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Abstract

We examine the denotational semantics of a language extending the nu-calculus of Pitts and Stark by using names

for exceptions and general references. In particular, we examine abstract categorical models capturing nominal

computation and construct a concrete fully abstract model in game semantics by using the recently introduced

generalisation to nominal games.

1. Introduction

A prevalent feature of programming languages is the use of exceptions for raising and handling eccentric
program behaviour, and more generally for manipulating the flow of control. It is a key feature, for example,
of ML, Java and C++. The raising of an exception forces a program to escape out of its context and to the
nearest exception-handler. In abstract terms, exceptions provide a means (an effect) of overriding nested
behaviour of pure functional programs. In this paper we examine denotational semantics for exceptions and
general references, with our focus being mainly on exceptions (the model of general references has been
presented elsewhere [23], but the combination of the two effects has a semantical interest of its own).
In particular, we present the first full-abstraction result for a statically-scoped language with dynamically

bound, locally declared (good) exceptions and general references, which faithfully reflects the practice— and
reaches the expressivity— of real programming languages such as ML. The language extends the paradig-
matic nominal language of Pitts and Stark [21] (ν-calculus) by treating exceptions and references as names.
Names are constant identifiers with no inner structure which can be “created locally, tested for equality, and
passed around via function application” ([21]). Moreover, exception-names can be raised and handled; and
reference-names can be dereferenced and updated.
In order to represent names rigorously we found our presentation (of the language and its models) on

nominal sets [8,20]. These constitute a robust foundational theory of constructions over collections of atoms,
and are derived from the Fraenkel-Mostowski permutation models of set theory with atoms. Our construc-
tions are built in nominal sets so that names be represented by atoms. Thus, the expressiveness of nominal
sets, which goes far beyond our purposes here (see e.g. [7]), provides us with a firm handle on names.
A fully abstract model of exceptions (and ground-type references) has been previously constructed [12] by

successfully translating in the semantical universe the override of nested behaviour: in abstract terms, the
model allows for jumps in the precedence with which a program answers questions posed by the environment
(i.e. it mildens the well-bracketing condition). That description of the exception effect is extremely accurate
and intuitive. However, the modelling of exceptions themselves is based on an ‘object-oriented’ approach
which encodes exceptions as products of raise/handle type, in a similar way that non-nominal models of
references [4,2] see references as products of read/write type. In order to achieve full-abstraction “bad”
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constructors need to be included in the syntax, that is, the language examined includes non-exception terms
of exception type (bad exceptions, and also bad variables). These constructs, while solving the full-abstraction
problem, distance the language from the programming features it was set out to capture.
The nominal approach resolves this problem in an intuitive way: an exception is simply a name with

no inner structure, and a language with exceptions is one equipped with constructs for manipulating (rais-
ing/handling) those names. Thus, instead of encapsulating the programming effect within the exception-type,
we encapsulate it within every type. The same approach is followed for references.
Semantically, the above means that a proper model should include names as an effect and contain ap-

propriate structure for representing other programming effects (exceptions/references) related to names. We
represent effects by use ofmonads [17], which are a means of encapsulating an algebra of computations within
a domain of semantic values. On the other hand, the notion of local state induced by names is described by
a family of comonads. The monads and comonads of the model are then connected as follows: fresh-name
creation is a (monadic) computation which alters the (comonadic) local state. A first contribution of this
paper is the formulation of abstract categorical models for exceptions and general references following this
approach.
Our main result is the formulation of a specific such model which is, moreover, fully abstract. This is

achieved by use of nominal game semantics ([1,23,24], and also [13,15,14]), which constitutes a ‘nominalised’
version of the highly successful denotational paradigm of game semantics (see e.g. [3]). In particular, our
nominal games are Honda-Yoshida call-by-value games [11] with local state [19], built inside the universe of
nominal sets. This means that computation is modelled as an interaction (game) between two participants,
one representing the program (Player) and the other the environment (Opponent), consisting of sequences
of moves which may contain or introduce names. Moreover, each move is equipped with a local state, that
is, a history of all names introduced so far in the interaction. These specifications allow for the capturing of
the basic nominal effect, that is, the presence and passing around of names and their local, fresh creation.
Moreover, the category of nominal games has sufficiently rich structure in order for exception and store
monads [17] to be defined. This gives us an adequate model of our language; by restricting the domain of
allowed semantic behaviours we are able to also obtain compact definability, and hence full abstraction.
In comparison to previous game models of exceptions and references [12,4,2], we notice that the use of

monads allows us to express our computational effects inside a domain which is otherwise too restrictive
(i.e. too pure). In particular, we are able to express fresh-name creation (a non-total effect), exceptions (a
non-well-bracketed effect) and references (a non-innocent and non-visible effect) inside a domain of total,
well-bracketed, visible, innocent games. In a sense, nominal games provide a fine-gained view of ordinary
(non-nominal) games for effectful computation: for example, from a nominal game with exceptions we can
obtain an ordinary, non-well-bracketed game by simply hiding the names appearing in the former.

2. Nominal sets

We briefly introduce nominal sets, which will be used at the basis of all our constructions with names.
Let us fix a countably infinite family (Ai)i∈ω of pairwise disjoint, countably infinite sets, and let us denote
by PERM(Ai) the group of finite permutations of Ai. The elements of the Ai’s are called atoms and are
denoted by a, b, c and variants. Permutations are denoted by π and variants; id is the identity permutation
and (a b) is the permutation swapping a and b (and fixing all other atoms). We write A for the union of all
the Ai’s. We take PERM(A) to be the direct sum of the groups PERM(Ai), that is, elements of PERM(A)
are those permutations of A that can be described as finite compositions,

π = π1 ◦ · · · ◦ πn ,

such that each πi belongs to some PERM(Aj). This means, in particular, that for all atoms a and all
permutations π,

a ∈ Ai =⇒ π(a) ∈ Ai .

A nominal set X is a set |X | (usually written X) equipped with an action from PERM(A), that is, a
function ◦ : PERM(A)×X → X such that, for all x ∈ X and π, π′ ∈ PERM(A),
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π ◦ (π′
◦ x) = (π ◦ π′) ◦ x and id ◦ x = x .

Moreover, each x ∈ X has finite support , that is there exists a finite set S ⊆ A such that, for all
permutations π,

(∀a∈S. π(a) = a) =⇒ π ◦ x = x . (1)

Finite support is closed under intersection, and hence each element x of a nominal set has a (least) support
S(x). This can be concretely expressed as:

S(x) = {a ∈ A | for infinitely many b. (a b) ◦ x 6= x} . (2)

We say that a is fresh for x, written a# x, if a /∈ S(x). x is equivariant if S(x) = ∅.
Clearly, A is a nominal set by taking π ◦ a , π(a), for each π and a. More interestingly, the set A# of finite

lists of distinct atoms is a nominal set (with permutations acting elementwise). Such lists we denote by
ā, b̄, c̄, etc. If X and Y are nominal sets then so is their cartesian product X×Y , with permutations acting
componentwise, and their disjoint union X+Y . Moreover,X ′ ⊆ X is a nominal subset of X if X ′ is closed
under permutation actions, these acting as on X . A relation R ⊆ X × Y is a nominal relation if it is a
nominal subset of X × Y . A nominal function is a function which is also a nominal relation. Concretely,
a relation R ⊆ X × Y (resp. a function f : X → Y ) is nominal if, for any π and any (x, y) ∈ X × Y ,

xRy ⇐⇒ (π ◦ x)R(π ◦ y) (resp. f(π ◦ x) = π ◦ f(x)) . (3)

The support of a list ā ∈ A# is strong in a very specific way: any permutation π for which π ◦ ā = ā,
satisfies π ◦ a = a for all a ∈ S(ā). Accordingly, for any nominal set X , any x ∈ X and any S ⊆ A, we say
that S strongly supports x if, for all π,

(∀a∈S. π(a) = a) ⇐⇒ π ◦ x = x . (4)

X is a strong nominal set if all its elements have strong support. The notion of strong support is stronger
than that of support: for example, {a, b} ⊆ Ai does not have strong support. On the other hand, finite lists
of atoms have strong support, so A# is a strong nominal set. Note that strong support coincides with weak
support when the former exists.
Finally, in nominal sets we can define atom-abstractions. We will be using a simple such mechanism which

abstracts all atoms from a nominal element by orbiting it under all permutations. That is, for a nominal set
X and x ∈ X , we define an equivariant [x] by:

[x] , {y ∈ X | ∃π. y = π ◦ x} . (5)

3. The νερ-calculus

We introduce the νερ-calculus, an idealised functional language with nominal exceptions and nominal
general references. The calculus includes types for commands, numerals, products, functions, exceptions and
references.

TY ∋ A,B ::= 1 | N | A×B | A→ B | E | [A] . (6)

Types of the last two classes are nameful , that is they contain names. Names are denoted by atoms:
– we assume a set Ae ∈ (Ai)i∈ω with elements denoted by ȧ, ḃ, ...,
– and, for each A ∈ TY, a set AA ∈ (Ai)i∈ω with elements denoted by ä, b̈, ... .
(In general, names are denoted by a, b, ... .)
We define terms and values as follows.

TE ∋M,N ::= x | λx.M | M N | 〈M,N〉 | fstM | sndN | n | predM | succN

| if0 M then N1 else N2 | skip | a | νa.M | [M = N ]

| raise M | try N1 handle M => N2 | !M | M := N ,

VA ∋ V,W ::= n | skip | x | λx.M | 〈V,W 〉 | a .

(7)
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We see that the TE and VA are strong nominal sets. A term’s support is the set of names it contains, be they
free or bound. ν is a name-binder (and λ is a variable-binder), and we follow the usual convention of equating
terms up to α-equivalence, for name- and variable-binding. Note that the former is defined ‘nominally’ [8]:

M = x, a, n, skip
M =αν

M

M =αν
M ′

λx.M =αν
λx.M ′

. . .
for cofinitely many b. (a b) ◦ M =αν

(a′ b) ◦ M ′

νa.M =αν
νa′.M ′

Typing in νερ involves environments S | Γ , where S is a finite subset of Ae ∪ (AA)A∈TY, and Γ contains
variable-type pairs. Using Aν for nameful types, the typing rules are as follows—plus the standard rules
for λ-calculus with products, numerals and if-then-else.

a ∈ S
S | Γ |− a : Aν

S, a | Γ |−M : B

S | Γ |− νa.M : B

S | Γ |−M : Aν S | Γ |− N : Aν

S | Γ |− [M = N ] : N

S | Γ |−M : E

S | Γ |− raise M : A

S | Γ |−M : E S | Γ |− N1, N2 : A

S | Γ |− try N1 handle M => N2 : A

S | Γ |−M : [A]

S | Γ |− !M : A

S | Γ |−M : [A] S | Γ |− N : A

S | Γ |−M := N : 1

Note that, in contrast to the presentation in [23,24], here we are using sets for local state instead of lists.
In the semantics, these sets S will have to be implicitly ordered, but this is harmless: in fact, such implicit
orderings are regularly used for environments Γ .
The operational semantics is defined via a small-step reduction relation in environments P . These are

nominal sets enlisting all names appearing in a computation and storing the values of those names that are
references. Formally, P is a finite partial function from names to values, that is,

P ::= ∅ | a, P | ä :: V, P (8)

where a and ä do not appear in dom(P ). We stipulate that valid environments satisfy dom(P ) = S(P ). Observe
that a reference name ä may appear uninitialised inside an environment; in fact, this is what happens when
a fresh reference is created. The reduction rules are as follows.

UPD
P, ä(::W ), P ′ |= ä := V −→ P, ä :: V, P ′ |= skip

DRF
P, ä :: V, P ′ |= ! ä −→ P, ä :: V, P ′ |= V

VHL
P |= try V handle ȧ => N −→ P |= V

XPN
P |= Z[raise ȧ] −→ P |= raise ȧ

HL
P |= try (raise ȧ) handle ȧ => N −→ P |= N

CHK n=1 if a 6=b
n=0 if a=bP |= [a = b] −→ P |= n

NHL ȧ 6=ḃ

P |= try (raise ḃ) handle ȧ => N −→ P |= raise ḃ
NEW a#P

P |= νa.M −→ P, a |=M

LAM
P |= (λx.M)V −→ P |=M{V/x}

SUC
P |= succn −→ P |= n+1

PRD
P |= pred (n+1) −→ P |= n

PRD
P |= pred0 −→ P |= 0

FST
P |= fst 〈V,W 〉 −→ P |= V

SND
P |= snd 〈V,W 〉 −→ P |=W

IF0
j=0 if n=0
j=1 if n>0P |= if0 n then N0 else N1 −→ P |= Nj CTX

P |=M −→ P ′ |=M ′

P |= E[M ] −→ P ′ |= E[M ′]
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Unhandled evaluation contexts are of the forms:

Z ::= (λx.N) | N | 〈V, 〉 | 〈 , N〉 | fst | snd | pred | succ , if0 then N else N ′

| [ = N ] | [a = ] | ! | := N | ä := | raise | try N1 handle => N2

and general evaluation contexts are of the forms:

E ::= Z | try handle ȧ => N .

Apart from evaluation contexts, we also have single-holed, variable-capturing contexts C defined as usually.
For any S | Γ |− M,N :A , we say that M observationally approximates N , written S | Γ |− M / N ,
if, for any variable- and name-closing context C : 1,

∃P ′.( |= C[M ] −→→ P ′ |= skip) =⇒ ∃P ′′.( |= C[N ] −→→ P ′′ |= skip) . (9)

We usually write simply M / N . Moreover, we set ≅ , / ∩ ' .

Sub-calculi and expressiveness

Let us briefly compare the expressiveness of νερ with that of the following three sub-calculi.
(i) The ν-calculus [21] is the restriction of νερ with no raising, handling, updating or dereferencing con-

structs, and a single nameful type. 1

(ii) The νρ-calculus [23] is the restriction containing general references but no exceptions.
(iii) The νε-calculus is taken to be the restriction containing exceptions but no references, so the only

nameful type is E.
The syntax, static and operational semantics of these languages are defined by selecting the relevant clauses
from νερ’s specifications.
These languages are separated observationally by the following terms. First, for any type A, we define the

terms:
stopA , νb. (b := λx.(! b)skip) ;(! b)skip : A ,

[M ⇔ N ] , if0 M then N else (if0 N then 1 else 0) : N ,
(10)

where composition M ;N is given by (λx.N)M , some x not in N . stop is the divergent term (Ω), while
[M ⇔ N ] compares M and N as booleans. Take Aν to be some nameful type of minimal size, according to
the calculus at hand. Define:

M1 , λf. 0 : (Aν → N) → N ,

M2 , νa. νb. λf. [fa⇔ fb] : (Aν → N) → N ,

M3 , νa. λf. [fa⇔ fa] : (Aν → N) → N ,

M4 , λf. stop1 : (1 → 1) → 1 ,

M5 , λf. f skip ; stop1 : (1 → 1) → 1 .

(11)

Note that M4 and M5 are meaningful only in the presence of references (i.e. in νρ, νερ), because of stop.
Our nominal calculi exhibit the following behaviour.

M1 ≅M2 M2 ≅M3 M4 ≅M5

ν ✓ (1.1) ✓ (1.2) −

νρ ✗ (2.1) ✗ (2.2) ✓ (2.3)

νε ✗ (3.1) ✓ (3.2) −

νερ ✗ (4.1) ✗ (4.2) ✗ (4.3)

Table 1: Equivalences separating our nominal calculi

(1.1) is shown in [22], and (1.2) follows from (3.2). The latter is shown semantically in the last section. (2.3)
can also be shown semantically, see [24]. Inequivalences are left as exercise.

1 In fact, the ν-calculus of [21] contains booleans and not numerals.
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4. νερ-models

We now formulate conditions for a correct categorical semantics of νερ. Assuming an underlying category
with finite products, the semantics we formulate is monadic over a computational monad T (v. [17]) and
comonadic over a family of local-state comonads Q = (Qā)ā∈A# (v. [6]). Thus, the morphism related to
each S | Γ |−M :A is of the form

JMK : QāJΓ K → T JAK

where ā is an ordering of S, i.e. S(ā) = S.
Recall that a strong monad (T, η, µ, τ) on a category C with finite products comprises of a functor

T : C → C and natural transformations

η : Id → T , µ : T 2→ T , τ : ( × T ) → T ( × )

such that the following diagrams commute.

T 3A
µTA //

TµA

��

T 2A

µA

��
T 2A µA

// TA

TA
ηTA //

idTA
&&M

M
M

M
M

M
M

M
M

M
M

TηA

��

T 2A

µA

��
T 2A µA

// TA

A× T 2B
idA×µB //

τA,TB

��

A× TB
τA,B

((R
RR

R
R

R
R

R
R

R
R

R
R

A×B
idA×ηBoo

ηA×B

��
T (A× TB)

TτA,B

// T 2(A×B) µA×B

// T (A×B)

1× TA
τ1,A //

∼=
''O

O
O

O
O

O
O

O
O

O
O

O
T (1×A)

T∼=

��
TA

(A×B)× TC
τA×B,C //

∼=

��

T ((A×B)× C)

T∼=

��
A× (B × TC)

idA×τB,C ; τA,B×C

// T (A× (B × C))

C has T-exponentials if, moreover, for each pair of objects B,C, there is an object TCB and an arrow
ev
T : TCB ×B → TC such that for each arrow f : A × B → TC there exists a unique ΛT (f) : A → TCB

satisfying:
f = ΛT (f)× idB ; evT .

Let us write τ ′ : T × → T ( × ) for the transformation derived from τ and product symmetries, and
take

ψA,B , TA× TB
τ ′

−→ T (A× TB)
Tτ
−→ T 2(A×B)

µ
−→ TB ,

ψ′
A,B , TA× TB

τ
−→ T (TA×B)

Tτ ′

−→ T 2(A×B)
µ

−→ TB .
(12)

In general, ψ 6= ψ′ represents the non-commutativity of consecutive effects.
A monad may encapsulate several effects consecutively. One way of formalising this is by stipulating that

the monad be compound, i.e. of the form T = T1 ◦ T2 (plus a distributivity law [5]). Such a description
presupposes knowledge of the constituent sub-monads. However, in our case it suffices to know that the
consecutive effects inside T are separable in the following sense.

Definition 1 Let T be a strong monad on a category C. We say that T is precompound if there exists a
category C′ such that:
(i) C is a lluf subcategory of C′ and T extends to a strong monad on C′;
(ii) there is a natural transformation θ : T → T 2 in C′ such that the following diagrams commute.

TA
θA //

id
##H

H
H

H
H

H
H

H
H T 2A

µA

��
TA

T 3A

µTA ; θTA

��

T 2A

µA ; θA

��

TθAoo θTA // T 3A

T (µA ; θA)

��
T 3A TµA

// T 2A T 3AµTA

oo

A× TB
τA,B //

id×θB

��

T (A×B)

θA×B

��

A× T 2B τA,TB ;TτA,B

// T 2(A×B)

Moreover, each ηA is an inner- and outer-component arrow, where an arrow f : A→ TB is said to be
– an inner-component arrow if f ; θB = f ; ηTB ,
– an outer-component arrow if f ; θB = f ;TηB .
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We write T as (TC′ , θ). N

Thus, θ separates the two components of T in the following sense. Each θA : TA → T 2A sends the outer
T -component of TA to the outer T of T 2A, and similarly for the inner one. In general, though, the two
components of T may not be separable within C (i.e. the separating arrows θA may not live in C) but in a
supcategory C′. Note that a compound monad is easily shown to be precompound, by taking:

θ , T1T2
T1η2
−−−→ T1T2T2

T1T2η1
−−−−−→ T1T2T1T2 . (13)

A comonad (Q, ε, δ) in C is a monad in Cop, that is

Q : C → C , ε : Q→ Id , δ : Q→ Q2,

and the first two monadic diagrams are satisfied (when reversed). We say that Q is a product comonad if
the canonical natural transformation

ζ̃ , 〈Qπ1, Qπ2; εB〉 : Q(A×B) → QA×B (14)

has an inverse ζ. We write Q as (Q, ε, δ, ζ), and denote the symmetric counterparts of ζ, ζ̃ by ζ′, ζ̃ ′. Note
that if Q is a product comonad then it can be expressed as Q ∼= Q1× .
In the nominal setting, comonads will be used for the modelling of (constant) local state. This will be

accomplished by the following construction.

Definition 2 Let C be a category with finite products and a booleans-object 1+1. A comonadic nominal
setting on C is given by a family of product comonads (Qā, ε, δ, ζ)ā∈A# on C such that: 2

(i) Qǫ ∼= IdC and Qā = Qā
′

whenever [ā] = [ā′]. For each ā ∈ A#, we set

Aā , Qā1

(and therefore Qā ∼= Aā × ) and write Ai for A
a with a ∈ Ai. These represent names-objects within

C.
(ii) If S(ā′) ⊆ S(ā) then there exists a comonad morphism ā

ā′
: Qā → Qā

′

such that ā
ǫ
= ε and ā

ā
= id.

Moreover, whenever S(ā′) ⊆ S(ā′′) ⊆ S(ā),

ā

ā′′
;
ā′′

ā′
=

ā

ā′
. (CR)

(iii) For each i ∈ ω there is a name-equality arrow eqi : Ai×Ai → 1+1 such that, for any distinct a, b ∈ Ai,
the following diagram commutes.

Qa1 ∆ //

!

��

Ai ×Ai

eqi

��

Qab1
〈 ab

a
,ab

b
〉

oo

!

��
1

in1 // 1 + 1 1
in2oo

(N1)

N

The above specifications describe local state by means of comonads, and change of local state by means of
monad transformations ( ā

ā′
). The latter, however, is restricted to the case where no fresh names are involved

(S(ā′) ⊆ S(ā)); for fresh-name creation we also need a monad.

Definition 3 A monadic-comonadic nominal setting on a category C comprises of a strong monad
(T, η, µ, τ) with T -exponentials and of a family of product comonads Q = (Qā, ε, δ, ζ)ā∈A# on C such that:
(i) Q is a comonadic nominal setting on C,

2 In fact, (Qā, ε, δ, ζ) stands for the more cumbersome (Qā, εā, δā, ζā).
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(ii) for each āa ∈ A# there exists a natural transformation nuāa : Qā → TQāa such that, for any ā′a with
S(āa) ⊆ S(ā′a), the following diagrams commute.

A×QāB

id×nuāa
B

��

ζ //Qā(A×B)

nuāa
A×B

��
A× TQāaB

τ ;Tζ
// TQāa(A×B)

QāA

nuāa

��

〈id,nuāa〉 //QāA× TQāaA

τ

��
TQāaA

T 〈 āa
ā
,id〉

// T (QāA×QāaA)

Qā
′

A
nuā

′a
//

ā′

ā

��

TQā
′aA

T ā′a
āa

��
QāA

nuāa
// TQāaA

(N2)

N

This completes the specifications of a basic nominal model, which is an abstract categorical model of the
ν-calculus. From that, we obtain a model of the νερ-calculus as follows. Note that we write Ae for Aȧ (any
ȧ ∈ Ae), and AA for Aä with ä ∈ AA.

Definition 4 A νερ-model M is a monadic-comonadic nominal setting (M, T,Q) satisfying the following
conditions.

I. M contains an object N along with arrows ñ : 1 → N, each n ∈ N, and successor/predeccessor arrows.
Moreover, there is an appropriate natural transformation with components cndA : N×TA×TA→ TA
for zero-equality conditionals.

II. M contains a natural transformation inx : KAe
→ T for exception-inclusion, whereKAe

is the constant-
Ae functor, such that the following diagrams commute.

A×Ae
id×inxB //

π2

��

A× TB

τ

��
Ae

inxA×B // T (A×B)

Ae
inxTB //

inxB
&&M

M
M

M
M

M
M

M
M

M
M T 2B

µ

��
TB

(NE1)

Moreover, for each object A, an arrow hdlA : Ae × TA× TA → TA for exception-handling such that
the following diagram commutes.

Qȧḃ1× TA
〈 ȧḃ

ȧ
, ȧḃ

ḃ
;inxA〉×id

//

π1;
ȧḃ
ȧ

��

Ae × TA× TA

hdlA

��

Ae × TA
〈id,inxA〉×idoo

π2

ttjjjjjjjjjjjjjjjjjjj

Ae
inxA // TA Ae ×A× TA

π12 ; ηoo

id×η×id

jjTTTTTTTTTTTTTTTTT

(NE2)

III. Setting

J1K , 1 , JNK , N , J[A]K , AA , JEK , Ae , JA→ BK , T JBK
JAK

, JA×BK , JAK × JBK ,

M contains, for each A ∈ TY, arrows drfA : AA → T JAK and updA : AA × JAK → T 1 such that the
following diagrams commute,

AA × JAK
〈id,updA〉 ; τ ;∼= // T (AA × JAK)

Tπ1 ;Tdrf ;µ
,,

Tπ2

22 T JAK

AA × JAK × JAK
〈id×π1;updA,id×π2;updA〉 // T 1× T 1

ψ ;∼=
++

π2

33 T 1

Qäb̈1× JAK × JBK
〈 äb̈

ä
×π1;updA,

äb̈

b̈
×π2;updB〉

// T 1× T 1
ψ ;∼=

++

ψ′ ;∼=

33 T 1

(NR)

and, moreover, updates and fresh-name creation are independent effects, that is:

(nuāaA × updB) ;ψ = (nuāaA × updB) ;ψ
′ . (SNR)
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IV. T is precompound, (TM′ , θ), with nu, upd being in the outer component and inx in the inner one.
Moreover, for each object A:

hdlA = Ae×TA×TA
id×θA×id
−−−−−−−→ Ae×TA

2×TA
τ×id ; τ ′

−−−−−−→ T (Ae×TA×TA)
ThdlA−−−−→ T 2A

µ
−→ TA (NE3)

The translation of the νερ-calculus in such a model is given in figure 1. N

Regarding the diagrams used in the definition, (NE1) attaches coproduct inclusion properties on inx while
(NE2) is a plain categorical translation of the reduction rules NHL, HL, VHL. On the other hand, (NR)
represents the following νερ-equivalences, for ä 6= b̈.

ä := V ; ! ä ∼= ä := V ;V

ä := V ; ä :=W ∼= ä :=W

ä := V ; b̈ :=W ∼= b̈ :=W ; ä := V

(15)

We now explain the role of precompoundness. Although θ does not appear explicitly in the semantic
translation, it does so implicitly: because of (NE), the translation Jtry N1 handle M => N2K is, in fact,

QāΓ
〈JMK, JN1K ; θ, JN2K〉
−−−−−−−−−−−−−→ TAe × T 2A× TA

ψ×id ; τ ′

−−−−−−→ T (Ae × TA× TA)
hdl ;µ
−−−−→ TA . (16)

The purpose of θ above is to separate the two components of TA yielded by JN1K, so that the inner component
be passed on to the exception-handler and the outer component to the output of the computation. Thus,
fresh-names and name-updates of N1 are not lost, and try handle M => N2 behaves like a proper
(handled) evaluation context. Finally, note the utility of allowing θ not to be part of our model M (but of

JnK : QāΓ
Qā!
−−−→ Qā1

ā
ǫ

−−→ 1
ñ
−→ N

η
−→ TN

JxK : QāΓ
Qāπ
−−−→ QāA

ā
ǫ

−−→ A
η
−→ TA

JaK : QāΓ
Qā!
−−−→ Qā1

ā
a

−−→ Ax
η
−→ TAx

JMK : Qā(Γ ×A) −→ TB

Jλx.MK : QāΓ
ΛT (ζ ; JMK)
−−−−−−−−→ TBA

η
−→ T (TBA)

JMK : QāΓ −→ T (TBA) JNK : QāΓ −→ TA

JM NK : QāΓ
〈JMK ,JNK〉 ;ψ
−−−−−−−−−−→ T (TBA × A)

T ev
T; µ

−−−−−→ TB

JMK : QāΓ −→ TAA JNK : QāΓ −→ TA

JM := NK : QāΓ
〈JMK,JNK〉 ;ψ
−−−−−−−−−−→ T (AA ×A)

TupdA;µ
−−−−−−→ T1

JMK : QāΓ −→ TAA

J!MK : QāΓ
JMK
−−−→ TAA

TdrfA;µ
−−−−−−→ TA

JMK : QāΓ −→ TN JNiK : QāΓ −→ TA

Jif0 M then N1 else N2K :

QāΓ
〈JMK, JN1K, JN2K〉 ; τ ′ // T (N× TA× TA)

TcndA ;µ // TA

JMK : QāaΓ −→ TA

Jνa.MK : QāΓ
nu
−−→ TQāaΓ

TJMK ;µ
−−−−−−→ TA

JMK : QāΓ −→ TAx JNK : QāΓ −→ TAx

J[M = N ]K : QāΓ
〈JMK,JNK〉 ;ψ
−−−−−−−−−−→ T (Ax × Ax)

T (eq ;[0̃,1̃])
−−−−−−−−→ TN

JMK : QāΓ −→ TAe

Jraise MK : QāΓ
JMK
−−−→ TAe

TinxA ;µ
−−−−−−−→ TA

JMK : QāΓ −→ TAe JNiK : QāΓ −→ TA

Jtry N1 handle M => N2K :

QāΓ
〈JMK, JN1K, JN2K〉 ; τ ′ // T (Ae × TA× TA)

ThdlA ;µ // TA

Figure 1. The translation of νερ inside a νερ-model.
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the supcategory M′): in the νερ-calculus, when a function is called it is not possible to separate its outer
from its inner effects— and e.g. discard the inner ones— so θ is not definable. 3

We now proceed to demonstrate that the above construction yields indeed a model of νερ. Let us define
for each environment P a term P̂ by:

ǫ̂ , skip , ̂ä :: V, P , ä := V ; P̂ , â, P , P̂ . (17)

Moreover, let us use labelled arrows,
r
−→ , to denote the last non-CTX rule used to derive a reduction. We

can show the following.

Proposition 5 For any typed term S | Γ |−M : A, any environment P and any reduction rule r,

1. if r /∈ {NEW, UPD, DRF} then P |=M
r

−→ P |=M ′ =⇒ JMK = JM ′K ,

2. if r ∈ {UPD, DRF} then P |=M
r

−→ P ′ |=M ′ =⇒ JP̂ ;MK = JP̂ ′ ;M ′K ,

3. P |=M
NEW
−−−−→ P, a |=M ′ =⇒ JP̂ ;MK = Jνa. P̂ ;M ′K .

Therefore, P |=M −→→ P ′ |=M ′ implies JP̂ ;MK = Jνā. (P̂ ′ ;M ′)K , with dom(P ′) \ dom(P ) = S(ā). �

Proof: (sketch) The last clause follows from 1-3. For those, we do induction on the reduction’s derivation.
The base cases follow relatively easily from the specifications. Note that (SNR) is needed in the case of
NEW; (NE1) is used for XPN; and condition IV of the previous definition is used for HL, NHL.
The inductive step of 1 follows from compositionality of the semantics. For 2, using standard semantical
methods and employing again condition IV along with (NE3), we can show that for any termM , environment
P and evaluation context E,

JE[P̂ ;M ]K = JP̂ ; E[M ]K . (18)

With the aid of conditions (N2), IV and (NE3) we can extend the above to:

JE[νa. P̂ ;M ]K = Jνa. P̂ ; E[M ]K , (19)

for any name a. This solves 3. �

This is, in fact, the furthest we can go with νερ-models— correctness. For soundness we need to stipulate
that our models satisfy computational adequacy.

Definition 6 Let M be a νερ-model and J K the respective translation of νερ. M is adequate if, for any

closed (wrt. variables and names) term M : 1 , if JMK = Jνā. P̂ K for some P, ā then there exists P ′ such that
|=M −→→ P ′ |= skip . N

Proposition 7 (Soundness) Translating νερ into an adequate νερ-model M we obtain:

JMK = JNK =⇒ M / N .
�

5. The nominal games model

We proceed to build a fully abstract model of νερ in nominal games. The basic construction is the
category Vt, which provides also the backbone for the fully abstract models of the ν-calculus [1] and the
νρ-calculus [23], and in effect of any nominal calculus with computational effects definable in Vt with monads.
The following definition gives the objects of Vt.

Definition 8 A nominal arena A , (MA, IA,⊢A, λA) is given by:

3 An opposite approach is followed in [24]. There, θ is taken as part of the νερ-model and definability is proven for νερ-submodels,
that is, appropriate lluf subcategories where problematic arrows like θ are excluded.
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• a strong nominal set MA of moves,

• a nominal subset IA ⊆MA of initial moves,

• a nominal justification relation ⊢A⊆MA × (MA \ IA),

• a nominal labelling function λA :MA → {O,P} × {A,Q} .

λA labels moves as Opponent or Player moves and as Questions or Answers. Initial moves must be
P -Answers, Answers may only justify Questions, and if m1 ⊢A m2 then λA assigns them complementary
OP -labels. Moreover, for each m ∈MA there exists unique k ≥ 0 such that, for some ml’s in MA,

IA∋ m1⊢A · · ·⊢Amk⊢Am.

k is called the level of m (so initial moves have level 0).
A prearena is an arena with its initial moves labelled OQ. Given arenas A,B, and writing λ̄A for the

OP -complement of λA, we construct the prearena A→ B by:

MA→B ,MA +MB λA→B , [(iA 7→ OQ , mA 7→ λ̄A(mA)) , λB]

IA→B , IA ⊢A→B , {(iA, iB)} ∪ {(m,n) | m ⊢A,B n} .
N

Moves of an arena A are denoted by mA and variants, and initial moves by iA and variants. We set

JA , {m ∈MA | level(m) = 1} (20)

and denote such moves by jA and variants. By ĪA we denote MA \ IA and by J̄A we denote MA \ JA. We
say that an arena A is pointed if |IA| = 1.
The simplest arena is 0 , (∅,∅,∅,∅). Other flat arenas are 1, N and Aā, each ā ∈ A#, defined by:

MN = IN , N , M1 = I1 , {∗} , MAā = IAā , A
ā . (21)

Note that for ā empty we get Aǫ = 1. We write Ai for A
a with a ∈ Ai, i ∈ ω (and similarly do we write Ax,

each x ∈ TY ∪ {e}). Moreover, from arenas A,B we construct the following compound arenas. Note that,
because each move has a unique level, arenas can be seen as levelled labelled graphs with vertices labelled
by λ.

A B

A+B

MA+B ,MA +MB

IA+B , IA + IB

λA+B , [λA , λB]

⊢A+B , ⊢A ∪ ⊢B A B

A⊗B

MA⊗B , IA × IB + ĪA + ĪB

IA⊗B , IA × IB

λA⊗B , [((iA, iB), PA), λA↾ ĪA, λB↾ ĪB]

⊢A⊗B , {((iA, iB),m) | m ∈ JA ∪ JB} ∪ (⊢A ↾ ĪA2) ∪ (⊢B ↾ ĪB2)

A B

A=⊗B

MA=⊗B , IB + IA × JB + ĪA + ĪB ∩ J̄B

IA=⊗B , IB

λA=⊗B , [(iB, PA), ((iA, jB), OQ), λ̄A↾ ĪA, λB↾ (ĪB ∩ J̄B)]

⊢A=⊗B , {(iB, (iA, jB))} ∪ {((iA, jB),m) | iA ⊢A m ∨ jB ⊢B m} ∪ (⊢A ↾ ĪA2) ∪ (⊢B ↾ (ĪB ∩ J̄B)
2)

A

∗
∗

A⊥

MA⊥
, {∗1, ∗2}+MA

IA⊥
, {∗1}

λA⊥
, [((∗1, PA), (∗2, OQ)), λA]

⊢A⊥
, {(∗1, ∗2), (∗2, iA)}∪ ⊢A A B

A⇒ B

∗
MA⇒B , {∗}+ IA + ĪA +MB

IA⇒B , {∗}

λA⇒B , [(∗, PA), (iA, OQ), λ̄A↾ ĪA, λB]

⊢A⇒B , {(∗, iA), (iA, jB)} ∪ ⊢A ∪ ⊢B

Figure 2. Basic arena constructions
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We will usually identify graph-isomorphic arenas related by isomorphisms which simply manipulate ∗’s;
for example, for any A,B,

0 +A = A+ 0 = A , 1 =⊗A = A , A⇒B = A=⊗B⊥ .

Most of the previous constructors are familiar from [11]: ⊗ and + yield products and coproducts, ⊥ is
a lifting, and ⇒ is a function-space constructor. On the other hand, =⊗ can be seen as a function-space
constructor merging the contravariant part of its RHS with its LHS. For example, for any A,B,C, we have:

A=⊗ (B⇒ C) = (A⊗B)⇒ C . (22)

Reading the equality from left to right, the contravariant part of B ⇒ C, i.e. B, is merged with A. Read
from right to left, (22) corresponds to implication introduction in Logic; in call-by-name arenas [16] it has
the form:

A→ (B → C) = (A×B) → C .

A nominal game is an interaction between Player and Opponent on a certain prearena. The interaction
is given by a sequence of moves-with-names. Each such is written mā and consists of a move m ∈ MA

attached with a name-list ā ∈ A# (hence mā has strong support). For a move-with-names x we write:

x = xnlist(x) (23)

At this point let us introduce some notation for sequences (of names, moves, etc.). If s = s1 · · · sn is a
sequence then:
– s− denotes s1 · · · sn−1 ,
– s.i denotes si , and s.-i denotes sn+1−i ,
– s≤si denotes s1 · · · si , and so does s<si+1 .
For example, s.-1 denotes the last element of s, and hence s = s−(s.-1).
A justified sequence over a prearena A is a finite sequence s of OP -alternating moves-with-names such

that, except for s.1 which is initial, every move s.i has a justification pointer to some s.j such that j < i
and s.j ⊢A s.i ; we say that s.j (explicitly) justifies s.i . The view psq of s is a subsequence of s computed by:

pǫq , ǫ

pxq , x

ps y t xq , psq y x , x explicitly justified by y.

(24)

This definition incorporates those of P -view and O-view [16].
A legal sequence s on A is a justified sequence of moves-with-names that satisfies Visibility and Well-

Bracketing. The former condition states that, for any x in s, x is explicitly justified by a move in ps<xq.
The latter stipulates that any Answer x in s be justified by the last open Question in s<x (the pending
Question).

Definition 9 A legal sequence s is a play if s.1 has empty name-list and s also satisfies:
(NC1) The name-list of any P -move x in s contains as a prefix that of its preceding move, that is,
nlist(s<x.-1) ≤ nlist(x). It possibly contains other names, all of which are fresh for s<x.

(NC2) Any name in the support of a P -move x in s that is fresh for ps<xq is contained in nlist(x).
(NC3) The name-list of any non-initial O-move in s is that of the move explicitly justifying it.
The set of plays on a prearena A is denoted by PA. N

Thus, we take plays to be innocent ǫ-plays in terms of [23]. A name a is introduced (by Player) in a play
s if there exists a P -move x in s such that a ∈ S(x) and a# s<x. From the definition, this is equivalent to
stating:
– a ∈ S(x) and a# ps<xq,
– a ∈ S(nlist(x)) and a# nlist(y),
– nlist(x) = nlist(y) ā1a ā2.
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Note that (NC1,2) imply that Player cannot play a name that does not appear in his view: 4 if x is a P -move
in s and a a name appearing in s<x but not in ps<xq, then a ∈ S(x) would imply a ∈ S(nlist(x)) by NC2 and
therefore a# s<x by NC1 (and the fact that s<x.-1 appears in ps<xq and so a# nlist(s<x.-1)).
Plays on A→ B and B → C yield plays on A→ C via parallel composition and hiding. Firstly, s ∈ PA→B

and t ∈ PB→C are composable if
s↾B = t↾B

and, for any s′ ≤ s, t′ ≤ t with s′↾B = t′↾B:
(C1) If s′ ends in a P -move in A introducing some name a then a# t′ ; dually, if t′ ends in a P -move in C
introducing some name a then a# s′.

(C2) If both s′, t′ end in B and s′ ends in a P -move introducing some name a then a # t′− ; dually, if t′

ends in a P -move introducing some name a then a# s′−.
The parallel interaction s ‖ t of composable plays s, t is a sequence of moves-with-names from A,B,C
computed as follows. Writing ās for nlist(s.-1), ās ‖ t for nlist((s ‖ t).-1), and so on, we define recursively:

smāsā
A(P ) ‖ t , (s ‖ t)m

ās ‖ tā

A , smb̄
A(O) ‖ t , (s ‖ t)mb̄′

A ,

s ‖ tmātā
C(P ) , (s ‖ t)m

ās ‖ tā

C , s ‖ tmb̄
C(O) , (s ‖ t)mb̄′

C ,

smāsā
B(P ) ‖ tm

b̄
B(O) , (s ‖ t)m

ās ‖ tā

B , smb̄
B(O) ‖ tm

ātā
B(P ) , (s ‖ t)m

ās ‖ tā

B ,

(25)

and ǫ ‖ ǫ , ǫ , where we write b̄′ for the name-list of mA’s (mC ’s) justifier in s ‖ t. Take then,

(s ; t) , s ‖ t↾A,C . (26)

We can show [24] that s ; t ∈ PA→C .

Definition 10 A strategy σ on a prearena A is a set of equivalence classes [s] of plays on A satisfying
prefix closure, contingency completeness, determinacy, innocence and totality:

• If [su] ∈ σ then [s] ∈ σ.

• If even-length [s] ∈ σ and sx is a play then [sx] ∈ σ.

• If even-length [s1x1], [s2x2] ∈ σ and [s1] = [s2] then [s1x1] = [s2x2].

• If [s1x1], [s2] ∈ σ and odd-length [ps1q] = [ps2q] then there exists [s2x2] ∈ σ such that [ps1x1q] = [ps2x2q].
• If [iA] ∈ σ then there exists an Answer m ∈MA such that [iAm] ∈ σ.

We write σ : A if σ is a strategy on A. N

Strategies are the arrows of Vt. For example, for any S(ā′) ⊆ S(ā), any n ∈ N, any i ∈ ω and any arena
B, we have the strategies:

ā

ā′
: Aā → Aā

′

, {[ā ā′]} ,

ñ : 1 → N , {[∗n ]} ,

!B : B → 1 , {[iB ∗]} ,

eqi : Ai⊗Ai → N , {[(a, a) 0], [(a, b) 1] | a# b} ,

idB : B → B , {[s] | s ∈ PB(l)→B(r)
∧ ∀t ≤evens. t↾B(l) = t↾B(r)} .

(27)

Note that in strategy definitions as the ones above we tend to be frugal; we usually omit plays that are
obviously in a strategy because of totality, prefix closure, etc. For example ñ is formally given by the set
{[ǫ], [∗], [∗n ]}.
If σ : A→ B and τ : B → C are strategies then we define the composite strategy:

σ ; τ : A→ C , {[s ; t] | [s] ∈ σ ∧ [t] ∈ τ ∧ s, t composable} . (28)

Strategy-composition is well-defined, associative and has id as unit (see [24]). Hence, we have a category.

4 even if it is the case that it was Player who introduced it in the play — this is innocence.
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Definition 11 Vt is the category having nominal arenas as objects and strategies as arrows. N

There is rich structure in Vt: ⊗ and + of figure 2 yield products and coproducts respectively, and there
are also partial exponentials given by the =⊗ constructor: for any triple A,B,C of arenas with C pointed
there is a bijection

Λ : Vt(A⊗B,C)
∼=
−→ Vt(A,B =⊗ C) (29)

natural in A. Moreover, 1 is terminal, 0 is initial, and the constructor ⊥ yields a strong monad with
exponentials. Finally, ⊗ can be generalised to an infinite tensor

⊗
applicable to pointed arenas.

We proceed to the construction of a νερ-model in Vt. References are modelled by a store-monad, built on
a store-arena ξ ,

⊗
A∈TY(AA⇒ JAK) , while for exceptions we use the coproduct monad +Ae. Thus, the

computational monad to use is (obtained from the functor):

T : Vt → Vt , ξ⇒ (( + Ae)⊗ ξ) (30)

Note that T is compound (as T = T1T2 , T1 , ξ⇒ ( ⊗ ξ) , T2 , Ae + and a standard distributive law)
and hence precompound. Given ξ, and using the fact that ⊥ is a strong monad with exponentials, we can
show that T is a strong monad with exponentials, with TBA being A=⊗ TB. Thus, the definitions of ξ and
JAK are interrelated by the following domain equation.

J1K = 1 , JNK = N , JEK = Ae , J[A]K = AA , JA×BK = JAK⊗JBK ,

JA→ BK = JAK =⊗ (ξ⇒ (JBK +Ae)⊗ ξ) , ξ =
⊗

A(AA ⇒ JAK) .

(SE)

(SE) is solved by expressing it as a fixpoint functorial equation and finding its minimal invariant [24]. The
computations are almost identical to those followed in [23].
Explicitly, the solution is depicted below. For example, the arena ξ contains an initial move ⊛ wich justifies

Questions ä, all ä ∈ AA and all A ∈ TY, and each such ä justifies a subarena JAK where the value of ä is
stored. On the other hand, TA = ξ1 ⇒ (A⊗ ξ2) contains an initial move ∗ which justifies a move ⊛ opening
the store ξ1. The latter justifies the rest of ξ1 and it also justifies some Answers opening the store ξ2. These
can be either of the form (iA,⊛) (i.e. values) or of the form (ȧ,⊛) (i.e. exceptions).

JA×BK

(iJAK , iJBK) PA

JAK
−

JBK
−

JA→ BK

∗ PA

(iJAK ,⊛) OQ

JAK
− ξ−

(iJBK ,⊛) (ȧ,⊛) PA

JBK
− ξ−

ξ

⊛ PA

ä OQ

JAK

(ä∈AA)

TA

∗ PA

⊛ OQ

ξ−

(iA,⊛) (ȧ,⊛) PA

A− ξ−

Figure 3. The translation of νερ-types in nominal arenas.

Notice that we reserve ⊛ for the initial move of ξ. The monadic natural transformations of T are obtained
from those of its components (see [24]).
Having defined arenas Aā for each ā ∈ A# we construct the product comonads Qā by:

Qā : Vt → Vt , Aā × (31)

For each ā′ ⊆ ā, we have already defined a natural transformation ā
ā′

: Qā → Qā
′

. Moreover, we can define
a transformation nuāa : Qā → TQāa by using the following strategy.
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Opponent starts by supplying the initial local state ā and the
initial A-value iA; Player answers with a dummy ∗ (dictated by
totality); Opponent then plays ⊛ opening thus the initial store;
Player introduces a fresh-name a, copies iA and opens a new
store, playing (āa, iA,⊛)a. From that point on, Player copycats
between the two copies of iA and ⊛: the latter means that Player
has made no store-update when playing (āa, iA,⊛)a.

nuāaA : QāA // TQāaA

(ā, iA) OQ

∗ PA

⊛ OQ

(āa, iA,⊛)a PA

(32)

Note that in diagrams for strategies like the above we depict the strategy’s behaviour on P -views, that is,
sequences s such that ps′q = s′, for each s′ ≤odd s. The curved lines are justification pointers. The polygonal
lines stand for copycat links, that is, the strategy copycats (i.e. it plays like id) between (the relevant
components of) the two linked moves.
The last pieces of structure we need for a νερ-model are arrows upd, drf and inx, hdl. The former two

are essentially the same as those used in [23] and are given in figure 4. On the other hand, inx is easily
defined by means of coproduct injections while hdl is given as follows.

Opponent starts by opening the two TA’s and sup-
plying the name ȧ to be handled; Player answers ∗;
Opponent supplies the initial store ⊛; Player copies
it under the TA to be tried. If Opponent now asks a
name under ⊛, Player will copycat it (under the pre-
vious ⊛).
If instead Opponent answers with (ȧ,⊛) (which means
that the TA which was tried resulted to an exception
ȧ) then Player catches ȧ: he plays under the second
TA and copycats between that and the TA at the out-
put.

Otherwise, if Opponent answers with another excep-
tion name ḃ or with a value iA then there is nothing
to catch: Player simply copycats between the tried TA

and the output.

hdlA : Ae⊗TA⊗TA // TA

(ȧ , ∗ , ∗) OQ

∗ PA

⊛ OQ

⊛ PQ

(ȧ,⊛) OA

⊛ PQ

(ḃ/iA,⊛) OA

(ḃ/iA,⊛) PA

(33)

It is not difficult then to obtain the following.

Proposition 12 (Vt, T,Q) is a νερ-model. �

updA : AA⊗JAK // T 1

OQ (a, iJAK)

PA ∗
OQ ⊛

PA (∗,⊛)

OQ b
PQ b

OQ a

PA iJAK

drfA : AA // T JAK

OQ a

PA ∗
OQ ⊛
PQ a

OA iJAK

PA (iJAK ,⊛)

Figure 4. Reference-update and dereferencing in Vt
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Adequacy Our last task for this section is to show adequacy for Vt as a νερ-model. First, we note that
if a term is non-reducing and behaves like a value (resp. a raised exception) then it is indeed a value (an
exception).

Lemma 13 Let S(ā) | ∅ |−M : A be a typed term. For any environment P , if P |=M is non-reducing then

(i) if M is not a value then for no b̄, iA do we have [(ā, ∗) ∗ ⊛ (iA,⊛)b̄] ∈ JP̂ ;MK,

(ii) if M is not a raised exception then for no b̄, ȧ do we have [(ā, ∗) ∗ ⊛ (ȧ,⊛)b̄] ∈ JP̂ ;MK. �

Now, for each term M , define (M)◦ recursively as follows.

(a)◦ , a , (x)◦ , x , . . . (λx.M)◦ , λx.(M)◦ , (M N)◦ , (M)◦(N)◦ , . . .

(try N1 handle M => N2)
◦ , try (N1)

◦ handle (M)◦ => νa.(N2)
◦, some a not free in N2 .

(34)

The main technical result is the following lemma (see [24] for a proof).

Lemma 14 For any S(ā) | Γ |− M : A and any initial move iΓ of JΓ K, if there is a pair b̄, iA such that
[(ā, iΓ )∗⊛(iA,⊛)b̄] ∈ JMK, then there is some b̄′ such that S(b̄) ⊆ S(b̄′) and [(ā, iΓ )∗⊛(iA,⊛)b̄

′

] ∈ J(M)◦K.�

Proposition 15 (Adequacy) Vt is adequate: for any closed term M : 1, if JMK = Jνā. P̂ K for some P
then there exists P ′ such that |=M −→→ P ′ |= skip.

Proof: By lemma 13 it suffices to show that, for any such M , there is a non-reducing sequent P ′ |= N
such that |=M −→→ P ′ |= N . For sake of contradiction suppose the opposite, that is, there exists an infinite
reduction sequence starting from |=M .
The sequence must contain infinitely many reductions from the set {HL,NHL,VHL,XPN}, or otherwise it
would end in an infinite reduction sequence in νρ, contradicting the latter’s adequacy (see [23,24]). Moreover,
if it contained infinitely many reductions from {NHL,XPN,VHL} but finitely many HL reductions, then it
would have either to terminate at some raised exception or to end in an infinite sequence of reductions in
νρ+VHL. The latter would then produce an infinite reduction sequence in νρ. We therefore have that |=M
has a reduction sequence containing infinitely many HL reductions. Clearly then, |= (M)◦ diverges using
infinitely many NEW reduction steps.
Now, JMK = Jνā. P̂ K implies [∗ ∗ ⊛(∗,⊛)ā] ∈ JMK and hence [∗ ∗ ⊛(∗,⊛)ā

′

] ∈ J(M)◦K for some ā′, by
previous lemma. But we have that |= (M)◦ diverges creating infinitely many fresh names, so in particular

|= (M)◦ −→→ P ′ |=M ′ with |dom(P ′)| = |ā′|+1. By correctness, J(M)◦K = Jνā′′. P̂ ′;MK with S(ā′′) = dom(P ′)
and therefore [∗ ∗⊛(∗,⊛)ā

′

] ∈ J(M)◦K implies that ā′ contains at least ā′′, contradicting |ā′′| = |ā′|+ 1. �

6. Full abstraction

In the previous section we showed that Vt is a sound model for νερ. However, in our games we have included
store- and exception-related behaviours that are disallowed in the operational semantics. The problems with
store-discipline in Vt are explained in [23]. Regarding exceptions, the problem is that strategies may well
handle fresh (unknown) exceptions, whereas in the operational semantics a fresh exception always escapes
out of its context.
In order to obtain a fully abstract semantics we will have to constrain strategies by disallowing such

behaviours. Specifically, we constrain arenas to type-denotations and strategies to x-tidy ones.

Definition 16 Consider Vνερ , the full subcategory of Vt with the following set of objects. 5

Ob(Vνερ) ∋ A,B ::= 1 | N | Aā | A⊗B | A=⊗ TB

For each object A define its set of store-Handles, HA, and its set of exception-raisers, XA, as follows.
Setting A=⊗ TB , A=⊗ (ξA ⇒ (B +Ae)⊗ξB) and ξ ,

⊗
C(AC ⇒ JCK), we take (recall also fig. 3):

5 Note in particular that JAK, QāJAK, T JAK ∈ Ob(Vνερ), for each type A, by taking T JAK = 1 =⊗ T JAK.
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store-H’s: ⋄

store-Q’s: �

store-A’s: �

X-raisers: z

ξ⇒ (1 + AE)⊗ξ

∗

⋄ ⊛

� ä ⋄ (∗,⊛) ⋄ (ȧ,⊛) z

� iA � b̈ � c̈

� iB � iC

Figure 5. Move-classes in the arena T1.

H1 = HN = HAā , ∅ ,

HA⊗B , HA ∪HB ,

HA=⊗TB , {(iA,⊛A), (iB,⊛B), (ȧ,⊛B)}
∪HA ∪HB ∪HξA ∪HξB ,

Hξ ,
⋃

C
HJCK ;

X1 = XN = XAā , ∅ ,

XA⊗B , XA ∪XB ,

XA=⊗TB , {(ȧ,⊛B)} ∪XA ∪XB ∪XξA ∪XξB ,

Xξ ,
⋃

C
XJCK .

In an object A, a store-Handle justifies Questions of the form ä, which we call store-Questions. Answers
to store-Questions are called store-Answers. N

The classification of moves relatively to the store is familiar from [23]: store-H’s are moves opening new
stores, where a store consists of combinations of store-Q’s and store-A’s. Regarding exceptions, X-raisers
are moves raising an exception—note that exceptions (i.e. exception-names) may also appear in a game
unraised, as values (compare JȧK with Jraise ȧK). Note that X-raisers are A-store-H’s (i.e. store-H’s that
are Answers) justified by Q-store-H’s, and that every Q-store-H justifies X-raisers. We can show that a move
in A ∈ Ob(Vνερ) is exclusively either initial or a store-H or a store-Q or a store-A. An example of how these
classes of moves are related is given in the diagram of T 1 in figure 5.
These notions can be straightforwardly extended to prearenas by setting

HA→B , HA ∪HB and XA→B , XA ∪XB . (35)

Around them we define x-tidy strategies. Note that since store-H’s may occur in several places in a game
we may use tags to distinguish identical moves from different stores. For example, the same store-Q q may
be denoted q(O) or q(P ) , the particular notation denoting also the OP -polarity of the move.

Definition 17 A strategy σ is x-tidy if whenever odd-length [s] ∈ σ then:

(TD1) If s ends in a store-Q q then [sx] ∈ σ , with x being either a store-A to q introducing no new names,
or a copy of q. In particular, if q = äā with ä# psq− then the latter case is the case.

(TD2) If [sq] ∈ σ with q a store-Q then q is justified by last O-store-H in psq.
(TD3) If psq = s′q(O)q(P )t y(O) with q a store-Q then [s y(P)] ∈ σ with y(P ) justified by psq .-3.
(xTD1) If s ends in an X-raiser (ȧ,⊛)ā with ȧ# psq− then [s(ȧ,⊛)ā] ∈ σ.

(xTD3) If psq = s′(ȧ,⊛)ā(O)(ȧ,⊛)ā(P )q(O) with q(O) a store-Q, (ȧ,⊛)(O) an X-raiser and ȧ#s′, then [s q(P )] ∈ σ.

Let xT be the lluf subcategory of Vνερ of x-tidy strategies. N

The (TD) conditions define tidy strategies of [23] imposing a certain store-discipline:

• (TD1) states that, whenever O plays a store-Q, say äā, Player must either answer it (providing thus the
stored value of ä) or copycat it (expressing thus the fact that he has not updated ä since the last store-H
played by O).

• (TD2) states that Player may ask store-Q’s only at the last store-H played by O in the view.

• (TD3) ensures that whenever Player decides to copycat a store-Q he must preserve that copycat link.
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The tidiness conditions describe the interactive nature of our nominal store: when encountered with a store-
Q, each participant either answers with an updated value or asks the same store-Q himself and establishes
a copycat link between the two store-Q’s. Thus, the whole of the store can be accessed without breaking
innocence!— see also [24, innocent store].
On the other hand, the (xTD) conditions provide a straightforward fresh-exception-discipline:

• (xTD1) states that when a fresh raised exception is encountered, it must be copycatted (i.e. it must
escape).

• (xTD3) ensures that a fresh exception is copycatted without any store-updates taking place in the process.

In fact, behind (xTD1) there is a hidden lemma: the move to be played by P is an Answer, so it should be
an Answer to the pending Question.

Lemma 18 If odd-length [s] ∈ σ ends in an X-raiser (ȧ,⊛)ā then s has a pending-Q which is an O-store-H,
and s(ȧ,⊛)ā is a play.

Proof: s being odd-length implies that it has a pending Question, say q. If q were a P -move then s = s1qs2
with s1, s2 being odd-length, so an A in s2 should be justified by q, contradiction. Hence, q an O-move.
Moreover, q cannot be initial, by totality, and neither a store-Q: q being unanswered would mean that P
copycats after it, so the move following q would be a copy of it answered by an O-store-A y, say. When y is
played, P must answer q with a copy of y, thus y can only be the last move in s, i.e. the X-raiser (ȧ,⊛)ā,
conrtadiction as y a store-A. Hence, q an O-store-H. Thus, s(ȧ,⊛)ā is a justified sequence satisfying well-
bracketing, and it clearly satisfies NC’s. Finally, it also satisfies visibility since s and psq have the same
pending-Q (see e.g. [16]). �

It is easy to see that identity arrows are x-tidy. Moreover, x-tidy strategies compose and thus we have a
subcategory of nominal arenas and x-tidy strategies.

Proposition 19 If σ : A→ B and τ : B → C are x-tidy strategies then so is σ ; τ .

Proof: We know from [23,24] that the (TD) conditions are preserved under composition, so we need only
focus on the (xTD) ones— as the proof is not particulary involved, we only show (xTD1). So let odd-
length [s ; t] ∈ σ ; τ be ending in an X-raiser (ȧ,⊛)ā with ȧ# ps ; tq−. Assume, wlog, that s ; t ends in A, so
s.-1 = (ȧ,⊛)ā1 , some sublist ā1 of ā. By a standard nominal-games argument we then have ȧ # psq−, so
[s(ȧ,⊛)ā1 ] ∈ σ. If (ȧ,⊛)ā1 is in A then we are done. Otherwise, we have that [t(ȧ,⊛)ā2 ] ∈ τ some sublist ā2
of ā. Applying the same reasoning consecutively, some (ȧ,⊛)ān is played in AC, giving the required copy of
(ȧ,⊛)ā. �

Definition 20 xT is the lluf subcategory of Vνερ of x-tidy strategies. N

We can check that all of the structure of Vt required for modelling νερ is x-tidy—but θ is not, 6 and this
was the reason for ostracising it to a supcategory in definition 1— so xT is an adequate νερ-model. Our
remaining task is to show definability, and from that full-abstraction.
We henceforth consider solely x-tidy strategies. Because of innocence, each strategy σ is defined by its

viewfunction ,
viewf(σ) , { [s] ∈ σ | |s| even ∧ s = psq } . (36)

viewf has an inverse function strat, which goes from viewfunctions to strategies.
The viewfunction of a strategy still contains a lot of extra information, in the sense of behaviours which

are anyway common to all x-tidy strategies. In fact, each strategy σ is defined by trunc(σ), which is the
subset of viewf(σ) excluding:

• all default initial Answers (dictated by totality),

• all the store-copycats (dictated by (TD) conditions),

6 The interested reader may indulge himself verifying this fact, and also that the loss of x-tidiness is hidden by the compositions
in id × θ × id ; τ × id ; τ ′ ;Thdl ;µ.
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• and all fresh-exception copycats (dictated by (xTD) conditions).

We say a strategy σ is finitary if trunc(σ) is finite. Intuitively, a strategy is finitary if its non-default
behaviour is finite.

Proposition 21 (Definability) Let A,B be types and σ : QāJAK → T JBK be finitary. Then σ is definable,
i.e. there exists a term S(ā) | Γ |−M : B such that σ = JMK.

From the above, by a more-or-less standard game-semantical argument we can obtain full-abstraction with
relation to the following semantical preorder. For each f, g : QāA→ TB, set

f .ā g △
⇐⇒ ∀ρ : Qā(A=⊗ TB) → T 1. (Λā(f) ; ρ ↓ =⇒ Λā(g) ; ρ ↓) , (37)

where Λā(f) , Qā1
δ
−→ QāQā1

QāΛT (ζ ; f)
−−−−−−−→ Qā(A=⊗ TB) and, for each σ : Qā1 → T 1, σ ↓ iff there is some b̄

such that [(ā, ∗) ∗⊛ (∗,⊛)b̄] ∈ σ.

Theorem 22 (FA) For any S | Γ |−M,N : A, M / N ⇐⇒ JMK . JNK . �

Proof of Definability: Assume A = A1 × · · · × An and B = B1 × · · · × Bm, with Ai’s and Bi’s non-
products, and fix a context Γ = z1 : A1, ..., zn : An . We do induction on (|trunc(σ)|, ‖σ‖), where we let ‖σ‖
be the maximum number of names introduced in any play of trunc(σ). If |trunc(σ)| = 0 then σ = JstopBK ;
otherwise, there exist x0, iA(0) such that [(ā, iA(0)) ∗ ⊛ x0] ∈ σ . If we set σ0 , σ↾ (ā, iA(0)) and σ

′ = σ \σ0
7

then
σ = 〈[x

ā
= iA(0)], 〈σ0, σ

′〉〉; cnd .

[x
ā
= iA(0)] : Q

āJAK → N is the strategy which returns 0 if the initial move is (a permutation of) (ā, iA(0))

and otherwise 1. It is not difficult to construct a term S(ā) | Γ |− N0 : N such that JN0K = [x
ā
= iA(0)]; η .

Moreover, |trunc(σ′)| < |trunc(σ)| and (0, 0) < (|trunc(σ0)|, ‖σ0‖) ≤ (|trunc(σ)|, ‖σ‖) , so by IH there
exists term M ′ such that JM ′K = σ′. Hence, if there exists a term M0 with JM0K↾ (ā, iA(0)) = σ0 then

σ = Jif0 N0 then M0 else M ′K .

We proceed to find M0 . If the move x0 introduces fresh names b̄, say, then we can use the IH (on ‖σ‖) and
obtain a term Mb̄ such that σ0 = nuāb̄;T JMb̄K;µ and hence we can take M0 , νb̄.Mb̄ .
Assume now x0 = m0. If m0 is a store-Q ä of type C, say, then define the strategy

σä : Qā(JAK ⊗ JCK) → T JBK , strat{ [(ā, iA(0), iC) ∗⊛ s] | [(ā, iA(0)) ∗⊛ ä iCs] ∈ viewf(σ0) } .

We have trunc(σä) < trunc(σ0), and therefore there exists S(ā) | Γ, y : C |− Mä : B such that σä = JMäK ,
and taking

M0 ,

{
(λy.Mä)(! ä) , if ä ∈ S(ā)

(λy.Mä)(! zj) , if ä# ā ∧ j = min{j | ä = (iA(0))j}

we have σ0 = JM0K↾ (ā, iA(0)).
Otherwise, m0 = jA ∨m0 = (iB/ȧ,⊛), a store-H. If there exists a store-Q ä ∈ AC such that σ0 answers to
[iA(0) ∗⊛m0 ä] then define the strategy

σä : QāJAK → T JCK , strat{ [(ā, iA(0)) ∗⊛ (iC ,⊛)s] | [(ā, iA(0)) ∗⊛m0 ä iCs] ∈ viewf(σ0) } .

σä denotes the value stored for ä. Taking σ′ , σ0 \ σä
8 we have |trunc(σä)| , |trunc(σ

′)| < |trunc(σ0)| .
By IH, there exist S(ā) | Γ |−Mä : C and S(ā) | Γ |−M ′ : B such that σä = JMäK and σ′ = JM ′K. Taking

M0 ,

{
(ä :=Mä);M

′ , if ä ∈ S(ā)

(zj :=Mä);M
′ , if ä# ā ∧ j = min{j | ä = (iA(0))j}

7 The notation here is slightly abusive: by σ \ σ0 we do not mean exactly the set-theoretic difference, but rather the latter
extended in a default way to a total strategy.
8 Again, the notation is abusive: σ′ plays exactly like σ0 except for the play [(ā, iA(0)) ∗⊛m0 ä] to which it replies by opening
a store-copycat.
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we obtain σ0 = JM0K .
We are left with the case of m0 being as above and σ0 not answering to any store-Q, which corresponds to
the case of Player not updating any names before playing m0. If m0 = (ȧ,⊛) then σ0 = JM0K↾ (ā, iA(0)) by
taking

M0 ,

{
raise ȧ , if ȧ ∈ S(ā)

raise zj , if ȧ# ā ∧ j = min{j | ȧ = (iA(0))j} .

If m0 = (iB,⊛) then we need to derive a value term 〈V1, ..., Vm〉 (as B = B1 × · · · × Bm). For each p, if
Bp is a base or reference type then we can choose Vp canonically so that its denotation be iBp

. Otherwise,
Bp = B′

p → B′′
p and from σ0 we obtain the strategy σ′ : Qā(JAK⊗JB′

pK) → T JB′′
p K by:

σ′ , strat{[(ā, iA(0), iB′
p
) ∗⊛ s] | [(ā, iA(0)) ∗⊛ (iB,⊛) (iB′

p
,⊛) s] ∈ viewf(σ0)}.

It is not difficult to see that σ′ fully describes σ0 after (iB′
p
,⊛). By IH, there exists S(ā) | Γ, y : B′

p |− N : B′′
p

such that JNK = σ′ ; take then Vp , λy.N . Hence, taking

M0 , 〈V1, ..., Vm〉

we obtain σ0 = JM0K↾ (ā, iA(0)).
If m0 = jA , played in some Ai = A′

i → A′′
i , then m0 = (iA′

i
,⊛) . Assume that A′

i = A′
i,1 × · · · × A′

i,ni
with

A′
i,p’s being non-products. Now, Opponent can either ask some name ä (which would lead to a store-CC),

or answer at A′′
i , or raise a known exception ḃ, or raise some fresh exception ȧ (which would lead to an

exception-CC), or play at some A′
i,p of arrow type, say A′

i,p = Ci,p → C′
i,p . Hence, taking S , S(ā, iA(0)) we

have:
viewf(σ0) = fA ∪

⋃
ḃ∈S

fḃ ∪
⋃ni

p=1
fp

where:

fA , f0 ∪ { [(ā, iA(0)) ∗⊛ (iA′
i
,⊛) (iA′′

i
,⊛) s] ∈ viewf(σ0) }

fḃ , f0 ∪ { [(ā, iA(0)) ∗⊛ (iA′
i
,⊛) (ḃ,⊛) s] ∈ viewf(σ0) }

fp , f0 ∪ { [(ā, iA(0)) ∗⊛ (iA′
i
,⊛) (iCi,p

,⊛) s] ∈ viewf(σ0) }

f0 , { [(ā, iA(0)) ∗⊛ (iA′
i
,⊛) s] | [⊛ ⊛ s] ∈ viewf(idξ)

∨ (s.1 = (ȧ,⊛) ∧ ȧ /∈ S ∧ [s] ∈ viewf(idAe ⊗ξ)) }

and where we assume fp , f0 if A′
i,p is not an arrow type. It is not difficult to see that fA , fḃ , fp are

viewfunctions. Now, from fA we obtain the strategy

σA : Qā(JAK⊗JA′′
i K) → T JBK , strat{ [(ā, iA(0), iA′′

i
) ∗⊛ s] | [(ā, iA(0)) ∗⊛ (iA′

i
,⊛) (iA′′

i
,⊛) s] ∈ fA } .

By IH, there exists some S(ā) | Γ, y : A′′
i |−MA : B such that JMAK = σA.

From each fp 6= f0 we obtain a strategy

σp : Q
ā(JAK⊗JCi,pK) → T JC′

i,pK , strat{[(ā, iA(0), iCi,p
) ∗⊛ s] | [(ā, iA(0)) ∗⊛ (iA′

i
,⊛) (iCi,p

,⊛) s] ∈ fp} .

By IH, there exists some S(ā) | Γ, y′ : Ci,p |− Mp : C′
i,p such that JMpK = σp , so take Vp , λy′.Mp. For

each A′
i,p of non-arrow type, the behaviour of σ0 at A′

i,p is fully described by (iA′
i
)p , so we take Vp to be

the denotation of (iA′
i
)p . 〈V1, ..., Vni

〉 is now of type A′
i and describes σ0’s behaviour in A

′
i.

Finally, from each fḃ we obtain a strategy

σḃ : Q
āJAK → T JBK , strat{[(ā, iA(0)) ∗ ⊛ s] | [(ā, iA(0)) ∗ ⊛ (iA′

i
,⊛) (ḃ,⊛) s] ∈ fḃ} .

By IH, there exists some S(ā) | Γ |−Mḃ : B such that JMḃK = σḃ .

Now, taking for each known exception-name ḃ

Nḃ ,

{
ḃ , if ḃ ∈ S(ā)

zj , if ḃ# ā ∧ j = min{j | ḃ = (iA(0))j} ,
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and (note below that the vector-notation stands for nesting of handlers for each ḃ ∈ S)

M0 , (try (λx′.λx.(λy.MA)x
′)(zi〈V1, ..., Vni

〉) handle
−→
Nḃ =>

−−−−→
λx.Mḃ) skip ,

for some x, x′ not free in MA,Mḃ’s, we obtain σ0 = JM0K↾ (ā, iA(0)) . �

7. An equivalence established semantically

We prove the equivalence M2 ≅ M3 of page 5 in the νε-calculus using the fully abstract model for νερ.
By soundness, it suffices to show that, for any x-tidy strategy ρ : T ((Ae =⊗TN)=⊗N) → T 1 which does not
use the store,

JM2K ; ρ ↓ ⇐⇒ JM3K ; ρ ↓ . (38)

In fact, it suffices to assume ρ does not ask store-Q’s unless in a copycat. The denotations JM2K and JM3K are
given in the following figure. Note that we have omitted store-copycat links and also the exception-copycat

that occurs if Opponent plays an exception under (ḃ,⊛)ȧḃ(4)/(ȧ,⊛)ȧ(4) .
We show only one direction of the equivalence (other similar). Let [∗ ∗ ⊛ (∗,⊛)ā] ∈ JM2K ; ρ, some ρ, ā

with ρ not asking store-Q’s. Then, the interaction witnessing this sequence starts with ∗ ∗ ∗ ⊛ ⊛b̄, some b̄

introduced by ρ, 9 to which JM2K plays (∗,⊛)b̄ȧḃ
(1)

. At this point, ρ can either play (∗,⊛)ā or ask (∗,⊛)b̄ȧḃc̄
(2)

.

In the latter case, JM2K plays (ȧ,⊛)b̄ȧḃc̄(3) and now ρ has two choices: either play some (n,⊛)b̄ȧḃc̄
′

or some

exception (ċ,⊛)b̄ȧḃc̄
′

. In the latter case, JM2K responds by also playing (ċ,⊛)b̄ȧḃc̄
′

. Note that ċ cannot be one

of ȧ, ḃ as then x-tidiness of ρ would copycat (ċ,⊛)b̄ȧḃc̄
′

to the output giving [∗ ∗⊛ (ċ,⊛)b̄ȧḃc̄
′

] ∈ JM2K ; ρ. At

this point, ρ can play either (again) (∗,⊛)b̄ȧḃc̄
′′

(2) or (∗,⊛)ā. In the former case, JM2K will play (∗,⊛)b̄ȧḃc̄
′′

(2) . In

all cases and up to now, the interaction can be played (modulo ḃ) by JM3K ; ρ.

So suppose that, after some rounds of Opponent answering with exceptions to (ȧ,⊛)b̄ȧḃ...
(3)

, Opponent plays

some (n,⊛)b̄ȧḃ.... At this point, JM2K plays (ḃ,⊛)b̄ȧḃ...(4) and the play continues. But note that (ḃ,⊛)b̄ȧḃ...(4) has
now hidden ȧ from the P -view of ρ and therefore, because of innocence and the fact that ρ does not use the

store, the latter will play in the same way as if (ȧ,⊛)b̄ȧḃ...
(4)

had been played. Hence, JM3K ; ρ can simulate the
whole play.

9 We may assume that ρ plays a level-1 move of T ((Ae =⊗ TN) =⊗ N) (such as ⊛b̄) exactly once in the interaction (tl4 tests
suffice [24]).
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JM2K : 1 // T ((Ae =⊗ TN) =⊗ TN)
∗ OQ

∗ PA

⊛ OQ

(∗,⊛)
ȧḃ
(1)

PA

(∗,⊛)ȧḃ
(2)

OQ

(ȧ,⊛)
ȧḃ
(3)

PQ

(ċ,⊛)
ȧḃ OA

(ċ,⊛)
ȧḃ PA

(n,⊛)ȧḃ OA

(ḃ,⊛)
ȧḃ

(4)
PQ

(m,⊛)
ȧḃ OA

(n⇔ m,⊛)
ȧḃ PA

JM3K : 1 // T ((Ae =⊗ TN) =⊗ TN)
∗ OQ

∗ PA

⊛ OQ

(∗,⊛)ȧ
(1)

PA

(∗,⊛)
ȧ
(2)

OQ

(ȧ,⊛)
ȧ
(3)

PQ

(ċ,⊛)
ȧ

OA

(ċ,⊛)ȧ PA

(n,⊛)ȧ OA

(ȧ,⊛)
ȧ
(4)

PQ

(m,⊛)
ȧ

OA

(n⇔ m,⊛)
ȧ
PA

Figure 6: The denotations of the terms M2 and M3 of page 5.

8. Further directions

In this paper we have used the nominal games formalism which has evolved from [1], in order to describe a
language with nominal exceptions and general references. A defect of our approach is the use of games with
local state where names are enlisted in state at the point of their introduction. This makes the semantics too
fined grained since it distinguishes, for example, strategies which introduce dummy names. We now think
that this approach is somehow outdated and that a precise name-availability analysis, in the sense of [15],
would allow us to have a stateless formulation of nominal games which would overcome such shortcomings.
What is clearly manifested in this paper and other work on nominal games [1,23,24,13,15,14] is their

applicability as a generic denotational framework for nominal computation. Hence, their adaptation to
languages with other nominal effects is a further step to consider. Moreover, and as is the case with any
semantical framework, nominal games should be used for attacking open issues in nominal programming
behaviour, the first such candidate being decidability of program equivalence— in the spirit of [10,9,19,18].
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