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Path-integral seismic imaging
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ABSTRACT
A new type of seismic imaging, based on Feynman path integrals for waveform mod-
elling, is capable of producing accurate subsurface images without any need for a
reference velocity model. Instead of the usual optimization for traveltime curves with
maximal signal semblance, a weighted summation over all representative curves avoids
the need for velocity analysis, with its common difficulties of subjective and time-
consuming manual picking. The summation over all curves includes the stationary
one that plays a preferential role in classical imaging schemes, but also multiple sta-
tionary curves when they exist. Moreover, the weighted summation over all curves
also accounts for non-uniqueness and uncertainty in the stacking/migration veloci-
ties. The path-integral imaging can be applied to stacking to zero-offset and to time
and depth migration. In all these cases, a properly defined weighting function plays
a vital role: to emphasize contributions from traveltime curves close to the optimal
one and to suppress contributions from unrealistic curves. The path-integral method
is an authentic macromodel-independent technique in the sense that there is strictly
no parameter optimization or estimation involved. Development is still in its initial
stage, and several conceptual and implementation issues are yet to be solved. How-
ever, application to synthetic and real data examples shows that it has the potential
for becoming a fully automatic imaging technique.

I N T R O D U C T I O N

First, we set aside seismic velocities and work in a
macromodel-independent context. A detailed and accurate ve-
locity is usually seen as a precondition for obtaining an op-
timally focused seismic image of the subsurface of the earth.
A common approach to velocity estimation is to formulate a
criterion to quantify the degree of focusing and from there
to derive a mechanism to update velocities. Examples of such
criteria are a maximal signal semblance in zero-offset imaging
or flatness in common-image gathers (CIG) for time or depth
migration. Key to such techniques is the picking of important
seismic events in prestack gathers, either manually or by an
automatic procedure. Manual picking is both time consuming
and subjective. Automatic picking is practical and useful in
many situations (Fomel 2003; Stinson et al. 2004), but there
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are cases where picking a single event is not sufficient to de-
termine a unique velocity. Complicated wave-propagation ef-
fects, such as multiple reflections, mode conversions and wave-
front triplications, can often cause serious problems for the
assumptions underlying the velocity-analysis technique. For
instance, picking a wrongly identified event may lead to ve-
locities drifting away from realistic values during the velocity
updating process.

A more fundamental problem in velocity estimation is re-
lated to the stochastic nature of the subsurface velocity, which
is more properly represented in terms of probability density
functions of velocities, rather than of one unique deterministic
value (Jedlicka 1989). In other words, a single correct veloc-
ity model generally does not exist, but rather, if we take non-
uniqueness and uncertainty into account, a collection of many
models, which are all useful for obtaining a focused image.
Deterministically, there are also objections to working with
a single, supposedly optimal, velocity model. In stacking to
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zero-offset, an exact normal-moveout (NMO) velocity or
stacking velocity may not exist, due to lateral variations.
In prestack migration, it is not, a priori, clear from the
prestack data which detail or resolution velocities can, or in-
deed should, be recovered for an optimal image. The migra-
tion velocity may not be identical to the interval velocity at all
length scales and therefore may not be physically meaningful.

For these reasons, several macromodel-independent imag-
ing techniques have been proposed in recent years. In
practical implementations, these proposed methods differ
considerably in the degree to which they are genuinely model-
independent. An important class of methods is formed by
multifocusing (MF, Gelchinsky et al. 1999a, Gelchinsky et al.
1999b) and the common-reflection-surface stack (CRS, Jäger
et al. 2001). Multifocusing and CRS both estimate a set of
kinematic wavefront attributes, with minimal assumptions
about the subsurface velocity, to obtain an optimal zero-offset
stacked section. However, they do not provide a seismic depth-
or time-migrated image, at least not directly. Also, it may
be argued that MF and CRS are still parameter-optimization
approaches and, by re-parametrization (from wavefront at-
tributes to stacking velocities), velocity-estimation techniques
in disguise. A different approach, based on inverse scattering,
was developed by Weglein et al. (2000), which has the poten-
tial of providing a subsurface image without a defined velocity.

We introduce and develop further a heuristic technique
to obtain a subsurface image without specifying a velocity
model, by using a path-integral approach. This means that
we set aside not only the concept of a velocity, but also the
stationary-phase approximation in wave modelling. Path inte-
grals have recently been introduced in seismic wave modelling,
in analogy to Feynman’s path integrals in quantum mechanics
(Lomax 1999; Schlottmann 1999). The path-integral method
constructs the wavefield by summation over the contributions
of elementary signals (wave functions in quantum mechanics)
propagated along a representative sample of all possible paths
between the source and observation points. It does not rely on
the representation of a seismic event travelling along only one
path, derived from a stationary-phase approximation or from
Fermat’s principle. Instead, it represents the seismic wave as
sampling a larger volume between the two points, including, at
least in theory, the Fresnel zones of all orders (Born and Wolf
1959). All random trajectories between the source and receiver
within this volume are, in principle, taken into account. The
phase contribution for each path is defined by the Lagrangian
of the system and the summation of all phase contributions
constitutes the complete seismogram, by constructive and de-
structive interference. The formal mathematical definition of

a path integral is rather complicated, and requires an infinite-
dimensional integration (Johnson and Lapidus 2000). We will
not discuss these difficulties here, but will assume that our
path integrals can be numerically evaluated by parametrizing
the trajectories by a finite number of parameters. The forward
wave modelling by path integrals in an assumed-known veloc-
ity model has been discussed in detail by Lomax (1999) and
Schlottmann (1999).

As shown by Keydar (2004), Landa (2004), Keydar and
Shtivelman (2005) and Landa et al. (2005), path integrals can
also be used in the reverse process: to obtain a subsurface im-
age without any velocity information. At first sight, it would
seem that path integrals in an unknown or undefined velocity
do not make sense, and even more, that an indiscriminate in-
tegration over arbitrary random trajectories does not yield a
mechanism that would focus data into an image. Three addi-
tional conditions are therefore essential:
1 the integration is carried out over a representative sample
of all possible trajectories;
2 the application of properly designed weighting factors;
3 the choice of a complex or real-valued phase function in the
exponential of the path integral.

With regard to the first condition, the integration trajec-
tories are defined in the time (data) domain, rather than in
the depth (model) domain. By a proper parametrization of the
trajectories, it can be ensured that they represent a sufficiently
general sampling of the set of physically realizable traveltime
curves. With regard to the second condition, weighting factors
derived from well-known data-dependent functionals, such as
signal semblance or flatness of CIG gathers, ensure that the
path integrals are convergent and converge to the correct im-
age. For the third condition, the choice of a complex or real-
valued phase function is a conceptual one, which leads to an
oscillatory or exponential weighting function and, as such, has
strong implications for the implementation of path-integral
imaging. Note that application of these conditions does not
in any way compromise the assumption of absence of infor-
mation on velocity. Also note that both weighting and the
selection of a representative sample of all trajectories achieve
the same effect: exclusion of unrealistic trajectories.

The path-integral imaging can be considered in both time
and depth domain. We present three important applications:
stacking to zero-offset, time migration and depth migra-
tion. In all cases, the path integral consists of an integra-
tion over many (all) trajectories, rather than an optimization
for one single trajectory over which the data is finally to be
stacked. For a stack to zero-offset, the path integral consists
of an integration of prestack seismic data along all physically
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possible stacking trajectories instead of only along a single
hyperbola corresponding to the highest coherence (e.g. sem-
blance) in the conventional zero-offset imaging (NMO/DMO
stack, multifocusing, CRS). For prestack time migration
(PSTM) or prestack depth migration (PSDM), path-integral
imaging consists of an integration of elementary signals over
all possible diffraction traveltime curves (hyperbolic and non-
hyperbolic), instead of only along a single trajectory corre-
sponding to the estimated migration velocity. The constructive
and destructive interference of elementary signals contributed
by each path/trajectory produces an image that converges to-
wards the correct one, which is obtained by a stack/migration
procedure using an optimal velocity. In this process, all co-
herent data events are stacked and/or imaged, so possibly
unwanted signals (mode conversions, multiple reflections)
should be filtered out during preprocessing (multiple attenua-
tion, coherent noise reduction), just as with classical migration
schemes.

We begin by presenting the path-integral stack to zero-
offset, and then discuss the application on time and depth
migration. Since it is our intention to show only the feasibility
of imaging by path integrals, we will not concentrate on com-
putational efficiency. For the present, we accept the fact that a
proper implementation of path-integral imaging may be com-
putationally intensive (especially for depth migration), and in
this respect cannot compete with current imaging techniques.
We believe, however, that truly velocity-independent imag-
ing has distinct advantages, compared with imaging based on
velocity estimation, and that a next generation of comput-
ing hardware will make it computationally more attractive
(Feynman 1982; Aharonov 1999).

PAT H - I N T E G R A L Z E R O - O F F S E T
A P P R O X I M AT I O N

The process of stacking prestack data to zero-offset conve-
niently allows us to introduce and discuss path-integral imag-
ing. Stacking operators play a very important role in seismic
data processing and imaging, with the main purpose of im-
proving the signal-to-noise ratio and interpretability; the zero-
offset stack is also input to poststack migration. Improving
the quality of stacked sections remains the focus of intensive
research. Much effort has been directed towards improving
the accuracy of the NMO correction, e.g. shifted hyperbola
(de Bazelaire 1988), multifocusing stack (Gelchinsky et al.
1999a,b), common-reflection-surface stack (Jäger et al. 2001),
etc. However, these efforts have been of little use in stacking
procedures, mainly because of a need for a multiparameter

search (3–5 parameters in the 2D case and 8–13 parameters
in the 3D case), which is both time-consuming and not robust.

The most common application is common-data-point
(CDP) stacking. Let us represent a stack Q for zero-offset time
t0 and location x0 in the form,

Q(t0, x0; α) =
∫

dh
∫

dtU(t, h) δ(t − τ (xo, to, h; α)), (1)

where U(t, h) is the recorded CDP gather for location x0, and
h is the offset to be summed over the measurement aperture.
The quantity τ = τ (x0, t0, h;α) represents the time-integration
path/trajectory, which is parametrized by a parameter α (the
integration over t is only formal, due to the δ-function, but
included for clarity). The conventional zero-offset stack is ob-
tained by optimizing for α, i.e.

QO(t0, x0) = Q(t0, x0; α0), (2a)

where the subscript O denotes the conventional optimization
with respect to α0, and its optimal value is defined by

S[U(τ (x0, t0, h; α0), h)] = Max αS[U(τ (x0, t0, h; α), h)], (2b)

where S is a functional on the data U along the trajectory
τ (x0, t0, h; α0). For simplicity, we take S as the semblance,
and assume S ′(α0) = 0 and S ′′(α0) < 0 (the prime denoting
the derivative with respect to α). The choice of semblance
is nonessential, and formulations with other data functionals
are conceivable (e.g. differential semblance, which satisfies the
same assumptions). In the discussion below on the relationship
with quantum mechanics, S denotes action.

For a simple hyperbolic CDP stack, we have

τ (x0, t0, h; α) =
√

t2
0 + h2/α2 =

√
t2
0 + h2/v2

st, (3)

where the summation parameter α in (1) is equal to the stack-
ing velocity vst and the integration is carried out over the CDP
gather U(t, h). The stacking velocity is usually estimated by
velocity analysis, maximizing a coherence measure (e.g. sem-
blance) calculated along different traveltimes defined by (3).
In the case of multifocusing or CRS imaging techniques, τ is
defined by more complex equations (Gelchinsky et al. 1999a,
Gelchinsky et al. 1999b; Jäger et al. 2001) and α becomes a
vector of wavefront kinematic parameters. We denote such a
multiparameter vector in boldface, α.

We now introduce a heuristic development using the
idea of the path-summation method of quantum mechanics
(Feynman and Hibbs 1965). In Feynman’s path-integral ap-
proach, a particle does not have just a single history/trajectory
as it would have in classical theory. Instead, it is assumed to
follow every possible path in the space–time domain, and a

C© 2006 European Association of Geoscientists & Engineers, Geophysical Prospecting, 54, 491–503



494 E. Landa, S. Fomel and T. J. Moser

wave-amplitude and phase is associated with each of these his-
tories (trajectories). Each path contributes a different phase to
the total amplitude of the wave function or the probability of
going from a point A to a point B. The phase of the contribu-
tion from a given path is equal to the action S for that path
in units of the quantum of actionh̄ (Planck’s constant). Let us
define the path of the particle between two points, A and B, as
a function of t, i.e. x(t). Then the total amplitude of the wave
function, or the total probability of the particle going from
point A to point B, can be written as:

K(A, B) =
∑

all patins

ϕ(x(t)), (4a)

where

ϕ(x(t)) ∼ exp[iS(x(t))/h̄] (4b)

How does this quantum mechanic formulary behave in the
classical physics case? It is not absolutely clear how only
one classical trajectory will be singled out as the most im-
portant. From (4), it follows that all trajectories make the
same contribution to the amplitude, but with different phases.
The classical limit corresponds to the case when all the di-
mensions (mass, time interval, and other parameters) are so
large that the action S is much greater than the constant h̄

(S/h̄ → ∞).
In this case, the phases S/h̄ of each partial contribution cover

a very wide angle range. The real part of the function ϕ is
equal to the cosine of these angles and can assume negative
and positive values. If we now change the trajectory by a very
small amount, the change in action S will also be small in
the classical sense, but not small compared to h̄. These small
trajectory changes will lead, in principle, to very large changes
of the phase and to very rapid oscillations of cosine and sine.
Thus if one trajectory gives a positive contribution, another
trajectory may give a negative contribution, even if they are
very close, and they cancel each other out.

On the other hand, for a trajectory with stationary action
(Fermat’s trajectory), small perturbations, in practice, do not
lead to changes in the action S. All contributions from the
trajectories in this area have close phases and they interfere
constructively. Only the vicinity of this stationary trajectory
contributes to the total amplitude and (4) for the classical case
can be schematically written as

K(x0(t)) = F (x0(t)) exp[iS(x0(t))/h̄], (5)

where F is some smooth functional of the path x(t), and x0(t) is
the Fermat path with stationary action: ∇ x S = 0. It is precisely

this mechanism: firstly summation and secondly cancellation
for large S/h̄, which can be profitably applied in forward and
inverse seismic wave modelling. We note that (5) may be com-
pared with expressions from asymptotic ray theory, where the
solution of the wave equation is written as a smooth amplitude
function multiplied by the exponential of a stationary travel-
time. In our application to seismic imaging, the trajectory x(t)
is not defined in the model, but in the data domain.

We now introduce a heuristic construction, based on the
path summation idea for seismic stacking to zero-offset with-
out knowing or estimating the velocity model. Instead of stack-
ing seismic data along only one time trajectory corresponding
to the Fermat path (or stationary point trajectory), our con-
struction involves summation over all possible time trajecto-
ries. In this case (2) can be written as

QW =
∫

dα w(α)Q(α), (6)

where α now represents all possible time trajectories, w(α)
stands for weights of different contributions and the subscript
W denotes the weighted path integral (here, and in the remain-
der of the section, we omit the arguments x0 and t0 for the
functions Q, w and S, and assume that all relevant integrals
are taken at a current (x0, t0) pair). As an example, we can
stack the data along different time trajectories corresponding
to different stacking velocities (equation 3). Alternatively, the
time trajectories may be parametrized by other medium at-
tributes (even including anisotropy parameters). In any case,
we emphasize that the path summation formula (6) is radically
different from the conventional optimization formula (2a,b).
This is, in fact, the main idea of this paper.

Figure 1 illustrates the situation in simple geophysical terms.
The CDP gather (main panel) is stacked along different time
trajectories (solid lines on the top of the gather) corresponding
to different parameters α in (6). One of them coincides with
the trajectory corresponding to the correct stacking velocity.
This is the single curve which is used in the classical stack. The
path-integral stack consists of all individual stacks, summed
up and weighted according to (6). The final zero-offset stacked
trace is plotted to the right of the panel.

The weighting function w(α) in the weighted path integral
(6) can be chosen in many different ways. In general, it should
be designed in such a way that the contributions from un-
likely paths, which are far away from the stationary path, are
suppressed, while contributions from paths close to the sta-
tionary one are emphasized. Here, by the distance between
trajectories, we mean some measure on the set of available
curves: for a finite number of parameters α, this could be a
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Stacking velocity curve

Non-optimal curves

Stacked signal

time

offsetFigure 1 Path-integral stacking to zero-
offset, schematically shown for one CDP. A
conventional stack is performed over the op-
timal stacking velocity curve (solid line), the
path-integral stack is performed over many
curves (thin lines) which are not necessarily
optimal.

norm ||α||; for a single parameter, it could be |α|. For the
choice of a real-valued weighting function, the design should
be such that its maxima correspond to the stationary points of
Q(α). We may implicitly assume that the weighting functions
are normalized, i.e.

∫
dα w(α) = 1, in order to enable true- or

preserved-amplitude processing. In all cases, the integration
runs over the relevant α-range.

There are several choices for the weighting function. If we
choose an oscillatory weighting function,

QF =
∫

dα exp[iβS(α)]Q(α), (7)

where S(α) is the signal semblance, then (7) can be considered
as a form of the Feynman path integral (4). The parameter
β is a large positive number, which may serve as a control
or bookkeeping parameter and plays the role of the inverse of
Planck’s constant. The above heuristic development deals with
this type of weighting function. For an exponential weighting
function,

QE =
∫

dα exp[βS(α)]Q(α), (8)

we have the Einstein–Smoluchovsky path integral, which was
first introduced in the theory of Brownian motion (Einstein
and Smoluchovsky 1997; Johnson and Lapidus 2000). Note
that it only differs from (7) in that i = √−1 in the exponent of
(7) is replaced by +1 in (8). However, both conceptually and
numerically, the two integrals are quite different (see below).

A trivial choice is the Dirac-delta weighting function,

QD =
∫

dα δ(α − α0) Q(α) = Q(α0) = Q0, (9)

for which the path-integral stacking (6) reduces to the classical
limit and the conventional stack given by (2). However, for this
case we would need to know α0 (given by (2b)), which means
we would have to optimize again for α. Instead, a weight-
ing function w(α) which depends smoothly on α, as we are
proposing here, does not require any optimization or precise
knowledge of α0. Optimization for α also implies a choice for
a single optimum, whereas a smooth weighting function al-
lows us to take several optima into account (conflicting dips),
as well as the uncertainty in any optimal α.

It is straightforward to show that the path-integral stacks
QF and QE approach the classical limit QO for β → ∞ (in
an asymptotical sense). For the Feynman path integral, this
can be done by a stationary-phase approximation (Bleistein
1984; equation 2.7.18), under the assumptions Q(α) → 0 for
|α − α0| → ∞, S ′(α0) = 0 and S ′′(α0) 	= 0, i.e.

QF ≈ exp[iβS(α0) + iµπ/4]

√
2π

β|S′′(α0)| Q0. (10)

Here, Q0 = Q(α0) is the classical stack (2a) and µ is the sign of
S ′′(α0). The stationary-phase approximation (10) shows that
the Feynman path integral approaches the classical stack up
to a complex factor.
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A similar result holds for the Einstein path integral
(de Bruijn 1959; equation 4.4.9), under the assumptions
S ′(α0) = 0 and S ′′(α0) 	= 0, i.e.

QE ≈
√

−2π

βS′′(a0)
Q0. (11)

Again, the path-integral stack approaches the classical stack
for β → ∞ (up to a real factor in this case).

The numerical implementation of the path integrals with
oscillatory and exponential weighting functions is quite dif-
ferent. The implementation of the Feynman path integral (7)
requires a complicated mathematical apparatus, which is be-
yond the scope of this paper. Among the difficulties are:
1 the choice of integration limits;
2 the choice of a proper value for the parameter β in relation
to S(α) and its derivatives;
3 the integration step size.

On the other hand, the Einstein path integral (8) has real
contributions which decay rapidly as β and |α − α0| increase;
as a result, it can be much more easily represented by a finite
sum over a finite, realistic integration range. The differences
are illustrated in Fig. 2, for one particular (x0, t0) pair and as
a function of the single path parameter α. For a single param-
eter α, the implementation of the oscillatory integral (7) may
still be tractable, but for paths parametrized by more than one
parameter α, as in depth migration (see next section), a multi-
dimensional integration is needed, and implementation issues
can become critical. In any case, it is obvious that an adequate

αα = α0

w(α)

-1

0

+1

Figure 2 Path-integral weighting functions, exponential (thick) and oscillating (thin). The dashed line corresponds to the optimal value α0 used
in the classical limit.

sampling of the α-space depends on the width of the integrand
in (6) (the part where it is effectively non-zero), which in turn
depends on the control parameter β. For very large values of
β, an adequate sampling would require knowledge of the op-
timum α0, which is undesirable for reasons made clear above.

Figures 3(a,b,c) shows a synthetic example of stacking to
zero-offset. In Fig. 3(a) a synthetic zero-offset section is dis-
played (extracted from a prestack set obtained by Kirchhoff
modelling on the upper part of a Marmousi-type model with
an added water layer). Figure 3(b) shows the conventional
stack, obtained by applying (2a) and (2b): for each x0 and
t0, the stack is obtained by maximizing the semblance over a
hyperbolic stacking curve (3). Figure 3(c) shows the Feynman
path-integral stack, obtained by evaluating the path integral
given by (7); we used 200 trajectories/velocities in this exam-
ple. It is clear that the stacks are very similar and differ only
in numerical detail. We emphasize, however, that the stack in
Fig. 3(c) has been obtained in a fully automatic fashion.

Figure 4(a) shows a real data stack, obtained by conven-
tional stacking; Fig. 4(b) shows the same data, stacked by
Feynman path integration. Here, the Feynman path-integral
stack shows much better fault planes, expressed by conflict-
ing dips (in the upper part of the section). This is due to the
integration over different trajectories for the same t0; they in-
clude two stationary trajectories, one for the reflection off the
sedimentary layer and one for the fault reflection. In this sense,
the path-integral stacking has a similar effect as dip-moveout
(DMO) processing.
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Figure 3 (a) Synthetic zero offset section; (b) zero-offset section ob-
tained by optimal conventional stack; (c) zero-offset section obtained
by Feynman path integral stack.

1.5

2.0

2.5

3.0

3.5

tim
e(

s)

0 2 4 6 8
distance(km)(a)

1.5

2.0

2.5

3.0

3.5

tim
e(

s)

0 2 4 6 8
distance(km)(b)

Figure 4 (a) Real-data zero-offset section obtained by optimal con-
ventional stack; (b) real-data zero-offset section obtained by Feynman
path-integral stack.

PAT H - I N T E G R A L T I M E A N D D E P T H
M I G R AT I O N

Migration can also be considered as a stacking procedure,
and we can directly apply most of the ideas in the previous
section. Migration velocity analysis can become non-trivial
and a time-consuming part of prestack migration, particularly
in depth. Let us consider the classical diffraction stack VO for
a subsurface location x in the form:

V0(x) ∼
∫

dξ
∫

dt U(t, ξ) δ(t − td(ξ, x; α0)), (12)

where x corresponds to (t0, x) for time migration and to (z, x)
for depth migration, U(t, ξ) is the recorded input seismic data
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for an arbitrary source–receiver configuration parametrized
by the vector ξ,α0 are the optimal summation path parameters
(related to migration velocity), and td is the summation path
over the diffraction traveltime curve (the kinematic part of
the Green’s function) corresponding to this migration velocity.
The data configuration vector ξ is integrated over the measure-
ment aperture, and the integration over time is only formal,
but is included for clarity. Similarly to the conventional stack-
ing procedure (equations 1 and 2), the conventional migration
consists of finding an optimal migration velocity model, which
results in diffraction curves along which the signal semblance
is maximal. In the context of time migration, this requires us to
find, for each (t0, x), one or more parameters α that define an
optimal hyperbolic, or non-hyperbolic, diffraction curve. For
depth migration, it requires us to find a single velocity model
parametrized by multiparameters α, such that the predicted
traveltime curve for each (z, x) is optimal.

Following the path-integral concept introduced above, we
consider a set of possible time trajectories td corresponding to
a set of possible velocity models α, and use these trajectories
for migration image construction. Again we do not optimize
for the multiparameters α, but integrate over a representa-

Non-Fermat curves

Fermat curve

time

offset

time

Figure 5 Path-integral time migration for one shot gather. Conventional time migration attempts to find a traveltime trajectory for which the
semblance is stationary (Fermat curve), path-integral time migration is a weighted integral over many (possibly non-stationary) curves.

tive range of α. The integration is weighted by a weighting
function which is designed to attenuate contributions from
unlikely trajectories and emphasize contributions from trajec-
tories close to the optimal one. In this case (12) can be written
as follows:

VW(x) ∼
∫

dα w(α, x)
∫

dξ
∫

dt U(t, ξ) δ(t − td(ξ, x;α)),(13)

where td represents all possible time trajectories (dependent
on α), w(α, x) denotes the weighting factor and α is inte-
grated over all possible values of migration velocity. Here,
VW(x) is our weighted path-integral migrated image. Again,
several choices are possible for the weighting function w(α,
x), i.e. the Feynman/oscillatory function (as in (7)), or the Ein-
stein/exponential function (as in (8)). The Dirac-delta weight-
ing function (9) reduces the path integral to the classical
diffraction stack for optimal α = α0.

The weighting function in migration can be derived from
CIGs, where flatness of migrated events indicates a correct
migration velocity, and curvature is proportional to velocity
errors. Defining a flatness index p representing residual cur-
vature calculated for each sample of the CIG (p = 0 for a
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flat event, p	= 0 is proportional to the residual curvature), we
construct an exponential weighting function as follows:

w(x,α) ∼ exp[−|p(x,α)|]. (14)

This weighting function is of the Einstein/exponential type.
The flatness measure plays the role of the action S. The eval-
uation of the weighted path integral (13) with (14) requires a
multidimensional integration.

We first describe the application of the path-integral formal-
ism to prestack time migration. The path-integral time migra-
tion is shown schematically in Fig. 5. The shot gather is stacked
along all possible diffraction curves through one (x0, t0) pair.
One curve coincides with the optimal semblance, and is used
in the conventional migration (12). The path integral con-
sists of all individual stacks, summed and weighted according
to (13).

Figure 6(a) shows the path-integral time migration of part
of the Sigsbee data set (Paffenholz et al. 2002). Here, we used
the Feynman path integral with an oscillatory weighting func-
tion (with semblance as the data functional), and only hy-
perbolic traveltime trajectories. The path-integral migration
succeeds in optimally imaging both flat and dipping reflec-
tors, and also the target point-diffractors. For comparison,
Fig. 6(b) shows the same path-integral migration, but using
the Einstein path integral with an exponential weighting func-
tion (with CIG flatness as the data functional). It can be seen
that it is smoother than Fig. 6(a), which is probably due to
numerical integration artefacts of the Feynman path integral.
On the other hand, the Feynman path-integral image has more
continuous reflectors. We will not attempt a full explana-
tion of these numerical differences between the Feynman and
Einstein path-integral images in this paper, but leave it as a
subject for further investigation.

A real data example (North Sea data, courtesy of
Elf Aquitaine, Vaillant et al. 2000) is shown in Fig. 7.
Figure 7(a) shows the conventional (optimized) time-migrated
image, using the velocity continuation method (Fomel
2003), where the 2D migration velocity was estimated by
slicing through the 3D velocity cube. Figure 7(b) shows
path-integral time migration, obtained by weighted stacking
along different traveltime trajectories, corresponding to
a range of rms velocities of 1.4–3.0 km/s, and weights
computed from the flatness of events in CIGs (see equation
14). The path-integral image is structurally very similar to
the velocity continuation image, but it contains significantly
fewer migration smiles, it has lower noise levels and it
images the base of the salt better. Some loss in horizontal
and vertical resolution for the path-integral images indicates
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Figure 6 (a) Feynman path-integral time migration (oscillatory
weighting function) of part of the Sigsbee data set; (b) Einstein path-
integral time migration (exponential weighting function) of same data
segment.
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Figure 7 (a) Conventional (optimized) time-migrated image of North
Sea data, obtained by velocity continuation; (b) path-integral time
migrated image of North Sea data.

real physical resolution limits and should be attributed to un-
certainties in velocities.

The same path-integral formalism can be applied to prestack

depth migration. Figure 8 illustrates schematically the path-
integral depth migration on a shot gather. The difficulty with
depth migration, compared to time migration, is that, for a
given traveltime trajectory passing through a datum point (x0,
t0), it is not clear a priori where the stack should be located in
depth. In addition, the traveltime trajectories in depth migra-
tion are often non-hyperbolic, so that multiparameters α are
needed. In this paper, we construct physically realizable trav-
eltime trajectories by repeated, local application of the eikonal
equation for different random realizations of a velocity model.
Note that this does not compromise on the model-independent

concept of path-integral imaging. It merely provides an effec-
tive selection of realizable traveltime trajectories and excludes
unrealistic ones. In this context, we emphasize again that there
is not necessarily a single final velocity model that results in
an optimally focused image.

Figures 9–12 demonstrate the feasibility of path-integral
depth migration on a relatively simple model, consisting of
dipping and curved reflectors and strong velocity variations.
Figure 9 shows the result of a conventional prestack depth mi-
gration for the correct velocity model. The traveltime trajecto-
ries were computed in 250 different realizations of randomly
chosen velocity models, each one defined by linear interpola-
tion from a regular grid of values. The traveltimes were used
to produce CIGs. Figure 10 shows, for one particular velocity
realization, the flatness index p corresponding to the curva-
ture of reflection events on the CIGs. Values close to zero (grey
in Fig. 10) indicate the flatness of CIG gathers and therefore
the correct positioning of reflectors. The index is converted to
a weight (equation 14) and shown in Fig. 11; here, black de-
notes correct positioning and white denotes either a low stack
energy or poor positioning. Repeating this procedure for all
velocity realizations and stacking the individual images with
their weighting functions, we arrive at the path-integral depth
image shown in Fig. 12. Note that the deepest reflector was
imaged correctly, even although the correct velocity was not
included in the suite of 250 test velocity models that we used to
calculate the trajectories. This illustrates our argument that us-
ing random auxiliary velocity models does not contradict the
model-independent concept of path-integral depth migration:
a well-designed weighting function is capable of positioning
the reflectors properly.

D I S C U S S I O N A N D C O N C L U S I O N S

The path-integral method allows reliable subsurface struc-
tural imaging without knowledge or selection of a velocity
model, and therefore belongs to the class of macromodel-
independent techniques. The usual step of migration velocity
analysis, with its difficulties related to subjective and time-
consuming manual velocity picking, can be avoided altogether.
Path-integral seismic imaging can be considered as an authen-
tic macromodel-independent technique, since it does not in-
volve any optimization or estimation of parameters, repre-
senting traveltime trajectories or a velocity model.

Instead, the image is constructed by summation over many
(ideally all) possible traveltime trajectories. It therefore allows
the image to be fully dissociated from a reference model, thus
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Figure 8 Path-integral depth migration. Weighted stacking occurs over trajectories calculated for many auxiliary random velocity models.
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Figure 9 Conventional prestack depth migration in true velocity
model (given by v(x,z) = 1.5 [km/s] + 0.5 + 0.36 [s−1](x + z).)

avoiding problems related to complicated wave propagation
effects or resolution of different length scales.

The focusing mechanism is provided by data-defined
weighting functions, which are designed to emphasize con-
tributions from trajectories close to the optimal one and to
suppress contributions from unlikely paths.
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Figure 10 CIG curvature index for one individual velocity realization.

The path integral method can be applied to stacking to
zero-offset, and time- and depth migration, and has the
potential of becoming a fully automatic imaging technique. In
all these cases, we may express the path-integral construction
as follows:
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Figure 11 Weighting function derived from curvature index of
Figure 10.
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Figure 12 Path-integral depth-migrated image.

1 Choose an arbitrary modelα (stacking velocity/trajectory in
the case of a zero-offset stack, time-migration velocity curves
for prestack time migration, a depth–velocity model for depth
migration).
2 Perform the appropriate process: stack, time or depth mi-
gration, and then compute the weight.
3 Take another arbitrary model α, perform the appropriate
process and add the weighted stack/image to the previous
result.
4 Repeat step 3 until convergence.

Compare this procedure with the standard imaging proce-
dure, which can be described by the same steps 1 and 2, but
in step 3 a single stack/image with a weight exceeding all pre-
vious weights is chosen to replace a previous stack/image, and
step 4 consists of repeating step 3 until all reasonable αs have
been considered.

The path-integral imaging will be equal to this standard
imaging procedure only in trivial situations of a single max-
imum weighting function. However, it may be different for
complex models. The simplest example is zero-offset summa-
tion in the case of conflicting dips. A simple stack is unable
to stack two events with different stacking velocities for the
same t0, but path integration can do this. For migration, if the
weighting function (semblance or flatness) has local maxima
for different models, conventional migration will construct the
image using only one model (decided by the interpreter). Path
integration will use all possible models which have stationary
points for the weighting function and, moreover, it takes into
account velocity (model) uncertainties.

The proposed path-integral scheme can be thus described
in simple geophysical terms, related to the stationary-phase
method. However, we opted for an exposition of the scheme
in terms of quantum mechanics, not only because this may
be intellectually appealing, but also to emphasize a deeper
meaning, related to the fundamental uncertainty of the veloc-
ity model. In this sense, path integrals offer a non-classical
approach to seismic imaging.

The implementation of path-integral imaging, at least in
the stacking to zero-offset and time migration, is relatively
simple, since the same system of nested loops as in the con-
ventional process has to be traversed, but no velocity es-
timation is required. Several issues still need to be investi-
gated: the implications of the choice of a weighting function
(Feynman/oscillatory or Einstein/exponential); quality control
of path-integral images; amplitude control (true-amplitude
imaging); efficient implementation of path-integral depth
imaging, among others. In any case, the application to syn-
thetic and real data examples, both in time and in depth, shows
the feasibility of the path-integral imaging method in compli-
cated structural models.
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