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Abstract—In many cases, competing parties who have private data may collaboratively conduct privacy-preserving distributed data

analysis (PPDA) tasks to learn beneficial data models or analysis results. Most often, the competing parties have different incentives.

Although certain PPDA techniques guarantee that nothing other than the final analysis result is revealed, it is impossible to verify

whether participating parties are truthful about their private input data. Unless proper incentives are set, current PPDA techniques

cannot prevent participating parties from modifying their private inputs. This raises the question of how to design incentive compatible

privacy-preserving data analysis techniques that motivate participating parties to provide truthful inputs. In this paper, we first develop

key theorems, then base on these theorems, we analyze certain important privacy-preserving data analysis tasks that could be

conducted in a way that telling the truth is the best choice for any participating party.

Index Terms—Privacy, secure multiparty computation, noncooperative computation

Ç

1 INTRODUCTION

PRIVACY and security, particularly maintaining confiden-
tiality of data, have become a challenging issue with

advances in information and communication technology.
The ability to communicate and share data has many
benefits, and the idea of an omniscient data source carries
great value to research and building accurate data analysis
models. For example, for credit card companies to build
more comprehensive and accurate fraud detection system,
credit card transaction data from various companies may be
needed to generate better data analysis models. Department
of Energy supports research on building much more
efficient diesel engines [7]. Such an ambitious task requires
the collaboration of geographically distributed industries,
national laboratories, and universities. Those institutions
(including potentially competing industry partners) need to
share their private data for building data analysis models to
understand the underlying physical phenomena.

An omniscient data source eases misuse, such as the
growing problem of identity theft. To prevent misuse of
data, there is a recent surge in laws mandating protection of
confidential data, such as the European Community privacy
standards [9], U.S. health-care laws [17], and California
SB1386. However, this protection comes with a real cost
through both added security expenditure and penalties and
costs associated with disclosure. What we need is the ability
to compute the desired “beneficial outcome” of data sharing
for analyzing without having to actually share or disclose

data. This would maintain the security provided by
separation of control while still obtaining the benefits of a
global data source.

Secure multiparty computation (SMC) [11], [44], [45] has
recently emerged as an answer to this problem. Informally, if
a protocol meets the SMC definitions, the participating
parties learn only the final result and whatever can be
inferred from the final result and their own inputs. A simple
example is Yao’s millionaire problem [44]: two millionaires,
Alice and Bob, want to learn who is richer without disclosing
their actual wealth to each other. Recognizing this, the
research community has developed many SMC protocols, for
applications as diverse as forecasting [5], decision tree
analysis [33] and auctions [37] among others.

Nevertheless, the SMC model does not guarantee that
data provided by participating parties are truthful. In many
real-life situations, data needed for building data analysis
models are distributed among multiple parties with poten-
tially conflicting interests. For instance, a credit card
company that has a superior data analysis model for fighting
credit card fraud may increase its profits as compared to its
peers. An engine design company may want to exclusively
learn the data analysis models that may enable it to build
much more efficient diesel engines. Clearly, as described
above, building data analysis models is generally performed
among parties that have conflicting interests.

In SMC, we generally assume that participating parties
provide truthful inputs. This assumption is usually justified
by the fact that learning the correct data analysis models or
results is in the best interest of all participating parties.
Since SMC-based protocols require participating parties to
perform expensive computations, if any party does not
want to learn data models and analysis results, the party
should not participate in the protocol. Still, this assumption
does not guarantee the truthfulness of the private input
data when participating parties want to learn the final result
exclusively. For example, a drug company may lie about its
private data so that it can exclusively learn the data analysis
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model. Although SMC protocols guarantee that nothing
other than the final data analysis result is revealed, it is
impossible to verify whether or not participating parties are
truthful about their private input data. In other words,
unless proper incentives are set, current SMC techniques
cannot prevent input modification by participating parties.

To better illustrate this problem, we consider a case from
management where competing companies (e.g., Texas
Instruments, IBM and Intel) establish a consortium (e.g.,
Semiconductor Manufacturing Technology1). The compa-
nies send the consortium their sales data, and key
manufacturing costs and times. Then, the consortium
analyzes the data and statistically summarizes them in a
report of industry trends, which is made available back to
consortium members. In this case, it is in the interest of
companies to learn true industry trends while revealing their
private data as little as possible. Even though SMC protocols
can prevent the revelation of the private data, they do not
guarantee that companies send their true sales data and
other required information. Assume that n companies
would like to learn the sample mean and variance of the
sales data for a particular type of product.

Example 1.1. Let xi be the ith company’s sales amount. In
order to estimate the sample mean, companies need to
calculate � ¼ 1

n �
Pnxi

i¼1 and similarly s2 ¼ 1
n�1 �

Pn
i¼1 ðxi �

�Þ2 for sample variance. Any company may exclusively
learn the correct result by lying about its input. Company i
may report x0i instead of the correct xi. Given the wrong
mean �0 and variance s02 (computed based on x0i and
truthful values from the other parties), the company i can
calculate the correct sample mean � by setting

� ¼ �0 þ xi � x
0
i

n
:

The correct sample variance s2 can be calculated as

s2 ¼ s02 þ x
2
i � x02i
n� 1

þ n �02 � �2ð Þ
n� 1

:

As illustrated above, any company may have the
incentive to lie about its input in order to learn the result
exclusively, and at the same time, the correct result (e.g., �)
can be computed from its original input, modified input
and the incorrect final result (e.g., xi, x

0
i, and �0). If this

situation always occurred, no company would have the
incentive to be truthful. Fortunately, the intrinsic nature of a
function determines whether the situation (demonstrated
by the above example) could occur.

1.1 Our Contributions

In this paper, we analyze what types of distributed
functionalities could be implemented in an incentive
compatible fashion. In other words, we explore which
functionalities can be implemented in a way that participat-
ing parties have the incentive to provide their true private
inputs upon engaging in the corresponding SMC protocols.
We show how tools from theoretical computer science in
general and noncooperative computation (NCC) [40] in
particular could be used to analyze incentive issues

in distributed data analysis framework. This is significant
because input modification cannot be prevented before the
execution of any SMC-based protocol. (Input modification
could be prevented during the execution of some SMC-
based protocols, but these protocols are generally expen-
sive.) The theorems developed in the paper can be adopted
to analyze whether or not input modification could occur
for computing a distributed functionality. If the answer is
positive, then there is no need to design complicated and
generally inefficient SMC-based protocols.

In this paper, we assume that the number of malicious or
dishonest participating parties can be at most n� 1, where
n is the number of parties. This assumption is very general
since most existing works in the area of privacy-preserving
data analysis assume either all participating parties are
honest (or semi-honest) or the majority of participating
parties are honest. Thus, we extend the noncooperative
computation definitions to incorporate cases where there
are multiple dishonest parties. In addition, we show that
from incentive compatibility point of view, most data
analysis tasks need to be analyzed only for two party cases.
Furthermore, to show the applicability of our developed
theorems, we use these theorems to analyze under what
conditions, common data analysis tasks, such as mean and
covariance matrix estimation, can be executed in an
incentive compatible manner.

The paper is organized as follows: Section 2 provides an
overview of the works closely related to this paper and
background regarding the concept of noncooperative
computation. In Section 3, we propose several important
theorems along with formal proofs. Based on these
theorems, Section 4 analyzes some common distributed
data analysis tasks that are either incentive compatible or
not incentive compatible in the context of this paper.
Section 6 concludes the paper with a discussion of possible
future research directions.

2 RELATED WORK AND BACKGROUND

We begin with an overview of privacy-preserving distrib-
uted data analysis. Then, we briefly discuss the concept of
noncooperative computation. Table 1 provides common
notations and terminologies used extensively for the rest of
this paper. In addition, the terms secure and privacy
preserving are interchangeable thereafter.

2.1 Privacy-Preserving Data Analysis

Many privacy-preserving data analysis protocols have been
designed using cryptographic techniques. Data are gener-
ally assumed to be either vertically or horizontally parti-
tioned. In the case of horizontally partitioned data, different
sites collect the same set of information about different
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entities. For example, different credit card companies may
collect credit card transactions of different individuals.
Privacy-preserving distributed protocols have been devel-
oped for horizontally partitioned data for many different
data mining tasks such as building decision trees, [32],
mining association rules, [26], and generating k-means
clusters [31] and k-nn classifiers.

In the case of vertically partitioned data, we assume that
different sites collect information about the same set of
entities, but they collect different feature sets. For example,
both a university pay roll and the university’s student
health center may collect information about a student.
Again, privacy-preserving protocols for the vertically
partitioned case have been developed for many different
data mining tasks such as association rules, [41], building
decision trees [8] and k-means clusters [19]. (See [43] for a
survey of the results.) To our knowledge, all the existing
techniques assume that each participating party use its true
data during the distributed data mining protocol execution.

In addition to existing techniques that consider honest-
but-curious model, there are techniques developed against
malicious adversaries, such as [16], [24]. Especially, in [16],
authors discuss how to prevent lying about inputs using
“input-consistency checks.” Basically, authors suggest
checking whether the inputs satisfy some conditions that
are known to be true about the inputs (e.g., a binary input
vector cannot consist of all zeros). Although such approach
could be useful in practice, it cannot prevent lying about
inputs that satisfy the domain constraints (e.g., an adversary
can lie about its binary vector by making sure that he does
not use binary vectors that consists of all zeros as input). In
our case, we suggest a different solution. Basically, we try to
“incentivize” truth telling instead of preventing lying.

Shoham and Tennenholtz [40] define the class of NCC, or
noncooperatively computable functions, and define specifically
the Boolean functions which are NCC. In addition, the
paper defined two additional classes, p-NCC and s-NCC,
which stand for probabilistic-NCC and subsidized-NCC,
respectively. p-NCC are the functions which are compu-
table with some probability noncooperatively, and s-NCC
are the functions which are computable when external
monetary motivation is allowed. This was expanded to
consider different motivations [35] and coalitions [4]. Our
work is basically inspired by [40], but we consider general
data mining functions and develop additional techniques to
show whether such functions are in NCC.

Much work seeks to include a game-theoretic model in
standard secure multiparty computation. Instead of con-
sidering players who are honest, semihonest or malicious,
the work simply considers players to be rational in the
game theoretic sense. Much of this work concentrates on the
problem of secret sharing; that is, dividing a secret number
among players such that any quorum (sufficiently large
subset) of them can reconstruct the secret number. This was
first studied by Halpern and Teague [14], and later
reexamined by Gordon and Katz [13]. Other protocols for
this problem were outlined in [1] and [34]. The paper by
Ong et al. [39] hybridizes the two areas within the realm of
secret sharing by assuming that some players are honest
and a majority of players are rational. Other work seeks a

broader realm of computation, such as [18] and [29] that
build their computation model on a secret sharing model.
There is other work that attempts to combine game theoretic
and cryptographic methodologies, many of which are
surveyed in [28]. Although these rational secure computa-
tion systems could be used to ensure privacy of the data
mining techniques discussed in this paper, like other secure
computation systems, they make no guarantees about the
truthfulness of the inputs.

More closely related to the work in this paper, some
work has attempted to enforce honest behavior among the
participants in a data sharing protocol. Agrawal and Terzi
[2] present a model which enforces honesty in data sharing
through the use of auditing mechanisms. Layfield et al. in
[30] present strategies which enforce honesty in a distrib-
uted computation without relying on a mediator. Jiang et al.
in [20] integrate the auditing mechanism with secure
computation to convert existing protocols into rationally
secure protocols. Finally, the work of Kargupta et al. [27]
analyzes each step of a multiparty computation process in
terms of game theory, with the focus of preventing cheating
within the process and removing coalitions from gameplay.
Each of these deals with the problem of ensuring truthful-
ness in data mining. However, each one requires the ability
to verify the data after the calculation. Although verifica-
tion-based techniques are very useful, there are cases where
verification is not feasible due to legal, social, and privacy
concerns. For example, if two intelligence agencies from
different countries are collaborating, one agency may not
allow others to verify its database due to legal and security
concerns. Our work enables new applications by showing
what is possible when verification is not feasible and
complements the existing verification based work. In
addition, Nix and Kantarcioglu [25] present a model that
enforces honesty in distributed data mining using monetary
payments. In our case, we do not use any monetary
payments to incentivize truth telling.

2.2 Noncooperative Computation

Recently, research issues at the intersection of computer
science and game theory have been studied extensively.
Among those research issues, algorithmic mechanism
design and noncooperative computation are closely related
to our work.

The field of algorithmic mechanism design tries to
explore how private preferences of many parties could be
combined to find a global and socially optimal solution [38].
Usually, in algorithmic mechanism design, there exists a
function that needs to be maximized based on the private
inputs of the parties, and the goal is to devise mechanisms
and payment schemes that force individuals to tell their
true private values. In our case, since it is hard to measure
the monetary value of the data analysis results, devising a
payment scheme that is required by many mechanism
design models is not viable (e.g., Vickrey-Groves-Clarke
mechanisms [38]). Instead, we adopt the noncooperative
computation model [40] that is designed for parties who
want to jointly compute the correct function results on their
private inputs. Since data analysis algorithms can be seen as
a special case, modifying noncooperative computation
model for our purposes is a natural choice.
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The noncooperative computation model can be seen as

an example of applying game theoretical ideas in a

distributed computation setting [40]. In NCC, each party

participates in a protocol to learn the output of some

function f over the joint inputs of the parties. First, all

participating parties send their private inputs securely to a

trusted third party (TTP), then TTP computes f and sends

back the result to every participating party. The NCC model

makes the following assumptions:

1. Correctness. The first priority for every participating
party is to learn the correct result.

2. Exclusiveness. If possible, every participating party
prefers to learn the correct result exclusively.

In other words, learning the correct result is the most

important objective of every party. Other factors such as

privacy and voyeurism could be also considered in the NCC

setting. We omit such discussion here. Additional details can

be found in [35]. In this paper, we use the NCC setting where

each party wants to learn the data mining result correctly, if

possible prefers to learn it exclusively. Also, we assume that

revealing only the result does not violate privacy.
Under the correctness and exclusiveness assumptions, the

NCC model is formally defined as follows: Given a set of n

parties, for a party i, we denote its private input as vi 2 Di,

where Di is the domain of the possible inputs of party i. (Di

could be any domain that can be used to represent the

possible data sets of the participants. For many practical

applications, it could be the set of binary strings with size less

than some value k.) For simplicity, we assume that allDi ¼ D
for all i. Parties joint input is represented as v ¼ ðv1; . . . ; vnÞ,
where v 2 Dn. We use v�i to represent ðv1; . . . ; vi�1; viþ1; . . . ;

vnÞ, and ðvi; v�iÞ to denote the reconstruction of v. It is also

assumed that the v values are distributed according to some

probability function, and the probability of seeing any v 2 Dn

is always nonzero. In the NCC model, for calculating any

n party function f : Dn 7�! R with range R, we use the

following simple protocol:

1. Each party i sends v0i (not necessarily the correct
private input) to a TTP.

2. The TTP computes fðv0Þ ¼ fðv01; . . . ; v0nÞ and sends
the results back to the participating parties.

3. Each party i computes fðvÞ based on fðv0Þ received
from TTP and vi.

Considering the above simple protocol does not limit its

generality. Under the literature of SMC, the TTP can be

replaced such that the required functionality (represented

by f) is still computable without violating privacy regard-

ing each participating party’s private input [14]. The next

definition states the conditions a function needs to satisfy

under the NCC model.

Definition 2.1 [40]. Let n; f be as above. Then, f is

deterministically noncooperatively computable (DNCC), if

the following holds: For any party i, every strategy ðti; giÞ, and

every vi 2 D, it is the case that

. Either 9v�i 2 D�i, giðfðtiðviÞ; v�iÞ; viÞ 6¼ fðvi; v�iÞ.

. Or 8v�i 2 D�i, fðtiðviÞ; v�iÞ ¼ fðvi; v�iÞ.

The above definition simply states what function could
be computed in NCC setting deterministically (i.e., compu-
tation result is correct with probability one), and no party
could correctly compute the correct result once the party
lies about his or her inputs in a way that changes the
original function result. In other words, if a party i replaces
its true input vi with v0i and if fðv0i; v�iÞ 6¼ fðvi; v�iÞ, then
party i should not be able to calculate the correct fðvi; v�iÞ
from fðv0i; v�iÞ and vi. Note that strategy ðti; giÞ means that
the way the input is modified, denoted by ti, and the way
the output is calculated, denoted by gi. In Example 1.1, ti
can be considered as choosing a value different from
the actual input, and gi can be considered as the ways the
correct � and s2 are computed. Another implication of the
above definition is that for any ti, the corresponding gi
should be deterministic, because each party want to exactly
compute the “correct” result.

In this paper, we mainly focus on the DNCC model
instead of considering a probabilistic extension due to the
following observations. First, as shown in [40], if the vi
values are independent, then a Boolean function2 is in
DNCC if and only if it is probabilistically noncooperatively
computable. Second, even if vi values are not independent,
it is shown that if a Boolean function is in DNCC, then it is
also probabilistically noncooperatively computable [40].
Because of these observations, DNCC provides a good
basis for understanding incentive issues in privacy preser-
ving data analysis. We leave other possible extensions as a
future work.

3 CHARACTERISTICS OF DNCC FUNCTIONS

As discussed previously, the term incentive compatible means
that participating parties have the incentive or motivation to
provide their actual inputs when they compute a function-
ality. Although SMC-based privacy-preserving data analy-
sis protocols (under the malicious adversary model) can
prevent participating parties from modifying their inputs
once the protocols are initiated, they cannot prevent the
parties from modifying their inputs before the execution.
On the other hand, parties are expected to provide their true
inputs to correctly evaluate a function that satisfies the NCC
model. Therefore, any functionality that satisfies the NCC
model is inherently incentive compatible under the assump-
tion that participating parties prefer to learn the function
result correctly, and if possible exclusively. Now, the question
is which functionalities or data analysis tasks satisfy the
NCC model. For the rest of the paper, we first develop
certain key theorems regarding NCC functions. Based on
these theorems, we subsequently analyze functionalities
that can be implemented under (or satisfy) the NCC model.

Based on Definition 2.1, it is difficult to prove whether a
function f is in DNCC because the proof needs to consider
all possible ti and gi pairs. The strategy ti defines a way to
change the input, and the strategy gi defines a method to
reconstruct the actual result based on the true input,
modified input and the result computed based on the
modified input and other parties’ input data.
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Example 3.1. For instance, according to Example 1.1 in

Section 1, the strategy ti can be considered as

tiðxiÞ ¼ xi þ c ¼ x0i;

where c could be any real number. In addition, to

compute the sample mean, the strategy gi is defined as

giðxi; x0i; �0Þ ¼ �0 þ
xi � x0i
n

¼ �:

To compute the sample variance, gi is defined as

giðxi; x0i; s02Þ ¼ s02 þ
x2
i � x02i
n� 1

þ n �02 � �2ð Þ
n� 1

¼ s2:

For complex functionalities, it is very difficult to

enumerate all possible ti and gi pairs. To avoid this issue,

we instead develop the following theorem that describes a

simpler way to prove that a function is in DNCC.

Theorem 3.1. A function f : Dn 7! R is in DNCC if for any

given vi 2 D, for every ti, it is true that

. Either 9v�i; y�i 2 D�i, fðtiðviÞ; v�iÞ 6¼ fðvi; v�iÞ and
fðtiðviÞ; v�iÞ ¼ fðtiðviÞ; y�iÞ and fðvi; v�iÞ 6¼ fðvi;
y�iÞ.

. Or 8v�i 2 D�ifðtiðviÞ; v�iÞ ¼ fðvi; v�iÞ.
Before we prove the theorem, we need to emphasize the

fact that in DNCC setting, a party only lies if it can always

compute the correct result from the wrong result (based on its

modified input and the other parties’ inputs) and its original

input. Therefore, for any ti, the corresponding gi is determi-

nistic. Using this fact, it can be proved that if f satisfies the

conditions of the above theorem, then f is in DNCC.

Proof. Please note that Theorem 3.1 is very similar to

Definition 2.1. If for every strategy ti and for any vi 2 D,

8v�i 2 D�i, fðtiðviÞ; v�iÞ ¼ fðvi; v�iÞ, then this automati-

cally satisfies the Definition 2.1.
For the case where for all vi 2 D and for all ti,

9v�i; y�i 2 D�i such that fðtiðviÞ; v�iÞ 6¼ fðvi; v�iÞ and
fðtiðviÞ; v�iÞ ¼ fðtiðviÞ; y�iÞ and fðvi; v�iÞ 6¼ fðvi; y�iÞ, if
we can prove that for all gi, there exists v�i, such that
giðfðtiðviÞ; v�iÞ; viÞ 6¼ fðvi; v�iÞ, then f satisfies Defini-
tion 2.1, and we can conclude that f is in DNCC. We
will achieve this by proving that for all gi functions either
giðfðtiðviÞ; v�iÞ; viÞ 6¼ fðvi; v�iÞ or giðfðtiðviÞ; y�iÞ; viÞ 6¼
fðvi; y�iÞ.

First, please note that gi is deterministic and fðtiðviÞ;
v�iÞ ¼ fðtiðviÞ; y�iÞ, then we know that

giðfðtiðviÞ; y�iÞ; viÞ ¼ giðfðtiðviÞ; v�iÞ; viÞ: ð1Þ

Now, consider the following two cases:
Case 1. Assume that giðfðtiðviÞ; v�iÞ; viÞ ¼ fðvi; v�iÞ.

Using (1), we infer that

giðfðtiðviÞ; y�iÞ; viÞ ¼ fðvi; v�iÞ:

Since we are given that fðvi; v�iÞ 6¼ fðvi; y�iÞ, we can

conclude that

giðfðtiðviÞ; y�iÞ; viÞ 6¼ fðvi; y�iÞ:

Case 2. Assume that giðfðtiðviÞ; y�iÞ; viÞ ¼ fðvi; y�iÞ.
Using (1), we infer that

giðfðtiðviÞ; v�iÞ; viÞ ¼ fðvi; y�iÞ:

Since we are given that fðvi; v�iÞ 6¼ fðvi; y�iÞ, we can
conclude that

giðfðtiðviÞ; v�iÞ; viÞ 6¼ fðvi; v�iÞ:

Using above equations, we can conclude that either
giðfðtiðviÞ; v�iÞ; viÞ 6¼ fðvi; v�iÞ or giðfðtiðviÞ; y�iÞ; viÞ 6¼
fðvi; y�iÞ. Thus, for all gi, there exists v�i, such that
giðfðtiðviÞ; v�iÞ; viÞ 6¼ fðvi; v�iÞ. tu
We would like to stress that Theorem 3.1 only states a

sufficient condition for a function to be in DNCC. In
Section 4, we show how Theorem 3.1 provides guidance
for proving some common functionalities that satisfy the
DNCC model.

We illustrate how the above theorem could be used for
proving certain functions are in DNCC using the following
function fððY1; C1Þ; ðY2; C2ÞÞ ¼ ðY1 þ Y2Þ=ðC1 þ C2Þ, where
each ðYi; CiÞ belongs to party i.

Example 3.2. Let Yi be a real number (Yi 2 R) and let Ci a
positive integer (Ci 2 Zþ). Then, we can prove that
fððY1; C1Þ; ðY2; C2ÞÞ ¼ ðY1 þ Y2Þ=ðC1 þ C2Þ is in DNCC by
showing the conditions stated in Theorem 3.1 holds for
any ti. Assume that party 1 (without loss of generality)
uses a t1 to modify its Y1 and C1 input. Let Y 01 and C01 be
those modified inputs. Now, consider the case where
fðt1ðY 01 ; C01Þ; ðY2; C2ÞÞ ¼ u0, fððY1; C1Þ; ðY2; C2ÞÞ ¼ u, and
u0 6¼ u for some u0 and u. Note that fðt1ðY 01 ; C01Þ;
ðY2; C2ÞÞ ¼ fðt1ðY1; C1Þ; ðY2 þ ku0; C2 þ kÞÞ ¼ u0 for any
positive integer k. This implies that given t1ðv1Þ ¼
ðY 01 ; C01Þ, we can find v2 ¼ ðY2; C2Þ and y2 ¼ ðY2 þ
ku0; C2 þ kÞ that satisfies the fðtiðviÞ; v�iÞ ¼ fðtiðviÞ; y�iÞ
requirement of Theorem 3.1. Next, we consider whether
or not fðvi; v�iÞ 6¼ fðvi; y�iÞ requirement is satisfied.
Without loss of generality and assuming k ¼ 1,
fðv1; v2Þ ¼ fðv1; y2Þ iff ðY1 þ Y2Þ=ðC1 þ C2Þ ¼ ðY1 þ Y2 þ
u0Þ=ðC1 þ ðC2 þ 1ÞÞ. This implies that fðv1; v2Þ ¼ fðv1;

y2Þ iff u0 ¼ ðY1 þ Y2Þ=ðC1 þ C2Þ ¼ u. This contradicts the
initial assumption that u0 6¼ u. Therefore, we can con-
clude that fðv1; v2Þ 6¼ fðv1; y2Þ.

Although, the above proof assumes Yi is a real
number, the proof could be directly applied if Yi 2 Rp�p.

3.1 Collusion Regarding the NCC Model

When evaluating certain privacy-preserving protocols in
practice, we need to consider the case where an adversary
may control a subset of the parties involved in the protocol.
Such an adversary may force the parties it controls to
submit wrong inputs. In order to analyze functionalities
that are incentive compatible when collusion is possible, the
current DNCC model needs to be extended to include the
possibility of collusion. In other words, we need to
understand that given f is in DNCC, whether or not f is
still in DNCC when collusion occurs. To analyze this, we
continue to follow the correctness and exclusiveness assump-
tions under the NCC model. Based on the assumptions, we
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next define the DNCC functions for the case where an
adversary controls at most t fixed parties.

Definition 3.1. Suppose t < n, f is ðn; tÞ-deterministically
noncooperatively computable (or ðn; tÞ-DNCC) if the follow-
ing holds: For any set S � f1; . . . ; ng (where jSj � t), every
strategy ðtS; gSÞ, and every vS ¼ ðvi1 ; vi2 ; . . . ; vijSj Þ (where
ij 2 S), it is the case that

. Either

9v�S 2 D�S; gSðfðtSðvSÞ; v�SÞ; vSÞ 6¼ fðvS; v�SÞ:

. Or 8v�S 2 D�S , fðtSðvSÞ; v�SÞ ¼ fðvS; v�SÞ.
Intuitively, the above definition indicates that any

adversary that controls at most t parties is not able to
exclusively learn the correct function result. Clearly, if we
can prove that a function is ðn; n� 1Þ-DNCC, then this
implies that an adversary that controls at most n� 1 parties
is not able to exclusively learn the correct result by
modifying the inputs.

For many distributed data analysis tasks, we need to
compute functions that have a special structure. For
example, assuming that data sets are horizontally parti-
tioned, any distributed data mining function fðd1; . . . ; dnÞ
defined over n databases d1; . . . ; dn could be rewritten as
fðdi; wðd�iÞÞ, where wðd�iÞ is an inputs combining function,
e.g., union, intersection, max or min. In other words, w
determines how these inputs are used in f . In general, for
any function fðv1; . . . ; vnÞ which can be rewritten as
fðvi; wðv�iÞÞ for any i and some function w, we can show
that f is ðn; n� 1Þ-DNCC if and only if f is ð2; 1Þ-DNCC.

Theorem 3.2. If fðv1; v2; . . . ; vnÞ ¼ fðvi; wðv�iÞÞ for any i, any
vi and some function w : Dn�1 7! D, then f is ðn; n� 1Þ-
DNCC if and only if f is ð2; 1Þ-DNCC.

Proof. If f is ðn; n� 1Þ-DNCC for any n, f is ð2; 1Þ-DNCC
(by setting n ¼ 2). Next, we need to show that if f is not
ðn; n� 1Þ-DNCC for some n (say n ¼ 3), then f is not
ð2; 1Þ-DNCC. Suppose f is not ðn; n� 1Þ-DNCC. Then,
according to Definition 3.1, 9S � f1; . . . ; ng, 9ðtS; gSÞ and
9vS such that the following holds simultaneously:

. 8v�S : gSðfðtSðvSÞ; v�SÞ; vSÞ ¼ fðvS; v�SÞ.

. 9v�S : fðtSðvSÞ; v�SÞ 6¼ fðvS; v�SÞ.
Using such tS; gS , we can define a cheating strategy for
ð2; 1Þ-DNCC case. Set vi ¼ wðvSÞ, and define tiðviÞ for the
two party case as follows: Since vi is equal to wðvSÞ, set
tiðviÞ ¼ wðtSðvSÞÞ and giðfðtiðviÞ; v�iÞ; viÞ ¼ gSðfðtiðviÞ;
v�iÞ; vSÞ. This strategy works if tS; gS exist because (with-
out loss of generality, assume jSj ¼ n� 1):

gSðfðtiðviÞ; v�iÞ; vSÞ ¼ gSðfðwðtSðvSÞÞ; v�iÞ; vSÞ
¼ gSðfðtSðvSÞ; v�iÞ; vSÞ
¼ fðvS; v�iÞ
¼ fðwðvSÞ; v�iÞ
¼ fðvi; v�iÞ:

Note that in the above case v�S ¼ v�i. Also we know
that fðtSðvSÞ; v�SÞ 6¼ fðvS; v�SÞ for some v�S . This

implies that for some v�i and vi ¼ wðvSÞ, fðwðtSðvSÞÞ;
v�iÞ 6¼ fðvi; v�iÞ. tu
The effects of an adversary that controls multiple parties

have been studied in SMC domain extensively. The general

results indicate that any function could be evaluated

privately (i.e., nothing other than the function result is

revealed) if an adversary is computationally bounded and

does not control the majority of the parties (i.e., an adversary

controls at most bn�1
2 c [12]). This result is still valid if the

adversary is rational [14]. Using the ideas from [14], we can

easily show that every function in DNCC has a bn�1
2 c private

evaluation without requiring a trusted third party.

4 ANALYZING DATA ANALYSIS TASKS UNDER THE

DNCC MODEL

So far, we have developed techniques to prove whether or

not a function is in DNCC. Combining the two concepts

DNCC and SMC, we can analyze privacy-preserving data

analysis tasks (without utilizing a TTP) that are incentive

compatible. We next prove several such important tasks

that either satisfy or do not satisfy the DNCC model. Also,

note that the data analysis tasks analyzed next have

practical SMC-implementations.

4.1 Function with Boolean Output

From SMC literature, we know that there are few functions

that can be evaluated if the adversary controls n� 1 parties.

Here, we prove that functions with Boolean outputs that are

n� 1 private are not in DNCC.

Theorem 4.1 [6]. A function from f : D1 �D2 � � � � �
Dn 7! f0; 1g is n� 1-private if there exits a protocol f so

that no coalition of size � n� 1 can infer any additional

information from the execution, other than the function result.

Further more, f is n� 1 private if and only if it can be

represented as

fðv1; v2; . . . ; vnÞ ¼ f1ðv1Þ � f2ðv2Þ � � � � � fnðvnÞ;

where fis are arbitrary functions with Boolean outputs and �
is the binary XOR operation.

Theorem 4.2. There does not exit any nonconstant n� 1 private

DNCC function with Boolean output.

Proof. According to Theorem 4.1, we know that any n� 1

private function is of the form: fðv1; v2; . . . ; vnÞ ¼ f1ðv1Þ �
f2ðv2Þ � � � � � fnðvnÞ. Clearly, for any ti, we can define the

gi as

giðfðtiðviÞ; v�iÞ; viÞ ¼ fððtiðviÞ; v�iÞÞ � fiðtiðviÞÞ � fiðviÞ:

Note that gi function will always give the correct result

for all possible v�i because

giðfðtiðviÞ; v�iÞ; viÞ ¼ fððtiðviÞ; v�iÞÞ � fiðtiðviÞÞ � fiðviÞ
¼ ð�j 6¼ifjðvjÞÞ � fiðtiðviÞÞ
� fiðtiðviÞÞ � fiðviÞ

¼ ð�j 6¼ifjðvjÞÞ � fiðviÞ
¼ fðvi; v�iÞ:
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To complete the proof that f is not in DNCC, we also
need to show that there exists v�i such that fðtiðviÞ;
v�iÞ 6¼ fðvi; v�iÞ. Clearly, if f is a nonconstant function,
there exits vi; v

0
i for some i and for some v�i such that

fðvi; v�iÞ 6¼ fðv0i; v�iÞ. Then, we can define tiðviÞ ¼ v0i. tu

4.2 Set Operations

Set operations are commonly used in privacy-preserving
data analysis protocols. (See [26], [41] for examples). Here,
we show that common set operations like intersection and
union are not in DNCC. Let us assume that each party i has
a set Si, a subset of publicly known universal set U . For
example, assuming that each party is a financial institution,
Si could be a set of customers’ social security numbers of
party i and U could be the set of all nine digit numbers. As
before, let S�i denote ðS1; . . . ; Si�1; Siþ1; . . . ; SnÞ.
Theorem 4.3. Let fðS1; . . . ; SnÞ ¼ S1 [ � � � [ Sn. Then, f is not

in ðn; 1Þ-DNCC.

Proof. In order to prove that f is not in ðn; 1Þ-DNCC, we
need to provide a correct ðti; giÞ pair that works on Si and
S�i. We also need to prove that ti prevents the correct
function evaluation for some S�i (i.e., 9S�i such that
fðtiðSiÞ; S�iÞ 6¼ fðSi; S�iÞ). We can define tiðSiÞ ¼ Si n S0
where S0 is any nonempty subset of Si. The correspond-
ing gi could be defined as

giðfðtiðSiÞ; S�iÞ; SiÞ ¼ fðtiðSiÞ; S�iÞ [ S0

¼ ð[j6¼iSjÞ [ ðSi n S0Þ [ S0

¼ S1 [ � � � [ Sn ¼ fðSi; S�iÞ:

The above gi works because S0 � Si implies Si ¼
ðSi n S0Þ [ S0. To conclude, we need to show there exists
S�i such that fðtiðSiÞ; S�iÞ 6¼ fðSi; S�iÞ. Note that for any
S0 and S�i where S0 \ ð[j6¼iSjÞ ¼ ;, we know that

fðtiðSiÞ; S�iÞ ¼ ð[j 6¼iSjÞ [ ðSi n S0Þ
¼ fðSi; S�iÞ n S0:

This implies that fðtiðSiÞ; S�iÞ 6¼ fðSi; S�iÞ. tu

Theorem 4.4. Let fðS1; . . . ; SnÞ ¼ S1 \ � � � \ Sn. Then, f is not
in ðn; 1Þ-DNCC.

Proof. We need to define ðti; giÞ that works for a chosen Si
and show there exists S�i for any Si such that
fðtiðSiÞ; S�iÞ 6¼ fðSi; S�iÞ. Let S0 � U and Si \ S0 ¼ ;.
Define ti as tiðSiÞ ¼ Si [ S0. Then, define gi as

giðfðtiðSiÞ; S�iÞ; SiÞ ¼ fðtiðSiÞ; S�iÞ n S0

¼ ð\j6¼iSjÞ \ ðSi [ S0Þ n S0

¼ S1 \ � � � \ Sn
¼ fðSi; S�iÞ:

The gi works correctly because Si \ S0 ¼ ; and
ðSi [ S0Þ n S0 ¼ Si. Also, we need to show that for any
Si, there exists S�i such that fðtiðSiÞ; S�iÞ 6¼ fðSi; S�iÞ.
Let us assume S0 \ ð\j6¼iSjÞ 6¼ ;. In that case,

fðtiðSiÞ; S�iÞ ¼ ð\j6¼iSjÞ \ ðSi [ S0Þ
¼ fðSi; S�iÞ [ ðð\j6¼iSjÞ \ S0Þ:

Since S0 \ ð\j6¼iSjÞ 6¼ ;, we can conclude that fðtiðSiÞ;
S�iÞ 6¼ fðSi; S�iÞ. tu

4.3 Multivariate Statistics

In many distributed data mining tasks, we may need to

learn the mean and the covariance of the underlying data

set. For example, to build a mixture of Gaussian model for

classification, we may want to learn the mean and the

covariance matrix of each class [10]. Let us assume that

X1; X2; . . . ; XN are identically and independently distribu-

ted 1� p row vectors (or a tuple in a data set) where

EðXkÞ ¼ � and � ¼ EððXk � �ÞT ðXk � �ÞÞ. Let Xv
k denotes

the vth column of the row vector Xk. We can estimate � and

� as �� and ��:

�� ¼ 1

N

XN

k¼1

Xk

�� ¼ 1

N

XN

k¼1

ðXk � ��ÞT ðXk � ��Þ:

In our analysis, we consider two different data partition
cases: the horizontally partitioned data and vertically
partitioned data. In the case of horizontally partitioned
data, each party i owns a set Si where Si \ Sj ¼ ; for any i
and j, and [ni¼1Si ¼ fX1; . . . ; XNg. In the case of vertically
partitioned data, for all k, each party i owns all Xv1

k ; . . . ; Xvi
k ,

where 1 � k � N and fv1; . . . ; vig � f1; . . . ; pg (p indicates
the number of attributes or columns). Next, we discuss
whether �� and �� could be evaluated in the DNCC model on
horizontally partitioned and vertically partitioned data.

4.3.1 Horizontally Partitioned Data

For the horizontally partitioned case, we will show that if
the total number of vectors are private (i.e., N is private),
then the functions computing �� and �� are in ð2; 1Þ-DNCC. If
N is a public information, then the functions computing ��
and �� are not in ðn; 1Þ-DNCC. Consider Example 1.1, in this
example, the total number of vectors is equal to the total
number of parties. Since the total number of parties is a
public information, the functions computing the mean and
the variance are not in DNCC.

To prove that the functions computing �� and �� are not in
DNCC when N is public, we first prove that any linear
function is not in DNCC. Then, we will show functions
computing �� and �� are linear functions if N is public.

Theorem 4.5. Any linear function fðv1; v2; . . . ; vnÞ ¼ f1ðv1Þ þ
f2ðv2Þ þ � � � þ fnðvnÞ is not in ðn; 1Þ-DNCC.

Proof. For any ti, we can define gi as follows:

giðfðtiðviÞ; v�iÞ; viÞ ¼ fðtiðviÞ; v�iÞ � fiðtiðviÞÞ þ fiðviÞ:

Note that gi function will always give the correct
result for all possible v�i because

giðfðtiðviÞ; v�iÞ; viÞ ¼ fðtiðviÞ; v�iÞ � fiðtiðviÞÞ þ fiðviÞ
¼
X

j6¼i
fjðvjÞ þ fiðtiðviÞÞ

� fiðtiðviÞÞ þ fiðviÞ
¼ fðvi; v�iÞ:
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To conclude the proof, we need to show that there exists
v�i such that fðtiðviÞ; v�iÞ 6¼ fðvi; v�iÞ. Clearly, if f is a
nonconstant function, there exits vi; v

0
i for some i and for

some v�i such that fðvi; v�iÞ 6¼ fðv0i; v�iÞ. Then, we can
define tiðviÞ ¼ v0i. tu
Using Theorem 4.5, we can easily prove that functions

computing �� and �� are not in DNCC.

Theorem 4.6. If N is public, then the functions computing �� and
�� on the horizontally partitioned data are not in ðn; 1Þ-
DNCC.

Proof. Each party i can locally compute Yi ¼ 1
N

P
Xj2Si Xj. It

is easy to see that �� is a linear function of Yi values (i.e.,
�� ¼

Pn
i¼1 Yi). Therefore, function computing �� is not in

ðn; 1Þ-DNCC due to Theorem 4.5.
Similar argument is valid for the function computing ��.

Here, each party i locally compute Yi ¼ 1
N

P
Xj2SiðXj �

��ÞT ðXj � ��Þ, and �� is a linear function of Yis (i.e.,
�� ¼

Pn
i¼1 Yi). Thus, function computing �� is not in ðn; 1Þ-

DNCC due to Theorem 4.5. tu

If we assume that jSij values are private (i.e., the total
number of vectors denoted by N is a private information),
then we can prove functions computing �� and �� on
horizontally partitioned data are in ðn; n� 1Þ-DNCC. To
prove the above statement, we first prove that f :

ðR;ZþÞn 7! R defined below is in ðn; n� 1Þ-DNCC

fððY1; C1Þ; . . . ; ðYn; CnÞÞ ¼
Pn

i YiPn
i Ci

:

Note that if we set Yi ¼
P

Xj2Si Xj and Ci ¼ jSij, then
�� ¼ fððY1; C1Þ; . . . ; ðYn; CnÞÞ. Likely, if we set

Yi ¼
X

Xj2Si
ðXj � ��ÞT ðXj � ��Þ;

then we can compute �� ¼ fððY1; C1Þ; . . . ; ðYn; CnÞÞ.
To prove that fððY1; C1Þ; . . . ; ðYn; CnÞÞ is in ðn; n� 1Þ-

DNCC, we use Theorem 3.2. Let vi ¼ ðYi; CiÞ. First note that
f satisfies the requirements of Theorem 3.2, due to the fact
that fðvi; v�iÞ ¼ fðvi; wðv�iÞÞ for wðv�iÞ ¼ ð

P
j6¼i Yj;

P
j 6¼i CjÞ.

Therefore, showing that f is in ð2; 1Þ-DNCC will automati-
cally imply that f is in ðn; n� 1Þ-DNCC. Please note that for
two party case, f becomes fððY1; C1Þ; ðY2; C2ÞÞ ¼ ðY1 þ
Y2Þ=ðC1 þ C2Þ and using the proof given in Example 3.2,
we can conclude that f is in ð2; 1Þ-DNCC.

4.3.2 Vertically Partitioned Data

In the case of vertically partitioned data, each party i owns
all Xv1

k ; . . . ; Xvi
k , where 1 � k � N and fv1; . . . ; vig � f1; . . . ;

pg. Note that the vth column of the �� can be calculated by
the party who owns all Xv

k values, for 1 � k � N (i.e.,
��v ¼ 1

N

PN
k¼1 X

v
k. Thus, in order to estimate ��, each party

could calculate the ��v for v values it owns and announce the
results. Clearly, each party can lie about the ��v value as in
the example given in Section 1. Therefore, for the vertically
partitioned data case, the function computing �� is not in
ðn; 1Þ-DNCC.

Also, we can show that computing �� is not in ðn; 1Þ-
DNCC. First note that ��uv could be computed as

��uv ¼
1

N

XN

k¼1

ðXu
k � ��uÞðXv

k � ��vÞ

If party i knows all the Xu
k and Xv

k values, it can calculate
the ��uv locally. If party i knows all the Xu

k values and party j
knows all the Xv

k values, they may jointly compute ��uv.
Unfortunately, even in that case, the function that computes
��uv is not in ð2; 1Þ-DNCC.

Since computing ��uv can be seen as a dot product of two
vectors, we can show that computing ��uv is not in ð2; 1Þ-
DNCC by showing that computing the dot product of
vectors of real numbers are not in ð2; 1Þ-DNCC. As before,
we show that computing the dot product of vectors of real
numbers are not in ð2; 1Þ-DNCC by specifying ti and gi
functions.

Theorem 4.7. Let fðY1; Y2Þ ¼
PN

k¼1ðY k
1 � Y k

2 Þ where Yi is a 1�
p row vector with real number entries and Y k

i is the kth column
of Yi. Then, f is not in ð2; 1Þ-DNCC.

Proof. Without loss of generality, assume t1ðYiÞ ¼ � � Y1

where � is a nonzero scalar number. Since fðt1ðY1Þ; Y2Þ ¼
� � fðY1; Y2Þ, we can define g1 as

giðfðt1ðY1Þ; Y2Þ; Y1Þ ¼ fðt1ðY1Þ; Y2Þ=�:

Clearly, ðti; giÞ works for any nonzero scalar �. Also,
fðY1; Y2Þ 6¼ fðt1ðY1Þ; Y2Þ for any fðY1; Y2Þ 6¼ 0. tu

4.4 Privacy-Preserving Association Rule Mining

In this section, we first summarize the association rule
mining and analyze whether the association rule mining
can be done in an incentive compatible manner over
horizontally and vertically partitioned databases.

4.4.1 Overview of Association Rule Mining

The association rules mining problem can be defined as
follows [3]. Let I ¼ fi1; i2; . . . ; ing be a set of items. LetDB be
a set of transactions, where each transaction T is an item set
such that T � I. Given an item set X � I, a transaction T
contains X if and only if X � T . An association rule is an
implication of the form X ) Y where X � I; Y � I and
X \ Y ¼ ;. The rule X ) Y has support s in the transaction
database DB if s percent of transactions in DB contain
X [ Y . The association rule holds in the transaction database
DB with confidence c if c percent of transactions in DB that
contain X also contain Y. An item set X with k items called
k-item set. The problem of mining association rules is to find
all rules whose support and confidence are higher than
certain user specified minimum support and confidence.

In this simplified definition of the association rules that
we use in this paper, missing items and negative quantities
are not considered. In this respect, transaction database DB
can be seen as 0=1 matrix where each column is an item and
each row is a transaction.

4.4.2 Horizontally Partitioned Data

The above problem of mining association rules can be
extended to distributed environments. Let us assume that a
transaction database DB is horizontally partitioned among
n parties where DB ¼ DB1 [DB2 [ � � � [DBn, and DBi

resides at party i’s site (1 � i � n). The item set X has local
support count of X:supi at party i if X:supi of the
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transactions contain X. The global support count of X is
given as X:sup ¼

Pn
i¼1 X:supi. An item set X is globally

supported if X:sup 	 s �
Pn

i¼1 jDBij. Global confidence of a
rule X ) Y can be given as fX [ Y g:sup=X:sup.

The set of large item sets LðkÞ consists of all k-item sets
that are globally supported. The aim of distributed
association rule mining is to find the sets LðkÞ for all k > 1
and the support counts for these item sets, and from this,
association rules with the specified minimum support and
confidence can be computed.

In [26], authors discuss how to convert a fast distributed
association rule mining algorithm to a privacy-preserving
association rule mining algorithm. Although, for efficiency
purposes, authors use secure set union to calculate the
union of locally large item sets, this calculation reveals some
information and may not be desirable for some applications
[26]. As discussed in [26], to enable a more strictly privacy-
preserving version, it is enough to securely check whether a
candidate large item set is globally supported. Thus, if the
protocol is strictly secure (e.g., without leaking additional
information like the secure set union protocol) under the
SMC definitions, it is sufficient to show checking if a
candidate item set is globally supported is in DNCC.

First note that, to check if a candidate item set X is
supported globally, all we need to know is whether
X:sup 	 s � jDBj. The following allows us to reduce this to
a comparison against the sum of local values (the excess
support at each party)

X:sup 	 s 
 jDBj ¼ s �
Xn

i¼1

jDBij

Xn

i¼1

ðX:supi � s � jDBijÞ 	 0:

Let Yi be the local excess support at party i (i.e.,
Yi ¼ ðX:supi � s � jDBijÞ). We next show the predicate
fðY1; . . . ; YnÞ: ð

Pn
i ðYiÞ 	 0Þ is in ðn; n� 1Þ-DNCC.

Theorem 4.8. Given a candidate item set X, checking X:sup 	
s � jDBj is in ðn; n� 1Þ-DNCC.

Proof. As noted above checking X:sup 	 s � jDBj is
equivalent to evaluate the predicate fðY1; . . . ; YnÞ:
ð
Pn

i ðYiÞ 	 0Þ for Yi ¼ ðX:supi � s � jDBijÞ. Note that for
wðY�iÞ ¼

P
j 6¼i Yj, we get fðYi; Y�iÞ ¼ fðYi; wðY�iÞÞ. Based

on Theorem 3.2, to show f is ðn; n� 1Þ-DNCC, it is
sufficient to show that f is in ð2; 1Þ-DNCC. For the two
party case, we can define the predicate as fðY1; Y2Þ:
ðY1 	 �Y2Þ. As a result, we merely need to show that the
comparison function is in ð2; 1Þ-DNCC for arbitrary real
number inputs.

If we can show that the conditions stated in
Theorem 3.1 hold, we can conclude f is in ð2; 1Þ-DNCC
for any ti. Suppose v1 ¼ Y1 (v2 ¼ �Y2) is the true input of
the first (second) user. We define t1ðv1Þ as the modified
input of party 1 and let t1ðv1Þ � v1 ¼ r, for some value r.
When r is 0, we say ti is the identity function, and for the
identity function, the condition “Or 8v�i 2 D�i,
fðtiðviÞ; v�iÞ ¼ fðvi; v�iÞ” holds automatically. For the
rest of the proof, we consider the situation where r 6¼ 0.
Based on the r value, we consider two cases:

1. Assume r > 0, consider the case where v1 þ r >
v2 > v1 > y2. Note that fðt1ðv1Þ; v2Þ ¼ fðv1 þ r;
v2Þ ¼ fðv1 þ r; y2Þ, but fðv1; v2Þ 6¼ fðv1; y2Þ. Also,
fðt1ðv1Þ; v2Þ 6¼ fðv1; v2Þ. This implies that the first
condition of Theorem 3.1 is satisfied.

2. Assume r < 0, consider the case where y2 >
v1 > v2 > v1 þ r. Note that fðt1ðv1Þ; v2Þ ¼ fðv1 þ
r; v2Þ ¼ fðv1 þ r; y2Þ, but fðv1; v2Þ 6¼ fðv1; y2Þ. Also,
fðt1ðv1Þ; v2Þ 6¼ fðv1; v2Þ. This implies that the first
condition of Theorem 3.1 is satisfied.

As a result, we conclude that f is in ð2; 1Þ-DNCC. tu

Again as shown in [26], we can use the f described above
to check if the confidence threshold is satisfied for any
candidate rule of the form X ) Y . One interesting conse-
quence of the above result is that composition of the DNCC
functions should be carefully checked to see whether or not
the composition is in DNCC. Note that even though
gðY1; . . . ; YnÞ:

Pn
i ðYiÞ is not in DNCC, fðY1; . . . ; YnÞ:

ð
Pn

i ðYiÞ 	 0Þ is in DNCC. (Refer to Claim 5.1 in Section 5
for more details.)

4.4.3 Vertically Partitioned Data

Given the transaction database DB as 0=1 matrix, where
each column is an item and each row is a transaction, the
DB is considered vertically partitioned if different parties
know different columns of the DB. To mine association
rules over vertically partitioned data, it has been shown that
you need to calculate a dot product with 0=1 vectors, where
each vector represents whether a certain set of items are
present in a transaction or not [41]. Therefore, if we can
show that functions calculating dot product with binary
vectors is in DNCC, then using the results from [41], we can
conclude that calculating an support count of an item set is
also in DNCC.

Below we show that calculating the dot product of
nonzero binary vectors is in ð2; 1Þ-DNCC. (In this context,
we call a vector, nonzero vector if at least one of the entries
is nonzero.) Before we proceed with the proof, we stress
that the following theorem is not a contradiction with our
earlier result that shows that the function computing dot
product of real-valued vectors is not in DNCC. Note that ti
described for the dot product of real valued vectors will no
longer work in the context of binary vectors since you can
only multiply each entry with zero or one. Another
important detail to note is we assume that the binary
vectors are nonzero vectors. This assumption is important
because if we allow zero vectors, the dot product result
could be exactly determined even without any computation
by the owner of the zero vector. Thus, the owner of the zero
vector could lie about its input easily.

We believe that the assumption of nonzero binary
vectors is realistic because with fairly large databases, it is
highly likely that there exists at least one transaction that
supports the required item.

Theorem 4.9. Let f be denoted as fðv1; v2Þ ¼
Pk

j¼1 v
j
1 � v

j
2, where

vi is a nonzero binary vector with k rows and vji is the value of

the jth row of vector vi, then f is in ð2; 1Þ-DNCC.

Proof. Let U be the set of indexes from f1; . . . ; kg. Let S1 be
any subset of U such that 8j 2 S1; v

j
1 ¼ 1. Also, we know
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that jS1j > 0 since v1 is a nonzero vector. Without loss of
generality, we assume that t1 modifies some subset of
v1’s rows. (Note that any t1 that transforms v1 could be
represented as the set of indexes that are negated.) Let C
be the set of indexes negated by t1. Suppose C 6¼ ;, and
because C ¼ ; implies t1ðv1Þ ¼ v1, we can rewrite
fðv1; v2Þ as

fðv1; v2Þ ¼
Xk

j¼1

�
vj1 � v

j
2

�
¼
X

j2S1

vj2:

All vj1s, where j 62 S1, are equal to zero, and all vj1s, where
j 2 S1, are equal to one. Similarly, given t1 and the
associated set C, we can represent fðt1ðv1Þ; v2Þ as

fðt1ðv1Þ; v2Þ ¼
X

j2S1nC
vj2 þ

X

j2CnS1

vj2:

Note that all vj1 values, where j 2 S1 \ C, are converted to
zero by t1. Also, the vj1 values, where j 2 C n S1, that are
zero are converted to one by t1. We next show that for any
t1, we can find y2 and v2 such that fðt1ðv1Þ; v2Þ ¼
fðt1ðv1Þ; y2Þ and fðv1; v2Þ 6¼ fðv1; y2Þ. In addition, if
fðt1ðv1Þ; v2Þ 6¼ fðv1; v2Þ, then the first condition of Theo-
rem 3.1 would be satisfied. Otherwise, it means that
fðt1ðv1Þ; v2Þ ¼ fðv1; v2Þ for all v2. To prove the existence of
such y2 and v2 for any t1, we consider two different cases:

Case 1: S1 \ C ¼ ;. Implies that some zero values in v1

are converted to one by t1

fðt1ðv1Þ; v2Þ ¼
X

j2S1

vj2 þ
X

j2C
vj2:

Now, consider y2 and v2 such that
P

j2S1
ðvj2 � y

j
2Þ ¼ 1

(this is possible because S1 6¼ ;) and
P

j2Cðv
j
2 � y

j
2Þ ¼ �1.

It is easy to see that

fðt1ðv1Þ; v2ÞÞ ¼
X

j2S1

vj2 þ
X

j2C
vj2

¼
X

j2S1

�
yj2
�
þ 1þ

X

j2C

�
yj2
�
� 1

¼ fðt1ðv1Þ; y2Þ:

Clearly, fðv1; v2Þ 6¼ fðv1; y2Þ since
P

j2S1
ðvj2 � y

j
2Þ ¼ 1.

Case 2: S1 \ C 6¼ ;. Now, consider any y2 and v2 such
that yj2 ¼ v

j
2 for j 62 S \ C, and vj2 ¼ 1 and yj2 ¼ 0 for

j 2 S \ C. Note that fðt1ðv1Þ; v2Þ ¼ fðt1ðv1Þ; y2Þ because
vj2 and yj2 are exactly the same except j 2 S \ C. Also,
note that fðv1; v2Þ 6¼ fðv1; y2Þ

X

j2S1\C
vj2 6¼

X

j2S1\C
yj2

X

j2S1nC
vj2 þ

X

j2S1\C
vj2 6¼

X

j2S1nC
vj2 þ

X

j2S1\C
yj2

fðv1; v2Þ 6¼ fðv1; y2Þ:

Therefore, we can conclude that f is in ð2; 1Þ-DNCC. tu

4.5 Privacy-Preserving Naive Bayes Classification

In naive Bayes classification [15], building the data mining
model involves determining the probability that an instance
is of a certain class given that it has certain values for its
other attributes. To classify an unlabeled instance, we

simply compute our estimated likelihood for each class as
follows: PrðC ¼ cÞ

Qk
i¼1 PrðAi ¼ vijC ¼ cÞ for class value c

and attribute values v1; . . . ; vk. This implies that to build
privacy-preserving Naive Bayes classification models, we
need to estimate the probability PrðAi ¼ vijC ¼ cÞ that
attribute Ai has value vi given that class value is c. Below
we show that for both vertically and horizontally parti-
tioned data, computing such probabilities is in DNCC.

4.5.1 Horizontally Partitioned Data

To compute PrðAi ¼ vijC ¼ cÞ in the horizontally parti-
tioned case, in [42], it is shown that each party needs to
compute a function of the form

fððY1; C1Þ; . . . ; ðYn; CnÞÞ ¼
Pn

i YiPn
i Ci

where ðYi; CiÞ belongs to party i. As shown in Theorem 4.6,
this function is ðn; n� 1Þ-DNCC. Therefore, learning Naive
Bayes models in horizontally partitioned data case is in
ðn; n� 1Þ-DNCC.

4.5.2 Vertically Partitioned Data

Suppose one party has the class attribute of the data, and
another party has some other attribute Ai. To build the
model, we would need to compute PrðAi ¼ vijC ¼ cÞ for
each value vi and class value c. One way of doing this is, for
each value vi, to create a vector of length n (where n is the
number of instances), whose jth location is one if
jth instance’s Ai attribute has value vi, and zero otherwise.
Similarly, we can create vectors for each class value c where
jth location is 1 if jth instance’s class value is c, and zero
otherwise. Then, for each pair ðvi; cÞ for attribute Ai, we
compute the dot product of the corresponding two vectors,
which gives us the number of instances where Ai ¼ vi and
C ¼ c. This can be divided by the total number of instances
where C ¼ c to estimate the probability PrðAi ¼ vijC ¼ cÞ.
Note that the dot products involved in this case are
computed over binary vectors. Therefore, we can use
Theorem 4.9 to prove that learning Naive Bayes models in
vertically partitioned case is in (2,1)-DNCC.

4.6 Privacy-Preserving Decision Tree Classification

The aim of a decision tree is to provide classification criteria
based on the attributes of a data set. At each node of a
decision tree, the data are “split” into several subsets of data
based on the criterion of information gain. The information
gain of a split is defined as the average difference in entropy
between the original data set, and each data set formed by
the split.

In the Id3 and C4.5 decision trees [15], the sets for the
split are chosen based on a single attribute. The construction
of the tree proceeds as follows: 1) Determine the attribute
that has the greatest information gain (or equivalently
minimum conditional entropy). 2) Use that attribute to split
the data set. 3) Repeat this process within each subset until
no splits give significant information gain. At this point the
tree is complete.

4.6.1 Horizontally Partitioned Data

In [33], it is shown that in the horizontally partitioned data

case, after secure computation step, the random shares of
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the conditional entropy for an attribute are distributed to

each party. Given the random share of party j for

conditional entropy of attribute Ai (SjAi
), parties (assuming

there are n parties) need to find the attribute Ak for which

the
Pn

j¼1ðS
j
Ak
Þmod F (for some large prime F ) is minimum.

Note that such minimum could be computed using series of

comparisons. Since we proved that comparison is in (2,1)-

DNCC and from Claim 5.1 (given in Section 5), we can

conclude that learning decision trees in horizontally

partitioned case is in (2,1)-DNCC.

4.6.2 Vertically Partitioned Data

One way to calculate the probabilities used in the condi-
tional entropy for the vertically partitioned data case is to
have both parties create a zero-one vector with the length of
the data set, where the value at position i is one if the
ith instance could be in the partition, and have class C
according to the party’s data, and zero otherwise. The dot
product of these two vectors gives the number of rows
which could belong to the given node according to both
parties’ data, and therefore gives the number of rows which
belong to that node. We would again compute the dot
product, and divide it by the total number of instances in
the partition. From Theorem 4.9, learning decision tree
models in vertically partitioned case is in (2,1)-DNCC.

5 USING NON-DNCC FUNCTIONS IN AN

INCENTIVE-COMPATIBLE WAY

According to our previous analyses, some functions like
sum, set union and set intersection are not in DNCC, but
they can still be used in an incentive-compatible way in
PPDA applications. The reason is that in many applications,
primitives like sum, set union and intersection are not used
alone, and they often act as subroutines. To have a
completely secure protocol, the subroutines can only return
random shares of the expected results. For example,
suppose a PPDA application uses the set intersection as a
subroutine to compute the intersection between two sets D1

and D2. To achieve the best security, the subroutine
produces two random numbers �1 and �2 (from a certain
field), such that �1 þ �2 ¼ jD1 \D2j. Subsequently, �1 and
�2 will be used as input values to the next subroutine in the
PPDA application. Because of this observation, we have the
following claim.

Claim 5.1. Suppose a function f is a sequential composition
of n subroutines f1; . . . ; fn, and for 1 � i � n� 1, fi
returns random shares of its expected results. If fn is in
DNCC, then f is in DNCC.

Note that the random shares produced from fi are
uniformly distributed from the viewpoint of an individual
participating party (denoted by P ). Therefore, if P modifies
his or her input to fi, it is impossible to derive the actual
result from the random shares returned by fi. In addition,
any change to the actual input or the intermediate random
shares can change the input to fn. Thus, if fn is in DNCC, so
is f . Using the above claim, we next show several
additional PPDA applications or sequential composite
functions are in DNCC.

In information retrieval, the Jaccard coefficient (JC), the
Dice coefficient (DC) and the Cosine similarity (CS) are
extensively used as similarity metrics to identify relevant
information. For illustration purposes, assume D1 and D2

are two sets owned by two parties P1 and P2, respectively.
The metrics are defined as

. JCðD1; D2Þ ¼ jD1\D2j
jD1[D2j ¼

jD1\D2j
jD1jþjD2j�jD1\D2j .

. DCðD1; D2Þ ¼ 2jD1\D2j
jD1jþjD2j .

. CSðD1; D2Þ ¼
Pm

i¼1
D1½i��D2½i�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1
D1½i�2

p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1
D2½i�2

p .

In [23], a two-party protocol is proposed to securely
compute JC. The protocol consists of two stages:

. Stage 1—Computing Random Shares of jD1 \D2j.
At the end, P1 has a random number �1 and P2 has a
random number �2, such that �1 þ �2 ¼ jD1 \D2j.

. Stage 2—Computing JC Score. P1 sets �1 ¼ jD1j � �1

and P2 sets �2 ¼ jD2j � �2. Both parties securely
compute �1þ�2

�1þ�2
.

Since stage 1 returns random shares and the function
fðð�1; �1Þ; ð�2; �2ÞÞ ¼ �1þ�2

�1þ�2
is in DNCC (Example 3.2), the

protocol for computing JC is in DNCC from Claim 5.1.
Similar protocols can be developed to compute DC and CS
using the above stages with minor modifications. Thus, the
protocols or the composite functions that compute DC and
CS are also in DNCC.

In addition, these metrics are commonly used to measure
intracluster and intercluster distances among text docu-
ments. Therefore, text clustering techniques using these
metrics are in DNCC. Moreover, secure similar document
detection [21], [22], [36] is another PPDA application.
Because it directly uses CS to measure similarity, this
PPDA application is also in DNCC.

6 CONCLUSION AND FUTURE WORK

Even though privacy-preserving data analysis techniques
guarantee that nothing other than the final result is
disclosed, whether or not participating parties provide
truthful input data cannot be verified. In this paper, we
have investigated what kinds of PPDA tasks are incentive
compatible under the NCC model. Based on our findings,
there are several important PPDA tasks that are incentive
driven. Table 2 classifies the common data analysis tasks
studied in this paper into DNCC or Non-DNCC categories.
Most often, data partition schemes can make a difference in
determining DNCC or Non-DNCC classifications.

For any functions, Theorems 3.1 and 3.2 provide a
general way to determine if a function is in DNCC. In
addition, Claim 5.1 can be used to analyze if a composite
function is in DNCC, and it also provides a method to
design a PPDA protocol that guarantees to be incentive
compatible under the DNCC definition. For instance, a
PPDA task can have many variations, and one common
variation is to place a filter at the last step of the task to
make the PPDA protocols more secure (e.g., secure similar
document detection versus its threshold-based variation).
According to Claim 5.1, as long as the last step in a PPDA
task is in DNCC, it is always possible to make the entire
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PPDA task satisfying the DNCC model. Therefore, when
designing a PPDA protocol, it is in our best interests to
make the last step of the PPDA task incentive-compatible
whenever possible.

As a part of future research direction, we will investigate
incentive issues in other data analysis tasks, and extend the
proposed theorems under the probabilistic NCC model.
Another important direction that we would like to pursue is
to create more efficient Secure Multiparty Computation
techniques tailored toward implementing the data analysis
tasks that are in DNCC.
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