
SIAM J. COMPUT.
Vol. 18, No. 1, pp. 1-11, February 1989

1989 Society for Industrial and Applied Mathematics
001

AMORTIZED ANALYSIS OF ALGORITHMS FOR SET UNION
WITH BACKTRACKING*

JEFFERY WESTBROOK" AND ROBERT E. TARJAN

Abstract. Mannila and Ukkonen [Lecture Notes in Computer Science 225, Springer-Verlag, New York,
1986, pp. 236-243] have studied a variant of the classical disjoint set union (equivalence) problem in which

an extra operation, called de-union, can undo the most recently performed union operation not yet undone.
They proposed a way to modify standard set union algorithms to handle de-union operations. In this paper
several algorithms are analyzed based on their approach. The most efficient such algorithms have an amortized

running time of O(log n/log log n) per operation, where n is the total number of elements in all the sets.

These algorithms use O(n log n) space, but the space usage can be reduced to O(n) by a simple change.
The authors prove that any separable pointer-based algorithm for the problem requires fl(log n/log log n)
time per operation, thus showing that our upper bound on amortized time is tight.

Key words, amortization, set union, data structures, algorithms, backtracking, logic programming

AMS(MOS) subject classifications. 68P05, 68Q25, 68R10

1. Introduction. The classical disjoint set union problem is that of maintaining a
collection of disjoint sets whose union is U {1, 2,..., n} subject to a sequence of
rn intermixed operations of the following two kinds:

find(x): Return the name of the set currently containing element x.

union(A, B): Combine the sets named A and B into a new set, named A.

The initial collection consists of n singleton sets, {1}, {2}, ., {n}. The name of initial
set {i} is i. For simplicity in stating bounds we assume rn f(n). This assumption
does not significantly affect any of the results, and it holds in most applications.

Several fast algorithms for this problem are known [10], [13]. They all combine
a rooted tree set representation with some form of path compaction. The fastest such
algorithms run in O(t (m, n)) amortized time per operation, where a is a functional
inverse of Ackermann’s function [10], [13]. No better bound is possible for any
pointer-based algorithm that uses a separable set representation [11]. For the special
case of the problem in which the subsequence of union operations is known in advance,
the use of address arithmetic techniques leads to an algorithm with an amortized time
bound of O(1) per operation [2].

Mannila and Ukkonen [7] studied a generalization of the set union problem called
set union with backtracking, in which the following third kind of operation is allowed:

de-union: Undo the most recently performed union operation that has not yet been
undone.

This problem arises in Prolog interpreter memory management [6]. Mannila and
Ukkonen showed how to extend path-compaction techniques to handle backtracking.
They posed the question of determining the inherent complexity of the problem, and

Received by the editors June 29, 1987; accepted for publication (in revised form) April 4, 1988. This

research was partially Supported by National Science Foundation grant DCR-8605962 and Office of Naval
Research contract N00014-87-K-0467.

" Computer Science Department, Princeton University, Princeton, New Jersey 08544.
Computer Science Department, Princeton University, New Jersey 08544 and AT&T Bell Laboratories,

Murray Hill, New Jersey 07974.
The amortized time is the time of an operation averaged over a worst-case sequence of operations.

See Tarjan’s survey paper [12].



2 J. WESTBROOK AND R. E. TARJAN

they claimed an O(log log n) amortized time bound per operation for one algorithm
based on their approach. Unfortunately, their upper bound argument is faulty.

In this paper we derive upper and lower bounds on the amortized efficiency of
algorithms for set union with backtracking. We show that several algorithms based on
the approach of Mannila and Ukkonen run in O(log n/log log n) amortized time per
operation. These algorithms use O(n log n) space, but the space can be reduced to
O(n) by a simple change. We also show that any pointer-based algorithm that uses a
separable set representation requires (log n/log log n) amortized time per operation.
All the algorithms we analyze are subject to this lower bound. Improving the upper
bound of O(log n/log log n), if it is possible, will require the use of either a non-
separable pointer-based data structure or of address arithmetic techniques.

The remainder ofthis paper consists offour sections. In 2 we review six algorithms
for set union without backtracking and discuss how to extend them to handle backtrack-
ing. In 3 we derive upper bounds for the amortized running times of these algorithms.
In 4 we derive a lower bound on amortized time for all separable pointer-based
algorithms for the problem. Section 5 contains concluding remarks and open problems.

2. Algorithms for set union with backtracking. The known efficient algorithms for
set union without backtracking [10], [13] use a collection of disjoint rooted trees to
represent the sets. The elements in each set are the nodes of a tree, whose root contains
the set name. Each element contains a pointer to its parent. Associated with each set
name is a pointer to the root of the tree representing the set. Each initial (singleton)
set is represented by a one-node tree.

To perform union(A, B), we make the tree root containing B point to the ro.ot
containing A, or alternatively make the root containing A point to the root containing
B and swap the names A and B between their respective elements. (This not only
moves the name A to the right place but also makes undoing the union easy, as we
shall see below.) The choice between these two alternatives is governed by a union
rule. To perform find(x), we follow the path of pointers from element x to the root of
the tree containing x and return the set name stored there. In addition, we apply a

compaction rule, which modifies pointers along the path from x to the root so that. they
point to nodes farther along the path.

We shall consider the following possibilities for the union and compaction rules:

Store with each tree root the number of elements in its tree.
When doing a union, make the root of the smaller tree point
to the root of the larger, breaking a tie arbitrarily.

Union by rank: Store with each tree root a nonnegative integer called its rank.
The rank of each initial tree root is zero. When doing a union,
make the root of smaller rank point to the root of larger rank.
In the case of a tie, make either root point to the other, and
increase the rank of the root of the new tree by one.

Compaction Rules (see Fig. 1):
Compression: After a find, make every element along the find path point to the

tree root.

Splitting: After a find, make every element along the find path point to its
grandparent, if it has one.

Halving" After a find, make every other element along the find path (the
first, third, etc.) point to its grandparent, if it has one.

Union Rules:

Union by weight:



SET UNION WITH BACKTRACKING 3

COMPRES.

A

FIG. 1. Path compression, path splitting, and path halving. The element found is "a."

The two choices of a union rule and three choices of a compaction rule give six
possible set union algorithms. Each of these has an amortized running time of
O(a(m, n)) per operation [13].

We shall describe two ways to extend these and similar algorithms to handle
de-union operations. The first method is the one proposed by Mannila and Ukkonen;
the second is a slight variant.

We call a union operation that has been done but not yet undone live. We denote
a pointer from a node x to a node y by (x, y). Suppose that we perform finds without
doing any compaction. Then performing de-unions is easy: to undo a set union we
merely make null the pointer added to the data structure by the union. To facilitate
this, we maintain a union stack, which contains the tree roots made nonroots by live
unions. To perform a de-union, we pop the top element on the union stack and make
the corresponding parent pointer null.

This method works with either of the two union rules. Some bookkeeping is needed
to maintain set names and sizes or ranks. Each entry on the union stack must contain
not only an element but also a bit that indicates whether the corresponding union
operation swapped set names. If union by rank is used, each such entry must contain
a second bit that indicates whether the union operation incremented the rank of the
new tree root. The time to maintain set names and sizes or ranks is O(1) per union
or de-union; thus each union or de-union takes O(1) time, worst-case. Either union
rule guarantees a maximum tree depth of O(log n) [13]; thus the worst-case time per
find is O(log n). The space needed by the data structure is O(n).

Mannila and Ukkonen’s goal was to reduce the time per find, possibly at the cost
of increasing the time per union or de-union and increasing the space. They developed
the following method for allowing compaction in the presence of de-unions. Let us
call the forest maintained by the noncompacting algorithm described above the reference



4 J. WESTBROOK AND R. E. TARJAN

forest. In the compacting method, each element x has an associated pointer stack P(x),
which contains the outgoing pointers that have been created during the course of the
algorithm but have not yet been destroyed. The bottommost pointer on this stack is
one created by a union. Such a pointer is called a union pointer. The other pointers
on the stack are ones created by compaction. They are called findpointers. Each pointer
(x, y) of either type is such that y is a proper ancestor of x in the reference forest.

Each pointer has an associated union operation, which is the one whose undoing
would invalidate the pointer. To be more precise, for a pointer (x, y) the associated
union operation is the one that created the pointer (z, y) such that z is a child of y
and an ancestor of x in the reference forest. As a special case of this definition, if
(x, y) is a union pointer, then z x and the associated union operation is the one that
created (x, y). A pointer is live if its associated union is live.

Unions are performed as in the noncompacting method. Compactions are per-
formed as in the set union algorithm without backtracking, except that each new pointer
(x, y) is pushed onto P(x) instead of replacing the old pointer, leaving x. When
following a find path from an element x, the algorithm pops dead pointers from the
top of P(x) until P(x) is empty or a live pointer is on top. In the former case, x is
the root of its tree; in the latter case, the live pointer is followed.

This algorithm requires a way to determine whether a pointer is live or dead. For
this purpose the algorithm assigns each union operation a distinct number as it is
performed. Each entry on the union stack contains the number of the corresponding
union. Each pointer on a pointer stack contains the number of the associated union
and a pointer to the position on the union stack where the entry for this union was
made. This information can be computed in O(1) time for any pointer (x, y) when it
is created. If (x, y) is a union pointer, the information is computed as part of the
union. If (x, y) is a find pointer, then the last pointer on the find path from x to y
when (x, y) was created has the same associated union as (x, y) and has stored with
it the needed information. To test whether a pointer is live or dead, it is merely necessary
to access the union stack entry whose position is recorded with the pointer and test
first, if the entry is still on the stack, and second, whether its union number is the same
as that stored with the pointer. If so, the pointer is live; if not, dead.

The implementation of de-union must be changed slightly, to preserve the invariant
that in every pointer stack all the dead pointers are on top. To perform a de-union,
the algorithm pops the top entry on the union stack. Let x be the element in this entry.
The algorithm pops P(x) until it contains only one pointer, which is the union pointer
created by the union that is to be undone. The algorithm restores the set names and
sizes or ranks as necessary, and pops the last pointer from P(x). Because of the
compaction, the state of the data structure after a de-union will not in general be the
same as its state before the corresponding union.

We call this method the lazy method since it destroys dead pointers in a lazy
fashion. Either of the union rules and any of the compaction rules can be used with
the method. The total running time is proportional to m plus the total number of
pointers created. (With any of the compaction rules, a compaction of a find path
containing k_>-2 pointers results in the creation of (k) pointers, k-1 in the case of
compression or splitting and [k/2J in the case of halving.)

An alternative to the lazy method is the eager method, which pops pointers from
pointer stacks as soon as they become dead. To make this popping possible, each
union stack entry must contain a list of the pointers whose associated union is the one
corresponding to the entry. When a union stack entry is popped, all the pointers on
its list are popped from their respective pointer stacks as well. Each such pointer will



SET UNION WITH BACKTRACKING 5

be on top of its stack when it is to be popped. To represent such a pointer, say (x, y),
in a union stack entry, it suffices to store x. With this method, numbering the union
operations is unnecessary, as is popping pointer stacks during finds.

The time required by the eager method for any sequence of operations is only a
constant factor greater than that required by the lazy method, since both methods
create the same pointers but the eager method destroys them earlier. With either union
rule, the eager method uses O(n log n) space in the worst case, since the maximum
tree depth is O(log n) and all pointers on any pointer stack point to distinct elements.
(From bottom to top, the pointers on P(x) point to shallower and shallower ancestors
of x.)

The lazy method also has an O(n log n) space bound [3]. For any node x, consider
the top pointer on P(x), which is to a node, say y. Even if the pointer from x to y is
currently dead, it must once have been live, and all pointers currently on P(x) point
to distinct nodes on the tree path from x to y as it existed when the pointer from x
to y was live. Thus there can be only O(log n) such pointers. The total number of
pointers therefore is O(n log n). The total number of numbers needed to distinguish
relevant union operations is also O(n log n), which implies that the total space needed
is O(n log n), as claimed.

The choice between the lazy and eager methods is not clear-cut. As we shall see
at the end of 3, a small change in the compaction rules reduces the space needed by
either method to O(n).

3. Upper bounds on amortized time. The analysis to follow applies to both the
lazy method and the eager method. If we ignore the choice between lazy and eager
pointer deletion, there are six versions of the algorithm, depending on the choice of
a union rule and a compaction rule.

As a first step on the analysis, we note that compression with either union rule is
no better in the amortized sense than doing no compaction at all, i.e., the amortized
time per operation is II(log n). The following class of examples shows this. For any
k, form a tree of 2k elements by doing unions on pairs of elements, then on pairs of
pairs, and so on. This produces a tree called a binomial tree Bk, whose depth is k. (See
Fig. 2.) Repeat the following three operations any number of times: do a find on the
deepest element in B, undo the most recent union, and redo the union. Each find
creates k 1 pointers, which are all immediately made dead by the subsequent de-union.
Thus the amortized time per operation is fl(k)= fl(log n).

Both splitting and halving perform better; each has an O(logn/loglogn)
amortized bound per operation, in combination with either union rule. To prove
this, we need a definition. For an element x, let size(x) be the number of descend-
ants of x (including itself) in the reference forest. Th6 logarithmic size of x, lgs(x), is
Jig size(x)J .2

We need the following lemma concerning logarithmic sizes when union by weight
is used.

LEMMA 1 10]. Suppose union by weight is used. If node v is the parent of node w
in the referenceforest, then lgs(w) < lgs(v). Any node has logarithmic size between 0 and
lg n (inclusive).

.Proof. When a node v becomes the parent of another node w, size(w) = 2 size(v)
by the union by weight rule. Later unions can only increase size(v) and cannot increase
size(w) (unless the union linking v and w is undone). The lemma follows.

For any x, lg x log2 x.



6 J. WESTBROOK AND R. E. TARJAN

Bo=O

Bk--
Bk.1

Bk-

BO B2 B3 B4

FIG. 2. Binomial trees.

THEOREM 1. Union by weight in combination with either splitting or halving gives
an algorithm for set union with backtracking running in O(log n/log log n) amortized
time per operation.

Proof. We shall charge the pointer creations during the algorithm to unions and
finds in such a way that each operation is charged for O(log n/log log n) pointer
creations. For an arbitrary positive constant c < 1, we call a pointer (x, y) short if
lgs(y)-lgs(x)_-< c lg lg n and long otherwise. (The logarithmic sizes in this definition
are measured at the time (x, y) is created.) We charge the creation of a pointer (x, y)
as follows:

(i) If y is a tree root, charge the operation (union or find) that created (x, y).
(ii) If y is not a tree root and (x, y) is long, charge the find that created (x, y).
(iii) If y is not a tree root and (x, y) is short, charge the union that most recently

made y a nonroot.
A find with splitting creates two new paths of pointers, and a find with halving

creates one new path of pointers. Thus O(1) pointers are charged to each operation
by (i). The number of long pointers along any path can be estimated as follows. For
any long pointer (x, y), lgs(y)-lgs(x)> c lg lg n. Logarithmic sizes strictly increase
along any path and are between 0 and lg n by Lemma 1. Thus if there are k long
pointers on a path, lg n >- kc lg lg n, which implies k _<- lg n/(c lg lg n). Thus a find with
either splitting or halving can create only O(log n/log log n) long pointers, which
means that O(log n/log log n) pointers are charged to each find by (ii).

it remains for us to bound the number of pointers charged by (iii). Consider a
union operation that makes an element x a child of another element y. Let I be the



SET UNION WITH BACKTRACKING 7

time interval during which pointers are charged by (iii) to this union. During /, the
sizes, and hence the logarithmic sizes, of all descendants of x remain constant. Interval
I ends with the undoing of the union.

For each descendant w of x, at most one pointer (w, x) can be charged by (iii)
to the union, since the creation of another such pointer charged by (iii) cannot occur
at least until x again becomes a root and then becomes a nonroot, which can only
happen after the end of L Thus the number of pointers charged by (iii) to the union
is at most one per descendant w of x such that lgs(x)-lgs(w) <- c lg lg n.

Since logarithmic sizes strictly increase along tree paths, any two elements u and
v with lgs(u)= lgs(v) must be unrelated, i.e., their sets of descendants are disjoint.
This means that the number of descendants w of x with lgs(w) is at most size(x)/2 =<
2 lgs(x)+l-i, and the number of descendants w of x with lgs(x)-lgs(w) < c lg lg n is at
most

Igs(x)

2gsx)+-i<--2Lcglgnl+2=O((logn)C)=O(logn/loglogn),
i=lgs(x)- [c lg Ig nJ

since c < 1. Thus there are O(log n/log log n) pointers charged to the union by (iii).
The same result holds if union by rank is used instead of union by weight, but in

this case the proof becomes a little more complicated because logarithmic sizes need
not strictly increase along tree paths. We deal with this by slightly changing the
definition of short and long pointers. We need the following lemma.

LEMMA 2 13]. Suppose union by rank is used. If node v is the parent of node w in
the reference forest, then 0 <-_ lgs(w) _-< lgs(v) _-< lg n and 0 <-_ rank(w) < rank(v) _-< lg n.

Proof. The first group of inequalities is immediate. The definition of union by
rank implies rank(w)<rank(v). A proof by induction on the rank of v shows that
size(v) => 2rank(v), which implies that rank(v) <= lg n.

THEOREM 2. Union by rank in combination with either splitting or halving gives an
algorithm for set union with backtracking running in O(log n/log log n) amortized time
per operation.

Proof. We define a pointer (x, y) to be short if max {lgs(y)-lgs(x),rank(y)-
rank(x)}-< c lg lg n and long otherwise, where c < is a positive constant. We charge
the creation of pointers to unions and finds exactly as in the proof of Theorem 1 (rules
(i), (ii), and (iii)). The number of pointers charged by rule (i) is O(1) per union or
find, exactly as in the proof of Theorem 1. A long pointer (x, y) satisfies at least one
of the inequalities lgs(x)-lgs(x)> c lg lg n and rank(y)-rank(x)> c lg lg n. Along
any tree path only O(log n/log log n) long pointers can satisfy the former inequality
and only O(log n/log log n) long pointers can satisfy the latter, by Lemma 2. It follows
that only O(log n/log log n) pointers can be charged per find by rule (ii).

To count short pointers, we have one additional definition. For a nonroot element
x, let p(x) be the parent of x in the reference forest. A nonroot x is good if lgs(x)<
lgs(p(x)) and bad otherwise, i.e., if lgs(x)= lgs(p(x)). The definition of lgs implies
that any element can have at most one bad child. The bad elements thus form paths
called bad paths of length O(log n); all elements on a bad path have the same
logarithmic size. We call the element of largest rank on a bad path the head of.the
path. The head of a bad path is a bad element whose parent is either a good element
or a tree root.

Consider a union operation that makes an element x a child of an element y. We
count short pointers charged to this union as follows:

(1) Short pointers leading from good elements. If v and w are good elements such
that lgs(v)= lgs(w), then v and w are unrelated in the reference forest, i.e., they have



8 J. WESTBROOK AND R. E. TARJAN

disjoint sets of descendants. The analysis that yielded the count of short pointers in
the proof of Theorem 1 applies to the good elements here to yield a bound of
O((log n) c) O(log n/log log n) short pointers leading from good elements that are
charged to the union by (iii).

(2) Short pointers leading from bad elements. Consider the number of bad paths
from which short pointers can lead to x. The head of such a path is an element w such
that p(w) is either good or a tree root, and lgs(x)- lgs(w) -< c lg lg n. Heads of different
bad paths have different parents. The analysis that counts short pointers in the proof
of Theorem yields an O((log n) c) bound on the number of bad paths from which
short pointers can lead to x. Along such a bad path, rank strictly increases, and
the definition of shortness implies that only the c lg lg n elements of largest rank
along the path can have short pointers leading to x. The total number of short
pointers leading from bad nodes that are charged to the union by (iii) is thus
O(c log log n (log n) c) O(log n/log log n).

We conclude this section by discussing how to reduce the space bound for both
the lazy method and the eager method to O(n). This is accomplished by making the
following simple changes in the compaction rules. If union by size is used, the
compaction of a find path is begun at the first node along the path whose size is at
least lg n. If union by rank is used, the compaction of a find path is begun at the first
node whose rank is at least lg lg n. With this modification, only O(n/log n) nodes have
find pointers leaving them, and the total number of pointers in the data structure at
any time is O(n). The analysis in Theorems 1 and 2 remains valid, except that there
is an additional time per find of O(log log n) to account for the initial, noncompacted
part of each find path.

4. A general lower bound on amortized time. We shall prove that the bound in
Theorems 1 and 2 is best possible for a large class of algorithms for set union with
backtracking. Our computational model is the pointer machine [41, [5], [9], 11 with
an added assumption about the data structure called separability. Related results follow.
Tarjan [11] derived an amortized bound in this model for the set union problem
without backtracking. Blum [1] derived a worst-case-per-operation lower bound for
the same problem. Mehlhorn, Niher, and Alt [8] derived an amortized lower bound
for a related problem. Their result does not require separability.

The algorithms to which our lower bound applies are called separable pointer
algorithms. Such an algorithm uses a linked data structure that can be regarded as a
directed graph, with each pointer represented by an edge. The algorithm solves the
set union with backtracking problem according to the following rules:

(i) The operations are presented on-line, i.e., each operation must be completed
before the next one is known.

(ii) Each set element is a node of the data structure. There can be any number
of additional nodes.

(iii) (Separability.) After any operation, the data structure can be partitioned into
node-disjoint subgraphs, one corresponding to each currently existing set and contain-
ing all the elements in the set. The name of the set occurs in exactly one node in the
subgraph. No edge leads from one subgraph to another.

(iv) The cost of an operation find(x) is the length (number of edges) of the
shortest path from x to the node that holds the name of the set containing x. This
length is measured at the beginning of the find, i.e., before the algorithm changes the
structure as specified in (v).

(v) During any find, union, or de-union operation, the algorithm can add edges
to the data structure at a cost of one per edge, delete edges at a cost of zero, and move,



SET UNION WITH BACKTRACKING 9

add, or delete set names at a cost of zero. The only restriction is that separability must
hold after each operation.

The eager method of 2 obeys rules (i)-(v). This is also true of the lazy method,
if we regard pointers as disappearing from the model data structure as soon as they
become dead. This does not affect the performance of the algorithm in the model,
since once a pointer becomes dead it is never followed.

THEOREM 3. For any n, any m l( n), and any separable pointer algorithm, there
is a sequence ofmfind, union, and de-union operations whose cost is 12(m log n/log log n).

Proof. We shall prove the theorem for n of the form 22k for some k => 1 and for
m-> 4n. The result follows for all n and m f(n) by padding the expensive problem
instances constructed below with extra singleton sets on which no operations take
place and with extra finds.

In estimating the cost of a sequence of operations, we shall charge the cost of
adding an edge to the data structure to the deletion of the edge. Since this postpones
the cost, it cannot increase the total cost of a sequence.

We construct an expensive sequence as follows. The first n-1 operations are
unions that build a set of size n by combining singletons in pairs, pairs in pairs, and
so on. The remaining operations occur in groups, each group containing between 1
and 2n- 2 operations. Each group begins and ends with all the elements in one set.
We obtain a group of operations by applying the appropriate one of the following two
cases (if both apply, either may be selected). Let b =[lg n/(2 lg lg n)J.

(1) If some element in the (only) set is at distance at least b away from the set
name, do a find on this element.

(2) If some sequence of t de-unions will force the deletion of b edges from the
data structure (to maintain separability), do these de-unions. Then do the corresponding
unions in the reverse order, restoring the initial set of size n.

We claim that if there is only one set, formed by repeated pairing, then case (1)
or case (2) must apply. If this is true, we can obtain an expensive sequence of operations
by generating successive groups of operations until more than m- 2n + 2 operations
have occurred, and then padding the sequence with enough additional finds to make
a total of m operations. The cost of such a sequence is at least (m-3n+3)b
f(m log n/log log n).

It remains to prove the claim. Suppose case (2) does not apply. We shall show
that case (1) does. Let f--(lg n)2. For 0 <- i<=lg n/lgf we define a partition Pi of the
nodes of the data structure as follows:

Pi {XIX is the collection of nodes in the subgraph corresponding to one of
the sets that would be formed by doingfi- 1 de-unions}.

Observe that IP, =f’. Also fgn/gy= n, so P is defined for i-<lg n/lgf. In particular
Pb is defined, since b =[lg n/(2 lg lg n)J [lg n/lgfJ.

For 0<= i_-<lg n/lgf, we define the collection D of deep sets in Pi as follows:

D {X P all elements in X are at distance at least from the name of the single set}.

Let di IDol. We shall show that db > 0, which implies the existence of an element at
distance at least b away from the name of the single set; hence case (1) applies.

Let g be the number of edges leading from one set in P to another. We have
bf, since otherwise performance of fi-1 de-unions would force the deletion of

bf edges from the data structure, and case (2) would apply.
Now we derive a recursive bound on d. We have dl =f-1, since only one of the

f sets in P1 can contain the only set name. We claim that d/l >=fd-. To verify the
claim, let us consider Di. Since n 22k and the union structure of the only set forms



10 J. WESTBROOK AND R. E. TARJAN

a binomial tree, each set X in Di consists off sets in Pi+l, all of whose elements are
at distance at least from the name of the only set. For an element x X to be at
distance exactly from the set name, some edge must lead from x to a set in Pi other
than X; otherwise X would not be in D. There are i such edges. Each such edge
can eliminate one set in P+I from being in Di+l. But this leaves fdi- sets in D+I,
namely the fd sets into which the sets in Di divide, minus at most eliminated by
edges between different sets in Pi. That is, di+ >-fd- 6, as claimed.

Applying the bound ’ =< bf gives di+ >=fd- bf. Using d =f- 1, a proof by
induction shows that d ->f-(f-(i- 1)b- 1).

We wish to show that db> 0. This is true provided that (f-(b- 1)b- 1)> 0. But
f=(lgn)2 and b=llgn/(21glgn)J, giving (f-(b-1)b-1)=(f-b2+b-1) >-

(lg n)2> 0, since we are assuming n->4, which implies b2<- (lg n)2/4 and b-> 1. Thus
db> 0, which implies that some element is at distance at least b from the set name,
i.e., case (1) applies. D

5. Remarks. Our bound of (R)(log n/log log n) on the amortized time per operation
in the set union problem with backtracking is the same as Blum’s worst-case bound
per operation in the set union problem without backtracking [1]. Perhaps this is not
a coincidence. Our lower bound proof resembles his. Furthermore the data structure
he uses to establish his upper bound can easily be extended to handle de-union
operations; the worst-case bound per operation remains O(log n/log log n) and the
space needed is O(n).

The compaction methods have the advantage over Blum’s method that as the ratio
of finds to unions and de-unions increases, the amortized time per find decreases. The
precise result is that if the ratio of finds to unions and de-unions in the operation
sequence is 3’ and the amortized time per union and de-union is defined to be (R)(1),
then the amortized time per find is (R)(log n/(max {1, log (y log n)})). This bound is
valid for any value of y, and it holds for splitting or halving with either union rule,
and it is the best bound possible for any separable pointer algorithm. This can be
proved using straightforward extensions of the arguments in 3 and 4. The space
bound can be made O(n) by an extension of the idea proposed at the end of 3. If
the de-union operations occur in bursts, the time per operation decreases further, but
we have not attempted to analyze this situation.

Perhaps the most interesting open problem is whether the lower bound in 4 can
be extended to nonseparable pointer algorithms. (In place of separability, we require
that the out-degree of every node in the data structure be constant.) We conjecture
that the bound in Theorem 3 holds for such algorithms. The techniques of Mehlhorn,
Niher, and Alt [8] suggest an approach to this question, which might yield at least
an (log log n) bound if not an (log n/log log n) bound on the amortized time.

REFERENCES

N. BLUM, On the single-operation worst-case time complexity of the disjoint set union problem, SIAM J.
Comput., 15 (1986), pp. 1021-1024.

[2] H. N. GABOW AND R. E. TARJAN, A linear-time algorithm for a special case of disjoint set union, J.
Comput. System Sci., 30 (1985), pp. 209-221.

[3] G. GAMBIOSI, G. F. ITALANO, AND M. TALAMO, Getting back to the past in the union-find problem,
in 5th Annual Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer
Science 294, Springer-Verlag, Berlin, 1988, pp. 8-17.

[4] D. E. KNUTH, The Art of Computer Programming, Vol. 1, Fundamental Algorithms, Addison-Wesley,
Reading, MA, 1968.

[5] A. N. KOLMOGOROV, On the notion of algorithm, Uspekhi Mat. Nauk, 8 (1953), pp. 175-176.



SET UNION WITH BACKTRACKING 11

[6] H. MANNILA AND E. UKKONEN, On the complexity of unification sequences, in 3rd International
Conference on Logic Programming, July 14-18, 1986, Lecture Notes in Computer Science 225,
Springer-Verlag, New York, 1986, pp. 122-133.

[7] , The set union problem with backtracking, in Proc. 13th International Colloquium on Automata,
Languages, and Programming (ICALP 86), Rennes, France, July 15-19, 1986, Lecture Notes in
Computer Science 226, Springer-Verlag, New York, 1986,pp. 236-243.

[8] K. MEHLHORN, S. N.HER, AND H. ALT, A lower bound for the complexity of the union-split-find
problem, in Proc. 14th International Colloquium on Automata, Languages, and Programming
(ICALP 87), Karlsruhe, Federal Republic of Germany, July 13-17, 1987, Lecture Notes in Computer
Science 267, Springer-Verlag, New York, 1987, pp. 479-488.

[9] A. SCHNHAGE, Storage modification machines, SIAM J. Comput., 9 (1980), pp. 490-508.
[10] R. E. TARJAN, Efficiency of a good but not linear set union algorithm, J. Assoc. Comput. Mach., 22

(1975), pp. 215-225.
11 ., A class of algorithms which require nonlinear time to maintain disjoint sets, J. Comput. System

Sci., 18 (1979), pp. 110-127.
12],Amortized computational complexity, SIAM J. Algebraic Discrete Methods, 6 (1985), pp. 306-318.

[13] R. E. TARJAN AND J. VAN LEEUWEN, Worst-case analysis of set union algorithms, J. Assoc. Comput.
Mach., 31 (1984), pp. 245-281.


