optimization variable is L. Since gðLÞ is the

pointwise supremum of a family of affine functions in L, it

is convex and (90) is a convex minimization problem.

Since gðLÞ may be nondifferentiable, an iterative sub-
gradient method can be used to update the dual variables L

to solve the dual problem (90)

�lðtþ 1Þ¼ �lðtÞ��ðtÞ cl�
X
s2SðlÞ

xs qsðtÞð Þ

0
@

1
A

2
4

3
5
þ

; 8l (91)

where cl �
P

s2SðlÞ xsðqsðtÞÞ is the lth component of a

subgradient vector of gðLÞ, t is the iteration number, and

�ðtÞ 9 0 are step sizes. Certain choices of step sizes, such

as �ðtÞ ¼ �0=t, � 9 0, guarantee that the sequence of dual

variables LðtÞ converges to the dual optimal L� as t!1.

It can be shown that the primal variable x�ðLðtÞÞ also

converges to the primal optimal variable x�. For a primal
problem that is a convex optimization, the convergence is

towards a global optimum.

In summary, the sequence of source and link algo-

rithms (89), (91) forms a standard dual-decomposition-

based distributed algorithm that globally solves NUM (4)

and the dual problem (90), i.e., computes an optimal rate

vector x� and optimal link price vector L�. Note that no

explicit signaling is needed. This is because the subgra-
dient is precisely the difference between the fixed link

capacity and the varying traffic load on each link, and the

subgradient update equation has the interpretation of

weighted queuing delay update.

The general methodology of primal and dual decom-

positions is now presented. A more comprehensive tutorial

can be found in [104]. It turns out that primal and dual

decompositions are also interchangeable through alterna-
tive representation of the optimization problem.

2) Primal Decomposition: A primal decomposition is

appropriate when the problem has a coupling variable such

that, when fixed to some value, the rest of the optimization
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problem decouples into several subproblems. Consider, for
example, the following problem over y, fxig:

maximize
X

i

fiðxiÞ

subject to xi 2 X i; 8i

Aixi � y; 8i

y 2 Y: (92)

If variable y were fixed, then the problem would decouple.

This suggests separating the optimization in (92) into two

levels of optimization. At the lower level, we have the

subproblems, one for each i over xi, in which (92) de-

couples when y is fixed

maximize fiðxiÞ
subject to xi 2 X i

Aixi � y: (93)

At the higher level, we have the master problem in charge

of updating the coupling variable y by solving

maximize
X

i

f�i ðyÞ

subject to y 2 Y (94)

where f�i ðyÞ is the optimal objective value of problem (93)
for a given y.

A subgradient for each f�i ðyÞ is given by

siðyÞ ¼ L�i ðyÞ (95)

where L�i ðyÞ is the optimal Lagrange multiplier corre-

sponding to the constraint Aixi � y in problem (93). The

global subgradient is then sðyÞ ¼
P

i siðyÞ ¼
P

i L
�
i ðyÞ.

The subproblems in (93) can be locally and independently

solved with the knowledge of y.

3) Dual Decomposition: A dual decomposition is

appropriate when the problem has a coupling constraint

such that, when relaxed, the optimization problem

decouples into several subproblems. Consider, for exam-

ple, the following problem:

maximize
X

i

fiðxiÞ

subject to xi 2 X i 8iX
i

hiðxiÞ � c: (96)

If the constraint
P

i hiðxiÞ � c were absent, then the
problem would decouple. This suggests relaxing the

coupling constraint in (96) as

maximize
X

i

fiðxiÞ � LT
X

i

hiðxiÞ � c

 !

subject to xi 2 X i 8i (97)

such that the optimization separates into two levels of

optimization. At the lower level, we have the subproblems,

one for each i over xi, in which (97) decouples

maximize fiðxiÞ � LThiðxiÞ
subject to xi 2 X i: (98)

At the higher level, we have the master dual problem in

charge of updating the dual variable L by solving the dual

problem

minimize gðLÞ ¼
X

i

giðLÞ þ LTc

subject to L � 0 (99)

where giðLÞ is the dual function obtained as the maximum

value of the Lagrangian solved in (98) for a given L. This

approach is in fact solving the dual problem instead of the

original primal one. Hence, it will only give appropriate
results if strong duality holds.

A subgradient for each giðLÞ is given by

siðLÞ ¼ �hi x�i ðLÞ
� 	

(100)

where x�i ðLÞ is the optimal solution of problem (98) for

a g i ve n L. The g loba l subgradient i s then

sðLÞ ¼
P

i siðLÞ þ c ¼ c�
P

i hiðx�i ðLÞÞ. The subpro-
blems in (98) can be locally and independently solved

with knowledge of L.

Method 18: Primal and Dual Decomposition for Coupling
Constraints.

Not all coupling constraints can be readily decomposed

through primal or dual decompositions. For example, the
feasibility set of SIR in wireless cellular network power

control problems is coupled in a way with no obvious de-

composability structure. A reparametrization of the con-

straint set is required before dual decomposition can be

applied [47]. Sometimes, the coupling is time-invariant as in

some broadband access networks, and very efficient Bstatic

pricing[ can be used to decouple such Bstatic coupling[ [52].
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B. Decoupling Coupled Objective
Examining the dual decomposition of the basic NUM

reveals the following reasons why distributed and end-to-

end algorithms can solve the basic NUM (4):

1) Separability in objective function: The network

utility is a sum of individual source utilities.

2) Additivity in constraint functions: The linear flow

constraints are summing over the individual

flows.
3) Interchangeabil ity of summation index:P

l �l

P
s2SðlÞ xs ¼

P
s xs

P
l2LðsÞ �l.

4) Zero duality gap.

Property 3 is trivial. When Property 2 is violated,

decomposition is much harder and usually involves some

reparametrization of the constraint set. When Property 4

does not hold, recent works have provided three alterna-

tive solutions, as will be outlined in Section V-E.
For cases where Property 1 fails, recent progress on

coupled utility formulations has been made [23], [130]. In

many communication systems, utilities are indeed cou-

pled. An example of the cooperation model can be found in

networks where some nodes form a cluster and the utility

obtained by each of them depends on the rate allocated to

others in the same cluster (this can be interpreted as a

hybrid model of selfish and nonselfish utilities). An ex-
ample of the competition model is in wireless power

control and DSL spectrum management, where the

utilities are functions of SIRs that are dependent on the

transmit powers of other users.

The generalized NUM problem considered in this

subsection is

maximize
X

k

Uk xk; fxlgl2LðkÞ

� �
subject to xk 2 X k 8kXK

k¼1

hkðxkÞ � c (101)

where the (strictly concave) utilities Uk depend on a vector

local variable xk and on variables of other utilities xl for

l 2 LðkÞ (i.e., coupled utilities), LðkÞ is the set of nodes
coupled with the kth utility, the sets X k are arbitrary

convex sets, and the coupling constraining functionP
k hkðxkÞ is not necessarily linear, but still convex.

Note that this model has two types of coupling: coupled

constraints and coupled utilities.

One way to tackle the coupling problem in the utilities

is to introduce auxiliary variables and additional equality

constraints, thus transferring the coupling in the objective
function to coupling in the constraints, which can be

decoupled by dual decomposition and solved by introduc-

ing additional consistency pricing. It is reasonable to assume

that if two nodes have their individual utilities dependent

on each other’s local variables, then there must be some

communication channels in which they can locally
exchange pricing messages. It turns out that the global

link congestion price update of the standard dual-

decomposition-based distributed algorithm is not affected

by the local consistency price updates, which can be con-

ducted via these local communication channels among the

nodes.

The first step is to introduce in problem (101) the

auxiliary variables xkl for the coupled arguments in the
utility functions and additional equality constraints to

enforce consistency

maximize
X

k

Uk xk; fxklgl2LðkÞ

� �
subject to xk 2 X k 8kX

k

hkðxkÞ � c

xkl ¼ xl; 8k; l 2 LðkÞ: (102)

Next, to obtain a distributed algorithm, we take a dual

decomposition approach by relaxing all the coupling

constraints in problem (102)

maximize
X

k

Uk xk; fxklgl2LðkÞ

� �
þLT c�

X
k

hkðxkÞ
 !

þ
X

k;l2LðkÞ
GT

klðxl � xklÞ

subject to xk 2 X k 8k

xkl 2 X l 8k; l 2 LðkÞ (103)

where L are the congestion prices and the Gkl’s are the

consistency prices. By exploiting the additivity structure of

the Lagrangian, the Lagrangian is separated into many

subproblems where maximization is done using local

variables (the kth subproblem uses only variables with the

first subscript index k). The optimal value of (103) for a
given set of Gkl’s and L defines the dual function

gðGklg;LÞ. The dual problem is then

minimize
fGklg;L

g fGklg;Lð Þ

subject to L � 0: (104)

It is worthwhile noting that (104) is equivalent to

minimize
L

minimize
fGklg

g fGklg;Lð Þ
� �

subject to L � 0: (105)

Problem (104) is easily solved by simultaneously

updating the prices (both the congestion prices and the
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consistency prices) using a subgradient algorithm. In
problem (105), however, the inner minimization is fully

performed (by repeatedly updating the fGklg) for each

update of L. This latter approach implies two time scales: a

fast time scale in which each cluster updates the cor-

responding consistency prices and a slow time scale in

which the network updates the link prices; whereas the

former approach has just one time scale.

Therefore, in problem (101), where the utilities Uk are
strictly concave, the sets X k are arbitrary convex sets, and

the constraining functions hk are convex, can be optimally

solved by the following distributed algorithm:

• links update the congestion prices (the following

vector equation can be carried out by each link

autonomously as before):

Lðtþ 1Þ ¼ LðtÞ � �1 c�
X

k

hkðxkÞ
 !" #þ

(106)

where �1 is the stepsize;

• the kth node, for all k, updates the consistency

prices (at a faster or same time scale as the update
of LðtÞ) as

Gklðtþ 1Þ ¼ GklðtÞ � �2 xlðtÞ � xklðtÞð Þ; l 2 LðkÞ (107)

where �2 is the stepsize, and then broadcast them
to the coupled nodes within the cluster; and

• the kth node, for all k, locally solves the problem

maximize
xk;fxklgr

Uk xk; fxklgl2LðkÞ

� �
� LT

X
k

hkðxkÞ

þ
X

l:k2LðlÞ
Glk

0
@

1
A

T

xk �
X

l2LðkÞ
GT

klxkl

subject to xk 2 X k

xkl 2 X l 8l 2 LðkÞ (108)

where fxklgl2LðkÞ are auxiliary local variables for

the kth node.

Summarizing, all the links must advertise their local
variables xk (not the auxiliary ones xkl); congestion prices

L are updated as before, each link can update the cor-

responding Gkl’s (with knowledge of the variables xk of the

coupled links) and signal it to the coupled links; each link

can update the local variable xk as well as the auxiliary

ones xkl. The only additional price due to the coupled

utilities is limited signaling between the coupled links

within each cluster.

Method 19: Using Consistency Pricing to Decouple Coupled
Utility Objective Functions.

C. Alternative Decompositions
Decomposition of a generalized NUM has significant

implications to network protocol design along two di-
rections: vertical (functional) decomposition into layers
and horizontal (geographical) decomposition into distrib-
uted computation by network elements. There are many
ways to decompose a given NUM formulation along both
directions, providing a choice of different distributed al-
gorithms and layering schemes. A systematic exploration
of alternative decompositions is more than just an in-
tellectual curiosity, it also derives different network
architectures with a wide range of possibilities of com-
munication overhead, computation load, and convergence
behavior. This has been illustrated through some case
studies in Sections III-C and III-D.

Alternative horizontal decomposition (i.e., distributed
control across geographically disparate network elements)
has been studied in [104], with applications to resource-
constrained and direct-control rate allocation, and rate
allocation among QoS classes with multipath routing.

Recent results on alternative vertical decomposition
for a given NUM model (i.e., modularized control over
multiple functional modules or layers) scatter in an
increasingly large research literature. For example, on
the topic of joint congestion control and multipath traffic
engineering, different decompositions have been obtained
in [34], [46], [49], [59], [69], [84], and [101]. On the topic
of joint congestion control, routing, and scheduling,
different decompositions have been obtained in [1], [17],
[36], [83], and [129]. On the topic of joint congestion
control and random access, different decompositions have
been obtained in [74], [143], and [169]. On the topic of
rate control for network coding-based multicast, different
decompositions have been obtained in [6], [15], [86],
[151], [152], and [157]. Some of these have been briefly
discussed in Section III. A systematic treatise on this
variety of vertical decompositions is an interesting
research direction that will contribute to a rigorous
understanding of the architectural choices of allocating
functionalities to control modules.

One of the techniques that lead to alternatives of dis-
tributed architectures is to apply primal and dual de-
compositions recursively, as illustrated in Fig. 16. The
basic decompositions are repeatedly applied to a problem
to obtain smaller and smaller subproblems. For example,
consider the following problem over y, fxig which
includes both a coupling variable and a coupling constraint

maximize
X

i

fiðxi;yÞ

subject to xi 2 X i; 8iX
i

hiðxiÞ � c

Aixi � y; 8i

y 2 Y: (109)
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One way to decouple this problem is by first taking a
primal decomposition with respect to the coupling variable
y and then a dual decomposition with respect to the
coupling constraint

P
i hiðxiÞ � c. This would produce a

two-level optimization decomposition: a master primal
problem, a secondary master dual problem, and the sub-
problems. An alternative approach would be to first take a
dual decomposition and then a primal one.

Another example that shows flexibility in terms of

different decompositions is the following problem with

two sets of constraints:

maximize f0ðxÞ
subject to fiðxÞ � 0; 8i

hiðxÞ � 0; 8i: (110)

One way to deal with this problem is via the dual problem

with a full relaxation of both sets of constraints to obtain

the dual function gðL;MÞ. At this point, instead of

minimizing g directly with respect to L and M, it can be

minimized over only one set of Lagrange multipliers first
and then over the remaining one: minL minM gðL;MÞ. This

approach corresponds to first applying a full dual de-

composition and then a primal one on the dual problem.

The following lemma [105] characterizes the subgradient

of the master problem at the top level.

Lemma 3: Consider the following partial minimization

of the dual function:

gðLÞ ¼ inf
M

gðL;MÞ (111)

where gðL;MÞ is the dual function defined as

gðL;MÞ ¼� sup
x2X

f0ðxÞ �
X

i

�ifiðxÞ �
X

i

�ihiðxÞ
( )

:

(112)

Then, gðLÞ is convex and a subgradient, denoted by

sLðLÞ, is given by

s�i
ðLÞ ¼ �fi x

� L;M�ðLÞð Þð Þ (113)

where x�ðL;MÞ is the value of x that achieves the

supremum in (112) for a given L and M, and M�ðLÞ is the

value of M that achieves the infimum in (111).

Alternatively, problem (110) can be approached via the

dual but with a partial relaxation of only one set of
constraints, say fiðxÞ � 0, 8i, obtaining the dual function

gðLÞ to be minimized by the master problem. Observe now

that in order to compute gðLÞ for a given L, the partial

Lagrangian has to be maximized subject to the remaining

constraints giðxÞ � 0, 8i, for which yet another relaxation

can be used. This approach corresponds to first applying a

partial dual decomposition, and then, for the subproblem,

another dual decomposition.
On top of combinations of primal and dual decom-

positions, there can also be different orderings of update,

including the choice of parallel (Jacobi) or sequential

(Gauss-Siedel) updates [5]. When there are more than one

level of decomposition, and all levels conduct some type

of iterative algorithms, such as the subgradient method,

convergence and stability are guaranteed if the lower level

master problem is solved on a faster time scale than the
higher level master problem, so that at each iteration of a

Fig. 16. Schematic illustrating multilevel decomposition.
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master problem all the problems at a lower level have
already converged. If the updates of the different sub-

problems operate on similar time scales, convergence of

the overall system may still be possible but requires more

proof techniques [5], [118].

Method 20: Partial and Hierarchical Decompositions for
Architectural Alternatives of the Protocol Stack.

As a more concrete example, consider the following

special case of NUM in variables ðx;yÞ:

maximize
X

i

UiðxiÞ

subject to fiðxi; yiÞ � 0; 8i

yi 2 Yi; 8iX
i

hiðxi; yiÞ � 0 (114)

where x models the performance metrics that users utilities

depend on and y models some resources that are globally

coupled (the third constraint above) and have impacts on
performance (the first constraint above). This problem has

applications in distributed waterfilling algorithms in DSL

spectrum management and distributed power control

algorithms in wireless cellular networks, and can be de-

composed in at least seven different ways following three

general approaches below. Each decomposition results in a

new possibility in striking the most appropriate tradeoff

between computation and communication.
1) A primal decomposition approach. Problem (114)

decouples if the yi’s are fixed. We can decompose

the original problem into the master problem

over y

maximize
X

i

~UiðyiÞ

subject to yi 2 Yi 8iX
i

hiðyiÞ � 0 (115)

where each ~UiðyiÞ is the optimal objective value of

the subproblem over xi

maximize UiðxiÞ
subject to xi 2 X i

fiðxi; yiÞ � 0: (116)

Each of the subproblems can be solved in parallel
and only needs to know its local information (i.e.,

the local functions Ui, fi and the local set X i) and
the corresponding yi (given by the master

problem). Once each subproblem is solved, the

optimal value UiðyiÞ and possibly a subgradient

can be communicated to the master problem. In

this case, the master problem needs to commu-

nicate to each of the subproblems the available

amount of resources yi allocated.

2) A full dual decomposition approach with respect
to all coupling constraints fiðxi; yiÞ � 0 andP

i hiðyiÞ � 0. The master dual problem is to

minimize gðL; �Þ (117)

over L, � � 0, where gðL; �Þ is given by the

sum of the optimal objective values of the fol-

lowing subproblems over ðxi; yiÞ for each i

maximize UiðxiÞ � �ifiðxi; yiÞ � �hiðyiÞ
subject to xi 2 X i: (118)

Each of the subproblems can be solved in parallel

and only needs to know its local information and

the Lagrange multipliers �i and � (given by the

master problem). Once each subproblem is

solved, the optimal value and possibly a sub-

gradient (given by �fiðxi; yiÞ and �hiðyiÞ) can be

communicated to the master problem. In this

case, the master dual problem needs to commu-
nicate to each of the subproblems the private

price �i and the common price �.

3) A partial dual decomposition approach only with

respect to the global coupling constraintP
i hiðyiÞ � 0. The master dual problem over

� � 0

minimize gð�Þ (119)

where gð�Þ is given by the sum of the optimal

objective values of the following subproblems for

all i:

maximize UiðxiÞ � �hiðyiÞ
subject to xi 2 X i

fiðxi; yiÞ � 0: (120)

Each of the subproblems can be solved in parallel

and only needs to know its local information and
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the Lagrange multiplier � (given by the master

problem). Once each subproblem is solved, the

optimal value and (possibly) a subgradient, given
by �hiðyiÞ, can be communicated to the master

problem. In this case, the master dual problem

needs to communicate to each of the subproblems

simply the common price �.

We consider two of the metrics that can be used to

compare alternative decompositions: the tradeoff between

local computation and global communication through

message passing, and the convergence speed.
The amount of signalling of the three decomposition

methods is summarized in Table 8. In this particular

problem, Approach 1 requires the largest amount of

signalling in both directions. Approach 3 only requires a

single common price from the master problem to the

subproblems and a single number from each subproblem

to the master problem. Approach 2 is intermediate, re-

quiring the same amount as Approach 3 plus an additional
individual price from the master problem to each

subproblem.

For a particular instance of problem (114), Fig. 17 shows

the convergence behavior in a numerical example for var-

ious distributed algorithms obtained by adding the choice of

Jacobi or Gauss-Siedel update order on top of the three

approaches in Table 8. The top two curves correspond to

variations under Approaches 3 and 2, respectively.

Implicit in all decompositions is a choice of particular

representation of the constraints. There are several ways to

obtain different representation of the same NUM problem.

One way is through substitution or change of variables

[47]. The second way is to use a different set of variables,
e.g., node-centric versus link-centric formulations in

III-D. A third way is to group the variables in different

orders. For example, in [16], it is shown that the joint

TCP and MAC design problem may be formulated as

maximizing network utility subject to the constraint that

FRx % c, where F is a contention matrix and R is the

routing matrix. Then depending whether we first group

Rx or FR in the constraint, the Lagrange dual variables
we introduce are different, corresponding to either

drawing a division between TCP and MAC or not.

In general, since every individual constraint (e.g.,

capacity of a link) gives rise to a corresponding Lagrange

multiplier, we have the somewhat surprising consequence

that the specific dual problems will be different depending

on how the primal constraints are written, even redundant

constraints that may change the dual problem properties.
As summarized in Fig. 18, each representation of a

particular NUM may lead to different decomposability

structures, different decomposition approaches, and the

associated different distributed algorithms. Each of these

algorithms may represent a different way to modularize

and distribute the control of networks, and differs from the

others in terms of engineering implications (more

discussions in Section V-C).

V. FUTURE RESEARCH DIRECTIONS

Despite the wide range of progress made by many re-

searchers over the last several years, there are still a variety

of open issues in the area of BLayering as Optimization

Decomposition.[ Some of these have formed a set of

Fig. 17. Different speeds of convergence for seven different

alternatives of horizontal decomposition in a numerical example of

(114). Each curve corresponds to a different decomposition structure.

Table 8 Summary of Signalling Between the Master Problem and the Subproblems in the Three Decompositions Considered

Table 9 Summary of Main Notation for Section V
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widely recognized and well-defined open problems, which

is in fact a sign indicating the maturity of a research area.

This section highlights some of the main issues for

future research and their recent developments. Aside from
technical challenges in proving desirable properties, such

as global asymptotic convergence for different distributed

algorithms under arbitrary delay [106], [107], we will

classify the array of open issues in six groups.

A. Modeling and Complexity Challenges
First of all, there are semantic functionalities, such as

session initiation and packet reordering, that we do not
explicitly model. BGP in IP protocol and a variety of

wireless ad hoc network routing protocols are yet to be

fully incorporated in modeling language of NUM. Much

further work also remains to be done to model utility

functions in specific applications, especially inelastic, real-

time applications such as VoIP [79] and streaming media

where the notion of fairness may also need to be

reconsidered [136]. In a more refined physical/link layer
model, the option of forwarding rather than re-encoding at

intermediate nodes must be considered, as well as per-hop

retransmission schemes through ARQ. More NUM models

are also needed to explicitly incorporate robustness with

respect to algorithmic errors, network failures [160],

multiple sets of constant parameters, and uncontrolled

stochastic perturbances.

Several important modules commonly encountered in
many cases of BLayering as Optimization Decomposition[
still do not have simple, distributed solutions. An im-

portant topic is on distributed and suboptimal scheduling

algorithms that have low spatial complexity (the amount

and reach of explicit message passing do not grow rapidly

with network size) and temporal complexity (the amount

of backoff needed does not grow rapidly with network size)

and can still guarantee certain throughput-delay perfor-
mance. There have been many recent results on this topic,

e.g., [12], [14], [80], [121], [149], [150], [165], and many

more in print, based on different physical models, e.g.,
node-exclusive, SIR-based, and capture models.

Most of the designs have focused on the optimal mes-

sage passing across layers and theoretically motivated

choices of parameters such as stepsize. A systematic study

on suboptimal message passing heuristics and practical

guidelines in choosing algorithmic parameters would help

characterize the tradeoff between complexity and sub-

optimality gap.

B. Research Issues Involving BTime[
Utility functions are often modeled as functions of

equilibrium rates. For applications involving real-time

control or multimedia communication, utility should

instead be a function of latency or even the entire vector

of rate allocation through the transients. How to maximize

such utility functions remains an under-explored topic.
Different functions in each layer operate on time scales

that may differ by several orders-of-magnitude different.

For example, the application layer time scale is determined

by the user behavior, the transport layer time scale by the

round-trip-time in traversing the network, and the physical

layer time scale by the physics of the transmission me-

dium. Iterative algorithms themselves also have a time

scale of operation determined by their rate of convergence,
which is often difficult to bound tightly.

Furthermore, characterizing transient behaviors of

iterative algorithms remains a challenging and under-

explored topics in this area. For certain applications, if the

resource allocation (e.g., window size, SIR) for a user

drops below a threshold during the transient, the user may

be disconnected. In such cases, the whole idea of equi-

librium becomes meaningless. Invariance during transients
[41], instead of convergence in the asymptote, becomes a

more useful concept: how fast can the algorithm get close

enough to the optimum and stay in that region? Usually the

overall system performance derived out of a modularized

design determines Bhow close is close enough[ for each

module’s transients.

C. Alternative Decompositions
Even a different representation of the same NUM

problem may change the duality and decomposability

structures even though it does not change the optimal

solution. It remains an open issue how to systematically

explore the space of alternative vertical and horizontal

decompositions, and thus the space of alternative network

architectures, for a given set of requirements on, e.g., rate

of convergence, symmetry of computational load distribu-
tion, and amount of explicit message passing.

An intellectually bold direction for future research is to

explore if both the enumeration and comparison of al-

ternative decompositions, horizontally and vertically, can

be carried out systematically or even be automated.

To enumerate the set of possible decompositions and

the associated sets of distributed algorithms, we have to

Fig. 18. Each alternative problem representation may lead to a choice

of distributed algorithms with different engineering implications.
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take into account that transformations of the problem
(e.g., change of variable) may lead to new decomposability

structure, or turn a seemingly nondecomposable problem

into a decomposable one [47]. This would open the door to

even more choices of modularized and distributed net-

work architectures with different properties.

To compare a variety of distributed algorithms, the

following metrics all need to be considered: speed of con-

vergence, the amount and symmetry of message passing
for global communication, the distribution of local com-

putational load, robustness to errors, failures, or network

dynamics, the impact to performance metrics not directly

incorporated into the objective function (e.g., user-

perceived delay in throughput-based utility maximization

formulations), the possibility of efficient relaxations and

simple heuristics, and the ability to remain evolvable as the

application needs change over time.
Some of the above metrics have no quantitative units of

measurement, such as evolvability. Some do not have a

universally agreed definition, such as the measure of how
distributed an algorithm is.11 Some are difficult to analyze

accurately, such as the rate of convergence. Application

contexts lead to a prioritization of these possibly con-

flicting metrics, based on which, the Bbest[ decomposition

can be chosen from the range of alternatives.
Summarizing, there are three stages of conceptual

understanding of a decomposition-theoretic view of net-

work architectures:

• First, modularized and distributed network archi-

tectures can be rigorously understood as decom-

positions of an underlying optimization problem.

• Second, there are in fact many alternatives of

decompositions and therefore alternatives of net-
work architectures. Furthermore, we can system-

atically explore and compare such alternatives.

• Third, there may be a methodology to exhaustively

enumerate all alternatives, to quantify various

comparison metrics, and even to determine a priori
which alternative is the best according to any given

combination of comparison metrics.

Many issues in the third stage of the above list remain open
for future research.

D. Stochastic NUM
Stochastic theory of communication networks has a

long and rich history. However, many key problems in this

area remain open despite decades of effort. In his seminal

paper [64], Kelly et al. used a deterministic fluid model to

remove packet level details and microscopic queuing
dynamics, followed by an optimization/game/control-

theoretic approach. By assuming deterministic fluids

with infinite backlog, we can avoid the difficulty of

coupling across links in a general queuing network, and are

often able to obtain insights on the structures of network
resource allocation and functionality allocation.

An analogy can be drawn with Shannon’s seminal work

in 1948 [120]. By turning the focus from design of finite-

blocklength codes to the regime of infinite-blocklength

codes, thus enabling the law of large numbers to take

effect, Shannon provided architectural principles (e.g.,

source-channel-separation) and established fundamental

limits (e.g., channel capacity) in his mathematical theory
of communication. Since then, the complicating issues

associated with the design of practical codes have been

brought back into the framework.

In the framework of BLayering as Optimization

Decomposition,[ it is time to incorporate stochastic net-

work dynamics, at session, packet, channel, and topology

levels, back to the generalized NUM formulations. This

leads to challenging models of queuing networks. For
example, service rates of queues are determined by

distributed solution to NUM, while parameters of NUM

formulations are in turn stochastically varying according

to states of the queues.

A combination of stochastic network control and

optimization-based resource allocation raises challenging

new questions, including stochastic stability, average case

performance, outage performance, and, eventually, the
distribution of attained utility (or other QoS parameters

such as delay) as induced by the distributions of the

stochastic models. Stochastic stability is the most basic and

well-explored question in this area: under what conditions

will a certain distributed algorithm of an NUM problem

remain stochastically stable, in the sense that the number

of flows and the total queue length in the network remain

finite? Sometimes, deterministic optimization formula-
tions can be derived from the limiting regime of stochastic

network optimization, as in the case of social welfare

maximization for loss networks in [110] and [111].

Stochastic models arise at four different levels due to

many reasons:

• Session level (also referred to as flow level, con-

nection level, or end-user level): flows arrive with

finite workload and depart after finishing the
workload, rather than holding infinite backlog and

staying in the network forever. For certain com-

binations of the models of arrival process, utility

functions, constraint sets, and time-scale separa-

tion,12 researchers have established that the

(stochastic) stability region of the basic NUM is

the largest possible, which is the capacity region

formed by the fixed link capacities in the
deterministic NUM formulation. This means that

satisfying the constraints in a deterministic for-

mulation is both necessary and sufficient for

stochastic stability.

11A common unit is the amount and reach of explicit message passing
needed, and how they grow as the network grows.

12Here time-scale separation means that the resource allocation
algorithm converges before the number of sessions changes.
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• Packet level: packets of each flow arrive in bursts,

and at a microscopic level go through probabilistic

marking, and interact with uncontrolled flows

such as UDP-based multimedia flows and web mice

traffic. There have been at least three sets of results

that appeared over the last several years. The first

set shows many-flow asymptotical validation of
fluid model (justifying the transition from micro-

scopic to macroscopic model) [2], [30], [119],

[139], and analyzes the interaction between

congestion-controlled flows and uncontrolled

flows under various queue regimes and different

time-scale assumptions on flows’ random variation

[31], [113], [137], [164], [166]. The second set

translates on–off HTTP session utility into trans-
port layer TCP utility (mapping from microscopic

to macroscopic model) [13]. The third set demon-

strates convergence behavior for stochastic noisy

feedback [170] (characterizing the impact of

microscopic dynamics to macroscopic properties).

• Channel level: network transmission conditions

are time-varying rather than fixed. Channel var-

iations offer both the challenge to prove stability/
optimality for existing algorithms and the ability to

do opportunistic transmission and scheduling. We

focus on the first set of issues in this survey.13 For

example, in [17], stability and optimality are

established for dual-decomposition-based algo-

rithms under channel-level stochastic for any

convex optimization where the constraint set has

the following structure: a subset of the variables
lies in a polytope and other variables lie in a convex

set that varies according to an irreducible, finite-

state Markov chain.

• Topology level: Topology of wireless networks can

change due to mobility of nodes, sleep mode, and

battery power depletion. Solving generalized NUM

problems over networks with randomly varying

topology remains an under-explored area with
little known results on models or methodologies.

The problem is particularly challenging when the

topology level stochastic dynamics is determined

by battery usage, which is in turn determined by

the solution of the NUM problem itself.

As shown in Table 10, where we use a system of zero

to three stars to roughly represent the state of our

understanding of the subject (from almost no results to

complete characterization), much remains to be explored

in this long over-due union between distributed optimi-

zation of networks and stochastic network theory. In the

rest of this section, we briefly summarize some of the
recent results in the first column of the table.

1) Session Level Stochastic: Consider session level

dynamics characterized by the random arrivals and

departures of sessions. For each type r, suppose for now

that flows arrive and depart according to a Poisson process

with intensity �r, and the size of the flows to be

transmitted is exponentially distributed with mean 1=�r.
The traffic load is �r ¼ �r=�r. Let Nr be the number of

ongoing flows, i.e., the number of type r flows in the

network. It is a Markov process with the following tran-

sition rates:

• NrðtÞ ! NrðtÞ þ 1, with rate �r;

• NrðtÞ ! NrðtÞ � 1, with rate �rxrðtÞNrðtÞ.
The stochastic version of the basic NUM formulation

naturally becomes the following problem over x:

maximize
X

r

NrUrðxrÞ

subject to
X

r

RlrxrNr � cl; 8l: (121)

Obviously, the definition of problem (121) depends on

fNrg, whose stochastic variations are in turn determined

by the solution to problem (121).

For problem (121), it is shown [7], [29], [94], [162] that

the stochastic stability region is the interior of feasibility

rate region formed by the fixed link capacities, i.e., the

following condition is sufficient to guarantee stochastic
stability of the basic NUM for for �-fair utility functions

with � 9 0:

RR G c: (122)

These results assumed time-scale separation. However,

in many practical networks, session level stochastic

operates on a fast time scale, with the arrive-and-depart

process of flows varying constantly. Hence, instanta-

neous convergence of the rate allocation algorithm may13Readers are referred to [85] for a survey of the second set of issues.

Table 10 State-of-the-Art in Stochastic NUM
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not hold. The above result is extended in [81] and [126]
to the case without time-scale separation assumption:

[81] studies �-fair utilities using a discrete-time model

and shows that there is an upper bound on the step size

that would guarantee stochastic stability, and [126]

shows similar results for �-fair utilities using the fluid

limit model.

Other recent extensions include the following. Using

the technique in [28] and [163] relaxes the assumption of
Poisson arrivals, by studying a general stationary and a

bursty network model. Recently, [68] studies a model that

includes flows of two types, file transfers and streaming

traffic, and generalizes the congestion control problem

with convex constraints. And [8] correlates the utility

maximization to classical queueing theory, and studies

several typical utility functions and the stability condition.

Then stochastic stability for any strictly concave maximi-
zation over general convex constraints without time-scale

separation is recently reported.

An important and often invalid assumption in all these

stability results is that file size (or workload) follows

exponential distribution. In [66], a proper fluid model is

formulated for exponentially distributed workload to study

the Binvariant states[ as an intermediate step for obtaining

diffusion approximation for all � 2 ð0;1Þ. In [45], the
fluid model is established for �-fair rate allocation,

� 2 ð0;1Þ, under general distributional condition on

arrival process and service distribution. Using this fluid

model, they have obtained characterization of Binvariant

states,[ which led to stability of network under �-fair

allocation, � 2 ð0;1Þ, when the network topology is a

tree. For general network topologies, three recent

preprints have tackled this difficult problem of stochastic
stability under general file-size distribution, for special

cases of utility functions: first, [11] establishes stability for

max-min fair (corresponding to � ¼ 1) rate allocation,

then [93] establishes stability for proportional fair (corre-

sponding to � ¼ 1) rate allocation for Poisson arrival and

phase-type service distribution. Finally, using the fluid

model in [45] but under a different scaling, [22]

establishes the stability of �-fair rate allocation for general
file-size distribution for a continuum of �: � sufficiently

close to (but strictly larger than) zero, and a partial

stability results for any � 9 0 fair allocation policy.

2) Packet Level Stochastic: Randomness at packet level

may be a result of probabilistic marking of certain AQM

schemes. It can also model Bmice[ traffic which is not

captured in the standard NUM model. In [2], a detailed
stochastic model is presented for N TCP Reno sources

sharing a single bottleneck link with capacity Nc imple-

menting RED. They show that as the number of sources and

the link capacity both increase linearly, the queue process

converges (in appropriate sense) to a deterministic process

described by differential equations as usually assumed in the

congestion control literature. Even though these results are

proved only for a single bottleneck node, they provide a
justification for the popular deterministic fluid model by

suggesting that the deterministic process is the limit of a

scaled stochastic process as the number of flows and link

capacities scale to infinity [139].

Other convergence results are shown in [30] and [119]:

the deterministic delay differential equation model with

noise replaced by its mean value is accurate asymptotically

in time and the number of flows. Because such conver-
gence is shown asymptotically in time (except in the

special case of log utility [119] where it is shown for each

time), the trajectory of the stochastic system does not

converge to that of the deterministic system in the many-

flow regime [30]. However, [30] shows that the global

stability criterion for a single flow is also that for the

stochastic system with many flows, thus validating pa-

rameter design in the deterministic model even when
networks have packet level stochastic dynamics.

Stochastic stability of greedy primal-dual-driven al-

gorithm, a combination of utility maximization and

maximum weight matching, is shown in [129] for dy-

namic networks where traffic sources and routers are

randomly time-varying, interdependent, and limited by

instantaneously available transmission and service rates.

Besides packet-level stochastic dynamics, there is also
burstiness at the application level. Reference [13] con-

siders its effect on TCP. It shows that the utility max-

imization at the transport layer induces a utility

maximization at the application layer, i.e., an objective

at the application layer is implemented in the transport

layer. Specifically, consider a single link with capacity Nc
(bits) shared by N HTTP-like flows. Each flow alternates

between think times and transfer times. During the period
of a think time, a flow does not require any bandwidth

from the link. Immediately after a period of think time,

the source starts to transmit a random amount of data by

a TCP connection. The transfer time depends on the

amount of transfer and the bandwidth allocation to this

flow by TCP. The number of active flows is random, but

at any time, the active flows share the link capacity

according to TCP, i.e., their throughputs maximize ag-
gregate utility subject to capacity constraints. Assume

there are a fixed number of flow types. Then it is shown

in [13] that the average throughput, i.e., the throughput

aggregated over active flows of each type normalized by

the total number of flows of that type, also solves a

utility maximization problem with different utility func-

tions as the TCP utility functions.

Yet another line of recent work [170] studies the impact
of stochastic noisy feedback on dual-decomposition-based

distributed algorithms, where the noise can be due to

probabilistic marking, dropping, and contention-induced

loss of packets. When the gradient estimator is unbiased, it

is established, via a combination of the stochastic Lyapunov

Stability Theorem and local analysis, that the iterates

generated by distributed NUM algorithms converge with

Chiang et al. : Layering as Optimization Decomposition: A Mathematical Theory of Network Architectures

Vol. 95, No. 1, January 2007 | Proceedings of the IEEE 305



probability one to the optimal point, under standard tech-
nical conditions. In contrast, when the gradient estimator

is biased, the iterates converge to a contraction region

around the optimal point, provided that the biased terms

are asymptotically bounded by a scaled version of the true

gradients. These results confirm those derived based on

deterministic models of feedback with errors [18], [95]. In

the investigation of the rate of convergence for the

unbiased case, it is found that, in general, the limit process
of the interpolated process based on the normalized

iterate sequence is a stationary reflected linear diffusion

process, not necessarily a Gaussian diffusion process.

3) Channel Level Stochastic: Models in [17], [35], [83],

[99], and [128] consider random channel fluctuations.

For example, stability of primal-based algorithms under

channel variations is established in [128]. In [17], the

channel is assumed to be fixed within a discrete time slot

but changes randomly and independently across slots. Let

hðtÞ denote the channel state in time slot t. Cor-

responding to the channel state h, the capacity of link l
is clðhÞ when active and the feasible rate region at the

link layer is /ðhÞ. We further assume that the channel

state is a finite state process with identical distribution
qðhÞ in each time slot. Define the mean feasible rate

region as

/ ¼ r : r ¼
X
h

qðhÞrðhÞ; rðhÞ 2 /ðhÞ
( )

: (123)

The joint congestion control, routing, and scheduling

algorithm discussed in Section III-D can be directly

applied with the schedulable region / in Step 2 replaced

by the current feasible rate region /ðhðtÞÞ. It is proved in

[17] that the prices LðtÞ form a stable Markov process, by

appealing to the generalized NUM (85) with the rate
region / replaced by the mean rate region /

maximize
X

s

UsðxsÞ

subject to xk
i �

X
j:ði;jÞ2L

f k
ij �

X
j:ðj;iÞ2L

f k
ji ; 8i; j; k

f 2 �/: (124)

Moreover, the primal and dual values along the trajectory

converge arbitrarily close to their optimal values, with

respect to (124), as the stepsize in the algorithm tends

to zero.

For generalized NUM problems, [17] establishes the

stability and optimality of dual-decomposition-based algo-

rithms under channel-level stochastic for any convex

optimization where the constraint set has the following

structure: a subset of the variables lie in a polytope and
other variables lie in a convex set that varies according

to an irreducible, finite-state Markov chain. Algorithms

developed from the deterministic NUM formulation and

requiring only the knowledge of current network state

remain stochastically stable and optimal (in the expecta-

tion, with respect to an optimization problem whose

constraint is replaced by the average constraint set under

the given channel variations).

E. Nonconvex NUM
It is widely recognized that the watershed between easy

and hard optimization problems is convexity rather than

linearity. Nonconvex optimization formulations of gener-

alized NUM often appear, in at least four different forms.

First is nonconcave utility, such as the sigmoidal utility

that are more realistic models in applications including
voice. Second is nonconvex constraint set, such as lower

bounds on SIR as a function of transmit power vector, in

the low-SIR regime of interference-limited networks.

Third is integer constraint, such as those in single-path

routing protocols. Fourth is convex constraint set requiring

a description length that grows exponentially with the

number of variables, such as certain schedulability con-

straints in multihop interference models. In general, such
nonconvex optimization is difficult in theory and in prac-

tice, even through centralized computation.

In particular, nonconvex optimization problems often

have nonzero duality gaps. A nonzero duality gap means

that the standard dual-decomposition-based distributed

subgradient algorithm may lead to suboptimal and even

infeasible primal solutions and instability in cross layer

interactions. Bounding, estimating, and reducing the
resulting duality gap remains a challenging task. Some-

times, these very difficult problems can be tackled through

a combination of well-established and more recent

optimization techniques, e.g., sum-of-squares programming

[108], [109] and geometric-signomial programming [19],

[32], although some aspects of these techniques are not well

understood (e.g., convergence to global optimality in

signomial programming).
As an example, consider nonconvexity in the objective

function. There have been three recent approaches to solve

nonconcave utility maximization over linear constraints:

• Reference [77] proposes a distributed admission

control method (for sigmoidal utilities) called the

Bself-regulating[ heuristic, which is shown to

avoid link congestion caused by sigmoidal utilities.

• Reference [48] determines optimality conditions
for the dual-decomposition-based distributed algo-

rithm to converge globally (for all nonlinear util-

ities). The engineering implication is that

appropriate provisioning of link capacities will en-

sure global convergence of the dual-decomposition-

based distributed algorithm even when user utility

functions are nonconcave.
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• Reference [40] develops an efficient but central-

ized method to compute the global optimum (for a

wide class of utilities that can be transformed into

polynomial utilities), using the sum-of-squares

method. However, no distributed versions of this
method are available.

As illustrated in Fig. 19, there are at least three very

different approaches to tackle the difficult issue of

nonconvexity in either the objective function or the con-

straint set:

• Go around nonconvexity: discover a change of var-

iables that turns the seemingly nonconvex problem

into a convex one, determine conditions under
which the problem is convex or the KKT point is

unique [75], [124], or make approximations to

make the problem convex. A popular example of

tackling nonconvexity is the application of geo-

metric programming to communication systems

[19]. In some problems, an appropriate change of

variables turns an apparently nonconvex problem

into a convex one [131].
• Go through nonconvexity: use successive convex

relaxations (e.g., sum-of-squares, signomial

programming), utilize special structures in the

problem (e.g., difference of convex functions,

generalized quasi-concavity), or leverage smarter

branch and bound methods.

• Go above nonconvexity: observe that optimization

problem formulations are induced by some under-
lying assumptions on what the architectures and

protocols should look like. By changing these

assumptions, a different, much easier-to-solve or

easier-to-approximate NUM formulations may

result. We refer to this approach as design for
optimizability [51], which concerns with selectively

perturbing some underlying assumption to make

the resulting NUM problem easier to solve. This
approach of changing a hard problem into an easier

one is in contrast to optimization, which tries to

solve a given, possibly difficult NUM problem. A

recent successful example of Bdesign for

optimizability[ is on intra-domain routing in the

Internet [159].

F. Quantifying Network X-ities
As we draw this paper towards the end, it is important

to ask why should network operators optimize perfor-

mance in the first place? Indeed, optimality is not the key

point. Optimization is used here primarily as a modeling
language and a starting point to develop and compare

architectural choices, rather than just defining a particular

point of operation at global optimum. Suboptimal, but

simple (low spatial-temporal complexity) algorithms can

be used in various modules (e.g., the scheduling module).

As long as the suboptimality gap is bounded and the

network architecture is Bgood,[ then the Bdamage[ from

the suboptimal design in one layer can be contained at the
systems level. Similarly, stochastic dynamics may also

wash away the worst cases and even be beneficial to the

average system performance [83], again provided that the

network architecture is appropriately designed. In such

cases, it is also necessary to study the meaning of utility-

suboptimality in terms of degradation to fairness, since x%
of optimality loss may not imply x% degradation of

fairness. In fact, even quantified metrics of unfairness are
not well-established.

Protocols and layered architectures are not just for

maximizing the efficiency of performance metrics, such as

throughput, latency, and distortion, but also for ensuring

security and for maximizing the important yet fuzzy

metrics of robustness in operation, such as evolvability,

scalability, availability, diagnosability, and manageability.

Interactions among layers introduce the risks of losing
robustness against unforseen demands arising over time or

significant growth over space. Indeed, under the metrics

of deployment cost and operations cost, the success of

packet networks comes down to the scalability and

evolvability of TCP/IP and the way control is modularized

and distributed.

Despite their importance in practical network opera-

tions, these network X-ities remain as fuzzy or even ill-
defined notions, and a quantified foundation for them is

long overdue [24]. Intuitively, Bdesign by decomposition[
enhances scalability and evolvability, but may present risks

to manageability such as diagnosability and optimizability.

The benefits and risks arise together, in part because

layering means that each layer is limited in what it can do

Fig. 19. Three major types of approaches when tackling nonconvex NUM: Go 1) around, 2) through, or 3) above nonconvexity.
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(optimization variables in a decomposed subproblem) and
what it can observe (a subset of constant parameters and

variables in other decomposed subproblems). Throughout

Sections II and III, we have illustrated how the framework

of BLayering as Optimization Decomposition[ helps make

the decision of what each module should control and

observe. Still, quantifying network X-ities, and trading-off

network X-ities with performance metrics, in layered

protocol stack designs remain a challenging long-term
research direction.

We may also carry the intellectual thread from

Bforward-engineering[ (solving a given problem) to

Breverse-engineering[ (finding the problem being solved

by a given protocol) one step further to Bdesign for

optimizability.[ The difficulty of solving a particular set of

subproblems may illustrate that the given decomposition

was conducted possibly in a wrong way and suggests that
better alternatives exist.

In summary, in order to fulfill the long-term goal of

providing a simple, relevant abstraction of what makes a

network architecture Bgood,[ the framework of BLayering

as Optimization Decomposition[ needs to move away

from the restriction of one decomposition fits all, away

from the focus on deterministic fluid models and as-

ymptotic convergence, and even away from the emphasis
on optimality, and instead towards Boptimizability.[

VI. CONCLUSION

We provide a survey of the recent efforts to establish

BLayering as Optimization Decomposition[ as a common

Blanguage[ for systematic network design. BLayering as

Optimization Decomposition[ is a unifying framework for
understanding and designing distributed control and cross-

layer resource allocation in wired and wireless networks. It

has been developed by various research groups since the

late 1990s, and is now emerging to provide a mathemat-

ically rigorous and practically relevant approach to

quantify the risks and opportunities in modifying the

existing layered network architectures or in drafting clean-

slate architectures. It shows that many existing network
protocols can be reverse-engineered as implicitly solving

some optimization-theoretic or game-theoretic problems.

By distributively solving generalized NUM formulations

through decomposed subproblems, we can also systemat-

ically generate layered protocol stacks. There are many

alternatives for both horizontal decomposition into dispa-
rate network elements and vertical decomposition into

functional modules (i.e., layers). A variety of techniques to

tackle coupling and nonconvexity issues have become

available, which enable developments of distributed

algorithms and proofs of global optimality, respectively.

Many such techniques are becoming standard methods to

be readily invoked by researchers.

BLayering as Optimization Decomposition[ provides a
top-down approach to design layered protocol stacks

from first principles. The resulting conceptual simplicity

stands in contrast to the ever-increasing complexity of

communication networks. The two cornerstones for the

rigor and relevance of this framework are Bnetworks as

optimizers[ and Blayering as decomposition.[ Together,

they provide a promising angle to understand not just

what Bworks[ in the current layered protocol stacks, but
also why it works, what may not work, and what

alternatives network designers have. Realizing the

importance of functionality allocation and motivated by

the view of Barchitecture first,[ we hope that there will

be continuous progress towards a mathematical theory of

network architectures. h
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[161] H. Yäiche, R. R. Mazumdar, and
C. Rosenberg, BA game theoretic framework
for bandwidth allocation and pricing of
elastic connections in broadband networks:
Theory and algorithms,[ IEEE/ACM Trans.
Netw., vol. 8, no. 5, pp. 667–678, Oct. 2000.

[162] H. Ye, BStability of data networks under
optimization-based bandwidth allocation,[
IEEE Trans. Autom. Control, vol. 48, no. 7,
pp. 1238–1242, Jul. 2003.

[163] H. Ye, J. Qu, and X. Yuan, BStability of data
networks: Starionary and bursty models,[
Oper. Res., vol. 53, pp. 107–125, 2005.

[164] Y. Yi, S. Deb, and S. Shakkottai, BTimescale
decomposition and rate-based marking,[
IEEE/ACM Trans. Netw., vol. 14, no. 5,
pp. 938–950, 2006.

[165] Y. Yi, G. de Veciana, and S. Shakkottai,
BLearning contention patterns and adapting
to load topology changes in MAC scheduling
algorithms,[ in Proc. IEEE Workshop on
Wireless Mesh Networks, Sep. 2006.

[166] Y. Yi and S. Shakkottai, BOn the elasticity of
marking functions: Scheduling, stability,
quality-of-service in the Internet,[ in Proc.
CISS, Mar. 2005.

[167] W. Yu and J. Yuan, BJoint source coding,
routing, and resource allocation for wireless
sensor networks,[ in Proc. IEEE ICC,
May 2005.

[168] C. Yuen and P. Marbach, BPrice-based rate
control in random access networks,[ IEEE/
ACM Trans. Netw., vol. 13, no. 5,
pp. 1027–1040, Dec. 2005.

[169] J. Zhang and D. Zheng, BA stochastic
primal-dual algorithm for joint flow control
and MAC design in multihop wireless
networks,[ in Proc. CISS, Mar. 2006.

[170] J. Zhang, D. Zheng, and M. Chiang, BImpacts
of stochastic noisy feedback in network
utility maximization,[ Proc. IEEE INFOCOM,
May 2007.

Chiang et al. : Layering as Optimization Decomposition: A Mathematical Theory of Network Architectures

Vol. 95, No. 1, January 2007 | Proceedings of the IEEE 311



ABOUT THE AUT HORS

Mung Chiang (Member, IEEE) received the B.S.

(Hon.) degree in electrical engineering and in

mathematics, and the M.S. and Ph.D. degrees in

electrical engineering from Stanford University,

Stanford, CA, in 1999, 2000, and 2003, respectively.

He is an Assistant Professor of Electrical

Engineering, and an affiliated faculty member of

the Program in Applied and Computational Math-

ematics at Princeton University, Princeton, NJ. He

conducts research in the areas of optimization of

communication systems, theoretical foundations of network architec-

tures, algorithms in broadband access networks, and stochastic models

of communications.

Dr. Chiang has been awarded a Hertz Foundation Fellowship, and

received the Stanford University School of Engineering Terman Award for

Academic Excellence, the SBC Communications New Technology Intro-

duction contribution award, the National Science Foundation CAREER

Award, and the Princeton University Howard B. Wentz Junior Faculty

Award. He is the Lead Guest Editor of the IEEE JOURNAL OF SELECTED AREAS

IN COMMUNICATIONS, SPECIAL ISSUE ON NONLINEAR OPTIMIZATION OF COMMUNI-

CATION SYSTEMS, a Guest Editor of the IEEE TRANSACTIONS ON INFORMATION

THEORY and IEEE/ACM TRANSACTIONS ON NETWORKING, JOINT SPECIAL ISSUE ON

NETWORKING AND INFORMATION THEORY, an Editor of IEEE TRANSACTIONS ON

WIRELESS COMMUNICATIONS, the Program Co-Chair of the 38th Conference

on Information Sciences and Systems, and a co-editor of Springer book

series on Control and Optimization of Communication Systems. He is a

co-author of IEEE GLOBECOM Best Student Paper Award, and one of his

paper becomes the Fast Breaking Paper in Computer Science in 2006

by ISI citation data.

Steven H. Low (Senior Member, IEEE) received

the B.S. degree from Cornell University, Ithaca, NY,

and the Ph.D. degree from the University of

California, Berkeley, both in electrical engineering.

He is a Professor of Computer Science and

Electrical Engineering at California Institute of

Technology (Caltech), Pasadena. He was with

AT&T Bell Laboratories, Murray Hill, NJ, from

1992 to 1996, the University of Melbourne, Aus-

tralia, from 1996 to 2000, and was a Senior Fellow

of the University of Melbourne from 2000 to 2004. He is a member of the

Networking and Information Technology Technical Advisory Group for

the U.S. President’s Council of Advisors on Science and Technology

(PCAST). His interests are in the control and optimization of networks and

protocols.

Dr. Low was a co-recipient of the IEEE William R. Bennett Prize Paper

Award in 1997 and the 1996 R&D 100 Award. He was on the editorial

board of IEEE/ACM TRANSACTIONS ON NETWORKING from 1997 to 2006 and

on that of Computer Networks Journal from 2003 to 2005. He is on the

editorial boards of ACM Computing Surveys, NOW Foundations, and

Trends in Networking, and is a Senior Editor of the IEEE JOURNAL ON

SELECTED AREAS IN COMMUNICATIONS.

A. Robert Calderbank (Fellow, IEEE) is a Profes-

sor of Electrical Engineering and Mathematics at

Princeton University, Princeton, NJ, where he

directs the Program in Applied and Computational

Mathematics. He joined Bell Laboratories as a

member of Technical Staff in 1980, and retired

from AT&T in 2003 as Vice President of Research.

He has research interests that range from alge-

braic coding theory and quantum computing to

the design of wireless and radar systems.

Dr. Calderbank served as Editor in Chief of the IEEE TRANSACTIONS ON

INFORMATION THEORY from 1995 to 1998, and as Associate Editor for Coding

Techniques from 1986 to 1989. He was a member of the Board of

Governors of the IEEE Information Theory Society from 1991 to 1996. He

was honored by the IEEE Information Theory Prize Paper Award in 1995

for his work on the Z4 linearity of Kerdock and Preparata Codes (joint

with A. R. Hammons Jr., P. V. Kumar, N. J. A. Sloane, and P. Sole), and

again in 1999 for the invention of space–time codes (joint with V. Tarokh

and N. Seshadri). He is a recipient of the IEEE Millennium Medal, and was

elected to the National Academy of Engineering in 2005.

John C. Doyle received the B.S. and M.S. degrees

in electrical engineering from Massachusetts

Institute of Technology in 1977 and the Ph.D.

degree in mathematics from the University of

California, Berkeley, in 1984.

He is the John G. Braun Professor of Control

and Dynamical Systems, Electrical Engineering,

and Bio Engineering at California Institute of

Technology (Caltech), Pasadena. His early work

was in the mathematics of robust control, LQG

robustness, (structured) singular value analysis, H-infinity plus recent

extensions. He coauthored books and software toolboxes currently used

at over 1000 sites worldwide, the main control analysis tool for high

performance commercial and military aerospace systems, as well as

many other industrial systems. Early example industrial applications

include X-29, F-16XL, F-15 SMTP, B-1, B-2, 757, Shuttle Orbiter, electric

power generation, distillation, catalytic reactors, backhoe slope-

finishing, active suspension, and CD players. Current research in-

terests are in theoretical foundations for complex networks in

engineering, biology, and multiscale physics.

Dr. Doyle’s group led the development of the open source Systems

Biology Markup Language (SBML) and the Systems Biology Workbench

(SBW), the analysis toolbox SOSTOOLS, and contributed to the theory of

the FAST protocol that shattered multiple world land speed records.

Prize papers include the IEEE Baker, the IEEE Automatic Control Trans-

actions Axelby (twice), and the AACC Schuck. Individual awards include

the AACC Eckman and the IEEE Control Systems Field and Centennial

Outstanding Young Engineer Awards. He has held national and world

records and championships in various sports.

Chiang et al. : Layering as Optimization Decomposition: A Mathematical Theory of Network Architectures

312 Proceedings of the IEEE | Vol. 95, No. 1, January 2007


