
  

  

Abstract—In order for a robot to coordinate its actions with 
people in collaborative task contexts the robot must be able to 
provide timely, informative feedback. This process requires the 
robot to infer the intent of its partners, assess the alignment of 
its planned actions with those of its collaborators, and if 
necessary issue communication actions that increase alignment. 
In order to test these capabilities in a repeatable, controlled 
environment, we have developed an augmented reality task 
simulation system that allows a person and a physical robot to 
carry out simulated tasks while being monitored by 
environmental sensors. This system is evaluated with a PR2 on 
a collaborative herding task. 

I. INTRODUCTION 
S robots are capable of executing sequences of high-
level tasks in household- or office-like environments it 

is necessary to consider how a robot should coordinate its 
actions with others. In human collaboration, people exhibit 
some reasonably well-understood behaviors that facilitate 
joint situational awareness[1]. It has also been demonstrated 
that a robot that coordinates its task execution by accounting 
for the requirements of a human collaborator is preferred to 
one that does not [2]. We hypothesize that a robot that 
communicates using natural social modalities, primarily 
embodied gestures, will further increase the performance of 
the human-robot team and the person’s satisfaction with the 
interaction. In order to study team communication behavior, 
we have developed a task simulation system that enables the 
Willow Garage PR2 to collaborate with a user on a synthetic 
task in a collocated space. 

II. HUMAN-HUMAN AND HUMAN-ROBOT COLLABORATION 
Studies have demonstrated, during the course of a 

collocated, collaborative task, people adapt their speech and 
stage their actions in response to the person or people they 
are interacting with in order to establish alignment [3]. 
Alignment between collaborators reduces ambiguity by 
establishing consistent representations, concerning, for 
example, work objects or frames of reference [4]. This is 
manifested in task-level communication as lexical and 
syntactic alignment and a consistent vocabulary for issuing 
coordinating speech. In addition to speech, embodied gesture 
has also been shown the potential to be more effective than 
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speech alone or the combination of speech and gesture for 
issuing instruction [5].  

Prior work in human-robot interaction (HRI) has focused 
on coordinating actions during collocated collaboration 
through various means including intent recognition [6], [7]; 
learned spatiotemporal models of task performance [8], [9]; 
and through verbal communication such as turn-taking or 
action announcement [2], [10]. These systems in general 
attempt to incorporate Theory of Mind, in which mental 
state is attributed to other agents in the environment, with 
robot planning and control in order to avoid conflicting 
actions. Our work is concerned with integrating embodied 
social communication with task control by learning a 
flexible communication policy allowing a robot to issue 
communicative feedback such as deictic gesture [11] without 
assuming a specific communication structure a priori.  

In order to be useful, the system should be capable of 
generalizing across different tasks that the robot may already 
know how to do on its own as well as multiple users or 
populations with different communication tendencies. The 
specific context of collaboration allows for the simplifying 
assumption that participants are working together to 
accomplish a shared set of goals. This enables the robot to 
make use of its own task controller or planner to evaluate 
and contextualize the actions of others via perspective-
taking. A communication policy will be learned over time in 
a Theory of Mind-inspired state space constructed of each 
agent’s current state as well as the estimated states of others 
as perceived by the robot. This approach will be fully 
detailed in a later paper.   

III. PLATFORM 

A. Task Simulator 
The approach is validated on a challenging cooperative 

task involving multiple people and robots who must 
communicate effectively to achieve a collaborative goal in a 
dynamic environment. In order to conduct repeatable 
experiments in several diverse task environments with 
human participants, we have developed an augmented reality 
task simulation system. The task simulator models the 
behavior of multiple virtual agents, static or dynamic, over 
time. The agents are projected onto the floor of the room via 
an overhead projection system. Simultaneously, the system 
makes use of environmental sensing to track people and 
robots in the same space, allowing them to interact with the 
virtual agents through physical action. The environment is 
calibrated by assuming a rigid transformation from the 
virtual space to the physical space of the room, allowing for 
generation of augmented sensor data, such as laser scans, 
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from the point of view of a physical robot in the space. The 
PR2 was selected as a test platform due to its robust sensing, 
allowing for accurate localization and people tracking, and 
its omnidirectional maneuverability, which is useful for 
avoiding obstacles without having to rotate in place.  

This environment has several advantages for conducting 
tasks compared with using physical objects and/or 
confederate experimenters. First, it allows for many 
repeatable, dynamic agents that move autonomously in a 
directed or pseudo-random manner. It also allows for tuning 
the velocity, shape, and behavior dynamics of the simulated 
agents to make a given task easier or more difficult as 
necessary. Finally, since it does not depend on physical 
objects, several different tasks can be conducted quickly by 
switching the task controller. The simulator abstracts away 
physical tasks that we do not focus on, such as object 
manipulation, allowing us to focus on collaborative 
behavior. This is consistent with the notion of “research 
tasks” described by Martin et al. [12] as a systematic 
abstraction of a real-world task. Despite this abstraction, we 
are able to preserve some of the complexity of real-world 
environments, such as partial observability, noise, and 
occlusion by augmenting the robot’s sensor data. We feel 
that this represents a reasonable tradeoff of realism for 
repeatable HRI experiments. 

B. Task-Relevant Social Communication on the PR2 
In order for the PR2 to collaborate with people 

effectively, it must be able to issue and receive social 
feedback while performing a task. The gestures implemented 
on the robot as well as those it is capable of recognizing will 
be informed from human-human pilot experiments in 
addition to literature on human behavior [13]. As we 
anticipate the communication dynamics to vary somewhat 
depending on the command hierarchy and personalities of 
the two participants. To control for this, we will be 
administering personality surveys and pairing participants so 
that they are either matched (undergraduates of similar age) 
or unmatched (undergraduate and graduate student). 

To enable the PR2 to issue social feedback while 
performing a task, we have implemented a deictic gesture 
system allowing the PR2 to point to locations in space with 
its head or arms. The system incorporates collision 
avoidance for the arms in order to prevent hitting people or 
objects in the environment during gestures. In order to 
receive social feedback from others we will employ a 
camera-based laser tracking system allowing people to 
indicate points in the environment to the robot using a hand-
held laser pointer. Finally, we plan on using the people-
tracking provided by the Microsoft Kinect™ mounted on the 
PR2’s head to sense natural social gestures when visibility 
allows.  

IV. EXPERIMENTAL DESIGN 
We will validate the performance of the system in a series 

of human participant experiments. The experiments will 
initially feature a single robot and one person performing a 
task. The full communicative system will be compared to the 
robot alone, the person alone, and the robot and person 

working in parallel i.e., the robot will execute a state-based 
planner and will not issue or respond to feedback from the 
person. The first task controller that we have implemented 
simulates a herding task in which a group of virtual agents 
leave a central herd at random and must be collected and 
returned by the physical agents. Since realistic herd 
simulations are not our main interest, the herding dynamics 
are greatly simplified by allowing a single physical agent to 
capture and herd any single loose virtual agent. The primary 
focus of the collaboration in this scenario will be allocating 
herding responsibility and notifying partners of other un-
herded agents. The accompanying video demonstrates the 
task simulation with the PR2 performing the task and 
herding the virtual agents. A series of experiments involving 
collaborative human-robot interactions and different tasks 
are planned and in progress.  
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