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1. Introduction

Stochastic modelling has come to play an important
part in many areas of science and engineering for a long
time. Most of stochastic modelling cannot be solved
explicitly. As a result, numerical and analytical techniques
have been used to study such problems. Many numerical
techniques designed to produce approximate solutions in
the literature, see for example [2-7] and references therein.
It is well known that the local Lipschitz and the linear
growth condition are classical conditions in order to
guarantee existence and uniqueness of the global solutions
(see [1]). In [2,3,4], the authors investigate the
convergence and stability of Euler-Maruyama numerical
solution under these classical conditions. However, many
stochastic equations do not satisfy the linear growth
condition. Recently, In [5], the author consider an even
more general Khasminskii-type test for nonlinear
stochastic delay differential equations (SDDEs) that
covers a wide class of highly nonlinear equations, and
studied convergence in probability of the Euler-Maruyama
solution for SDDEs. For the similar result of highly
nonlinear neutral stochastic delay differential equations
(NSDDEs) with time-dependent delay, please see
Milosevic [6]. Specially, that Zhou and Fang [7]
established new criteria of the existence-and-uniqueness
of the global solution and the convergence in probability
of Euler-Maruyama approximate solution for nonlinear
NSFDEs under the polynomial growth conditions.

On the other hand, we also remark that a great deal of
reseach for the stochastic differential equations (SDEs) are
successfully extended to the stochastic differential
equations with Markovian switching (SDEwMSs)and the

stochastic delay differential equations with Markovian
switching (SDDEwMSs) (see [8,9,10,11]). In [9], the
authors introduce the Euler-Maruyama(EM) numerical
solution which strong converge to the actual solution
under the global Lipschitz condition, and the same
problem have been discussed under the local Lipschitz
condition and the linear growth condition, and furthermore
describe the convergence in probability, instead of L2
under some additional conditions in terms of Lyapunov-
type functions. In [12], the numerical solution for
NSDDEwMSs are discussed. And in [13], the authors
consider the strong convergence in the sense of the
LP-norm when the drift and diffusion coefficients are
Taylor approximations. However, to the best of our
knowledge, few papers can be found in the literature on
the numerical methods for nonlinear SDDEwWMSs. So,
being directly inspired by [7], the purpose of this paper to
study the Numerical solution of nonlinear stochastic
differential delay equation with Markovian switching.

The paper is organized as follows: Some necessary
notations and the property of right-continuous Markov
chain are in Section 2. In Section 3, we prove the
existence and uniqueness of the solution of SDDEwWMSs
under the polynomial growth. In Section 4, the Euler-
Maruyama approximate solution for SDDEwMSs are
obtained, and establish the convergence in probability.
Finally, in Section 5, we give one example to demonstrate
our results.

2. Preliminaries

Throughout this paper, let (©,.#,P) be a complete

probability space with a filtration {7} satisfying the

t>0"’
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usual conditions (i.e., it is increasing and right continuous
and A  contains all  P-null  sets). Let

w(t)=(wy(t),.... Wy, (t))T be an m-dimensional Brownian

motion, and let r(t), t>0 be a right-continuous Markov

chain on the probability space taking values in a finite
state space S ={1,2,..,N}. Set |x| be the Euclidean norm

in xeRY. If A is a vector or matrix, its transpose is
denoted by AT, If A is a matrix, its trace norm is

denoted by |A| = trace(AT A), while its operator norm is
denoted by ||A]=sup{|Ax:|x|=1}. For r>0, we shall
denote by C([—z’,O];Rd) the family of continuous

functions ¢ from [-7,0] to RY with the norm

le|= sup |¢(6). Let p>0,r>0, denote by
~7<0<0

LB,LE ([—r,O];Rd) the family of all % -measurable and

C([—r,O];Rd) -valued random variables & such that

E ||§||p < +00.
Set r(t),t >0 be a right-continuous Markov chain on
the probability space taking values in a finite state space

S={12,..,N} with the generator F:(yij )(NxN) given

by
p{r(t+A)=jl r(t):i}:{

)/ijA-l-O(A)
1+}/ijA+O(A), if i= j,

if i |,

where A > 0. Here y;; > 0 is transition rate from i to j if
i# J s while Yii = _Zi:tj}/ij'

We assume that the Markov chain r(t) is independent of
the Brownian motion w(t). It is well know that almost
every sample path of r(t) is a right-continuous step
function with finite number of simple jumps in any finite
subinterval of R, = [0,0). Moreover, for convenience,
denoted by y(t) = x(t — 7).

Consider the d-dimensional Euler-Maruyama (EM)
numerical solutions of nonlinear stochastic differential
delay equation with Markovian switching (SDDEwMSS)

dx(t)= f(x(t),x(t=7),r(t),t)dt

2.1
+g(x(t),x(t-7),r(t),t)dw(t), t=0,

. s . nd
with the initial data & e Lf,&. ([—r,O],R ) Here

f:RY xRY xSxR, —)Rd,
g:RYxRY xS xR, — RM,
Assumption (Hl). (Local Lipschitz Condition) For each

integer R>1 and i=12,..,N, there exists a positive
constant Lg, such that

f (%, 1, t)
—f (X2, ¥2,i,t)

y 9(x, y1.i,t)
—9(%2, y2.i,t)

<Lg (|X1—X2|2+|Y1—Y2|2),

(2.2)

for X, %o, Y1, Y2 € R%, with [xg|v ||V |ya| v|y2| < R.

Remark 2.1. According to assumption (H,), it is easy to
obtain that

|f (x, y,i,t)|2
<2|f (xy,i,t)- £(0,0,i,t) +2[f (0,0,i,t)]

(2.3)
<2l (jX? |y )+2|f (0001

<K (1+[x7 +[yf).

Similarly, g(x, y, i, I’ < Ke(1 + X + |yP). Here,
Kg =2(LR V| (0.0,i,t)f v|g(0,0,i,t)|2).

Assumption (H,). (Polynomial Growth Condition)
Assume that for some positive integer L, there exist
positive constants ay, a,, as, by, by, b3, a, £, such that

|ﬂ+2

X (x,y,i,t) < —a |X* —ap X" * +agy

Y 2 L+2 B+2 2.4)
|9 (% v )| <by[x” +by [x77 +bg |y
Let C2*(RYxSxR,;R, | denote the family of all

nonnegative functions V (x, i, t) on RY xS x R, which are
continuously twice differentiable in x and once

differentiable int. If V e Cz'l(Rd xSxR,; R+), define an

operator LV from RY xRY xS x R, toRby

LV (x(t), y(t).r (t),t) =V (x(t),r(t).t)
t

+Vy (x(t),r(t

1) (2.5

6X1 6X2 6Xd

0%V (x,it)
Vg = —6 .
xiaxj
dxd

In particular, if V is independent of i, that is V (x, i, t) =
V (x, t), then

v, :[6V(x,i,t) oV (x,i,t) ~ 6V(x,i,t)j
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LV (X, y,i,t) =V, (x,1) +Vy (X,

t) f(xy.i,t)
+trace[g (x,y,l,t)VXX(x,t)g(x,y,i,t)}

. N
since Zj=17ij =0.
Let by the generalized Ité formula, we obtain:

BV (x(72).r(r2) 72) = BV (X(z).1 (1) 71)
+ E.[:lz LV (x(s), y(s).r(s).s)ds,

holds for any stopping times 0 <z; <7, < « as long as the
integrations involved exist and are finite.

2.6)

3. Global Solution of SDDEwWMSs

In this sections, we prove the existence and uniqueness
of the solution of SDDEwMSs under the polynomial
growth.

Theorem 3.1. Let Assumptions (H;) and (H,) hold, and

azp,

assume that T >0, pzl,a1>p7_1bl,

a, >ag +pT_l(b2 +b3), then, for any initial condition

fell ([—1,0]; R
global solution x(t, &) to equation (2.1) on t > —=
Moreover, there exists a positive constant M such that
E|xP <M.

Proof. Bearing in mind the local Lipschitz condition
(2.2), it follows that for any given initial data

. nd
= LEZf ([—r,O], R
solution {x(t),te[-7,7,]} to Egs. (2.1), where 7, is the

explosion time. To show this solution is global, we only
need to show that 7, =0 a.s.

Assume that there exists an integer ko such that

), there almost surely exists a unique

), there exists a unique maximal local

maxge[_flo]|§(6*)|<k0. For each integer k >k, define

the stopping time

7 =inf {te[O,re]:|x(t)|>k}, (3.1)

and infg=0 (as usual, ¢ =the empty set). Define
7, =lim_,, 7, it is obvious that z,, is an increasing
function with k, so 7, <z, a.s. Our goal is to prove that
T, = a8, which implies that 7, =co. In other words,
we only prove that P(z, <t)—(k — o,t>0).

Define V (x, i, t) = |x|,, we obtain
LV (x(t),y(t),r(t).1)
=LV (x(1). y(1)
- p|x(t)|p72 X" (x(t), y(t),r(t).t)

+@|x(t)|p2|x(t),y(t),r(t),t| .

(3.2)

Using the Assumption (H,) and the inequality

2 2
p- |X|ﬁ’+P B+ |y|ﬁ+P’
ps+p p+p

X"~ 2| |'H+2 we  can

obtain

LV (x
|

£),y(t).r(t).t)

t>| ? [ auld? ~a X a2 |
(3.3)
()2 oo+ o2 g2

- 2 + +
: p(avﬂ)%(lvlﬂ )

where

F(x)= p(al —T_lblj|x|p + pa|x|0‘er
p

-1
—p(ag +T(b2 +b3)j|x|ﬂ+p.

Recalled that conditions of this theorem,
N >pT_lbl, azf, >a3+pT_1(b2+b3), there
exists a positive constant ¢, such that

F(x)=colx". (3.4)

Substituting for this an (3.4) into (3.3), implies
v x(O.r010)
=V (£(0).io) + I
+I Vi (x(s).r(
V(£(0).io)
+p[a + p2 1b3jﬁ+2ﬁ(|x(s—r)|ﬂ+p —|x(s)|ﬂ+p)ds

B+p
—j(;Co |x(s)|pds

V (x(s).x(s=7).r(s),s)ds
).8)g(x(s).x(s—7).r(s),5)ds

#[o U (X(5).7(5),8) 9 (x(s), X(5-7). 7 (s) 5w ().
Therefore
BV (x(t).r(0).1
=EV (&( ,|0)+Ej LV (x(s),x(s=7),r(s),s)ds
<EV(£(0).ip)
+p(a3+|021 jg:iEJ‘_J ﬂ+pds

t

—Ej0c0|x(s)|pds.

The Gronwall inequality implies
EV(x(t),r(t),t) = E|x|p <M.

Similar,

we have EV(x(tazy),r(tazc),taz)

=E[x(trzy )|p < M. By the definition of 7, , we have that
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p(ric <t)kP < p(z <OV (x(zc).r (7 ) 7))

< EV(X(t/\rk),l’(t/\‘rk),tArk)S Mp.

Clearly, we have that P(zy <t) — 0(k — o, t > 0).

4. Euler-Maruyama Method

In this section,
approximate solution.

Lemma 4.1. ([12]) Given rkA:r(kA) for k>0 and

we define the Euler-Maruyama

A>0, then {rkA,k =01, 2} is a discrete Markov chain

with the one-step transition probability matrix
P(8)=(R (4),,, =&

Since the y;; are independent of x, the paths of r can be
generated independently of x and in fact, before
computing X.

Let a stepsize he(0,1), with satisfies z=Mh for
t, =kh for

the discrete markovian

some positive integer M. Define

k=-M,-(M-1),..,012,..,
chain {rkh,k = 0,1,2,...} can be simulated as follows:
Compute the one-step transition probability matrix P (h).

Let ré‘ =iy and generate a random number {1 which is
uniformly distributed in [0, 1]. Define

N-Lp
) if Z 'Ol <§11
rlhz i, if ipeS—{N }suchthat

g
Z',l 0.3 ( §1<211'01

where we set z IOJ(h):O as usual. Generate

independently a new random number &, which is again
uniformly distributed in [0, 1] and then define

N, if Z <&y,

) =iy, if |ZeS—{ }suchthat
YR (<6 <X Py (h)

Repeating  this  procedure, a trajectory of

{rkh k=0,1,2, } can be generated. This procedure can be

carried out independently to obtain more trajectory.
After explaining how to simulate the discrete Markov

chain {rkh,k =01 2} the Euler-Maruyama numerical
scheme applied to the Egs.(2.1) is to compute the discrete
approximations X, ~ x(t,) by setting X, =&(kh) for

k=-M,-(M -1),...,0 and forming

_ h
Xk+1—Xk+f(Xk,Xk_M,rk,tk)h (41)
+g(Xk,Xk,M,rkh,tk)AWk for k=1,2,...,

where Awy =W(ty,1)+w(ty ).
For each k >0, define X (t)= Xy, X(t—7)=Xy_um,
T(t)=r{ with the initial value X, =& on [z,0]. That

is

(4.2)

t)= kiM X, (kn] (8

while the continuous-time Euler-Maruyama approximation
process X(t) on te[—r,oo] is to be interpreted as the

stochastic integral.
&, if [-7,0],
5()[(())?5r s),s)ds

X(t)= _ (4.3)
+Ig )XSr)F())dw()
if te[ ]
Therefore
X (t) =X (kh)+ th )? (s), )?(s—r),F(s),s)ds w

+J (s—7),7(s ),s)dw(s), t>0.

It is useful to know that X (t )= X, = X (t). that is,

X (t) and X(t) concide with the discrete approximate

solution at the gridpoints. For convenience, let T > 0 be
arbitrary and define the sequence of stopping times

og =inf {t>0:|X (1) >R}, 7 =inf{t=0:[x(t) >R},
and HR = OR NTR-

For convenience, let C be a positive constant
independent of h, and the product of C and other constants
is still denoted by C.

Lemma 4.2 Under Assumptions (H,),

E{ sup |X(t/\,uR)|2:|SC.

—7<t<T

Proof. Recalling the Lemma 3.1 in [7]. By (4.3) we
have

€| s x|

£(0) 2
=E Os<ltjET+'[ MRE(X(s),X (s=7),T(s),s)ds

" 9(X (). X (s=2).F (s).s)w(s)
<3E[¢(0)f (4.5)
+3ELs<g§T [ (Y(S)X(s—f)f(s),s)dsz}
+3EL§55T J, " a(X(s).X (s—r)f(s)s)dw(s)z}-
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Using the Holder inequality and (2.3)

E| sup
0<t<T

<TE| sup
0<t<T

.[(;A#R f(X(s), X (s=7),T(s),s)ds

|

J-t/\ﬂR f(X(s),X(s—z),7(s),s)ds

]
(4.6)

STE{ sup J';A#R KR(1+|)Z(S)|2 ,+|>z(s_7)|2)ds}
0<t<T

<TKg [T 2 E{ sup  |X (77)|2:|ds}

—T<NSSAUR

By the BDG inequality
E| sup '
Ot<T
s4E|:J';A”Rg()?(s),)?(s—r),F(s),s)dw(s)
tAUR o 2 o 2
s4E[j0 KR(1+|X(S)| X (s-7)| )ds}
T 2
<4Kg|T+2[ E| sup |X(n) ds|
0 —T<NSSALR

Using (4.7)and (4.6), the estimate becomes

E[ sup |X(t/\,LlR)|2:|

—7<t<T

|

|
4.7

<4E|E[? +3KRT (T +4)

+6K 4 (T +4)IJ E[ sup

—T<NSSALR

K (n)ﬂds.

The Gronwall inequality gives

E{ sup |X(t/\yR)|2:|SC.

—7<t<T

Lemma 4.3 Let Assumption (H;) hold, for any
te [O,T] , there exist a positive constant C independent of

h, such that
tAy v 2
[N E[X (s)- X (s)|"ds < Ch.

Proof. We have by definition of X (t) and X (t), thus

Then by Lemma 4.2, it is easy to obtain that

E| sup |>?(t)|2 <C, thus
—T<t<T AuR

[MRE|X (5)- X (s)]ds

0
. ViR 1+|)?(s)|2
X (s-o)f

-

<2KgT (1+2C)(h® +mh) < C.

Lemma 4.4 Under Assumption (Hy) and (H,), for any
€€(0,1) and T >0 there exists a sufficiently large

R" =R(e,T) and sufficiently small h™ such that
P{og <T}<e,R2R,h<h’.

Proof. Recalling that (3.2), the proof of this lemma is
similar to the argument of Theorem 3.5 in [7]. Applying
the generalized It6 formula to V (X (t),r(t),t):|x(t)|p
yields.

dv (X (t),r(t).t)

)
(
w (X (1).r(t).t) dt
X )
X
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Let R be sufficiently large integer, if
|X(t)|\/|X(t—r)|v|)?(t)|v|)?(t—r)|£R, then,  the
Assumption (H;) implies there exists constant C which
depends on R such that

dv (X (t),r(t).t)
<LV (X(
+Vy (X (t
+ClIX (t
Hence
EV (X (t),r(t),t)<EV(£(0),ip)
+EJ; LV (X (s), X (s=7),r(s).s)ds
SCE[ [|X ()= X () +[X (s-7)~ X (s~ 1) Jos.

By the Lemma 4.2 and s € [0,t Aor ], we have that

(4.8)

E|X(s)—)?(s)|

(4.9)

1 1 1

<[Kg(1+2C) ]2 h+[Kg (1+2C) |2 [mh]2
1
<Ch2.

Recalling the proof of Theorem 3.1,
EV(X(t/\GR),r(t/\GR),t/\GR)
<EV(£(0),ig)+Mg

X (s)=X(s
EJ-(t)/\UR | ( ) ( )| B ds
+[X((s=7))=X((s-2)
1
<EV(£(0),ig)+Mg +2CTh2,
here I\7I0 be a positive constant. Repeating the procedure

from  Theorem 3.1, we can prove that
P(or <t)>0(R—>»,T>0), which completes the

proof.
Lemma 4.5 [12] Let the Assumption (H;) hold, for

every te[0,T A ug], we have

tnog[9(X(9). X (s=0).1(5).5) [
Ejo ~g(X(s), X (s-7),7(s).5) ORE)
<Ch+o(h),

C is a positive constant dependent on maxp<<n(—7ii), but
independent of h.

Lemma 4.6 Under the condition of Theorem 3.1, the
numerical solution convergence to the exact solution of
Egs.(2.1) in the sense

lim E{ sup |x(t/\,uR)—X(t/\,uR)|2}=0.
h—0 [o<t<T

Proof. From Egs.(2.1) and Egs.(4.3), we have
X(tAug)—£(0)
= [R (X (5), X (s-7).r(5). s
+fy R g(x(s).x(s=2).r(s).s)aw(s),
X (trug)—£(0)
= [RE(X(5). X (s-2).1(s).5)s
SR (X (5), X (5-7).1(5),s)w(s).

By the inequality (a + b)® <2a’ + 2b?, forany t, €[0,T],

2
El: sup |X(t/\,uR)—X(t/\,uR)| }
0<t<ty

ds (4.12)

+2E| sup

By the Holder inequality, Lemma 4.3, Assumption (H,),
and (4.10), we have

e[ £ (500 (5).9) ]
- OStStl 0 {—f()?(s),)?(s—r),?(s),s)d
| f[x(s),x(s—r)} 2]
taur , (taur| LT(8)S
SEoZ?ftl '[0 dSJ.O [)?(s),)?(s—r), @
_f
r(s),s
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<TE WALR f(X(S),X(S—T) I’(S ’5) st
0 |-f(X(s), X(s—7),7(5).5)
v (R f(x(s),x(s=7).,r(s).s) st
0 - (X(s). X (s—7).T(5).8)
wour|f (1)K (s=2).r(5).s) [
2T, (X (s) X (s T (s)s)|
< 2TE[VMR ()R (s ds
© Ak (s—e)- K (s-7)
e e[ (R X(s=2)r(s)s) [
ZTEJ.O —f(X(s), X (s—7),7(s).5) |
2[x(s)-x (s)
sZTLREjWR +2|x(s)—>?(s)|2 .
s2|x(s-7)- X (s—7)]
_+2|X(S—T)—)Z(S—Z’)|
L ALR f(Y(S) 7(5_7)'r(s)’s)
2T, (X (s) X (=) 7 (s)s)|

T 2
<8TLg E[ sup [x (17 A )= X (11 A )| }ds

0<n<s

+8TLRCh+2T (Ch+o(h)).

Similarly, by the Burkholder-Davis-Gundy inequality ,

Lemma 4.3 and (4.11), we may obtain

o |tvsm [ T X(5=2) 1 (6):9) }WSZ
EqutlIO {—f()?(s),)?(s—r),?(s),s) aw(s) ]
R g(x(s).x(s—7).r(s).s) 2 .
_4J'0 E—g()?(s),)?(s—r) 7(s).s) |
o) x(s=)r(s)) [
SSI;IA#R -9(X(s),X(s—7),7(s).s) s
_[olx(s)Rse)r(5).9
~g(X(s),X(s=7),7(s).9)

t 2 X(s—7) 2
<8Lg[ "R E[x(s)- X (s)| +E “R(s) ds
BjélAﬂR i(] (s).X(s=7).r(s).s) ds

ds

+8(Ch+o(h))

AR E|x(s)—X(s)|2 }
<32L ds
I LE|x(s)>Z(s)|2

+8(Ch+o(h))

0<n<s

T 2
SSZLRJO E|: sup |x(77/\uR)—X(77/\#R)| }ds
(4.14)
+32LgCh+8(Ch+o(h)).

Substituting (4.13) - (4.14) into (4.12), yields

2
E{ sup |x(t/\uR)—X(t/\yR)| }
0<t<ty

0<7<s

<2{8TLRIJ E{ sup |x(nAyR)X(nA#R)|2}dS]

+8TLrCh+2T (Ch+o0(h))

0<n<s

+2{32LRJ‘J E{ sup [x(17 A g )~ X (17 pig )|2}ds]

+32LgCh+8(Ch+o(h))

<16(T +4)LRj0T EL%JE IX(T Apg) =X (T AﬂR)f}dS
<t<t

+8LRCh(T +4)+(Ch+o(h))(2T +8).

The Gronwall inequality implies

E{ sup [x(tApg)—X (tAyR)d
0<t<ty
<[BLRCN(T +4)+(Ch-+o(h))(2T +8)]e™T 4T,

that is,

- 2
lim E{ sup [x(nAug)=X(nAuR) }:o,
h—=0 | o<t<y

The proof is completed.
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Theorem 4.7. Under Assumption (H1), (H2), for
arbitrary T > 0.

lim sup |x(t)= X (t)|=0 in probability.
h—=0tef0,T]

Proof. For arbitrary ¢ € (0, 1), we define

-

If we can show that P(B) < ¢, then the Euler-Maruyama
approximate solution converges to the exact solution of
Egs. (2.1).

Recalling the proof of Theorem 3.1 and Lemma 3.4,
there exists a sufficient large R* = R(e, T) and sufficiently

small h such that

Dosup [x(t)=X ()] g}

te[O,T]

P(TR* gT)sfls,P(aR* ST)£€/3.

By Lemma 4.6, for the sufficiently small h, we have
gzP{Bﬂ{,uR* >T}}
2]

X(tAﬂR*)_X(tAﬂR*)
z}ﬁf/&

< E[I”R*>R sup

—7<t<T

< E{ sup X(t/\,uR*)—X(t/\,uR*)

—7<t<T

Therefore
P(B)< P{Bﬂ{,uR* >T}}+P{,u
< P{Bﬂ{yR* >T}}+ P{TR* <

<el3+el/3+€/3<e.

The proof is completed.

5. One Example

In this section, in order to illustrate our results, we
consider an numerical example.

Example. Consider the following scalar nonlinear
stochastic differential equation with Markovian switching

(1) = {—alx(t)+ a,x? (1) X3t 1)]O|t
~agx (t)+a(r (1)) x(t)
+ by (£)x(t-2)+b(r ()2 (t-1) [ aw(t),

on t >0, where, w(t) is a scalar Brownian motion, r(t) is a
right continuous Markov chain taking values in s ={1,2}

with the generator
-1 1
= ,

of course w(t) and r(t) are assumed to be independent, and
ay, ay, as, by are positive constants. It is to obtain

(5.1)

TE(x(1) x(t-1),r (1))
=—al><2(t)+az><()x3( )
—agx® (t)+a(r(t))x?

[al a(r(t )] (t —agx° (t)
+ay 12X (1) +x° (t-1) |,

—[al a( t))]x t)|2 (ag—ay /1 2)|x(t)|
|6

°
+a, 1 2|x(t-1)

|g x(t),x(t-1),r(t), t)|2

Fxt (1) % (t- 1)+b2( ()) x°(t-1)
+2b1b( r(1)x* (1)
)
(

(t-1)
(t-)

<2/307x5 (t)+1/3 2x6 (t 1)+b2(r(t))x6
+2/3pb(r (1)) x° ()+4/3b1b( r(t))x°
<2/3by [y +b(r(t))]x®(
+[1/30f +4/3blb(r(t))+bz(r(t))}x6 (t-1).
By the Theorem 3.1, we assume that
a >a(r(t)).by >b(r(t)),ag>a,/2,
and
1/3b7 +413byb(r (1)) +b? (r(t)) >0
-1
a3 —az >pT<bl+b(r(t))),
then Egs. (5.1) has unique global solution.

To carry out the numerical simulation we choose the
step size h = 1/1024, and a(1) = 0.1, a(2) =0.05, b(1) =
0.05, b(2) = 0.02, the computer simulation result is shown
in Figure 1 and Figure 2. And it is clear that the Euler-

Maruyama method reveals the almost surely exponentially
stable property of the solution.

0.9f .
08H| .
07} .
06[ \ .
05F .
04 \ .
03 \ J
02f \ ]

01f . 1

0 1 1 1 . T——

Figure1.a;=0.8,a,=0.5,a;=12,b; =0.2
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Figure2.a;=0.6,a,=1,a3=1.8,b; =0.1
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