
UNIVERSITY OF HERTFORDSHIRE

School of Information Sciences

BACHELOR OF SCIENCE IN COMPUTER SCIENCE
(Information Systems)

Project Report

MEASURING IMAGE QUALITY

M. G. Ross

April 1996

i

Abstract

The current methods for measuring the quality of computer stored digital images are
subjective. There are a multitude of different file formats available for the storage of such
images, each with its own unique features which may work for or against it. For an average
user or system developer, to decide on the most suitable format for their purpose requires a
knowledge of the available file formats, their features and how they affect the quality of
images, as well as the kind of image data they will be storing.

This places undue pressures on the user which my lead to a format unsuitable for them and the
application. Therefore it is important to make the right choice first time, while the opportunity
is still open.

In this project I have set out to identify any methods currently used in related industries to
measure the quality of an image stored in a wide variety of these file formats and how they can
be implemented successfully. From this information, and details on the specifics of popular file
formats and their compression methods, I have carried through the ideas, incorporating my
own opinions, to formulate suggestions on how this could be done on a wider general level.

To fortify my understanding of the problems associated with file formats and how their
compression and storage methods affect image quality, a software component to this project
has involved writing a graphics library to allow the conversion between a number of the most
popular graphics formats.

ii

Acknowledgements

I would like to thank the following people for their help in the production of this project:

Alan Boyd, project supervisor, without whose help and support throughout, this project would
not have been possible.

Jeffrey Glover, of ASAP Inc., for his opinions on the measurement of image quality.

Nik Sutherland, of the National Remote Sensing Centre, for information on the image
conversion problems encountered by the NRSC as well as opinions on quality measurement.

Nick Efford, of the University of Leeds, for further information regarding image quality
measurement relating to medical imaging and motion tracking.

Andy Wells, of ERDAS, for providing contacts in the industry and opinions on image quality
measurement.

Simon Boden and Neil Dudman for their assistance in testing the software application
developed in the project and providing feedback.

1

TABLE OF CONTENTS

CONTENTS PAGE

1 INTRODUCTION.. 4

1.1 Project Motivation.. 4

1.2 Aims And Objectives .. 4

1.3 Report Structure... 6

2 DESCRIPTION OF CURRENT IMAGE QUALITY MEASURES... 7

2.1 Background.. 7

2.2 Information Sources ... 8

2.3 Feedback .. 9

3 PERSONAL OPINION ON IMAGE QUALITY .. 11

3.1 ASAP Inc. .. 11

3.2 National Remote Sensing Centre (NRSC) ... 11

3.3 Centre Of Medical Imaging Research (CoMIR)... 12

4 FILE FORMATS AND COMPRESSION METHODS.. 13

4.1 Format Types ... 13
4.1.1 Vector ... 13
4.1.2 Bitmap... 14
4.1.3 Metafile ... 15
4.1.4 Scene Description .. 16
4.1.5 Animation .. 16

4.2 Bitmap Compression Algorithms... 16
4.2.1 Symmetric And Asymmetric... 16
4.2.2 Non-Adaptive, Semi-Adaptive, And Adaptive Encoding................................. 17
4.2.3 Lossless V. Lossy .. 18
4.2.4 Pixel Packing ... 18
4.2.5 Run-Length Encoding (RLE) ... 19
4.2.6 Lempel-Ziv Welch (LZW).. 20
4.2.7 Huffmann Coding... 22
4.2.8 Arithmetic Coding.. 24

4.3 Colour Spaces And Other Considerations... 25
4.3.1 Colour Space ... 25
4.3.2 Other Considerations ... 27

4.4 Advanced Image Formats ... 27
4.4.1 JPEG ... 27
4.4.2 MPEG ... 30
4.4.3 Fractal ... 31

2

5. MEASURING IMAGE QUALITY .. 34

5.1 Factors Affecting Image Quality.. 34
5.1.1 Image Format Factors .. 34
5.1.2 Higher Level Factors.. 35

5.2 Suggestions On Measuring Image Quality... 36
5.2.1 Exhaustive Testing... 36
5.2.2 Quality Rating.. 38

6. IMAGICA TECHNICAL DOCUMENTATION.. 42

6.1 Design Principles .. 42

6.2 Problems Encountered And How They Were Overcome 43

7. CONCLUSION AND EVALUATION ... 46

7.1 Evaluation Of Objectives And Aims .. 46

7.2 Evaluation Of Project Management... 48

7.3 Further Work.. 49

8. BIBLIOGRAPHY ... 51

8.1 General References ... 51

8.2 Specific References... 51

8.3 Internet References... 52

Appendices

Appendix 1: Project Plan Gantt Chart

Appendix 2: Imagica Source Code

3

TABLE OF FIGURES

PAGE

FIG. 4.1: VECTOR REPRESENTATION OF A CHAIR .. 14

FIG. 4.2: BITMAP REPRESENTATION OF A CHAIR... 14

FIG. 4.3: 4-BIT UNPACKED PIXELS... 18

FIG. 4.4: 4-BIT PACKED PIXELS ... 18

FIG. 4.5: BYTE-LEVEL RUN-LENGTH ENCODING OF CHARACTER STRINGS............................. 19

FIG. 4.6: LEMPEL-ZIV WELCH COMPRESSION OF A TEXT STRING.. 21

FIG. 4.7: LEMPEL-ZIV WELCH DECOMPRESSION OF A CODE STREAM.................................... 22

FIG. 4.8: HUFFMANN CODING – SYMBOL FREQUENCY AND BIT-CODE REPRESENTATION....... 23

FIG. 4.9: HUFFMANN CODING – RESULTS.. 23

FIG. 4.10: ARITHMETIC CODING PROBABILITY DISTRIBUTION.. 24

FIG. 4.11: ARITHMETIC ENCODING OF A STRING... 25

FIG. 4.12: THE RGB CUBE.. 26

FIG. 4.13: THE HLS DOUBLE HEXCONE.. 26

FIG. 4.14: THE THREE STAGES OF JPEG LOSSY COMPRESSION.. 28

FIG. 4.15: ZIG-ZAG SEQUENCE.. 29

FIG. 4.16: THE EFFECT OF QUANTISATION .. 29

FIG. 4.17: DOMAIN AND RANGE BLOCKS IN FRACTAL PIFS .. 32

FIG. 4.18: FRACTALLY COMPRESSED IMAGE BEFORE AND AFTER ZOOMING.......................... 33

FIG. 5.1: TEST IMAGES FOR MEASURING IMAGE QUALITY ... 37

FIG. 5.2: FILE SIZES AND COMPRESSION OF TEST IMAGES... 37

FIG. 5.3: PIXEL DISCONTINUITY CAUSED BY LOW QUALITY JPEG... 39

FIG. 6.1: PLANE-ORIENTED PCX DATA MISINTERPRETED AS PIXEL-ORIENTED 44

FIG. 6.2: ATTEMPTED DATA ORIENTATIONS FOR PCX IMAGES.. 45

FIG. 6.3: THE EFFECT OF IMAGICA PCX SCANLINE ORIENTATION ... 45

Introduction

4

1 Introduction

1.1 Project Motivation

As a user of graphics file formats and conversion applications I have been interested in this
field since my interest in computing began. My own experiences of using graphic images for
course-work has led me to ponder many questions as to why there are so many formats and
methods for storing these images. This project has given me the opportunity to explore the
world of graphics files to find out the answers to my questions.

My knowledge of this field at the start of the project was casual. I knew generally about
bitmaps without knowing anything specific about the formats, compression techniques and
overall structure of the graphic images I was using. As this is a subject I am interested in
making my career in, measuring the ‘quality’ of images and how this can be affected by the
right or wrong choice of a file format seemed a natural choice of study which I knew would be
both challenging and interesting.

The learning curve embarked on has been considerably steeper than previous work I have
undertaken. The software component constitutes my first true software development
culminating in a final product. My previous knowledge of the C language did not cater for the
scale of this work, and my skills in Pascal, as used in Borland Delphi, were only of a basic
level. Through the development I have learnt everything necessary about these languages and
how they can be applied to creating file conversion software.

From the theory aspect, I have done much research into the principles of image storage and its
related areas including compression and decompression, colour spaces and conversion between
colour systems, image displaying, conversion between file formats and some advanced
techniques used to enhance compression ratios and allow such features as real-time full-motion
video.

1.2 Aims And Objectives

The core objectives which have been designated as fundamental to the project are:

• Identify, understand and describe a range of industry-based methods for quantitatively
measuring the quality of an image represented in various graphic file formats.

Information gathered from related industries as well as from other image processing
sources will be described with its relevance to this study.

• Suggest methods for measuring an image’s quality in varying graphic file formats.

Using the information gathered as a base, I will build up my own ideas on ways ‘quality’
can be identified and measured fairly between different formats and techniques.

• Research, understand and describe current popular static graphic file formats, the
compression methods utilised as well as colour spaces etc.

Emphasis will be on the common compression and decompression techniques used
widely, and how their use impacts the quality of the image representation, not just in
visual terms, but overall efficiency and suitability.

Introduction

5

• Gain an understanding of relevant advanced algorithm concepts, such as JPEG,
MPEG, and Fractal compression.

Although not covered in great detail, an understanding of these advanced representation
methods is useful in the context of the project.

• Research Windows API programming.

Although the software will involve little direct API programming, it is useful to know
about the facilities and restrictions I will be working with.

• Learn Borland Delphi and ObjectPascal.

To be learnt specifically for the project.

• Use shareware JPEG and GIF encoding/decoding routines to create routines which
allow transfer to and from the Microsoft Windows BMP format.

The BMP format will be used as the central format by which the other supported formats
will be converted to and manipulated.

• Write ZSoft PCX encoding/decoding routines to and from Microsoft Windows BMP
format.

Along with the JPEG, GIF and BMP routines, a 16-bit Dynamic Link Library compatible
with Microsoft Windows 3.1 or greater will be constructed with high-level format
conversion routines accessible to external software.

• Design and implement a user-interface with Borland Delphi which makes use of the
routines.

This will provide a front-end to the graphics library created in the objectives above. This
application will allow the conversion between JPEG, GIF, PCX and BMP formats.

In addition, the advanced aims which are desirable if time is permitting are:

• Implement tools for clipboard transfer of image selections, as well as simple
manipulation tools covering fixed rotation (i.e. 90, 180 or 270 degrees), scaling,
horizontal and vertical axis flipping.

Of these extra utilities the ability to use the clipboard will increase the compatibility of
the application. Therefore, it is more important than magnification, rotation and axis-
flipping, which are not essential, but enhance the functionality of the software.

• Construct an online help system within the software package.

Although this will mainly contain procedural information on how to use the application,
it would provide software testers with an instant information source if problems are
encountered using the system.

Introduction

6

1.3 Report Structure

Chapter 2 introduces the major factors which bias the measuring of image quality, as well as
listing the industry sources used to collect information. My opinions on the information
described is contained in Chapter 3. File formats are discussed in Chapter 4, in general terms
with examples from file formats. In Chapter 5 I follow-up the work from the previous chapters
by suggesting methods in which image quality could be measured whilst avoiding the bias
factors mentioned in Chapter 2. Chapter 6 is described below. Finally, in Chapter 7, I
conclude by evaluating the work I have done, the problems I have encountered, the areas of
future work which could be done, and a self-appraisal of my success in attaining the objectives
and aims and overall management of the project.

The technical documentation for the software component of this project is contained in
Chapter 6. This includes the design principles, structure of the application, problems
encountered and details of how they were overcome. Specific details on how to use the
application can be found in the on-line help system available through the software. An
evaluation of my success in writing this software is contained in Chapter 7, as are future
improvements which could be made. Appendix 2 contains the source code of the application
written by myself. The entire source code is not included, as a majority of the library low-level
functions were taken from the previously mentioned shareware packages.

A project plan, in the form of a Gantt Chart can be found in Appendix 1. This plan outlines the
initial plan at the offset of the project. The evaluation in Chapter 7 discusses how reality has
matched up to the plan.

Description Of Current Image Quality Measures

7

2 Description Of Current Image Quality Measures

2.1 Background

In order to fully appreciate the requirements of an accurate file format measuring system, it is
important to have details on the following:

• Current methods used in industry for performing image quality measurement.
• An understanding of the formats available.
• Implementation details of the main formats used in representing an image.

The latter two will be covered in the following Chapters. This Chapter is concerned with
procedures used by organisations in industry which deal with the difficulty of file format
selection.

The first thing to ask is why is it necessary to measure them so accurately? Looking at most
images, one can usually tell which provides the best quality just by looking. The clear answer
here relates to perception. One person looking at a set of images in different formats may
think format A to be better than formats B or C because they can see the colour definition
better. Another person may disagree on the grounds that B is of a higher resolution, and is
therefore ‘better’. Yet another person could be colour blind, making the results even less
accurate and reliable. This is the first problem encountered: each individual has his or her own
unique perception. We cannot rely on a method whereby everyone involved could have
differing opinions. This does not help judge formats scientifically and fairly. Many factors
which are beyond our control affect the way we view image representations. Some of the
more distinct ones include:

• Equipment – Using a low-quality monitor with a poor graphics card which can only
display, say, 16 colours at 320x200 pixels will place an unfair disadvantage on all the
formats involved in the test. Most importantly, however, will be the effects on
formats which have the test image stored as 24-bit and in a resolution of 1024x768
(format A in this example) or higher. The scaling down of the colours to those
available will give undesirable results and is likely to result in an unsuitable display.
Now if the image was displayed again from a format which can only store 256 colours
at 640x480 pixels (format B), the down-sizing and down-sampling required is less
drastic and hence, the displayed image will be closer to the actual file stored
representation. This example would give the second format B a clear and unfair
disadvantage. If state-of-the-art equipment was available for the test, the results
would obviously be turned around with the 24-bit high resolution format A utilised to
the full with the lower standard format B distinguished as a poor format for high-
quality representation.

Description Of Current Image Quality Measures

8

• Human Vision – Many people require man-made aids to help their vision nowadays.
As we all are unique, the vision quality we each possess varies widely. This means
that we cannot rely on our own vision to systematically judge image representations.
Many of the formats of today can produce qualities so high that the human eye cannot
appreciate the detail level. As an example, experiments have shown that humans can
discriminate about 200 colours across the spectrum if placed next to each other
(Jackson, MacDonald and Freeman, 1994). This difference can be exploited by these
formats without decreasing the visual quality to the naked eye. Just looking at an
image will not necessarily enable us to notice differences which, being so insignificant
to the eye, are not identified by our visual system.

• Environmental Conditions – Lighting is the main factor in this group. Our perception
of an image representation will be swayed to some degree by the lighting in the room
where the viewing is taking place. If it is a bright room and we have entered from a
dark room previously, it is likely our eyes will take a while to adjust to the new
lighting. This will play a big part when looking at the pictures on-screen. Other
factors such as noise and smell could also play a rôle, to a lesser extent, in that they
may affect the concentration of the viewer.

• Viewer Bias – For one reason or another, an individual may have pre-conceived ideas
about which format they believe will perform better. This already places bias towards
the format before they have even been seen. Ensuring objectivity would be important
and difficult in such tests.

So if a fair method for measuring such quality is to be found, it cannot involve the use of
viewing the image with the naked eye. A scientific approach is required which filters out the
subjective, bias-factors described above.

2.2 Information Sources

To get an understanding of how these image format problems are circumnavigated in industry,
I have selected a range of relevant companies to approach and request information from. To
gain as wide a viewpoint as possible I have not restricted my information requests to any
particular type of industry. The organisations and individuals I have requested information
from are:

• ASAP Inc. – Jeffrey Glover
• Atlas Image Factory
• BBC Television: ‘Sky At Night’ and Weather Centre
• Centre of Medical Imaging Research (CoMIR) – University of Leeds – Nick Efford
• Erdas
• Imaging Systems Lab; Centre for Imaging and Pharmaceutical Research (CIPR);

Magnetic Resonance Imaging Group (MRIG); Teleradiology & Medical Imaging,
Nynex

• Laser-Scan Limited; Visioneering Research Limited (VRL)
• NASA Information Services; NASA Jet Propulsion Laboratory (JPL); NASA Remote

Sensing Unit (RSU)
• National Remote Sensing Centre (NRSC)
• Silicon Graphics, UK
• United States Naval Observatory (USNO)
• WXP Weather Project; National Center for Atmospheric Research (NCAR)

Description Of Current Image Quality Measures

9

I have requested information regarding the necessity of image quality and storage using the
more popular formats (or, indeed, any others used) with respect to their application. The
purpose of this is to paint a picture of the current state of the industry so I am able to form my
own suggestions as to how this could be done.

2.3 Feedback

Three responses were received with regards to my information request.

1. Jeffrey Glover, of ASAP Inc., stated that if speed was more important for an
application (for example World Wide Web graphics) then a format is chosen on this
basis. As 24-bit colour at 1600x1200 resolution is rarely required for this application,
only disadvantages would result in its use. A majority of the World Wide Web user-
base would not appreciate the large graphic files and have no requirement for such high
quality.

For quality-critical applications, only lossless compression will do. The possibility of
losing some detail, even if it is too small to see with the naked eye, gives rise to
problems if the image is then processed and enhanced by a computer. Disparities and
noise could then be amplified to the extent of affecting the image visually.

2. The National Remote Sensing Centre, a company involved in the production of maps
generated from remote sensing scans taken by orbiting satellites stated that user
judgement is predominant. For the majority of their applications, colour plays a major
rôle. The example quoted involves infra-red scans of an area, whereby an experienced
user can map the outputted false colours from the scan to bands of infra-red intensities
using Erdas Imagine or ER Mapper. No scientific method is utilised to judge the
accuracy of the user’s decisions, or provide assistance along the way.

The file formats used by the NRSC also provided further information. As pointed out,
all formats which can handle 24-bits per pixel of colour information should be on a par
when representing the colour, in whatever form. The problem arises, however, when
the file needs to be interpreted by many applications on different platforms. Most, if
not all, applications of this type include their own built-in proprietary image format.
Transferring from one type to another can raise problems. Of course, plug-in filters are
available for most of these which allow the transfer to a common format suitable for all
involved platforms and software. In the experience of the NRSC these often fail to
sustain the quality required, and so are not used. As an aside, I too have noticed this
with certain pieces of software, such as early versions of Microsoft Word, which
includes a low-quality GIF import/export filter which is of little practical use for most
purposes. Instead, the images are stored in the application’s built-in format at the
NRSC which can be guaranteed to maintain the detail. As a consequence of this, if the
image is required in all the varying application-specific formats, the image processing
steps have to be carried out separately on each application. This is not a viable option,
due to the cost and time resources required, so is rarely undertaken.

Description Of Current Image Quality Measures

10

3. Nick Efford, of the School of Computer Studies at the University of Leeds, is involved
with The Centre of Medical Imaging Research (CoMIR). For storing their image
databases, they use lossless compression formats. They have not concerned themselves
on the issues of file formats as they feel it is convenient to purchase further storage
devices as required. In this case, because all of the images are stored lossless, there is
little point in analysing the differences between the formats as they will be almost
identical (except in the technicalities of the format layout). It must be noted at this
point that not all lossless formats are capable of storing 24-bit colour, GIF being an
example (see Chapter 4).

They also do research into object-tracking. Moving images are stored as lossy, as it is
more important to gain higher compression than better quality. All the concern with
this application is focused towards identifying the objects. Subtle differences in the
quality of the image from frame-to-frame is not important as only the object outlines
need to be recognised. The advantage of not requiring a lossless format for this
application is the large savings on storage space, and the use of a simple lossy
compression algorithm ensures the motion can be tracked in real-time.

When dealing specifically with medical images, the quality of the image is not
paramount. He says they are aware of the significance of high quality in this area, but
do little to ensure their images are of the highest quality as they feel it is not necessary.
From their point of view, the medical profession is very wary of imaging in general,
especially in the United States where concerns of lossy compression affecting patient
diagnoses are higher. In England, however, the majority are content with the quality
currently attained.

Personal Opinion On Image Quality

11

3 Personal Opinion On Image Quality

The best way to approach this is to analyse the responses I have received and described in
Chapter 2.3. From there, I can build up my own ideas and paint a bigger picture of how I feel
about the factors for and against this constantly developing field.

3.1 ASAP Inc.

I feel that Mr. Glover failed to answer the questions I put to him directly. His response was
somewhat vague and did not take into consideration the necessity for a scientific measuring
system which could be used and justified by any user, expert or otherwise. To some extent, I
agree with his notion that one can sometimes tell which format is most suitable for a certain
image and application. However, for this to be so requires knowledge of the available formats
and the application in-hand. For someone unfamiliar with either or both of these, visual
perception and knowledge of available formats is not a satisfactory method.

What is required is an unbiased system which can be used by anyone that allows the various file
formats to be graded against each other for a particular type of application. No knowledge of
any file formats or the application in-hand would be necessary, other than the basic
requirements of the system (such as medical, recreational and so on).

We cannot assume that the user will have any knowledge of the formats available, and
therefore most suitable for the application. In fact, the final results may be better if the user
has no understanding of such formats, as the removal of preference for one format may lead to
a better choice being made. Only a scientific, quantitative method can guarantee better results
every time. It is important to make the correct decision at an early stage, as it could be too
late if software for the application has been developed with a certain format in mind. If, for
example, it is later discovered that the chosen format will consume too much disk space per
image, or requires more processing power than can be harnessed in real-time, the system will
be severely restricted the longer it is used. Tough decisions would need to be made as to
whether or not it should be redesigned with a new format in mind, better equipped for the
tasks ahead. The system updates could be costly and time-consuming, especially if it has been
redistributed to many customers. All of these problems should never need to occur.

3.2 National Remote Sensing Centre (NRSC)

In this response the issue did not lie so much with ensuring image quality is of the optimum
level when stored, but converting between the myriad formats efficiently whilst maintaining the
quality. Until better quality plug-ins are made available which allow easier transference, this is
likely to remain a problem. Due to the wide range of facilities offered by different software
applications, to convert from one to another would usually require a filter to be specifically
built for that purpose. In some cases, it may not be possible to convert at all, if the features of
one package are not supported in another.

This is a fundamental problem in the image storage dilemma which can only practically be
solved through collaboration between the software manufacturers, ensuring file formats are
interchangeable. Currently there are already some alliances between players in this market, but
it is a far cry from the co-operation required to eliminate the problem. While this continues,
the pool of formats grows larger and the possibilities for conversion become endless.

Personal Opinion On Image Quality

12

In relation to the quality of an image, the NRSC usually relies on the capacity of its employees
to judge its quality. As the people involved with these remote sensing images are all well
experienced with the application, there would be little advantage to formally representing this
system. Situations like these demonstrate that a quantitative method for grading formats is not
always necessary. In some cases it would only cause problems, as all the relevant employees
would need training under the new system. Clearly, the kind of system I am suggesting is more
suited to scenarios where the users will have less knowledge of the overall system, or those
systems where the quality of an image is paramount and cannot be accurately judged by visual
perception alone.

3.3 Centre Of Medical Imaging Research (CoMIR)

This case highlights differing viewpoints. On the one hand, Mr. Efford is involved in the
Computer Science aspect, as a member of the academic staff at the University of Leeds.
Generally, the technical aspects of the technology used is of more importance, and how it can
best be improved and utilised to the full. On the other hand, his links to medical imaging
provide a perspective from the medical point of view which are more concerned with the
contents of the image, rather than how it was captured.

However you look at it, there will be a merging to some degree between them. From the
Computer Science stance, it is important to know what kind of things the images are
representing so suitable hardware and software can be used which copes with the demands.
Inversely, the medical staff must also know of limitations with the hardware and software
which may give rise the noise and artefacts on the images. The definition of this division
depends on the particular example, as it will vary with many factors, but in an ideal world, the
computer scientists should be aware of the application as much as the medical staff are of
technical capabilities.

With regards to the quality of medical images, the next step depends on what is to happen to
the images after they are acquired. If a doctor is to look at them and make a judgement, the
results would be less erroneous than if a computer was used to post-process and highlight
object outlines. The computer is much more likely to pick up on disparities and noise
generated by the compression technique, especially as it has little or no knowledge of the
human anatomy. In the design of the system this will be accounted for and acted on
accordingly, but the distinction must be made that this could vary widely. With images only
being viewed by the doctor, it is highly likely that lossy compression may suffice. Most of
these techniques are capable of significant compression ratios without affecting visual quality.
This may be all that is required, so lossless algorithms would be wasted, as well as storage
space. If the images were parsed through an image processing system to extract important
features, it would be vital that lossless techniques were used. After this stage, the doctor then
views the result, and a lossy method used for the final output.

On a different subject, motion tracking enables much of the detail in a set of images to be
disregarded. As we are only interested in the shape of the object, the cheapest possibility
would be binary thresholding. This would allow extensive compression which would make the
hardware and software requirements of a motion-tracking system less advanced. All the
processing power could then be handed to the artificial intelligence engine which processes the
motion. Image format choices would be far wider in this case, as virtually all of them are
capable of storing binary image data (although some are better suited).

File Formats And Compression Methods

13

4 File Formats And Compression Methods

With the proliferation of new computer systems and applications to run on them, a multitude of
file formats has also been introduced by manufacturers. Each of these has been designed for
either a specific software application or for a certain type of use.

In this chapter I will discuss the main types of file formats, how and what they are capable of
storing, and any methods used for compressing the represented data. The information
contained herein can then be used as a reference for the suggestions and recommendations I
have made in Chapter 5. This discusses quantitative methods for fairly measuring an image
format’s ability to represent certain types of data as accurately as possible. It should be noted
that I have concentrated primarily on the file formats specifically involved with this project, but
other types are mentioned to provide a broader view of what is available.

4.1 Format Types

Image formats can be broken down into three main categories: Vector-based, Bitmap-based,
and Metafile-based. Each of these makes a different approach in representing an image, and
stores different types of data accordingly. In addition, and less importantly to this project,
there are also Scene Description and Animation types.

4.1.1 Vector

Representation is performed by retrieving vector information for the image as objects.
Initially, only lines could be represented, but now the capability is there to build up
complex objects from different kinds of curves and polygons. All the simple vectors
objects can be stored as a set of mathematical statements with attached colours and other
information which can build up more complex objects.

The primary use of such formats is in Computer-Aided Design. Vector formats are well-
suited to storing mechanical and other technical drawings as, generally, they are
constructed from simple vectors and curves. 3-D, labelling and hatching of objects is also
possible within some of the more advanced vector formats.

Due to the highly compact method of storage, compression would yield little on most
images on this type of format. For example, all of the compression techniques discussed in
this chapter (see Chapter 4.2) are unsuitable for vector compression. However, if it were
used on complex files, an effective method would involve a dictionary-based algorithm
storing frequently used mathematical statements, making references as required in the same
way as a colour palette look-up table (CLUT).

This type of format would be unsuitable for storing real-world scenes, as each item of the
scene would need to be broken down into a set of vectors, even before colour has been
considered. This would require much processing and artificial intelligence to identify
possible object outlines. In addition, as the image is described as a set of formulae, exact
display cannot be guaranteed to be identical on different machines. Different machines may
interpret the commands in slightly different ways, as with a non-procedural programming
language. Usually, vectors are drawn in the same original order they were created in, so
complex drawings may give rise to a ‘building block’ effect as the drawing is created
before your eyes. Fig. 4.1 demonstrates a vector-representation of a chair.

File Formats And Compression Methods

14

4.1.2 Bitmap

This, by far the most widely used type, represents an image at a bit-by-bit level. A
mapping of an image is made and transformed into pixel values which can then each be
assigned a colour value. Bitmap formats are ideal for storing real-world photographic or
other complex images, as there is no requirement to classify objects, and as each pixel can
be easily converted to an array value, they are ideally suited to programming methods.
These reasons have made them popular with many differing applications. The opportunity
for storing photographic images digitally has been utilised by many applications in both
industry and recreation, and is becoming ever more present as a part of everyday life.

The first thing to note about bitmaps is the large increase in data required to represent a
scene. For an accurate depiction of, say a photograph, a resolution of at least 640x480
(307,200 pixels) would be required. At least 256 colours (8-bit) would be necessary for
realism, so the minimum storage required for the raw data is 307,200 bytes without even
considering the colour palette entries. Currently, resolutions up to 1600x1200 are
possible, at up to 128-bit true colour: requiring 30,720,000 bytes to store the image
uncompressed!

Storage space and image display memory is of a much higher concern with bitmap data
than it was with vector data. Due to this, numerous sophisticated methods have been
devised over the years since the inception of bitmaps, which can drastically reduce the
storage required for such images. It is the improvements in computer technology which
has made bitmap formats possible. As it advances, and prices fall, the specifications are on
the rise. The resources required to display high resolution images is increasing, as is the
need for effective reduction in storage size. A detailed discussion of some of the common
types of bitmap compression can be found in Chapter 4.2.

Fig. 4.1: Vector Representation Of A Chair Fig. 4.2: Bitmap Representation Of A Chair

Figs. 4.1 and 4.2 shows vector- and bitmap-oriented representations of a chair object. An
interesting point to note is that the vector version is concerned only with the chair itself,
whereas the bitmapped version does not identify objects and thus the white background is
also stored as bitmap information. In this case, if the chair were to be overlaid on a
background image of, say a kitchen, the bitmap version would require further manipulation
to prevent the background interfering with the output.

Width: 40 pixels

Height:
120 pixels

Vector x
Vector 1:
Length 200
(Dark Green)

120 x 40 = 4,800 pixels

Potentially in excess of
5,000 bytes.

Potentially less
than 1,000 bytes.

File Formats And Compression Methods

15

This remains a significant disadvantage of bitmaps. Some of the industries where bitmaps
are used require manipulations of such data to identify object outlines and perform other
operations to extract certain information from an image. Quite how this is done varies a
great deal, depending on the necessity for accuracy. The image processing techniques used
can be done either by an operator, or by the computer itself. Of course, relying on the
computer to make judgements on an image it has little knowledge of can be risky. The
context of an object could be misconstrued by a machine without detailed information
being programmed in to tell it of, for example, the human anatomy. Some very complex
systems have been developed to try and make this as effective as possible, but at the end of
the day, computers are unlikely to come close to the effectiveness of an experienced user’s
perception.

In a lot more cases, the image processor has been provided with a multitude of tools which
allow every conceivable mathematical alteration on an image, so that the information
required can be tweaked manually, using the computer as a ‘slave’. Details which may not
be visible from the standard picture can be gleaned by manipulating the bits in some
uniform, or non-uniform way. All of this takes time, and that is why projects are trying to
involve the computer more in understanding its subject, and applying its knowledge in
automating the enhancement.

The whole requirement for image processing is centred around the original quality of an
image. If it is very poor, much more work will be required to remove noise and other
unwanted artefacts before it can be properly analysed. If the original image could be
guaranteed to be of optimal quality, the need for image processing would be greatly
reduced. The purpose of this project is to identify ways in which this could be done,
through the use of currently available file formats. Often, an unsuitable format will render
the quality low, a headache for the image processor. If better decisions were made at the
design stage, many of these problems could be avoided.

4.1.3 Metafile

Beyond the vector and bitmap formats now available, this type fills a niche which bridges
the gap between them. Metafiles have the capability of handling both bitmap and object
vector data within the same file. So, a representation of a chair (as in Figs. 4.1 and 4.2)
could be stored as both vector and bitmap data in a single file.

The advantage of doing this is that some machines may only be able to display bitmap
information, while others can only cope with vector data. Both of these can be catered for
with a metafile. Users of both vector- and bitmap-based systems can then display and
manipulate a version of the image (assuming the metafile format is supported by both),
dramatically increasing the accessibility of the format type. In addition to this greater
platform-independence, a reduction in required file storage may be in effect (only one file is
needed for bitmap and vector representations of the same scene).

The cost for this flexibility is transferred into the construction and specification of the
formats. Metafile formats are generally more complex than bitmap or vector ones as they
have to account for many more possibilities in content, encoding, and other storage
dilemmas. The knock-on effect could be to decrease the speed of encoding or decoding a
complex file which utilises the full range of facilities offered by the format.

File Formats And Compression Methods

16

However, the fact that metafiles are sometimes stored as ASCII representations brings on
some new advantages: the little- and big-endian byte ordering systems of different
platforms no longer plays a part, as well as an even larger potential user base.

The manual editing of metafiles is also made possible through the use of a standard text
editor, although the implied complexity of such files may warrant this a pointless exercise
except for the experienced few.

Finally, the high redundancy in ASCII files makes for high compression ratios. The
implication of this is that standard text compression algorithms could be used with a
particular format relatively easily, without the requirement for a proprietary compression
and decompression library.

A widely known example of a metafile format is that used by Microsoft Windows. Image
descriptions are sub-divided into device-independent GDI (Graphics Device Interface)
function calls which can later be played back on any compatible device.

4.1.4 Scene Description

Formats of this type are almost indistinguishable from vector types. The only difference is
that scene description files describe how to reconstruct the image as a whole, not as
individual objects. The methods of applying this are the same as vector and often it can be
difficult to classify the two as separate groups.

4.1.5 Animation

When a static image is no longer enough for displaying graphical information, the next step
is animation. Initially, such formats stored multiple static images in the same file which,
when displayed in quick succession, gave the appearance of movement. Nowadays this has
been superseded by more complex and effective methods which can radically reduce the
storage requirements of animation. A commonly used example of one such format,
MPEG, is discussed in further detail in Chapter 4.4: Advanced Image Formats.

4.2 Bitmap Compression Algorithms

Before looking directly at the various styles of compression used in image formats today, it is
necessary to lay some groundwork.

4.2.1 Symmetric And Asymmetric

Image compression and decompression is composed of two distinct types: symmetric and
asymmetric. Symmetric codecs are those which perform the reverse operation of a
compression for decompression. That is, in the same way we can reverse a mathematical
formulae to extract a different value, we can reverse the procedures used to compress an
image leaving an identical copy of the original data.

File Formats And Compression Methods

17

As the name suggests, asymmetric means the compression algorithm differs from the
decompression one. This may mean the compression is more complicated, or the
decompression, according to the system in use. The importance of asymmetric
compression is that we can make a decision when selecting a type of compression for use
in a format exactly what we desire of it. If concerned with obtaining the smallest (or best
compressed) file available, we can afford to spend more time on the compression to make
sure it is as efficient as possible. Decompressing is likely to be quicker as a great deal of
time was spent on compression to ensure it.

A good example is the MPEG animation format (described in more detail in Chapter
4.4.2). Sometimes a Full-Motion Video (FMV) of a feature film can take weeks to
compress correctly using multiple high-end workstations and many trained staff providing
the system with guidance. Yet it is possible to decompress the data in real-time so it can be
displayed with as little disruption as possible on an ordinary home computer. Clearly, the
emphasis here is that decompression should be quick, and storage kept to a minimum.

On the other hand, if we wanted to compress many images in a small amount of time, say
for real-time object tracking, speed far outweighs the necessity for higher compression
Using extensive techniques to maximise compression would mean many frames would have
to be skipped for the computer system to keep up. This example is more likely to be
symmetric, as decompression should be fairly straightforward in most cases. However, if
we do not expect to decompress the target too often, it may be convenient to simplify the
decompression to an asymmetric form.

4.2.2 Non-Adaptive, Semi-Adaptive, And Adaptive Encoding

When using a dictionary-based system for encoding and decoding an image, as described
later in Chapter 4.2.6, we have three methods by which to identify the dictionary:

• NON-ADAPTIVE: if the compression is to be performed on a specific type of data, we
can decide beforehand on a dictionary to use. A good example is compressing
English sentences from a novel: we can safely assume words such as ‘and’, ‘will’,
and ‘was’ will be present many hundreds of times, and so ensure they are pre-
defined in the dictionary. This provides quick compression, but leads to problems if
the data changes significantly. For instance, if we translate the novel into Polish and
then attempt to compress using the English dictionary, it will not perform nearly as
well (if at all!) It also relies on the contents of the novel containing many words
which can be referenced, which of course, cannot be guaranteed.

• SEMI-ADAPTIVE: The next progression on from a pre-defined dictionary is to have
some idea of the contents which are to be compressed. With this variation, two
passes over the data are required. In the first pass, common ‘phrases’ are identified,
and the most regular ones are stored in the dictionary. Then, on the final pass the
phrases are compressed as with non-adaptive methods. It is still not fully adaptive
as the dictionary is pre-defined when the data comes to be compressed, even though
the computer has ‘cheated’, in a sense, and taken an advanced look at the contents.
It could also mean significant delays when making dual passes of a very large file,
decreasing the efficiency of the method.

File Formats And Compression Methods

18

• ADAPTIVE: The most efficient of the three adapts the dictionary entries as necessary
whilst it moves through the data. So, as a new phrase is encountered, it will be
entered as an entry. Not only is the best compression attained, in dictionary terms,
but only one pass of the data is required.

4.2.3 Lossless V. Lossy

Another consideration we must make when assessing compression techniques is the output
from decompression. Is it the same as the original, before being compressed? If it is, then
the technique is lossless. That is, the decompressed data is identical to the data that was
passed as input to the compressor. If the data has been amended in any way, it is termed
lossy.

This method primarily sets out to exploit the restrictions of the human eye, and remove
detail which we cannot identify. This provides significantly improved compression ratios at
the cost of reduced detail and quality.

How this is done can vary widely, but a crude method may be to remove the least
significant part from each pixel colour entry. The effects of this may vary although
generally it is seen as an unsuitable lossy approach as even small colour differences may be
noticeable. Some advanced procedures have been devised which are capable of removing
‘invisible’ detail, one of which, JPEG, is discussed in further detail in Chapter 4.4.1.

The idea of using lossy compression is to remove as much unnecessary detail as possible
without affecting the naked eye’s view of the image. The level of detail which can
successfully be removed will vary according to many factors; including image contents,
hardware and software quality, and individual perception.

4.2.4 Pixel Packing

Although, strictly speaking, this is not a compression method, it is worth mentioning as it is
commonly used to improve the efficiency of storage. The principle behind it is to ensure
no storage is wasted which can be used for further data.

As an example, let us assume that we wish to store 4-bit pixel values in a file. There are
two approaches we can take:

1. One pixel can be stored in each 8-bit byte. This would mean that 4-bits in every
byte would be unused. (See Fig. 4.3).

2. We could double the efficiency of this storage by storing two pixel values in each
byte. That is, one pixel in the lower 4-bits, and another in the high 4-bits (as in Fig.
4.4). This prevents valuable space being wasted, and effectively compresses the file
by 50%.

Byte 0 Byte 1 Byte 2 Byte 3 Byte 0 Byte 1 Byte 2 Byte 3

Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixel 4 Pixel 5 Pixel 6 Pixel 7

Fig. 4.3: 4-bit Unpacked Pixels Fig. 4.4: 4-bit Packed Pixels

File Formats And Compression Methods

19

When it was first devised it was considered necessary in all formats because of the expense
of storage. Nowadays, when deciding if this will be included in a format specification, the
decision hinges on a trade-off between speed and file size. However, because of the
method’s simplicity, variations on the theme can be found in many of the popular formats
available today.

4.2.5 Run-Length Encoding (RLE)

This, one of the simplest of the techniques in use, can be used to compress any kind of
data. However, the compression attained is dependant on the content type. It has become
very popular as it is easy to implement and provides a quick method of compressing data.

It works by reducing repeating strings of characters into runs of, typically, two bytes
(although the atomic RLE base can also be bit- or pixel-based). The first byte represents
the number of characters in the run and is called the run count. The second byte is the
value of the encoded character string and is called the run value. Fig. 4.5 demonstrates
how strings of repeated characters would be encoded under this scheme.

Uncompressed String: Run-Length Encoded:

“AAAABCCCCCCCCCDDDDDD” = 20 bytes 4A 1B 9C 6D = 8 bytes (40%)

“MISSISSIPPI” = 11 bytes 1M 1I 2S 1I 2S 1I 2P 1I
= 16 bytes (145%)

“ WED WE WEE WEB WET” = 19 bytes 1“ ” 1W 1E 1D 1“ ” 1W 1E 1“ ” 1W 2E
1“ ” 1W 1E 1B 1“ ” 1W 1E 1T

= 36 bytes (189%)

Fig. 4.5: Byte-Level Run-Length Encoding Of Character Strings

Each time the run character changes or the run count exceeds the limit (255 for one byte),
a new RLE Packet is generated. However, for some types of data, runs are rarely this size.
Clearly this type of compression, in terms of images, would be well suited to hand drawn
pictures or anything else which contain large areas of the same colours. Real-World scenes
would struggle under this technique, and could even result in a larger compressed file than
the original (as demonstrated above).

A number of variants of this scheme have been created. Mostly, these involve scanning the
data in a different sequence or a different style: such as grids of 4x4 pixels. The exact way
this is done is dependant on the format and the type of data being compressed. Two
interesting slants on RLE have formulated.

The first is a lossy method which involves removing some of the least significant bits from
each byte value. This would be of use in real-world scenes which have many subtle
differences in pixel colour which could be exploited with little affect on the decompressed
output.

File Formats And Compression Methods

20

Another point to consider is whether or not scan lines are treated separately. If they are, a
run terminates at the end of a scan line regardless of what the first character on the next
line is. If this is not the case, cross-coding is in effect. Without special attention, problems
could arise on decompression when identifying scan line boundaries. Of course this can be
avoided, and the result would be a slightly more efficient compression ratio, but generally
the extra calculation required on decompression adds to the overall time required.

Encoding scan lines individually has advantages when an application needs to use only part
of an image. Knowing where each scan line begins and ends means we can easily display,
say, lines 100-120. This would require significantly more work if the image had been
cross-coded.

This is where the second of the variations steps in. It provides an extension to this which
allows whole scan lines to be encoded in the same manner as bytes (or bits or pixels).

4.2.6 Lempel-Ziv Welch (LZW)

This lossless method for compressing data can be found in several of the popular image file
formats, including GIF, TIFF and PostScript Level 2. It is based around substitution, or
dictionary-based LZ77 and LZ78 algorithms devised by Abraham Lempel and Jakob Ziv in
1977-78. This was extended in 1984 by Terry Welch, thus Lempel-Ziv Welch was born.

It provides a fast symmetric way of compressing and decompressing any type of data
without the need for floating point operations. Another reason for its popularity is that it
works as well on little- and big-endian machines because information is written as bytes
and not words (although bit-order and fill-order problems could still be encountered).

The system works on an input stream of data and builds up a list of dictionary entries (a
translation table) of ‘phrases’ which appear in the stream. When a sub-string from the
stream is identified as already being in the dictionary (that is, it has already occurred
previously) it is replaced in the compressed output by a reference to the dictionary entry. If
it is not present, a new entry is placed in the table, and the reference sent to the compressed
stream. These references are generally smaller in size than the uncompressed phrases and
thus compression is attained.

To decompress, a compressed stream is read and references are added to a dictionary if not
present. The phrases can then be restored building up the dictionary as it progresses. The
advantage of this procedure is that it is not necessary to store the table within the
compressed output as it is built up as required when decompression takes place. When
initialising the dictionary before compression, the first 256 entries are set to values 0016

through FF16 (all possible byte values) from which all sub-strings can be built. As both the
encoder and decoder are aware of this, there is no need to keep the dictionary stored with
the data.

File Formats And Compression Methods

21

Variants on the way data is passed in to the compressor are based on whether the data is in
byte or pixel values. For example, TIFF packs pixel data into bytes before compression
depending on the image’s bit depth and number of colours. So, a byte could represent a
pixel, less than a pixel, or more than one pixel. With the GIF format, each input symbol
must be a pixel value. As 1- to 8-bit depths are supported, there are between 2 and 256
input symbols to initialise. It is irrelevant with GIF how the pixels may have been packed
originally as they are treated as a sequence of symbols regardless.

With a set of data that has odd-size pixels, packing into bytes will obscure patterns making
the compression less efficient. If they agree, such as two 4-bit pixels per byte or one 16-bit
pixel every two bytes, then the byte packing will work well with LZW. On the other hand,
odd-size bit depths work well in the GIF approach but make it unwieldy having greater
depths than 8-bit (as the dictionary initialisation will be much larger: 65,535 entries for 16-
bit; 16,777,215 for 24-bit).

Fig. 4.6 shows how a simple string of text characters would be compressed by LZW. The
first 256 entries in the table (starting from zero) are initialised to the possible single-byte
values (ASCII character codes are used for alphabet clarity). On the first pass, a check is
performed to see if the string “ W” is in the table. Since it is not, the code for “ ” is output,
and the string “ W” is added to the table (entry 256). After the third character, “E”, has
been read in, the second string code, “WE”, is added to the table and the code for letter
“W” is output. In the second word, the characters “ ” and “W” are read in, matching sub-
string 256. So, code 256 is output, and a three-character string is added to the table:
“ WE”. This process continues until the string is exhausted and all codes have been output.
With a 9-bit code for each (the minimum required) the 19 character input (or 19 bytes)
could be packed into 108-bits, or 13.5 bytes: 71% of the original size (assuming a pack bits
algorithm was employed as described in 4.2.4).

Input String: “ WED WE WEE WEB WET”
Characters Input Code Output Translation Table Values
“ W” <32> [‘ ’] <256> = “ W”
“E” <87> [‘W’] <257> = “WE”
“D” <69> [‘E’] <258> = “ED”
“ ” <68> [‘D’] <259> = “D ”
“WE” <256> [“ W”] <260> = “ WE”
“ ” <69> [‘E’] <261> = “E ”
“WEE” <260> [“ WE”] <262> = “ WEE”
“ W” <261> [“E ”] <263> = “E W”
“EB” <257> [“WE”] <264> = “WEB”
“ ” <66> [‘B’] <265> = “B ”
“WET” <260> [“ WE”] <266> = “ WET”
<EOF> <84> [‘T’]

Fig. 4.6: Lempel-Ziv Welch Compression Of A Text String

File Formats And Compression Methods

22

On decompression, as shown in Fig. 4.7 below, the dictionary does not need to be kept
after the compression stage, as the decompressor is able to calculate the table values from
the code stream. The first four output values can be looked up from the initialised
dictionary (which should be identical to that used by the compressor). When tag 256 is
encountered, the entry has been created as “ W” in the table (the first sub-string not found
in the dictionary). This continues in an identical manner as seen in Fig. 4.6 until the
original stream is restored.

Input Codes: “<32><87><69><68><256><69><260><261><257><66><260><84>”
Code Input Last Code Stream Output Character Translation Table Values
<32> <32> [‘ ’]
<87> <32> <87> [‘W’] ‘W’ <256> = “ W”
<69> <87> <69> [‘E’] ‘E’ <257> = “WE”
<68> <69> <68> [‘D’] ‘D’ <258> = “ED”
<256> <68> <256> [“ W”] ‘ ’ <259> = “D ”
<69> <256> <69> [‘E’] ‘E’ <260> = “ WE”
<260> <69> <260> [“ WE”] ‘ ’ <261> = “E ”
<261> <260> <261> [“E ”] ‘E’ <262> = “ WEE”
<257> <261> <257> [“WE”] ‘W’ <263> = “E W”
<66> <257> <66> [‘B’] ‘B’ <264> = “WEB”
<260> <66> <260> [“ WE”] ‘ ’ <265> = “B ”
<84> <260> <84> [‘T’] ‘T’ <266> = “ WET”

Fig. 4.7: Lempel-Ziv Welch Decompression Of A Code Stream

4.2.7 Huffmann Coding

This algorithm produces variable-length codes according to a symbol’s probability within a
stream. These codes can then replace the symbols in the compressed stream, thus
producing compression. The two important things to note about this are:

• Shorter bit-codes represent the symbols most likely to occur. Thus a 1-bit code can
be assigned to the most probable symbol in the stream and the largest amount of
bits per symbol represent the least likely.

• The codes have a unique prefix attribute, which allows variable-length codes to be
identified and decoded even though they are not uniform.

To illustrate this point, consider how the ASCII data string “BBAAABCBDEEBBE-
BBBAEBDAEDBEBEBBDAB” would be compressed. The first step we would
undertake is to merge the frequency values of the symbols into parent nodes until only two
parents remain. Refer to Fig. 4.8 for the example. On the first pass, we take the lowest
two frequencies, 1 and 4 (C and D) and merge them into one parent node equal to their
sum (5) and temporarily pretend C and D no longer exist. This is repeated at the next level
(with values 5 and 6) and continued until only two parents are left (15 and 18). The
underlined values signify those which have been designated as parents.

File Formats And Compression Methods

23

On the second pass we work in reverse building up the bit-codes for the values, which can
now be more efficiently assigned according to their probability. The highest value of the
two root parents is assigned bit 0 (to value 18), the lower assigned 1 (value 15). The next
level back value 18 is broken down into 11 and 7. So, the bit-codes for these are an
extension of the parent codes. In this instance 11 is given 00 and 7 is given 01. Value 15
remains unchanged as it is already in its lowest denomination. This procedure continues
until all the frequency probabilities have been assigned a bit-code. Note that the highest
frequency values have the smallest number of bits. The mapping table would also need
storing but the compression attained is still significant. Fig. 4.9 yields the results of these
operations.

(B) 15 15 15 18
(1) (1) (1) (0)

(E) 7 7 11 15
(01) (01) (00) (1)

(A) 6 6 7
(000) (000) (01) Pass 2

(D) 4 5
(0010) (001)

(C) 1 Pass 1
(0011)

Fig. 4.8: Huffmann Coding – Symbol Frequency And Bit-Code Representation

67

33 8
100 2538%

()

* ()
* .

bits

bits

= (of original size)

Fig. 4.9: Huffmann Coding – Results

This example does not demonstrate the application of the unique prefix attribute to simplify
the concept, although minor changes to the algorithm could ensure each bit-code has a
unique prefix. In this example, the bit codes would be (B⇒0; E⇒100; A⇒101; D⇒110;
C⇒111) as there are five unique codes required and three bits for four of the values is the
best that can be offered. The impact this has on the compression is not significant in this
case (69 bits ⇒ 26.00%) although it could be more of a problem with larger data sets. As
with all forms of compression, speed and size balance the scales.

When certain symbol probabilities are being converted into bit codes by a Huffmann
encoder, redundancy is taking place. For example, to encode a symbol with a 1/3 chance
of appearing, Huffmann Coding will most likely assign 2-bits even though the optimal
storage required would be 1.33-bits. Although this does not seem significant with this
example, consider an image which contains a symbol with a very high probability of
appearing, say 90%. Optimally, 0.15-bits could handle this even though 1-bit will be
assigned. In effect, more than 6 times the storage required is being used due to the
inefficiency of the bit-code assignment.

Symbol Frequency
A 6
B 15
C 1
D 4
E 7

Symbol Frequency Bit-Code Total bits
A 6 000 18
B 15 1 15
C 1 0011 4
D 4 0010 16
E 7 01 14

33 (bytes) 67 (bits)

File Formats And Compression Methods

24

4.2.8 Arithmetic Coding

Only within the last ten years has a new method come to light which bypasses this problem
with the Huffmann algorithm. Arithmetic Coding has the capability of optimal storage for
any string through the use of arithmetic. More specifically, a string is represented as a
floating point number between 0 and 1. This number can be uniquely decoded to give the
stream of symbols that it is constructed from.

To do this we must first calculate the probability of each of the symbols contained in the
stream. With these values we need to assign a range within 0-1 for each of the symbols
according to their likelihood. For example, if we wish to store the phrase ‘BILL GATES’
the distribution would be as in Fig. 4.10. Note that for ‘ ’ the actual range available is 0.0-
0.99 (as 0.1 is the beginning of the range for ‘A’). This applies to all symbol ranges
similarly. The ordering of the symbols and the method for assigning ranges is not fixed, but
the encoder and decoder must use the same set of rules. Using this table we can then begin
creating our floating point number which will store the phrase.

Symbol Probability Range
‘ ’ 1 0.0-0.1
‘A’ 1 0.1-0.2
‘B’ 1 0.2-0.3
‘E’ 1 0.3-0.4
‘G’ 1 0.4-0.5
‘I’ 1 0.5-0.6
‘L’ 2 0.6-0.8
‘S’ 1 0.8-0.9
‘T’ 1 0.9-1.0

Fig. 4.10: Arithmetic Coding Probability Distribution

At each step we will proportionately sub-divide the ranges of the high/low values so that
the next character is within the correct sub-range. The full calculation is given in Fig. 4.11.
Before the first symbol, we know the range will be from 0.0-1.0. A ‘B’ will restrict the
range to 0.2-0.3. ‘I’ will further restrict this to 0.25-0.26. We continue adding precision
to the number using the low value (as further symbols will add greater precision and
increase the value of the number within its available range) until all the symbols are
accounted for. This should leave the value 0.2572167752 which is the encoded version of
our string ‘BILL GATES’.

File Formats And Compression Methods

25

1 .3 .26 .258 .2576 .25724 .25722 .2572168 .2572168 .257216776 .2572166756

0.9 .29 .259 .2578 .25756 .257236 .2572196 .25721676 .257216796 .2572166756 .25721667556

0.8 .28 .258 .2576 .25752 .257232 .2572192 .25721672 .257216792 .2572167752 .25721667552

0.7 .27 .257 .2574 .25748 .257228 .2572188 .25721668 .257216788 .2572167748 .25721667548

0.6 .26 .256 .2572 .25744 .257224 .2572184 .25721664 .257216784 .2572167744 .25721667544

0.5 .25 .255 .257 .2574 .25722 .257218 .2572166 .25721678 .257216774 .2572166754

0.4 .24 .254 .2568 .25736 .257216 .2572176 .25721656 .257216776 .2572167736 .25721667536

0.3 .23 .253 .2566 .25732 .257212 .2572172 .25721652 .257216772 .2572167732 .25721667532

0.2 .22 .252 .2564 .25728 .257208 .2572168 .25721648 .257216768 .2572167728 .25721667528

0.1 .21 .251 .2562 .25724 .257204 .2572164 .25721644 .257216764 .2572167724 .25721667524

0 .2 .25 .256 .2572 .2572 .257216 .2572164 .25721676 .257216772 .2572167752

‘B’ ‘ I’ ‘ L’ ‘ L’ ‘ ’ ‘ G’ ‘ A’ ‘ T’ ‘ E’ ‘ S’

Fig. 4.11: Arithmetic Encoding Of A String

When the decompressor wishes to obtain the encoded message, it looks at the most significant
digit of the value, in this case 0.2, and then knows the whole value lies between 0.2 and 0.3.
Looking up this in its string table it will know the first character is ‘B’. It continues this by
narrowing the range, identifying characters along the way in the reverse manner of the
compressor.

4.3 Colour Spaces And Other Considerations

Beyond the compression techniques available, other topics must be examined before we can
fully understand the nuances of file formats. While these are usually specific to a particular
format, the general principles remain the same.

4.3.1 Colour Space

The methods possible for storing colour information are many. In the same way that
graphic file formats have flourished, so have the colour space schemes. Each one has been
designed to model colour accurately with the intention of providing output as close to the
original as possible. Of course, due to the small differences between monitor phosphor
colouring and other conditions, this is unlikely to be achievable with total success. While
some colour spaces have been developed scientifically to correlate closely to the human
vision system, others were created to ease computer colour modelling.

Nowadays a small subset of these are commonly used, mainly due to their ease of use and
fair results. In particular I refer to the RGB and HLS models (see Figs. 4.12 and 4.13).

File Formats And Compression Methods

26

Cyan (1,1,0) White (1,1,1) L=1.0 (white)

Green (0,1,0) Yellow (0,1,1)

Green (120°) Yellow

Blue (1,0,0) Magenta (1,0,1)
Cyan L=0.5 Red (H=0°)

Blue (240°) Magenta
Black (0,0,0) Red (0,0,1)

H
L=0.0 (black) S

Fig. 4.12: The RGB Cube Fig. 4.13: The HLS Double Hexcone

RGB allows the red, green and blue components of each pixel to be mapped onto an
intensity of the monitor’s cathode-ray tube for each of the three electrode guns. It is then
possible to calibrate the monitor to attain accurate output (although this can be difficult).
The second advantage of this system is that it is conceivable to visualise the colour
resulting from the three values. For example, an RGB value of (200, 0, 0) has a high red
factor (assuming a scale of 0-255 for each) whilst green and blue components are not
present: naturally one would assume the resultant colour to be a shade of red.

The HLS scheme models colour according to its hue, lightness and saturation values. Hue
is described as being ‘similar to one, or to proportions of two of the perceived colours red,
yellow, green and blue’. Lightness is the ‘…brightness of an area judged relative to an
apparently equally illuminated white or highly transmitting area’. Saturation is the
‘colourfulness of an area judged in relation to its brightness’ (Jackson, MacDonald et al.,
1994). As can be seen from these definitions, visualising the output from a typical set of
HLS values is not as easy as with RGB, but due to its ease of programming implementation
it has also remained at the forefront of commonly used colour spaces.

This model is perceived as being more accurate than RGB at modelling the real-world. To
illustrate this point, if we assume that lightness (L) is modelled on a scale of 0-1, with a
mid-point at 0.5, all colours are possible down the 0.5 lightness with whiteness tapering
towards 1 and black to 0. As a perfect white will reflect all the illumination falling on it
(L=1), any area exhibiting a colour must have a lightness of less than 1; as modelled in this
system.

File Formats And Compression Methods

27

4.3.2 Other Considerations

Some formats have added to the standard features of image formats by allowing extra
information to be stored. Some of these features include:

• Support for multiple compression algorithms. This could be to enhance the
compression attained, to provide greater compatibility with other formats, or to
improve the suitability of the format for certain types of images, such as binary
(black and white only). An example might be an image which was first run-length
encoded and then Huffmann encoded to allocate more efficient storage for the run-
length symbols.

• Multiple colour spaces can be included to provide compatibility with other formats
or output devices. If this is built in to the format, it is not necessary for the
application programmer to be concerned with it, she can merely use the provided
tools. Many of today’s formats provide support for more than one of these, due to
the ease of implementation.

• Transparency of pixels allows the overlaying of an image on another in such a way
that we can see through the top image to the back, as if it were transparent. This is
closely tied to the colour space used, as the combination of semi-transparent pixel
colours will be determined by the method for representing colour. An example is
GIF89a which uses the RGB additive colour system in correlation with Alpha
channels (which store the transparency at each pixel).

• To enable the storage of multiple images in each file. Images which are related can
be stored together in one file forming an image library. The major advantage of this
is the reduction in overheads of storing each image in a separate file. Good
examples are the TIFF and GIF89a formats which provide features for this.

• A further refinement of multiple image formats is animation. Primitive forms may
just involve displaying many images every second to give the impression of
animation. More sophisticated methods have been designed, however, which reduce
the storage required whilst still allowing the real-time display at up to VHS quality.
A more detailed description of one of these, MPEG, can be found in Chapter 4.4.3.

4.4 Advanced Image Formats

In this chapter I will discuss three of the more complex and advanced methods by which
images can be compressed and stored: JPEG, MPEG and Fractal. They are described in
overview only as a full study of them is beyond the scope of this project.

4.4.1 JPEG

One of the problems with lossy compression is knowing what information can be safely
removed from an image without affecting the overall picture to the naked eye. Crude
methods involving the removal of precision of pixel values does not suffice as its results
will vary according to the image contents. This is where JPEG comes into play. The Joint
Photographic Experts Group wanted a way to maximise compression without affecting the
output, and thus the JPEG JFIF (file interchange) format was born. This format supports
both lossless and lossy compression, but we are only interested in the lossy component
here.

File Formats And Compression Methods

28

Three stages are undertaken to perform this compression, as shown in Fig. 4.14.

Discrete Cosine Coefficient Entropy
Transformation Quantisation Encoding

Fig. 4.14: The Three Stages of JPEG Lossy Compression

i. Discrete Cosine Transformation. The first stage of the JPEG compression procedure
involves a mathematical concept known as the DCT. This takes as input a block of
pixel values (8x8 with JPEG) and converts its spatial representation into a frequency
range. This is performed as a 3-dimensional operation, as the x and y axes represent
the pixel location, and z represents the pixel intensity at location x, y. The result of this
operation is a set of values which contain the same data only in terms of frequency and
magnitude. The reason this is so important over spatial representation is that the low
frequencies (as more commonly displayed on-screen) can be distinguished from the less
important high frequencies. This would not be possible with the spatial representation,
as there is no concrete way of deciding which pixels are more important than others.
The top left corner value of the block is the lowest frequency value, and is the most
valuable. As we move further from this point the values become less important to the
image.

However, it is important to note that at this stage, no loss of information has taken
place (we have just altered the way we represent the data). In fact, the output of this
step requires more storage than the input (the frequency value range is -1024≤x≤1023
requiring 11-bits per pixel). The ‘lossy’ aspect takes place in the next step.

ii. Quantisation. Now that we can differentiate between important and less important
frequencies, we are able to discriminate against those below a certain threshold. The
higher the threshold, the more lowest frequencies are discarded (or converted to 0).
This is how the quality factor of JPEG functions so it can be amended according to the
quality required in the output.

iii. Entropy Encoding. Three sub-stages complete the JPEG encoding process. Firstly,
the coefficients in the top left of each block are converted from absolute to relative
values. As the differences from block to block is likely to be small, using relative
values allows smaller values to be stored.

Next, the zero and non-zero values are treated separately. The zeroed values can be
converted to run-length encoding pairs reducing the storage requirements drastically.
Due to the nature of the frequency distribution (most important, or low, in the top left
corner) the run-length encoding does not take the usual path across and down an
image. Instead, a zig-zag sequence is used which exploits the features of the frequency
coefficient distribution. Fig. 4.15 demonstrates such a sequence which gives a higher
probability of efficient run-length encoding.

Non-zero values are Huffmann or Arithmetic encoded in the manner described earlier.

File Formats And Compression Methods

29

Fig. 4.15: Zig-Zag Sequence

The time taken to compress an image with the JPEG process is significantly longer than
with the more simple methods discussed in the previous sub-section. The added
complexity provides the capability for impressive compression ratios at the expense of
image detail. The advantage of this is that JPEG stored images can be compressed
according to the requirement for storage space against quality. If an application requires
images to outline objects only, the detail required is low, meaning a low quality factor can
be used. In this example the ratios possible can be anything from 30:1 upwards. On the
other hand, high quality images can be attained by increasing the value. Although the
stored image has lost some of its detail (even at maximum quality) to the naked eye the
differences are invisible. Both of these extremes can be catered for by the one format. As
JPEG is symmetric, the time to decompress is roughly similar to compression (depending
on the quality factor).

On the downside, the DCT block size of 8x8 can cause disparities on the borders of the
blocks. This is because the processing for each block may average the values to significant
differences which generate a blocky effect. Admittedly this is rarely a problem on high
quality factor images, but as quality is decreased so the blocks will become more evident.
Fig. 4.16 demonstrates the blocky effect caused by quantisation. Image (a) has been stored
using low compression, does not show any blockiness and is 6,357 bytes in size. Image (b)
uses 10 times more compression and the entire image is visibly blocky (8x8 pixel blocks).
Its file size is 2,093 bytes.

(a) (b)

Fig. 4.16: The Effect Of Quantisation

One way around this problem could be to amend the size of the block to, say 64x64.
However, research shows that connections between pixels tend to diminish quickly, such
that pixels even fifteen or twenty positions away are of very little use as predictors (Nelson,
1992). Furthermore, the processing and memory power required to work with blocks this
size make it unattractive in terms of time.

Start

End

File Formats And Compression Methods

30

Similarly, if we made the blocks smaller many more iterations of the procedure would be
required, again drastically increasing the time required for compression.

When this format was first devised, circa 1991, it was decided that it should be possible to
use JPEG compression/decompression on a wide range of the available computer systems,
hence the block size of 8x8.

4.4.2 MPEG

All the compression methods described thus far have dealt with static images only. MPEG
is one of the methods for handling full-motion video as created by the ISO. Originally, it
was merged with the JPEG team and this explains the similarities between the two.

MPEG-1, the first standard, is based around the concept of three frame types:
• Intra-frames. These are the closest relatives of JPEG images, as they represent one

frame in a video stream (the entire frame is stored). Compression is based on the
DCT method.

• Predictive frames. In contrast, inter-frames store only the differences in the current
frame with reference to the closest preceding I (intra) or P (predictive) frame. This
delta information (the difference values) can then be DCT encoded.

• Bi-directional frames. These frames are constructed from the nearest two I or P
frames, although it must be between the two references (that is, IBI or IBP or PBI
or PBP). Theoretically, there can be a limitless number of B frames between two
reference frames, although in practice there are typically twelve B and P frames
between each I frame, or an I frame each 0.5 seconds (assuming 25 frames per
second) (Murray and vanRyper, 1994). Again, the data is DCT compressed.

On decompression, it is necessary, before decoding a B or P frame, to have any necessary
reference frames in memory. Delta information is useless without data to compare it
against. For this reason, a stream which is encoded as IBBPBBPBBP (0123456789) would
be decoded in the order IPBBPBBPBB (0312645978) to ensure the necessary references
can be accessed as required.

The characteristics of full-motion video suggest it is likely that the scene in the stream will
change significantly fairly regularly. When deciding where to place I frames, a balance
must be made to decide whether or not a B or P frame might provide better performance
(in terms of compression). If we were to place a B frame at the beginning of a new scene,
the differences from that to the reference I frame would be larger than storing a new I
frame, hence less compression and slower decompression (as the reference I and P frames
would need to be in memory for the B frame data to be quantified).

File Formats And Compression Methods

31

The complexity involved in the compression process of a video stream in this manner is
very extensive, and compression for a typical feature film encoding can take days or weeks
to complete. Naturally, this makes obvious the point that MPEG is asymmetric.
Nowadays it is possible to view a VHS quality MPEG encoded video in real-time. It is
also important to note that trained users usually decide where the varying frame types are
to be represented, to ensure optimum playback quality and efficient compression
concurrently. Furthermore, we have not even considered the necessities of encoding the
audio and synchronising it with the video stream, adding further complications.

Compression ratios attainable with MPEG depend on the quality factor used at the
quantisation stage. As with JPEG the range is wide, depending on the quality required for
the application and the time spent on choosing the correct use of frame types. Typically, if
the application involves VHS quality video playback, the ratio will be in the 16-40:1 range.
This means it is possible to store 50-60 minutes of video onto a 780 Mb CD-ROM. The
Philips VideoCD range is a good example of MPEG being put to use.

Currently, work is under way to extend this standard to incorporate new advanced features
which will improve the overall performance of video playback through MPEG whilst still
being backwardly compatible. This new standard, MPEG-2, removes the 1.5 Mbps data
throughput imposed by the MPEG-1 standard, allowing the future use of MPEG for more
than just CD-ROM and home computers. Plans are under way to incorporate it into the
next generation of cable, satellite and home entertainment systems with features such as
higher data throughput, improved picture quality, support for multiple display types
(examples being PAL/NTSC/SECAM) as well as interlacing and backward MPEG-1
support.

4.4.3 Fractal

In 1977, Benoit Mandelbrot published a book, The Fractal Geometry Of Nature, which put
forward the hypothesis that traditional geometry with its straight lines and smooth surfaces
does not resemble the geometry of trees and clouds and mountains. Fractal geometry, with
its convoluted coastlines and detail ad infinitum, does (Kominek, 1995).

By 1981 a unity within the diverse world of fractals was presented by John Hutchinson:
Iterated Function Theory. Later work by Michael Barnsley reinforced this by providing the
mathematics required to demonstrate what an iterated function would look like for a given
image (the Collage Theorem). This highlighted the possibility that if fractal geometry was
well-suited for generating natural-looking images, could it not be reverse-engineered to
compress images? The inverse problem has never been solved, and although Barnsley
believed he had cracked it, he later admitted it took 100 hours guided by a human to
compress a typical image, and 30-minutes for decompression.

It was one of his students, Arnaud Jacquin, who produced a workable method of fractal
compression, known as Partitioned Iterated Function Systems. The method involves
breaking the input image into domains and ranges from which an affine transformation
matrix, (involving combinations of scaling, rotation, shearing and translation), can be
applied to link range blocks to a larger domain block through the application of the affine
transformation on the range block. The result of this produces the equation: range block =
domain block + affine transformation.

File Formats And Compression Methods

32

To illustrate this concept, refer to Fig. 4.17 which shows how a range block can be
represented as a domain block plus a transformation in a simple image.

Fig. 4.17: Domain And Range Blocks In Fractal PIFS

Range A can be represented as Domain A + Transformation (Scale 0.5). Range B can be
Domain B + Transformation (Rotation 270º). This means that whole images can be
approximated by selecting domain blocks and the necessary transformations required to
provide the finer details. This gives a typical compression ratio in the range 4-100:1, which
although a far cry from the claims of 10,000:1 compression by Barnsley, was still a step
forward.

As an example of how we calculate the compression possible, consider a 256x256x8 (bits-
per-pixel) image which is divided into regular 8x8 partition range blocks. If we assume, for
simplicity, that we will only need one affine transformation for each, we have 1024
transformations to store. In most implementations, the domain blocks are twice the size of
the range blocks, so the spatial contraction is constant and can be hard-coded into the
decompressor. This means we require:

x position of domain block 8
y position of domain block 8
luminance scaling 8
luminance offset 8
symmetry indicator 3

35 bits

Or
8 8 8

35
14 63%

* *
.= (8*8*8 = x position, y position, luminance scaling).

Example taken from Kominek, 1995. This is not impressive, especially when compared to
JPEG. More advanced systems are also in use which can improve this (for the same
image) to 35-40% and involve the use, among others, of entropy encoding as described
previously in 4.4.3(iii). As a general rule, through experimentation and general experience
in industry, it has been found that for low compression (<35-40%), the fractal method
works best, and for higher than this JPEG is better suited.

Domain A

Domain B

Range A

Range B

File Formats And Compression Methods

33

The major drawback to this system is the time required to perform the procedure. The
decisions made as to which areas are defined as domain and range blocks take a lot of
searching time, and provide no guarantee of the resulting compression ratio. This also
does not account for the fact that the image contents will rarely contain uniform objects
which can easily be mapped to rectangular blocks. If the algorithm were very thorough, a
more efficient set of blocks may be gathered producing a more efficient ratio. Ultimately,
if an infinite time were allowed to calculate the blocks and transformations we could attain
perfect fractal compression (we have solved the inverse problem for the image). On the
other side of the coin, the less time spent on this, the poorer the representation and
compression. The balance hinges on the requirements of the system and resources
available.

On the upside, if we zoom in to the image, the blockiness of enlarged pixels is not present,
as with all the other image description methods. As the image is represented as formulae,
zooming in generates detail from the formulae. No matter how close we look at a portion,
blockiness will not arise, and it will give the impression that we really can see the smallest
of detail. Of course, the added detail we see is only generated from provided information,
so, for example, zooming in on an area of skin would not give us an image of skin pores or
hair roots unless the detail was contained in the original. Nevertheless, this feature can be
very useful. Fig. 4.18 shows a fractally compressed image of a touring car, before and
after zooming. As can be seen, the zoomed image appears the same ‘quality’ as the whole
image. Ironically, these images have been converted to a more conventional bitmap
format, Windows BMP, so they can be included in this report.

Fig. 4.18: Fractally Compressed Image Before And After Zooming

Measuring Image Quality

34

5. Measuring Image Quality

In the same way as in any mathematical problem, measuring image quality involves a
combination of many factors which affect the output quality of an image. Exactly how they
co-exist will make a large difference to the final results. For example, certain compression
algorithms (such as Run-Length encoding) may not be suitable for true colour data, whilst
others thrive on it. Quite apart from the image quality, there is also the question of speed and
efficiency. Although one could assume ‘quality’ refers solely to the output resolution and
colour depth I feel it goes deeper than that, incorporating the suitability for its application in all
areas. We do not wish to measure the quality of a bitmap on-screen and disregard the fact that
it took thirty minutes to compress unless time is not a critical factor.

The aim of this chapter is to address the issues over measuring an image’s quality, in all
respects. Starting off with a description of the factors I feel affect the quality of bitmaps, I
shall move on to some suggestions as to how popular image formats can be measured for a
particular application and rated accordingly. It is important to note at this point that the
information contained in this chapter is based on my own opinions.

5.1 Factors Affecting Image Quality

Such factors can broadly be categorised under two headings: the more tangible image format
factors, such as colour depth, resolution and so on; and the higher level factors, such as speed,
system resource requirements and so on.

5.1.1 Image Format Factors

With any image format there are features and restrictions. The author of a new format
must balance off the advantages and disadvantages of every perceivable option and make
the best judgement that will leave an all-round suitable format for the application in-hand.
The main features available in any format can be summarised as:

• Pixel Resolution. In the early days of image formats, the supported maximum pixel
resolution was decided more by the available hardware than designer decisions.
Nowadays, possible resolutions can be very large. ZSoft PCX, for example, has a
maximum resolution of 65,535x65,535 pixels, a great deal more than is required by
the average user. This is generally agreed in the computing community to be one of
the most important factors. An image of high resolution but few colours is more
discernible than one of low resolution and high (or true) colour.

• Colour Depth. Older formats allow for 1-bit black and white images only, and were
generally designed for fax use only where it was well-suited. Other possible depths
can be greyscale (usually palette-based), palette indexed colour with 4, 8, 16, or 256
entries, high-colour of 15- or 16-bit colour values for each pixel (32,767 or 65,535
colours), 24-bit true-colour (over sixteen million colours), 32-bit (true-colour with
8-bits of alpha-channel transparency per pixel) and now in excess of 128-bits per
pixel! Many of the modern formats support up to 32-bit, while some, such as
GIF89, include a hybrid which in this case is a 256-entry colour palette with alpha
transparency. In order to achieve photo-realism in images, it is essential for a format
to support at least the mid-range of this scale. Typically, the high-end values are
used in professional systems only.

Measuring Image Quality

35

• Compression and Decompression. Some of the major codecs available in popular
image formats have been described in Chapter 4. The prime concern with
compression is whether it is lossy or lossless. While lossless schemes ensure the
image is preserved, they cannot attain the kind of compression ratios provided by
lossy methods. Large true-colour images can be shrunk to sizes smaller than many
lossless compressed lower resolution and colour-depth images, whilst looking
identical to the average naked eye. On the other hand, this process can take
significantly longer and may require more resources, especially on larger images.
Codecs may be suited to a particular kind of data. A good example of this is Run-
Length encoding which does not cope well with true-colour data stored as Red,
Green and Blue byte values. These values will rarely be identical unless it is a 24-bit
greyscale image, and as the average human cannot distinguish between this amount
of grey levels the effort would be wasted. For this reason, formats such as BMP,
which have optional compression, do not generally compress 24-bit data for fear of
generating a larger file than the original, the antithesis of compression.

• Colour Space. There are many different ways colour can be modelled in computer
generated images, of which the two most common, RGB and HLS, have been
described in Chapter 4.3.1. Many of these were designed for a specific type of
image content. For example, artists might choose one colour model as they feel it
best synthesises light and the subtleties of water colour ink (and some have been
designed for this purpose). The RGB and HLS models are satisfactory for most
users needs, so choosing a colour-space may not be an issue. However, some
applications require a more accurate model which will be able to cope with the task
at hand. Very often the need to change this is due to colour mapping from one
system to the image format, where using a compatible colour system makes faster
collation and storage of data possible, whilst ensuring accuracy.

• Multiple Image Storage. This, less obvious feature is important in situations where
a library of related images should be kept together. Storing them as separate files is
likely to increase redundancy in the data. For example, a colour palette could be
used for many images in the same file. Furthermore, the cataloguing of the images is
practically complete (and is often built into the format), and there is less likelihood
of the related images being separated.

5.1.2 Higher Level Factors

Quite apart from the image format itself, other, less tangible factors influence the quality of
an image. This is subjective as it is entirely dependent on the application:

• Speed. While some formats provide great speed at representing and storing images,
others require more time for processing. Assuming the code has been written
efficiently, reasons for slow image format storage and retrieval are usually directly
linked to the compression algorithm in use. Uncompressed data has the advantage
of low processing overheads for fast storage and retrieval. As the codec becomes
more complex, so the time to perform the operations grow. The speed of the system
used can also vary this, as an image compressed with the same algorithm should
generally decompress quicker on a faster machine. While ten seconds may be an
acceptable time to compress the average user’s image needs, with an application
such as real-time object tracking and analysis, a ten second lag between each frame
could be disastrous. Another way to look at it is to compare compression and
decompression times where the format is asymmetrical, so it can be viewed in real-
time, as with full-motion video formats.

Measuring Image Quality

36

• File Size. Inversely proportional to speed is the resulting file size on output. An
uncompressed file is likely to be large, especially if it is in 24-bit colour. As the
compression becomes more efficient, so the file size will decrease. The extreme end
of this scale could be MPEG encoding which can take weeks to compress a full-
motion feature film but provides optimal compression. Applications requiring fast
storage could provide little or no compression to start with, and then convert the
format of the saved images at a later time to make better use of the storage space.

• System Resources. The kind of system running the software will play a significant
rôle in the overall performance and quality of a chosen format. Attempting to
compress an MPEG full motion feature film using an Intel 80286 with 512Kb of
RAM and a 20Mb hard disk is not sensible. If the chosen format is to be sensible,
consideration must be made on the system resources that will be available to
perform the operation. Features like floating-point maths can make a big
improvement in the quality of an image, in terms of speed and visual quality, but if
the system used cannot perform it, the format will be useless at best.

• Application. The most important decisions to be made when choosing suitable
image formats relate to whether or not they can cope with the application they will
be used for. Applications that will generate mass storage of image files, say a
graphics database, would benefit from any format that can provide good
compression from a typical image. Conversely, applications such as motion tracking
have bigger problems to be concerned about: like can the format generate and store
twenty-five static frames per second at high resolution? In a case like this, storage
would probably have to be sacrificed to maintain such a rate (although some top of
the range machines can do this with reasonable compression as well). Each image
format can be regarded as good for an application, providing it is the right
application.

5.2 Suggestions On Measuring Image Quality

5.2.1 Exhaustive Testing

For any application, the combination of factors, described above, which identify the best
image format to use will be different. Unfortunately, I have not been able to locate a book
which describes the formats best suited for certain applications. Although such a book
would be useful, in my opinion, being this specific is not necessary to find the right match.

Each application has a set of requirements for an image format, describing the colour
depth, resolution, colour type, speed of compression and decompression, and so on for all
the factors already discussed. What is required is a benchmark system which can be
applied to the popular formats, typifying a wide range of application needs.

One method for doing this would involve first generating a set of test images which could
represent a wide range of application images, as in Fig. 5.1.

Measuring Image Quality

37

(a) (b)

Fig. 5.1: Test Images For Measuring Image Quality

Image (a) is a 4-bit (only 8 out of 16 colours used) 240x160 pixel test pattern used to take
advantage of Run-Length encoding algorithms. Image (b) is a 24-bit Kodak Photo-CD
picture, 1478x966 pixels in size, used to take advantage of more complex compression
schemes and its large size. I have saved copies of each of these images in BMP
(compressed and uncompressed), GIF, JPEG (low quality and maximum quality) and PCX.
For simplicity, the images in Fig. 5.1 have been scaled to fit the page. The results of this
test can be seen in Fig. 5.2. As an aside, Adobe Photoshop provides four levels of JPEG
compression only: maximum, high, medium and low. While a direct comparison of these
values to a 0-100 scaling is not easy, the lowest setting still maintains a reasonable quality
and is consistent with a level in excess of 30 on such a scale.

Image Format File Size (bytes) Compression (%)
a BMP 19,320 benchmark

BMP (+RLE) 760 3.93

GIF 947 4.90

JPEG (max.) 5,550 28.73

JPEG (low) 3,671 19.00

PCX 2,177 11.27 Load (secs) Save (secs)
b BMP 4,285,232 benchmark .21 .21

BMP (+RLE) N/A * N/A N/A N/A
GIF 768,934 ‡ 17.94 .14 .16
JPEG (max.) 348,408 8.13 .32 .27
JPEG (low) 74,811 1.75 .25 .20
PCX 3,915,808 91.38 .28 .26

* 24-bit RLE compression is not generally supported in BMP
‡
 Quantised to 256-entry colour palette

Fig. 5.2: File Sizes And Compression Of Test Images

Clearly image (a) is well suited to Run-Length encoding, although the GIF Lempel-Ziv
Welch compression also gains a good ratio. JPEG high quality, even though not suited to
this kind of image still comes out under 29% of the benchmark size. This type of image is
suited to palette-based formats which perform Run-Length encoding.

Measuring Image Quality

38

Looking at the image (b) results, the story changes completely. Now the JPEG dominates,
the low quality version storing the picture at under 2% of its original size. The quality of
this image is still good enough to be used in Fig. 5.1 (b) instead of the BMP version. At
full resolution, close inspection would be required to see any degradation. It is interesting
to note that PCX, which always compresses data, regardless of colour depth, manages a
10% reduction. This highlights the poor results Run-Length encoding 24-bit images
exhibits. As the image increases in size, so effort on the PCX encoding is wasted. This is
the main reason why many applications do not support compression of 24-bit BMP files.

For image (b), I have also detailed the loading and saving times for each type under Adobe
Photoshop on a 486DX-50MHz processor running in 32-bit mode. As one might expect,
BMP load and save times are identical. After all, it does not need to perform any
procedures to get at the data and so compression is the exact reverse of decompression.
The GIF version has the quickest loading and saving times, due to it referencing a palette
for each pixel. JPEG, in general, takes longer to compress data as there is much more
processing required, although I was surprised to see the low quality save performing seven
seconds quicker than high quality. My understanding of JPEG compression lead me to
believe that the time to perform the process would be comparable whatever the quality
factor, whereas clearly it is not. As already discussed, PCX loses out with RLE losing
precious seconds on a compression ratio close to the uncompressed bitmap.

With only these two example image types, we have been able to identify some interesting
characteristics on each of the formats. The uncompressed BMP is not suited to either type
of test image, and so has been used purely as a benchmark for uncompressed data. BMP
with RLE outperforms all the other formats with the simple test pattern, but cannot be used
with 24-bit data. The GIF output is a good size on both types of image, but the fact
remains that it only contains 256 colours so the 24-bit image has become lossy. JPEG, at
any quality factor, is not suitable for representing simple solid-filled areas, as it is designed
to work well with small pixel discontinuities such as in photo-realistic images like (b).
However, with photographic images it is unsurpassed in this company, but at high
resolutions how much data has been lost? The low quality JPEG has taken over 4Mb of
image data and compressed it into 74,811 bytes. Many users may find it hard to accept
there is so much redundant data.

If this study were to be extended to a wider range of formats, and possibly more varying
test images, a clear picture could be painted as to which provide the best quality for certain
types of application. Users with little knowledge of the suitability of such formats could
then browse through this reference until they find the format right for them.

5.2.2 Quality Rating

Another way of looking at the problem of measuring image quality is to produce a set of
ratings which can be applied to a test image and format to identify if the match rates as
satisfactory to the developer of the system. Implemented correctly, it would provide a less
subjective method than that of exhaustive testing described above. The tests could be
carried out by the developer on a machine typical of the end-user’s technology. The results
would give an accurate measure as to the suitability of the tested formats. To consider
how such a set of ratings might be constructed, we must identify the relationships between
the factors already discussed and how they correlate with each other towards the final
output of the image.

Measuring Image Quality

39

GIF images, for instance, have a maximum of 256 colours, which are represented by an
internal colour palette. When a true-colour image is converted to GIF, quantisation must
take place to reduce the 24-bits of colour information to a match, or close match, in the
palette. This process has knock-on effects which alter the general behaviour of the image.
Reading an image which uses colour palette indexing is significantly quicker than 24-bit
reading, as the palette could be stored wholly in memory and as each index is read, so the
RGB values can be ascertained; plus a palette index is 1-byte as opposed to 3 with true-
colour. Therefore, GIF encoded files can be read and written significantly quicker than
true-colour file formats, as has been proved in Chapter 5.2.1.

A further implication of GIF encoding is the lossy nature of quantisation. The scaling
down of the colour information is subjective. The encoder must decide on the most
suitable colour entries for the palette, and is unlikely to do a perfect job. In most cases,
one can see elements of dithering on images which have been quantised in this manner.
Whilst this dithering does help the overall quality of the image to the naked eye, the
preservation of original image data is gone forever.

JPEG image quality casts another important shadow on devising image quality ratings. At
what point can it be assumed the quality factor will start degrading the visual quality?
Practically speaking, this depends on the image being compressed. Using too high a factor
could result in a large output file and longer time for compression. Using too low a factor
will result in the blocky effect, as demonstrated in Fig. 4.16. Either way, the original data
is not preserved. Exactly how the quality factor affects the output quality can be analysed
by dividing the image into blocks equal to the DCT size, 8x8 in standard JPEG, and
looking at the pixel intensities of pixels 8 pixels apart across the whole image. If the
differences are large, a low quality factor will cause blockiness. With the intensities closer,
a low factor will not have such an adverse effect. The ‘stripes’ example image, Fig. 5.1(a),
used in the previous section is a good example. The low quality factor version copes well
horizontally, equalling the quality of the high factor one, whereas vertically, across the
colour borders, the differences are more evident. To illustrate this further, refer to Fig. 5.3
below, which uses contiguous areas of colour in addition to low quality:

(a)

Fig. 5.3: Pixel Discontinuity Caused By Low Quality JPEG

In this version, image (a) has a high quality, whereas image (b) is of low quality. On both
images, the borders of the colours highlight shadowing, darker areas on colour boundaries.
However, this is much more prominent on the low quality image (b).

Measuring Image Quality

40

These relationships must be analysed in the same way for a set of format types. Only when
this has been done can we begin work on a rating system to measure this. Although it can
be argued that each format has its own unique way of affecting an image, there are general
traits associated with lossless, lossy, palette indexed, JPEG encoded and all the other
variations which can be approximated well enough to carry out this work. The only input
that would be needed is a list of the features of any given format and the image itself. Our
quantitative method for measuring the predicted output quality can gauge whether the
format is suitable or not.

As a simple example, consider an input image of hand drawn cartoon strips involving
significant areas of contiguous colour. If applied with JPEG, the score would instantly
highlight the fact that JPEG compression does not mix with contiguous areas of colour,
giving a low rating not only for the quality of the output, but also the file size and
processing required to perform the operation. If GIF were used, however, the fact that it is
palette-based will work in its favour, and as dictionary compression techniques such as
LZW work well with contiguously coloured areas, the GIF format will gain a higher score
(perhaps even the highest). These scores would be gauged by the resulting file size, the
time taken to read and write the image, and most importantly, the visual quality of the
image in the different formats in comparison to other tested formats.

An average user, armed only with a file format reference, such as Murray and vanRyper
(1994), and some knowledge about the typical image contents for their application, can
then set to work on finding the format best suited for the application. All without knowing
about the formats or other subjective details which can cloud their judgement.

The specifics of such a rating or scaling system will not be discussed in this report as there
is insufficient scope or time. To give this idea full justice would require much more time
for carrying out the testing on many file formats, even before the analysis of their
relationships can begin. As each format is analysed, so the system could be refined to take
account of new features provided by a wider range of formats.

For example, if the first format chosen was BMP the features covered in the scale would be
Run-Length or uncompressed encoding and the RGB colour cube. Extending this to the
JPEG lossy format would incorporate the features of the JPEG compression stages (refer
to Fig. 4.14) and possibly differing colour cubes. At each stage, if we were to apply this to
an image the results would allow the comparison of more file formats. The more
comprehensive the database, the better choice for the user.

Measuring Image Quality

41

The down-side to this approach is the unwieldy nature of all these format details. The
complexity in involving more than a few formats may make it difficult and time-consuming
to use, even for the experienced user. To avoid this the details could be implemented into
a software system automating the analysis of formats for any given image. This reduces
much of the burden on the user having to know anything about the process, and is likely to
give more consistent results (as conditions should be identical every time). With relative
ease, formats could be added or removed from the test results, or certain tests could be
removed to save time, such as loading and saving times. To identify some features of the
given input image may require artificial intelligence, or perhaps more simply, user input.
Details such as whether the image is photo-realistic, line art, a cartoon-strip and so forth.

While it was my wish to tackle this problem, time has proved to be the overcoming factor,
and as such, this is probably suited to a further project. As the idea of this kind of system
has been formulated as I have worked on the project, it is not a task that can be added, due
to its size and need for extensive development. Moreover, it highlights this as an area of
future work.

Imagica Technical Documentation

42

6. Imagica Technical Documentation

Imagica is a graphic file viewer and converter which has been written with both Borland C++
and Borland Delphi, supporting Windows Bitmaps (.BMP), CompuServe Graphics Interchange
Format (.GIF), Joint Photographic Experts Group JFIF (.JPG) and ZSoft PCX (.PCX).

Borland C++ was used to construct a Dynamic Link Library of graphics file format conversion
functions in C. To do this, readily available freeware libraries (source code) has been utilised
and adapted for this purpose by myself. The JPEG, GIF and BMP routines are taken from the
IJPEG5b release (Lane, Gladstone et al, 1995). This is designed to be as portable as possible,
so came with many platform-dependant build options. The one I have used is DOS (as
Windows is not directly supported).

6.1 Design Principles

The design strategy of the graphics library is to convert the files to a common format which
can be displayed and manipulated easily. The chosen format was BMP, as it is already fully
supported by Windows and is a lossless method capable of storing 24-bit output. When a non-
BMP file is opened, it is first converted to BMP and then opened as a BMP (but still treated as
a foreign format). Each open file has two filenames associated with it: the name of the real file
where the BMP version is stored, and the true filename the user has requested (in whatever
format they wish). To the user, no indication of this method is known, so this process occurs
transparently.

It has been done in this manner as bitmaps displayed under Windows are converted to the
BMP format anyway. The only difference in this instance is that the library converts files to
BMP files which can then be easily opened by Windows. Normally, these bitmaps would be
stored in memory. It is a disk space versus memory trade-off, and as the conversion routines
would already be using significant portions of the available memory storage, I decided that on
machines with less memory (say, 4Mb or less) this may invoke heavy use of the swap file.

The User-Interface to this dynamic link library was constructed in Borland Delphi, an object-
based visual development system which runs on the base Pascal language (or ObjectPascal in
this case). My problems in designing and constructing this interface have been relatively minor
compared to the graphics library. The main difficulty arose over the function calls and data-
types used in them. As the library was constructed in C, there was the issue of data passing
from the interface to the library and back again. While using the pascal keyword in the
library functions enabled the interface to treat them as Pascal code, it did not overcome the
problem of differing data widths between C and Pascal. Further research was required (from
both books and the Internet) before I solved the problems. The documentation I had access to
was ambiguous as to which data types were compatible between the languages. It was the
assistance of other usenet newsgroup users that provided the clarity I needed.

Imagica Technical Documentation

43

6.2 Problems Encountered And How They Were Overcome

Initially, I was unable to get the first drafts of the compiled library to work within my
application interface. It would compile with no errors, but when it was listed in the interface
code as a DLL referenced function it would not allow the compilation of the interface. The
only way I could get it to accept the library was to create procedures which took in no input
parameters and returned no output. This meant that I could no longer test the actual routines
as I was not able to receive any output. Convinced that there was nothing wrong in the code
of the routines, I began to search for alternative reasons that might stop the integration. After
much experimentation, I tracked down the problem to a switch in the definition file for the
library. Including ‘multiple’ as a switch in this file meant it should be possible to load multiple
instances of the library simultaneously. However, the point of dynamic link libraries is that
they only require loading once and any further software which requires it can use the already
open one. This was not reported as an error, or even a warning, and it was only after studying
each of the options in turn that I found this to be the cause. Once removed, the DLL was
accepted by Delphi and I was able to move on.

Dealing with the GIF portion of the library, the IJPEG software raised a problem. The source
code had been designed with the JPEG central to the system. Converting JPEG files to BMP
or GIF or converting BMP or GIF to JPEG was a fairly straightforward task which presented
no problems. However, converting from BMP to GIF, or GIF to BMP was a different matter.
The data structure used to store an instance of a JPEG decompression (to BMP or GIF) was
different than that of a compression instance (from BMP or GIF). The crossover in the middle
meant that the structures would be incompatible when converting BMP to GIF and vice versa.
This proved to be insurmountable, although I did attempt to bridge the gap between the two by
manually converting from the decompression structure to the compression, with no success.

Due to a lack of time, this has been bypassed by performing such conversions as a two-step
process. Firstly, convert the BMP or GIF file to a JPEG one (using the already written
routines) and then convert the JPEG to a BMP or GIF file. The obvious point to this is that
JPEG being a lossy method will not preserve all the data from the original, and thus is not
maintaining a true conversion (which should not lose detail, except with the GIF colour palette
limit of 256 entries). However, with the JPEG quality factor set reasonably high (at a cost to
speed) the results of these conversions is still good and unnoticeable to the naked eye.

In addition, I have unsuccessfully attempted to incorporated the PCX format into the graphics
library. This has been taken from a different source (Murray, vanRyper, 1994 – CD-ROM)
and has brought about the following problems:

• The data structure used in the IJPEG software is different to that of the PCX structure.
This has meant that I needed to code a transfer routine to convert the PCX header values
to the IJPEG compatible one for conversion to those formats. The same applies vice
versa.

Imagica Technical Documentation

44

• The scanlines in a PCX file are read from the top-left pixel to the bottom-right. BMP
(the central format in this application) scans bottom-left to top-right. The significance of
this is that two buffers are required in main memory. Firstly, a smaller buffer to hold one
uncompressed scanline. Secondly, a much larger buffer capable of storing the whole
image uncompressed in memory. When the first PCX scanline is read in, it can be placed
as the last scanline in the output BMP file (the RGB values, as stored in PCX, must also
be reversed to BGR for BMP output). Although this seemed to be a straightforward
task, it proved to be otherwise. Firstly, using C far pointers raises problems when the
segment address of the pointer exceeds its limit and resets to the beginning of the
segment. This means that the segment is not incremented as expected and important
data is overwritten. The effect this had on the output was to split the image into bands
of 50-100 horizontal scanlines, duplicating similar copies of the whole, squashed image
in each band. After further research into the cause of this, I discovered the use of huge
pointers, which automatically normalise and increment the pointer addresses in the
manner I expected. This led to a further problem: the memory allocation function
farcalloc() returns a void far * . I could not directly create a huge pointer and
assign the farcalloc() to it. Fortunately this problem can be avoided by using two
pointers. The first, a far * , is used to allocate the memory for the huge array. The
second, a huge * , is assigned the pointer value of the far * , typecast to a huge * .
Please refer to the source code in Appendix 2 for exact details.

• The third, and ultimate problem, lies in the way the PCX image data is structured. All
the references from the books I consulted state that the PCX format stores image data
either pixel- or plane-oriented. I was encountering problems with the colour in my
output images, everything appearing greyscale (and duplicated three times across the
image) as in the example below.

Fig. 6.1: Plane-Oriented PCX Data Misinterpreted As Pixel-Oriented

This, as I eventually found out was due to the fact that the data for each scanline was
stored in the plane-oriented fashion (all the red values first, then Green and Blue) and I
was attempting to read it in pixel-orientation (Red, Green and Blue values for a pixel
stored contiguously). Thus I had to re-structure the routines for the PCX format to cater
for this.

Imagica Technical Documentation

45

As an aside, I am still not aware how it is possible to tell if a PCX file is stored pixel- or
plane-oriented (and the books are vague on the matter). The only method I could think
of for determining which to use when decoding involves reading the first few values and
if they are all similar (the intensity difference is small) assume it is plane-oriented. If the
intensities in a pixel-oriented image were similar (i.e. a greyscale image) the decoder
would incorrectly assume plane-orientation. I considered implementing a user-choice
into the interface to allow the user to see both methods and then decide which was
correct, but dropped the idea, deciding to note it in this report instead.

I have since found out from users of the newsgroup comp.graphics.misc that the
orientation can be assumed by the number of bit planes per pixels. With true-colour,
three planes are used for the Red, Green and Blue pixel values. For this, assume plane-
orientation. When using palette indexes, usually the number of planes will be one, in
which case the data is pixel-oriented.

Despite this important information, I have still been unable to get the PCX to BMP
routine to work correctly. My attempts at re-orienting the data have been summarised in
Fig. 6.2:

RGBRGBRGBRGBRGB RRRRRRRRRRRRRRR RRRRRGGGGGBBBBB
RGBRGBRGBRGBRGB RRRRRGGGGGGGGGG RRRRRGGGGGBBBBB
RGBRGBRGBRGBRGB GGGGGGGGGGBBBBB RRRRRGGGGGBBBBB
RGBRGBRGBRGBRGB BBBBBBBBBBBBBBB RRRRRGGGGGBBBBB

(a) (b) (c)

Fig. 6.2: Attempted Data Orientations For PCX Images

Pixel-oriented is (a), plane-oriented by image is (b), and plane-oriented by scanline is (c).
Each of these methods has given different output results, none of which correctly match
the original image. The closest of the attempted orientations has been (c), with the
colour data working better than the other versions, although the offsetting of each
scanline appears incorrect and the whole image is skewed. Fig. 6.3 demonstrates how a
sample palette-indexed PCX image is affected by the conversion to BMP format.

(a)

Fig. 6.3: The Effect Of Imagica PCX Scanline Orientation

Image (a) is a PCX image converted to BMP format by Windows Paintbrush. Image (b)
is the equivalent converted by Imagica

Conclusion And Evaluation

46

7. Conclusion And Evaluation

7.1 Evaluation Of Objectives And Aims

This project has turned out to be challenging in many ways. Each stage has presented its own
problems to be overcome.

When collecting information from industrial sources, as covered by the first objective, I
expected a lack of response. Previous experience had taught me that only a small percentage
of sources are likely to respond at all. I tried to compensate this by applying to many varied
sources, to improve the chance of receiving varied answers which could typify a cross-section
of the graphics community. What I was not prepared for, however, was the lack of ideas for
measuring quality used in industry. The general consensus of opinion of those who replied
seems to be that a measurement system is not required for the most part, as the people working
in this field already have experience with graphics file formats. In hindsight, it may have been
better to also apply to some personnel not directly involved with the file formats, who would
have less knowledge of the technicalities whilst still having an interest in their use. This could
have highlighted more of a need for a quality measurement system such as discussed in this
report. The responses I have received, however, have introduced some other problems I had
not envisaged, such as proprietary formats supplied with each new application. When running
more than a few of these simultaneously, difficulties can arise when there is a need to move
data between different software systems. Although OLE (object linking and embedding) has
been designed with this in mind, it is not always possible to transfer data if the structure is
foreign to that recognised by other systems.

My suggestions on how a measurement could be made on these graphics file types has been
made possible through my research into the popular formats and techniques already in use.
This second objective, for me, has been the most difficult. Working from a set of techniques
towards a generalised method of rating formats has not been easy. Throughout my research on
the available formats I have been formulating my ideas into ways this could be done. While I
am pleased with the ideas that have come to light, it is unfortunate that time has run out
without me being able to give this section as much attention as I feel it deserves. If the
workload had been shifted from the research towards the suggestions I may have been able to
develop my ideas further, although doing this may have restricted my understanding of the
current facilities available to the graphics programmer. Whichever may have been best, I
believe I could have made good use of extra time to develop the concepts introduced in
Chapter 5. The challenge put forward by this section has identified new ideas as to how this
might be carried out. Furthermore, I have been able to see first hand the difficulties
encountered when attempting to quantify the enormous range of graphics formats.

An area which has proved to be straightforward is finding research information on the file
formats and their compression. The diversity of resources is very large, and I have had very
little problem in locating details of the topics. In some respects, there has been too much
information, especially from the Internet, requiring the identification of the most reliable
sources for my needs. My third objective, researching and understanding these formats and
their techniques, has been accomplished successfully due to this wealth of information.

Conclusion And Evaluation

47

With some of the advanced techniques for compression discussed in Chapter 4.4, finding
readable details which do not dwell on mathematics too heavily has not been easy. As most
readers interested in the complexities of these are likely to have a knowledge of the
mathematics, I have had to understand what the purpose of the techniques are without
involving the low-level composition. This work has given me sufficient understanding to argue
for and against the merits of such advanced formats, and I am satisfied that the fourth objective
for this has been used well.

The remaining core objectives relate to the software component, although the reason there
appears to be more emphasis on the software is for clarity only. Separating the tasks into
distinct objectives seemed most natural in terms of dividing the available time. With regards to
the software, the only item which has been short of the target is the inclusion of the PCX
format. Despite all the references I have used to help me with this, I have found the
information to be vague about true-colour PCX images. As the PCX format was designed
before true-colour images were possible, much of the documentation is based on the original
specification which uses palette colouring only. This was not a problem I anticipated. I had
read about PCX beforehand, but was not aware of the bias of the information available.
Although I was able to get further details from other users of the Internet, I still could not
complete the routines.

In this respect, considerable effort has been expended on a portion of the software component
not present in the final version. The upside of this is that it has given me the chance to see the
typical kinds of problem which can be encountered as a beginner. The fact that a single format
can have more than one internal representation has caused this problem. The software writer
has the burden of supporting all the possible structures so the routines are fully format-
compliant. The attention to detail required in doing this can make this process slow and
meticulous.

Furthermore, as graphics are reliant on large data structures, I have had to overcome the
problems Microsoft DOS (and Windows) places on the programmer, relating to the memory
system. For structures greater than 64Kb, these extra necessities have raised some unforeseen
problems which have hindered development. Please refer to Chapter 6 for further details.

The objectives which involved learning Borland Delphi and the Windows API (application
programming interface) have been undertaken well. This has been an ongoing process with
new features being learnt as and when I have thought they were necessary. In reality, there are
a lot of similarities and connections between the two, meaning that when I learnt a concept in
ObjectPascal, it usually could be applied to the Windows API also. In this instance I am
referring to the clipboard features, for which I considered two approaches based on the
ObjectPascal and API systems. For while the API provides greater freedom to the
programmer, ObjectPascal generally supplies a simplified method, using the same features with
the unused details removed.

In addition to the work I have carried out on the core objectives, I have also been able to
provide work on the advanced aims. The clipboard features have been implemented in a
limited way, in that Imagica is able to copy and paste whole images to and from other
applications via the clipboard. I had hoped to implement a utility to allow sub-sections of any
image to be copied, cut or cropped but was unable to find sufficient information as to how this
could be done.

Conclusion And Evaluation

48

The online help system is complete, and contains an extensive list of the error messages which
may occur, with their possible causes. A shortage of time has prevented the image rotation
and flipping features from being included, although image magnification has been successfully
incorporated. From the interface any image can be increased or decreased in both the x and y
axes independently, or reset to the image’s original dimensions. In addition, beyond the
specified advanced aims, printing capability has been added although tests indicate that this
feature only functions when used with colour printers (only the PostScript header is sent if the
printer is black and white).

Generally the software is at the stage I had intended. I am pleased I was able to do so much of
it as I had concerns during the project as to whether or not it would be completed.
Understanding the shareware software so I could implement it in my DLL proved to be
difficult. The complexity involved meant I had to spend significantly longer trying to
understand how it worked before I could apply it to my application. This is, perhaps,
highlighted in the fact that PCX was not fully successfully incorporated.

The type of image display in use also affects the visual appearance of Imagica. When using a
set-up which can cope with more than 256 colour on-screen at once, no problems arise.
However, on lower colour depth displays (256 colours or less) true-colour images are not
displayed correctly. This is because the images would require quantisation to reduce the 24-
bits of colour information to 8-bits as suitable for display. Furthermore, such lower depth
output also affects the magnification features so the colours fail when used. Only when the
image is normalised in both axes does the colour of 8-bit images return to its correct state.
These were not tackled as this problem is beyond the scope of this project. On higher depth
displays neither of these problems will be evident.

7.2 Evaluation Of Project Management

The Gantt Chart in Appendix 1 details the original project plan set in October 1995. It lists the
original topics this project had been classified under, and the expected date to start and
approximate completion date. When choosing this time-scale, I had to take other
considerations, such as course-work, into account. I felt it was important to have a clear plan
so I would always know what could be worked on at any given time. On a study of this size it
is crucial to know at the start exactly what needs to be done so the work can be paced and pre-
researched accordingly.

The topics have been separated as much as possible to allow independent work units to be
carried out simultaneously with little need for information from other units. The exception to
this rule was the suggestions I have made as to how I believe image quality can be measured.
This required that I had information from my industry sources beforehand, as this was the main
basis of the work. Furthermore, it was also essential that my research into the file format
details was carried out alongside it, so the technical knowledge was also available.

Conclusion And Evaluation

49

Due to the fact that I have placed myself under this working guideline, my project management
has been quite successful. One area I should have given more time to was the collection of
information from industrial sources. The replies I received were not prompt. The first was
returned within one month, but then I had to wait until the end of the Autumn term before the
others arrived.

Even more significantly, after I had finished the initial composition of Chapter 2, I received
further information from a representative of Erdas, publishers of image processing software.
The details given to me at that time were contact names and addresses of people at the
Universities of Greenwich, London and Sheffield who had a particular interest in this field.
Fiona Cocks is a University lecturer at Greenwich who previously undertook a study in colour
perception for her MSc. Dr. Chris Clarke from Sheffield is also a lecturer whose students have
been involved in similar, graphics-based work in the past. Due to the late arrival of this
information, I have not had time to pursue these lines of enquiry, and so it is mentioned here
purely as an addendum.

My plan has allowed three weeks at the end of the project with no tasks remaining. This does
not mean that I expected to finish three weeks early, but that I expected some of the work to
fall behind schedule. This period is the buffer by which I have been able to finish off tasks in
time for the deadline. Fortunately, I have been able to make good use of this buffer to make
up the time I lost with the slow responses detailed above and the difficulties encountered with
the software.

Further to the chart plan, I have also been attending regular meetings with my project
supervisor. This has allowed me to sub-divide the work units again so each meeting had a
target associated with it, ensuring the work-rate remained consistent. Whenever problems
were met, I could then discuss them and come to a decision on the best method for solving it.
In my opinion, this has worked well, and has helped me maintain the flow without getting
entangled in any one problem for too long.

7.3 Further Work

Certain elements in this project leave scope for further development. With almost any project
which includes a software component, a list of future enhancements could be endless. In this
case, I will only highlight the general areas where extra work would benefit the project.

Apart from the obvious inclusion of more formats into the graphics library, which is discussed
below, the next step could be to include the kind of image processing options found in the likes
of Adobe Photoshop, Erdas Imagine and Visilog. It depends on the direction of the software,
although in my opinion, the multitude of current applications which already do this, including
the ones already mentioned, are sufficient for most user’s needs.

Conclusion And Evaluation

50

As mentioned in Chapter 5, to fully explore the implications of an image quality measurement
system would require more time. While I have outlined the principles behind how this could be
done, the actual work involved would be suited to a further project. To develop the system
specified in Chapter 5.2.2 would naturally lead to its inclusion into the base of Imagica, the
software already written. With the base in place, development could be concentrated on the
measurements aspect, currently non-existent. The supported format base could then be
extended by adding extra file formats to the graphics library in the same manner. As each new
image is loaded, instead of merely being displayed on the screen, the application could set
about analysing the image and converting it to the supported formats so the tests can be carried
out, all automatically.

This appears to hold a better future for Imagica. Currently, to the best of my knowledge, there
are no such products on the market which can analyse formats and rate them against each
other in this way. Despite the general opinions of those replying to my questions that such a
system is not essential, I feel sure that untrained users could find it useful and would prefer it
to a reference book.

Bibliography

51

8. Bibliography

8.1 General References

Borland International (1991). Borland C++ 3.0 Library Reference, Scotts Valley, CA:
Borland International.

Borland International (1991). Borland C++ 3.0 Programmer’s Guide, Scotts Valley, CA:
Borland International.

Cantù, Marco (1995). Mastering Delphi [incl. CD-ROM], Alameda, CA: Sybex.

Sprigg, Graham (ed.) (1995). Image Processing, Volume 7: Issues 1-6.

Jackson, Richard and MacDonald, Lindsay and Freeman, Ken (1994). Computer Generated
Color: A Practical Guide to Presentation and Display, Glasgow, Scotland: John Wiley &
Sons.

Langdon, Glen G., and Rissanen, Jorma (1981). Compression of Black-White Images with
Arithmetic Encoding. IEEE Transactions on Communications, COM-29(6), pp858-867.

Murray, James D. and vanRyper, William (1994). Encyclopedia of Graphics File Formats
[incl. CD-ROM], Sebastopol, CA: O’Reilly & Associates.

Nelson, Mark (1992). The Data Compression Book. New York, NY: M&T Books.

8.2 Specific References

Iterated Systems, Inc. (1994). Images Incorporated. Norcross, GA: Iterated Systems, Inc,
Appendix A.

Sprigg, Graham (ed.) (1995). The Unsolved Problem of Image Compression. Image
Processing, 7(6), pp38-40.

Jackson, Richard and MacDonald, Lindsay and Freeman, Ken (1994). Computer Generated
Color: A Practical Guide to Presentation and Display, Glasgow, Scotland: John Wiley &
Sons, pp236-239.

Murray, James D. and vanRyper, William (1994). Encyclopedia of Graphics File Formats
[incl. CD-ROM], Sebastopol, CA: O’Reilly & Associates, pp 460.

Nelson, Mark (1992). The Data Compression Book. New York, NY: M&T Books, pp 360.

Bibliography

52

8.3 Internet References

ftp://ftp.uu.net/graphics/jpeg/jpegsrc.v5b.tar.gz
• Lane, Tom and Gladstone, Philip and Ortiz, Luis and Boucher, Jim and Crocker, Lee

and Phillips, George and Rossi, Davide and Weijers, Ge’ (1995). Independent JPEG
Group JPEG Software (Release 5b).

http://www.cis.ohio-state.edu/hypertext/faq/usenet/compression-faq/part2/faq.html
• Guttmann, Peter (1995). Introduction to Data Compression. comp.compression

Frequently Asked Questions (FAQ) (Part 2), item 70.
• Kominek, John (1995). Introduction to Fractal Compression. comp.compression

Frequently Asked Questions (FAQ) (Part 2), item 77.
• Lane, Tom (1995). Introduction to JPEG. comp.compression Frequently Asked

Questions (FAQ) (Part 2), item 75.

http://www.cis.ohio-state.edu/hypertext/faq/usenet/graphics/colorspace-faq/faq.html
• Poynton, Charles A. (1995). Color-Space FAQ: Frequently Asked Questions about

Color and Gamma.

http://jaring.nmhu.edu/delphi.htm
• Summers, Wayne (1996). Delphi Programming.

Usenet:
• comp.compression
• comp.graphics.algorithms
• comp.lang.c
• comp.msdos.programmer

